Phonons and anharmonicity
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Entropy is tricky

Atoms tend not to sit still
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S=—kpy pilup;

The number of states is far too large to
enumerate, we need to approximate this

Electrons are too complicated

Electrons are reduced to springs
that connect nuclei




Harmonic approximation
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Hamiltonian:
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Introduce the Fourier transformed force constant
matrix, the dynamical matrix:
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Get eigenvalues and eigenvectors of this matrix

Wastas = B(Q)eqs

Use eigenvalues and eigenvectors
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Construct a transformation
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New Hamiltonian:
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A sum of uncoupled harmonic oscillators!

Each harmonic oscillator will have the partition function
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We will have the total partition function
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Phonon DOS

Entropy, free energy

and so on are given

analytically from the
phonon DOS.

R.B. Leighton, Rev. Mod. Phys. 20, 165 (1948).
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What does the oscillators represent

Displacement pattern for each
oscillator is determined by the
eigenvectors, and varies in
time as sin(wqst)

The real and reciprocal representations are equivalent, with
the atomic displacements described as a sum of plane waves.

What does the oscillators represent

7 Or equivalently, we can see the
s phonon dispersions as the

. allowed thermal excitations in a
material, such that they define
the inelastic neutron spectra.

: For a specific change in

: momentum (q), it tells us what
changes in neutron energies are
allowed.

How to get force constants
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You move atom j, measure the force on atom i

Repeat until you know all force constants.

Analytically, with DFPT, or manually as numerical derivatives
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Stojetz, P. Pavone, and W.J. Choyke, Appl. Phys. Lett. 80, 4360 (2002).
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Significant disagreement at high temperature.
something is missing!

M. Kresch, M. Lucas, O. Delaire, J. Lin, and B. Fultz, Phys. Rev. B 77, 024301 (2008).

Quasiharmonic approximation

wWas(V, T) = wqs(V(T))
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Volume vs temperature
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J., Pergamon Press, Oxford, London, New York, Paris 1960, 147
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The experimental spectra has distinctly different features,
there is no way the quasiharmonic approach could fix that.

Reconsider the
independent oscillators

The harmonic approximation has perfect principle
of superposition. That is not a good approximation
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Reconsider the
independent oscillators

Add high order terms to the expansion of the
potential energy surface
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Complicates things a little

A plane wave ansatz no longer diagonalise the system




Non-interacting

Interacting

Y

Different, but not too different.
Perturbation theory!

2600 A. A. MARADUDIN
From Eqs. (4.29) and (4.32), we sce that Gy(kjj") is an
intensive quantity as it must be,

V. RESULT FOR THE ONE-PHONON SCATTERING
CROSS SECTION
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The first term of this expression corresponds to

processes in which the neutron gives up energy o to
the crystal, while the second term corresponds to

The theory
tends be a bit
dense

A.A. Maradudin and A. Fein,
Phys. Rev. 128, 2589 (1962).
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Interacting

Frequency

Sort of Lorentzian

Fourier transform in time

Intensity

Amplitude

Frequency

Time

A broadening in frequency domain is equivalent
to a dampening in time, a finite lifetime.




Intensity
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Amplitude

Frequency Time

A deltafunction means infinite lifetime
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Lorentzian means finite lifetime
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If we know the lifetime, we
know the broadening

Consider three-phonon processes
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The probability of these determine the rate of
change of the occupation, i.e. the lifetime
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The probability per unit time that two specific
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The probability depends on the strength of
the three-body interactions
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Aluminium phonon DOS
Quasiharmonic+broadening
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The shape is better, but the energies are
not that great.

In general, not just broadening

The line shape is described by the one-neutron
cross section:
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Determined by the real and imaginary parts of
the self-energy:
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Aluminium phonon DOS
Quasiharmonic+lineshapes
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Now it is starting to look ok
More or less within experimental error bars




Thermal conductivity

Kk oc Cv2r

How fast it travels, how much heat it carries,
how long it lives

So, to summarize, we started
with the potential energy.
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Solve harmonic parts analytically, the rest

with perturbation theory.
We got Aluminium to look ok.

Does it always work?

Sometimes it works

L

Y

First principles

Harmonic approximation

Sometimes not

Y S

First principles

Harmonic approximation




bcc Zr at 1300K
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C. Stassis, Solid State Commun. 52, 9 (1984).
A. Heiming et al. Phys. Rev. B 43, 10948 (1991).

The ab initio MD looks ok
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Harmonic approximation

Effective potential depends depends on state

Pair potential (Lennard-Jones) Potential in lattice, zero K

Potential at finite T

Distance Displacement
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Taylor expanding from
the solid line to the
dashed is hard

Energy
Energy

Displacement Displacement

Easier to sample the high-temperature
potential energy landscape, and fit a
model potential




Treating this analytically
is tricky

, THERMAL PROPERTIES 134
The « (25L 2 rén: e ¢ Tgm (4-49)
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implement it, it will
contain approximations
that are not necessary et 1 b e

We want to compare the free
energies of these two potentials

The harmonic approximation does
not work well

Energy

Energy

Position

Position

Position Position
Find the effective harmonic potential

Position

Position




Find the effective harmonic potential

Energy

Energy

Position Position

Same thing for a lattice:

Use Born-Oppenheimer molecular dynamics to
provide statistics, fit an effective Hamiltonian:
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| could use any form, but it is practical to use
the same analytical form as before.

Born-Oppenheimer molecular dynamics
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every time step is a set of forces and positions
corresponding to a canonical ensemble

Express the forces in terms of the
model Hamiltonian:
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Minimize the difference in forces
between model system and real system
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Determined with a symmetry
constrained least squares solution

E.
B




Symmetry constrained least squares
f:z: 4511 ¢my ¢mz Uy
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About 10000 unknown variables
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Symmetry constrained least squares
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About 10 unknown

Phonon dispersions
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Pressure (GPa)

Free energy Thermal conductivity

Same as before, but temperature dependent!
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Volume thermal expansion 107

Zr is pathological.
More subtle cases, such as Bi;Tes

— Temperature dependent
— Quasiharmonic

Heat capacity (c, in k)

— Temperature dependent
L L L — Quasiharmonic
0 100 'l‘c,npm»;:'ur(. ® 300 100
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Coefficient of thermal Heat "
expansion €at Capacity
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PbTe

Expanding the
lattice decreases the
thermal conductivity
v r by factor 100
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PbTe
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T-dependent S(Q,E)

=hQ (meV)

Energy, E:
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Ensemble matters
AIMD 600K AIMD 100K

Frequency (THz)
Frequency (THz)

You can not use forceconstants from one ensemble
and extrapolate to another in general

Matrix whose elements are
a function of displacements

Max Power way

-isn’t that just the wrong way? Yes, but faster!

Some people thing AIMD takes too long.

Obtaining Force constants to all orders are
reduced to a single matrix equation:

Cco=F

Irreducible force __ Forces from

constants — calculations

Max Power way

Choose displacements from a canonical ensemble
(at the harmonic level) that minimize the condition
number of matrix C

_ iwpt+o
U; = E €ikCike TR oy =
k

1/kBT\/2 —log &,
m;

1
Wk

Monte Carlo solver to find the configurations in the
given ensemble that give the most reliable solution

(could of course just use random displacements, but
then | have no idea what ensemble | sample)

Gives more or less the same as MD
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Frequency (THz)
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~30000 MD steps

Frequency (THz)
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five supercell
calculations




What | am working on now

Cu, . Se
2 1875
Ed

| >
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really really anharmonic systems

Nothing amuses more harmlessly than
computation, and nothing is oftener
applicable to real business or speculative
inquiries.

A thousand stories which the ignorant
tell, and believe, will die away at once,
when the computist takes them in his

gripe.

Cultivate in yourself a disposition to
numerical inquiries: they will give
entertainment in solitude by the practice,
and reputation in public by the effect.

Samuel Johnson




