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July 27 - 31, 2015 in Schloss Ringberg, Germany

Monday Tuesday Wednesday Thursday Friday
Cecile Hebert - investigation
Silke Biermann - Ivano Tavernalli - Trajectory- | of molecules at surfaces and
8:45 - 9:55 Electronic structure based nonadiabatic dynamics chemical reactions by
! ' calculations using dynamical | using time-dependent density transmission electron
mean field theory functional theory microscopy: is a dream
becoming true 7
Alec Wodtke -
. . The dynamics of molecular
Matthieu Verstragte - AD inifio Olle Hellman - Andrea Cepellotti — Thermal | interactions and chemical
9:55 - 11:05 approaches to electron . . X . .
transport Phonons and anharmonics Transport in 2D Materials reactions at metal surfaces:
P Testing the foundations of
theory
11:05 Coffee break Coffee break Coffee break Coffee break
Carsten Baldauf - ,
Molecular dynamics of Mat:::? ?:::ﬂ:;;{iﬁ;ga’a Markus Elstner -Multiscale
11:25-12:35 peptides in isolation and Sdﬂ c simulations of biological Examinations
computation on physical ence: Concepts, structures and processe
Challenges, and Hype
observables
12:35 Lunch Lunch Lunch Lunch
Tom Rizzo - Christian Carbogno -
14:15 - 15:25 Biomolecules in isolation — Thermal Conductivities from
e challenges and benchmarks First Principles Molecular
for theory Dynamics
15:25 Coffee break Coffee break Coffee break

Big Data Analytics for Materials Science:

From the periodic table of the elements to a chart (a map) of mate-
rials: Organize materials according to their properties and functions.

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin; http://th.fhi-berlin.mpg.de/

Concepts, Challenges, and Hype

Matthias Scheffler (*)

o figure of merit of thermoelectrics (as function of T)

O turn-over frequency of catalytic

materials (as function of T and p) E":'. ,
0 efficiency of photovoltaic systems

-

(*) Work performed in collaboration with Luca Ghiringhelli,

O etc.

Jan Vybiral, Claudia Draxl, et al.

Dmitri Mendeleev
(1834-1907)

PERIODIC TABLE OF THE ELEMENTS
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Materials Genome Initiative for Global Competiveness

Materials Genome Initiative
or Global Competitiveness

for G

To help business discover, develop, and
deploy new materials twice as fast, we're
launching what we call the Materials
Genome Initiative. The invention of silicon
circuits and lithium ion batteries made
computers and iPods and iPads possible, but
it took years to get those technologies from
the drawing boards to the market place. We
can do it faster.

President Obama

Carnegie Mellon University, June 2011

“twice as fast,
at a fraction of the cost”

Materials Genome Initiative for Global Competiveness

Compute or measure the basic
properties (,genes”) of many
(ten thousand) materials and

o L disseminate that information to
To help business discover, develop, and the materials community to
deploy new materials twice as fast, we're enable rapid searches and
launching what we call the Materials design.
Genome Initiative. The invention of silicon
circuits and lithium ion batteries made
computers and iPods and iPads possible, but
it took years to get those technologies from

the drawing boards to the market place. We
can do it faster.

President Obama

Carnegie Mellon University, June 2011

“twice as fast,
at a fraction of the cost”




NoMaD

The Novel Materials
Discovery Repository

https://www.youtube.com/watch?v=L-nmRSHANQM

NoMaD Team Why sharing? Upload Download DOls Terms FAQ NoMaD repository Other repositories

News

Welcome to the NoMaD Repository

Currently, the NoMaD
Repository contains
348,704 entries.

No Ma D; ; ! 4 The NoMaD (Novel Materials Discovery)

RGpOSItOfy ’ | : P, - Repos‘itory was establishe.d to host,
} !3,- K W organize, and share materials data.

The NoMaD (Nove
" Repository was established to host, organize,
B and share materials data.

- NoMaD recommended by
| Materials Discovery) Nature Scientifc Data.

more

Et  Open positions

Check for related
NoMabD offers this for free. NoMaD also conferences and
= — = ilitatac ¢ h araunc tn chara and workshops.

25.07.2015
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by many funding agencies, worldwide,
require keeping scientific data for 10 years. Check for related
NoMaD offers this for free. NoMaD also coffersnces and
facilitates research groups to share and workshops.
exchange their results, inside a single group or between two or more, and to recall what was actually done

some years ago.

We are making NoMaD

more powerful and

The NoMaD Repository enables the confirmatory analysis of materials data, their reuse, and repurposing. apologize for any possible
instability during this time.

The NoMaD Repository enables the confirmatory analysis papreposicoryis
of materials data, their reuse, and repurposing. o

al Support

Read more details concerning the upload. Please, register or login
to participate.

At present, the repository contains ab initio electronic-structure data
from density-functional theory and methods beyond. At a later stage,
it will be extended by force-field studies and by experimental data.
We also give an outlook on the NoMaD Laboratory that will be
dedicated to a Materials Encyclopaedia, as the basis for complex
queries and the development of various data-analytics tools.

What To Do With The Data?
NoMaBZIEE o C & £
Re‘,li).%s'} "’ ks ~ Currently, the NoMaD

~ Repository contains
j 631,432 entries
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The Four V of Big Dataand an A

Data — data — data Query and read out what was
(analog to Moore’s law) stored; high-throughput screening.

The Four V of Big Dataand an A

Data — data — datzi\ Query and read out what was
(analog to Moore’s law) stored; high-throughput screening.

(so far: most data are not used and even thrown away)

=3

Big-Data Challenge: “four V”: The four V should be complemented
by an “A”, Big-Data Analytics:
* identify (so far) hidden trends,

Volume (amount of data),
Variety (heterogeneity of form and

meaning of data), * What is the next most promising
@uncertainty of quality) candidate that should be studied?
Velocity at which data may change * identify anomalies,

* identify the mechanisms behind a

or new data arrive. | _ _
certain material property/function.




The Next Step Will Start November 1, 2015:

“Novel Materials Discovery (NoMaD) A European Center of Excellence”
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A. Bode SLeibniz-Rechenzentrum,
Garching

C. Draxl (HU, Berlin)
D. Frenkel (U. Cambridge)

F. lllas (U. of Barcelona)

K. Koski (CSC — IT Center for Scientific
Computing, Helsinki)

J. M. Cela (Barcelona Supercomputing
Center)

R. Nieminen (Aalto University, Helsinki)
A. Rubio (MPI MPSD, Hamburg)

M. Scheffler (FHI of MPS, Berlin, project
coordinator)

K. Thygesen (Tech. U. Denmark, Lyngby)
A. De Vita (King’s College London)

S. Heinzel (Rechenzentrum Garching MPS)

The NoMaD
Repository

Existing resources

—..
@-IPC expertise & hardware

@ ml 0010 Search,
retrieve

(ei QYYD

Big-data da¥co

analytics
Visualize

Conversion layers

Disseminate, outreach

Big-Data Analytics: How to Arrange the Data

Finding a Set of Descriptive Parameters

==Training Set
Calculate properties
and functions, P, for

many materials, i.

"Fast Prediction
Calculate properties

and functions for new
d values, i.e. new
materials.

Find the function
PSL(d) for the “table”;
do cross validation.

~ Descriptor
Find the appropriate
descriptor d;
build a “table”:

{Z: N[}a T, {p} de-
termine the many-
body hamiltonian and
statistical mechanics

Statistical mechanics does not
tell us what the relevant
variables are. This is our

P, choice. If we choose well, the
results may be useful, if we
chose badly, the results
(while formally correct) will
probably be useless. (Robert
Zwanzig)
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Big-Data Analytics: How to Arrange the Data

Finding a Set of Descriptive Parameters

P Fast Predictions N Descriptor
Calculate properties Find the appropriate {Z, N[} , T, {p} de-
and functions for new descriptor d; termine the many-

d values, i.e. new build a “table”: . .
materials. i d P body hamiltonian and
[~ 4 ”\: statistical mechanics
Y

d characterizes the relevant mechanisms that govern the observed
property/function P. Identifying the descriptor d from known data P, is an
ill-posed problem (statistical-learning theory): A little error in the data P,
may suggest a different descriptor d. Thus, knowledge of the accuracy of
data P, is crucial (veracity). The choice of d is not unique.

A) Veracity: Accuracy of state-of-the-art density-functional theory
(validation and verification)

B) Descriptor: How to find it, how to understand the causality between d
and PSt?

Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

Can we predict not yet calculated structures from Z, and Z;? Can we create a
map: “The ZB/W community lives here and the RS community there?”

RS

Energy differences
between different
structures are very
small.

For Si: 0.01% of the
energy of a Si atom,
or 0.1% of the 4
valence electrons.
Complexity: T;[n]
and £, .




Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”
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Can we predict not yet calculated structures from Z, and Z;? Can we create a
map: “The ZB/W community lives here and the RS community there?”

RS ZB
" o%A&s%  Energy differences

| between different

e g structures are very

small.
_ E(RS) — EZB) For Si: 0.01% of the
ZB,A>02eV energy of a Si atom,

ZB,0.1eV<A<0.2eV
7ZB,0.05eV<A<0.1eV
—-0.05eV<A<0.05eV

or 0.1% of the 4
valence electrons.
RS,-0.1eV<A<-005eV

RS, —02eV<A<—01eV Complexity: T,[n]
RS, A <-02eV and £, .

Machine learning can fit the P(Z,, Z;) data well,
but fails completely in predictions.

Toy Model: Descriptor for the Classification

50F
40t
N 30F

20F

“Zincblende/Wurtzite or Rocksalt?”

We need to arrange the data such that statistical learning is
efficient. We need a good set of descriptive parameters.

How to find d,, d,?

LS I N N

SYL YL RN TN

:‘ !\ﬁ \* % ‘:

SIS

02030 0 50
Z

—— In reality the representation will be higher than 2-dimensional.
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Data Fitting and Machine Learning

P(x)] A R { P} = data

b= “coordinate” or
‘descriptor”

{

ore data means better representation.
o we “learn” anything?

Kernel Regression

We have data {P,} at “coordinates” {x;} x; = set of descriptive parameters (descriptor)

N
P, = P(x) = X, ¢,K(x, x})

Linear regression: Kx,x)= x;. x; P(x) = x;.c*
Polynomial kernel K(x,x) = (x;. x, +c)?
Gaussian kernel K(x, x) = exp (— X, (x,—x,)* /267 )

More data means better representation.
Do we “leam” anything?
For successful learning, we need a “good” descriptor: P(x;) = P(d))




Statistical Learning (Machine Learning)
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kernel ridge regression

fit and/or interpolation of known data points { P; } and building a function P(d)

the key scientific challenge: find a reliable, low dimensional descriptor d.

linear

P(d)

Zf\[:] Ci exp
Bl (Pla) — B
N.N ‘ -

A Zz_j:l cicjexp (—||d; — d;||3/20?)

Hdi _dJ ”5 = fo:] ((]i.r\

(=i = dlf3/207)

mini

+

- (].j.r\ )2

mize

Statistical Learning (Machine Learning)

I

[, norm: | x,|+|y,| Manhattan (taxi
cab) distance

[, norm: sqrt(x,> + y,?)

Y (P(di) — P,)?
1‘\"’.1‘\" ¢ ¢
A Zi..j:l CiCj €Xp (_”di - d.j”%/ZUZ)

y Q

+

((]i.rl - (].j.n )2

X
kernel ridge regression linear
N ) 5 R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)
P(d) = > ;_ ciexp (—||d; — d||3/20%) P(d) = dc
minimize

M
o1 lca |

lelly =22

least absolute shrinkage and selection
operator (LASSO) for feature selection

10
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1) Primary Features, 2) Feature Space, 3) Descriptors

1D | Desecription free atoms Symbols #
Al | Tonization Potential (IP) and Electron Affinity (EA) | IP(A) EA(A) IP(B) EA(B) [1] | 4

A2 | Highest occupied (H) and lowest unoccupied (L) H{A) L(A) H(B) L(B)
Kohn-Sham levels

1) A3 | Radius at the max. value of s, p, and d rolA) rp(A) Ta(A) G
valence radial radial probability density ro(B) 7, (B) ry(B)
[} | Description free dimers Symbols #
A4 | Binding energy Ey(AA) E,(BB) Ey(AB) 3
A5 | HOMO-LUMO KS gap HL(AA) HL(BB) HL(AB) | 3
A6 | Equilibrium distance d(AA) d(BB) d(AB) 3
5 We start with 23 primary features
) and build > 10,000 non linear combinations
IP(B) — EA(B) |[rs(A) —rp(B)| |rp(B) —rs(B)]
3) LASSO finds the descriptors: rp(A)2 7 exp(ri(A)) T exp(ra(A) + r.(B))

“The Map”

Statistical Learning (Machine Learning): LASSO, 2-Dim. Descriptor

= E(RS) - E(ZB)
ZB,A>02eV
ZB,0.1eV<A<02eV
ZB,0.05eV<A<0.1eV
—-0.05eV<A<0.05eV
RS,-0.1eV<A<-0.05¢eV
RS,-0.2eV<A<-0.1eV
m RS, A £-02eV

O ¢ e[

@ o

0.15

0.1

|rs(A) — rp(B)|exp(—rs(A)) [A]

The complexity and science is
in the descriptor (identified
from >10,000 features).

0.05

L.M. Ghiringhelli, J. Viybiral, S.V. Levchenko,
C. Draxl, and M. Scheffler,
Phys. Rev. Lett. 114, 105503 (2015).

11
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A = E(RS) - E(ZB)
e ZB,A>0.2eV

¢ 7ZB,0.1eV<A<L02eV

o 7ZB,0.05eV<A<0.1eV
-0.05eV<A<0.05¢eV
RS, -0.1eV<A<-0.05eV
RS,-02eV<A<-0.1eV
RS, A €£-0.2eV

. BeO

ro(A)) [A]

*
BSh

m0OC

0.15} }" h ,f' A=10eV
B
: ysc BN
i BAs :
., | = B Using our approach and no
. 5 information on BN and C we would
! BP have predicted the existence and

- unusual stability of these materials.

r,(B)] exp(

[rs(A)

$. C
Es v o o 8 0 0 v 3 s s s e s ey e
5 10 15 20 25
IP(B) — EA(B)|/r,(A)? [eV A2

Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --

Correlation betweend and P, i.e. Pis a function of d, P(d),
reflects causal inference
if it is based on sufficient information!*)

There are four possibilities (types of causality) behind P(d):
1. d>P : P “listens”tod Judea Parl

2. A->d and A > P :Thereis no direct connection between d and P, but
d and P both “listen” to a third “actuator”

3. P->d :d “listens”"to P

4. There is no direct connection between d and P, but they have a
common effect that listens to both and screams: “I occurred” (Berkson
bias; Judea Pearl)

™) Construct d with scientific knowledge (prejudice?), or use “big data” for {P, }.

12
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Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --

Example:

The probability of childhood leukemia is higher for people living close to
electricity power lines.

There is no direct connection between leukemia and the electromagnetic
field.

Living close to electric power lines is not a desired residence. People living

near power lines tend to be poorer than the control group, and there is a
relationship between poverty and cancer.

Poverty = higher probability for living close to power lines
?

é/? correlation
Poverty = higher chances for cdncer no direct relation;
intricate causality

Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --

There is no direct connection between the structure difference and the
LASSO-identified descriptor IP(B) — EA(B) |[ri(A) —r:(B)] [rp(B) —rs(B)]

rp(A)? T oexp(rs(A)) T exp(ra(A) + rs(B))

Case #2:
Nuclear numbers Z,, Z; < our descriptor

Nuclear numbers Z,, Zg — total-energy differences

a mapping exists, even a physical intuition exist, but AE
does not listen directly to the descriptor (intricate causality)

13
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Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --

Correlation betweend and P, i.e. P is a function of d, P(d),
reflects causal inference
if it is based on sufficient information(®)

There are four possibilities (types of causality) behind P(d):
I. d->P : P “listens” tod

Judea Pearl

2. A->d and A - P :Thereis no direct connection between d and P, but
d and P both “listen” to a third “actuator”

W

P->d : d “listens”"to P

4. There is no direct connection between d and P, but they have a
common effect that listens to both and screams: “l occurred” (Berkson
bias; Judea Pearl)

) Construct d with scientific knowledge (prejudice?), or use “big data” for {P, }.

Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --

ROMEO: “It was the lark, the bird that sings at dawn, not case # 3 é
the nightingale. Look, my love, what are those streaks of 2\ -
light in the clouds parting in the east? Night is over, and day
is coming. ...”

The singing of the lark is a good descriptor for
“the sun will rise soon”.
The singing of the lark is not the actuator of
(the mechanism behind) the sunrise.

Conclusion / Suggestion: Accept “larks” (not just
scientific laws) to predict materials properties.

14
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Summary and Outlook

Machine learning may find structure in “big data” that is invisible to
humans.

Correlation reflects causal inference (if based on sufficient information).

The causality may be 4 big-data analytics in I
intricate and complex. © § materials science
. |53
Causal modenls, i.e. employing é_g Perception
causal descriptors, are able c o
to provide scientific insight o3 -
and understanding. < ¢ eality
| :
Time
we are probably here
N pronaRly J

15



