Phonons and anharmonicity

Atoms tend not to sit still

0
000
0000
$0 \bigcirc \bigcirc 0$
$\theta$$\theta$

$$
S=-k_{B} \sum_{i} p_{i} \ln p_{i}
$$

The number of states is far too large to enumerate, we need to approximate this

Electrons are too complicated

Electrons are reduced to springs that connect nuclei

Harmonic approximation

$$
U(\{\mathbf{u}\})=U_{0}+\frac{1}{2} \sum_{i j} \sum_{\mu \nu} \Phi_{i j}^{\mu \nu} u_{i}^{\mu} u_{j}^{\nu}
$$

Hamiltonian:

$$
H=U_{0}+\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\frac{1}{2!} \sum_{i j \alpha \beta} \Phi_{i j}^{\alpha \beta} u_{i}^{\alpha} u_{j}^{\beta}
$$

Introduce the Fourier transformed force constant matrix, the dynamical matrix:

$$
\boldsymbol{\Phi}_{\mu \nu}(\mathbf{q})=\sum_{l} \frac{e^{i \mathbf{q} \cdot \mathbf{R}_{l}}}{\sqrt{M_{\mu} M_{\nu}}} \boldsymbol{\Phi}_{\mu \nu}\left(\mathbf{R}_{l}\right)
$$

Get eigenvalues and eigenvectors of this matrix

$$
\omega_{\mathbf{q} s}^{2} \epsilon_{\mathbf{q} s}=\boldsymbol{\Phi}(\mathbf{q}) \epsilon_{\mathbf{q} s}
$$

Each harmonic oscillator will have the partition function

$$
Z_{\mathbf{q} s}=\sum_{n=0}^{\infty} \exp \left(-\frac{\left(n+\frac{1}{2}\right) \hbar \omega_{\mathbf{q} s}}{k_{B} T}\right)=\frac{\exp \left(\frac{\hbar \omega_{\mathbf{q} s}}{2 k_{\mathrm{q}} T}\right)}{\exp \left(\frac{\hbar \omega_{\mathrm{q}}}{k_{B} T}\right)-1}
$$

We will have the total partition function

$$
Z=\prod_{\mathbf{q} s} \frac{\exp \left(\frac{\hbar \omega_{\mathbf{q} s}}{2 k_{k} T}\right)}{\exp \left(\frac{\hbar \omega_{\mathrm{q}} s}{k_{B} T}\right)-1}
$$

And the (Helmholtz) free energy

$$
\begin{array}{r}
F=-k_{B} T \ln Z=\sum_{s \mathbf{q}} \frac{\hbar \omega_{s \mathbf{q}}}{2}+k_{B} T \ln \left(1-\exp \left(-\frac{\hbar \omega_{s \mathbf{q}}}{k_{B} T}\right)\right) \\
\\
=\int g(\omega)\left[\frac{\hbar \omega}{2}+k_{B} T \ln \left(1-\exp \left(-\frac{\hbar \omega}{k_{B} T}\right)\right)\right] \mathrm{d} \omega
\end{array}
$$

What does the oscillators represent

Displacement pattern for each oscillator is determined by the eigenvectors, and varies in time as $\sin \left(\omega_{\mathbf{q} s} t\right)$

The real and reciprocal representations are equivalent, with the atomic displacements described as a sum of plane waves.

What does the oscillators represent

Or equivalently, we can see the phonon dispersions as the allowed thermal excitations in a material, such that they define the inelastic neutron spectra.

For a specific change in momentum (q), it tells us what changes in neutron energies are allowed.

J. Serrano, J. Strempfer, M. Cardona, M. Schwoerer-Böhning, H. Requardt, M. Lorenzen, B.

Stojetz, P. Pavone, and W.J. Choyke, Appl. Phys. Lett. 80, 4360 (2002)

Aluminium phonon DOS Harmonic

Significant disagreement at high temperature. something is missing!
M. Kresch, M. Lucas, O. Delaire, J. Lin, and B. Fultz, Phys. Rev. B 77, 024301 (2008).

Quasiharmonic approximation

$$
\omega_{\mathbf{q} s}(V, T) \approx \omega_{\mathbf{q} s}(V(T))
$$

Use the harmonic approximation for different volumes, gives you $F(V, T)$

Free energy vs volume

Taylor, A., Jones, R.M. in Silicon Carbide - A High Temperature Semiconductor , Eds. O'Connor, J.R., Smiltens, J., Pergamon Press, Oxford, London, New York, Paris 1960, 147

Reconsider the independent oscillators

The harmonic approximation has perfect principle of superposition. That is not a good approximation

We have to consider

- interactions beyond pairs, three-body, four-body and so on.

Aluminium phonon DOS Quasiharmonic

The experimental spectra has distinctly different features, there is no way the quasiharmonic approach could fix that.

Reconsider the independent oscillators

Add high order terms to the expansion of the potential energy surface
$H=U_{0}+\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\frac{1}{2!} \sum_{i j \alpha \beta} \Phi_{i=1}^{\alpha \beta} u_{i}^{\alpha} u_{j}^{\beta}+\frac{1}{3!} \sum_{i j k \alpha \beta \gamma} \Phi_{i j k}^{\alpha \beta \gamma} u_{i}^{\alpha} u_{j}^{\beta} u_{k}^{\gamma}+\frac{1}{4!} \sum_{i j k \alpha \beta \gamma \delta \delta} \Phi_{i k i k i}^{\alpha \beta \gamma} u_{i}^{\alpha} u_{j}^{\beta} u_{k}^{\gamma} u_{i}^{\xi}+\ldots$
Complicates things a little

A plane wave ansatz no longer diagonalise the system

Fourier transform in time

Time

A broadening in frequency domain is equivalent to a dampening in time, a finite lifetime.

A deltafunction means infinite lifetime

$$
\mathcal{F}\left\{\delta\left(\omega-\omega_{\mathbf{q} s}\right)\right\}=e^{i \omega_{\mathbf{q} s} t}
$$

Lorentzian means finite lifetime
$\mathcal{F}\left\{\frac{\sigma}{\pi} \frac{1}{\left(\omega-\omega_{q s}\right)^{2}+\sigma^{2}}\right\}=e^{i \omega_{\mathbf{q} s} t} e^{-\sigma t}$

The probability per unit time that two specific phonons recombine into a third

$$
\Psi_{s s^{\prime} s^{\prime \prime}}^{\mathbf{q q ^ { \prime }} \mathbf{q}^{\prime \prime}}=\sum_{i j k} \sum_{\alpha \beta \gamma} \frac{\epsilon_{\alpha i}^{\mathbf{q} s} \epsilon_{\beta j}^{\mathbf{q}^{\prime} s^{\prime}} \epsilon_{\gamma k}^{\mathbf{q}^{\prime \prime} s^{\prime \prime}}}{\sqrt{m_{i} m_{j} m_{j}} \sqrt{\omega_{\mathbf{q} s} \omega_{\mathbf{q}^{\prime} s^{\prime}} \omega_{\mathbf{q}^{\prime \prime} s^{\prime \prime}}}} \Phi_{i j k}^{\alpha \beta \gamma} e^{i \mathbf{q} \cdot \mathbf{r}_{i}+i \mathbf{q}^{\prime} \cdot \mathbf{r}_{j}+i \mathbf{q}^{\prime \prime} \cdot \mathbf{r}_{k}}
$$

The probability depends on the strength of the three-body interactions

If we know the lifetime, we know the broadening

Consider three-phonon processes

$\mathbf{q}_{1}+\mathbf{q}_{2}=\mathbf{q}_{3}$
$\mathbf{q}_{1}=\mathbf{q}_{2}+\mathbf{q}_{3}$
$\omega_{1}+\omega_{2}=\omega_{3}$
$\omega_{1}=\omega_{2}+\omega_{3}$
The probability of these determine the rate of change of the occupation, i.e. the lifetime

In general, not just broadening

The line shape is described by the one-neutron cross section:

$$
\sigma_{\mathbf{q} s}(\Omega) \propto \frac{2 \omega_{\mathbf{q} s} \Gamma_{\mathbf{q} s}(\Omega)}{\left(\Omega^{2}-\omega_{\mathbf{q} s}^{2}-2 \omega_{\mathbf{q} s} \Delta_{\mathbf{q} s}(\Omega)\right)^{2}+4 \omega_{\mathbf{q} s}^{2} \Gamma_{\mathbf{q} s}^{2}(\Omega)}
$$

Determined by the real and imaginary parts of the self-energy:
$\Gamma_{\mathbf{q s}}(\Omega)=\sum_{s^{\prime} s^{\prime \prime}} \frac{\hbar \pi}{16} \frac{V}{(2 \pi)^{3}} \iint_{\mathrm{BZ}}\left|\Psi_{s s^{\prime} s^{\prime \prime}}^{\mathrm{qq}^{\prime} \mathbf{q}^{\prime \prime}}\right|^{2} \Delta_{\mathbf{q q}^{\prime} q^{\prime \prime}} \times$
$\left[\left(n_{\mathbf{q}^{\prime} s^{\prime}}+n_{\mathbf{q}^{\prime \prime} s^{\prime \prime}}+1\right) \delta\left(\Omega-\omega_{\mathbf{q}^{\prime} s^{\prime}}-\omega_{\mathbf{q}^{\prime \prime} s^{\prime \prime}}\right)\right.$
$\left.+2\left(n_{\mathbf{q}^{\prime} s^{\prime}}-n_{\mathbf{q}^{\prime \prime}} s^{\prime \prime}\right) \delta\left(\Omega-\omega_{\mathbf{q}^{\prime} s^{\prime}}+\omega_{\mathbf{q}^{\prime \prime}} s^{\prime \prime}\right)\right] d \mathbf{q}^{\prime} d \mathbf{q}^{\prime \prime}$

Aluminium phonon DOS Quasiharmonic+lineshapes

Now it is starting to look ok
More or less within experimental error bars

Thermal conductivity

$$
\kappa \propto C v^{2} \tau
$$

How fast it travels, how much heat it carries, how long it lives

So, to summarize, we started with the potential energy.

$$
U(\{\mathbf{R}\}) \approx \frac{1}{2!} \sum_{i j \alpha \beta} \Phi_{i j}^{\alpha \beta} u_{i}^{\alpha} u_{j}^{\beta}+\frac{1}{3!} \sum_{i j k \alpha \beta \gamma} \Psi_{i j k}^{\alpha \beta \gamma} u_{i}^{\alpha} u_{j}^{\beta} u_{k}^{\gamma}+\ldots
$$

Solve harmonic parts analytically, the rest with perturbation theory.
We got Aluminium to look ok.

Does it always work?

Sometimes it works

Sometimes not

C. Stassis, Solid State Commun. 52, 9 (1984).
A. Heiming et al. Phys. Rev. B 43, 10948 (1991)

Effective potential depends depends on state

The ab initio MD looks ok

Taylor expanding from the solid line to the dashed is hard

Easier to sample the high-temperature potential energy landscape, and fit a model potential

Treating this analytically

is tricky

The harmonic approximation does not work well

Find the effective harmonic potential

Position

Same thing for a lattice:

Use Born-Oppenheimer molecular dynamics to provide statistics, fit an effective Hamiltonian:
$H=U_{0}+\sum_{i} \frac{m_{i} \mathbf{p}_{i}^{2}}{2}+\frac{1}{2!} \sum_{i j \alpha \beta} \Phi_{i j}^{\alpha \beta} u_{i}^{\alpha} u_{j}^{\beta}+\frac{1}{3!} \sum_{i j k \alpha \beta \gamma} \Psi_{i j k}^{\alpha \beta \gamma} u_{i}^{\alpha} u_{j}^{\beta} u_{k}^{\gamma}+\ldots$

I could use any form, but it is practical to use the same analytical form as before.

Express the forces in terms of the model Hamiltonian:

$$
\underbrace{\left(\begin{array}{c}
\mathbf{f}_{1} \\
\mathbf{f}_{2} \\
\vdots \\
\mathbf{f}_{N_{a}}
\end{array}\right)}_{\mathbf{F}_{t}^{H}}=\underbrace{\left(\begin{array}{cccc}
\Phi_{11} & \Phi_{12} & \cdots & \Phi_{1 N_{a}} \\
\Phi_{21} & \Phi_{22} & \cdots & \Phi_{2 N_{a}} \\
\vdots & \vdots & \ddots & \vdots \\
\Phi_{N_{a} 1} & \Phi_{N_{a} 2} & \cdots & \Phi_{N_{a} N_{a}}
\end{array}\right)}_{\Phi} \underbrace{\left(\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\vdots \\
\mathbf{u}_{N_{a}}
\end{array}\right)}_{\mathbf{U}_{t}}
$$

Minimize the difference in forces between model system and real system

$$
\min _{\overline{\bar{\Phi}}} \Delta \mathbf{F}=\frac{1}{N_{t}} \sum_{t=1}^{N_{t}}\left|\mathbf{F}_{t}^{\mathrm{MD}}-\mathbf{F}_{t}^{\mathrm{H}}\right|^{2}
$$

Determined with a symmetry constrained least squares solution

Symmetry constrained least squares

```
(l}\mp@subsup{f}{x}{
Original equation, 9 unknown
```

$\left(\begin{array}{l}f_{x} \\ f_{y} \\ f_{z}\end{array}\right)=\left(\begin{array}{ccc}\theta_{1} & \theta_{2} & 0 \\ \theta_{2} & \theta_{1} & 0 \\ 0 & 0 & \theta_{2}\end{array}\right)\left(\begin{array}{l}u_{x} \\ u_{y} \\ u_{z}\end{array}\right)$
$\left(\begin{array}{c}f_{x} \\ f_{y} \\ f_{z}\end{array}\right)=\left(\begin{array}{c}u_{x} \theta_{1}+u_{y} \theta_{2} \\ u_{y} \theta_{1}+u_{x} \theta_{2} \\ u_{z} \theta_{2}\end{array}\right)$
$\left(\begin{array}{l}f_{x} \\ f_{y} \\ f_{z}\end{array}\right)=\left(\begin{array}{cc}u_{x} & u_{y} \\ u_{y} & u_{x} \\ 0 & u_{z}\end{array}\right)\binom{\theta_{1}}{\theta_{2}} \quad$ Constrained equation, 2 unknown

Same as before, but temperature dependent!

About 10000 unknown variables

Symmetry constrained least squares

$$
\mathbf{F}=C(\mathbf{U}) \mathbf{\Theta}, \quad C(\mathbf{U})_{k \gamma}=\sum_{\delta} c_{\gamma \delta}^{k} u_{\delta}
$$

About 10 unknown

C. Stassis, Solid State Commun. 52, 9 (1984)
A. Heiming et al. Phys. Rev. B 43, 10948 (1991).

Zr is pathological.
More subtle cases, such as $\mathrm{Bi}_{2} \mathrm{Te}_{3}$

Coefficient of thermal expansion

Heat capacity

O. Delaire et al., Nat. Mater. 10, 614 (2011).
W. Cochran et al., Proc. R. Soc. A Math. Phys. Eng. Sci. 293, 433 (1966).

C.W. Li, O. Hellman, J. Ma, A. F. May, H.B. Cao, X. Chen, A. D. Christianson, G. Ehlers, D.J. Singh, B.C. Sales, and O. Delaire, Phys. Rev. Lett. 112, 175501 (2014).

E.D. Devyatkova and I.A. Smirnov, Sov. Phys. Solid State, USSR 4, 2507 (1962).
A.A. El-Sharkawy et al., Int. J. Thermophys. 4, 261 (1983).
A.H. Romero, E.K.U. Gross, M.J. Verstraete, and O. Hellman, Phys. Rev. B 91, 214310 (2015)

You can not use forceconstants from one ensemble and extrapolate to another in general

Max Power way

Choose displacements from a canonical ensemble (at the harmonic level) that minimize the condition number of matrix C

$$
u_{i}=\sum_{k} \epsilon_{i k} c_{i k} e^{i \omega_{k} t+\delta_{k}} \quad c_{i k}=\frac{1}{\omega_{k}} \sqrt{\frac{k_{B} T}{m_{i}}} \sqrt{2-\log \xi_{1}}
$$

Monte Carlo solver to find the configurations in the given ensemble that give the most reliable solution
(could of course just use random displacements, but then I have no idea what ensemble I sample)

Max Power way

isn't that just the wrong way? Yes, but faster

Some people thing AIMD takes too long.

Obtaining force constants to all orders are reduced to a single matrix equation:

$$
C \Theta=F
$$

Matrix whose elements are \times Irreducible force $=$ Forces from a function of displacements X constants $=$ calculations

Gives more or less the same as MD

~30000 MD steps

five supercell calculations

What I am working on now

really really anharmonic systems

Nothing amuses more harmlessly than computation, and nothing is oftener applicable to real business or speculative inquiries.

A thousand stories which the ignorant tell, and believe, will die away at once, when the computist takes them in his gripe.

Cultivate in yourself a disposition to numerical inquiries: they will give entertainment in solitude by the practice, and reputation in public by the effect.

Samuel Johnson

