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Heat Transport

Fourier‘s Law:

rT

J

Macroscopic Effect:
J = � rT

Substrate Catalyst Gas phase

JMolCat

JCatCat

JSubSub

JCatSub

Timescale: > 100 ps Timescale: < 2 ps

What are the real thermodynamic conditions 
at the surface of the catalyst?

(A) Catalytic Reactors (B) Semiconductor Technology

Miniaturization has lead
to enormous  

transistor densities

486 (1995): 106 Trans. Haswell (2015): >109 Trans.

Miniaturization has lead
to local hot spots at 

the nanoscale.

Understanding heat transport on the nanoscale 
and increasings its efficiency essential for next-generation CPUs.



Suppressing heat transport in thermal barrier coatings 
has driven the fuel efficiency increase over the last 30 years.

D. R. Clarke & C. G. Levi, Ann. Rev. Mat. Res., 33, 383 (2003).
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(C) THERMAL BARRIER COATINGS (D) Thermoelectric Elements
Conversion of temperature gradient into electric current.
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Potential “waste heat recovery” device!

rT

Spacecraft Car exhaustsIndustrial plants Personal Computing

Too low efficiency inhibits a large scale, economically attractive 
deployment of thermoelectric devices.

Technological Applications

Model heat transport!

Suppress heat transport!

Boost heat transport!

rT

Tailor heat transport!

First Principles 
Theory

Technological Applications

Model heat transport!

Suppress heat transport!

Boost heat transport!

rT

Tailor heat transport!

A quantitative theory of thermal transport  
is required to achieve a qualitative understanding 

of the underlying mechanisms!



Technological Applications

Model

Suppress heat transport!

Boost heat transport!

rT

Tailor

First Principles 
Theory

Heat Transport

Fourier‘s Law:

rT

J

Macroscopic Effect:
J = � rT
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Onsager Theory of Thermodynamic Non-Equilibrium:

Bulk discretized in smaller units that are…
(a) large enough to be described by equilibrium theory

(b) in non-equilibrium with respect to each other

    Analytic Solution: T (r, t) =
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    The Diffusion Equation:
@T (r, t)

@t
= r2T (r, t)

    Fourier’s Law: J(r, t) = � rT(r, t)

    The Continuity Equation:
@T (r, t)
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+r · J(r, t) = 0
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Diffusive Transport

    Analytic Solution: T (r, t) =
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Random Walk

Heat Transport

Fourier‘s Law:

rT

J

Macroscopic  
Effect:

J = � rT

Microscopic  
Mechanisms:

 = 
photon

+ 
elec.

+ 
nucl.

Assess nuclear dynamics!

Ab initio Molecular Dynamics 

Input: 
Geometry, Species

Update geometry

Iterative Approach: Explore the Dynamics of the Atoms!

Electronic Structure 
Theory Code

Output: 
total energy & forces

I. THE HARMONIC CRYSTAL



THE HARMONIC APPROXIMATION
The total energy E is a 

3N-dimensional surface:

E = V (R1,R2, · · · ,RN )

Approximate by Taylor 
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WARNING: 
Harmonic Approximation is 

only valid for small
displacements from R0!



THE HARMONIC APPROXIMATION

 Determine Hessian aka the Harmonic Force Constants Φij:
• from Density-Functional Perturbation Theory  

S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) &  
S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001). 

• from Finite Differences 
K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) &  
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 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THE HARMONIC APPROXIMATION
...in Molecules:

N ... Number of atoms
⇓"

Degrees of Freedom: 3N
Dimension of Hessian: 9N2

BUT: 

N ➝ ∞ 

...in Crystalline Solids:

N ... Number of atoms
⇓"

Degrees of Freedom: 3N
Dimension of Hessian: 9N2

Unit Cell with  
Np atomsPeriodic Images Periodic Images

Lattice vector:

Real  
Space:  

Hessian Φij 

with i,j ➝ ∞

E0

Reciprocal  
Space:  

Dynamical 
Matrix Di’j’(q) 
with i’,j’  ≤ Np

Fourier Transform

Di0j0(q) =
X

j

ei(q·(R
0
j�R0

j0 ))
p
Mi0Mj0

�i0j

PERIODIC BOUNDARY CONDITIONS   VIBRATIONS IN A CRYSTAL 101  
 K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 

Reciprocal  
Space:  

Dynamical 
Matrix Di’j’(q) 
with i’,j’  ≤ Np

Real  
Space:  

Hessian Φij 

with i,j ➝ ∞

Fourier Transform can be truncated since 
Φij = 0 for large |Rj0 - Rj’0|

 Hessian Φij 

with finite number of 
non-zero entries

Dynamical Matrix Di’j’(q) 
known for the whole 

reciprocal space

Fourier Transform

Di0j0(q) =
X

j

ei(q·(R
0
j�R0

j0 ))
p
Mi0Mj0

�i0j



VIBRATIONS IN A CRYSTAL 101  
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

. 

Di0j0(q) =
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D(q) [⌫(q)] = !2(q) [⌫(q)]

Equation of Motion becomes an Eigenvalue Problem:

Dynamical matrix:

Analytical Solution in Real Space:  
       Superposition of Harmonic Oscillations

Rj(t) = R0
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VIBRATIONS IN A CRYSTAL 101  
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)
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Eigenvalue problem:
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VIBRATIONS IN A CRYSTAL 101  
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

. 

� X

!

q

For Np atoms in the unit cell there are:

3 Acoustic modes:

- Atoms in unit cell in-phase
- Acoustic modes vanish at !"
- Strong (typically linear) dispersion close to  !

(3Np - 3) Optical modes:

- Atoms in unit cell out-of-phase
- ω > 0 at !"(and everywhere else)
- Weak dispersion

VIBRATIONS IN A CRYSTAL 101  
 e.g. N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976)

. 



VIBRATIONAL BAND STRUCTURE
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Complex materials not always follow conventional wisdom.
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Heat Transport Theory 101
Real Space Representation

equilibrium

Harmonic
Approximation

Harmonic Approximation: 

Second order Taylor expansion of the 
potential energy surface around equilibrium 

Reciprocal Space Representation

Phonon (ω,q)

Infinite Phonon LifetimeDecoupled Normal Modes
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Perturbation 
Theory

Molecular 
Dynamics
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Heat Transport Theory 101
Real Space Representation

equilibrium

Anharmonic  
dynamics

Phonon (ω,q)

Reciprocal Space RepresentationReciprocal Space Representation

Phonon (ω,q)

Phonon ScatteringAnharmonicity Electron-Phonon 
Coupling

Electronic Structure 
Theory

Theory Toolbox



time

m  

mm 

µm 
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fs             ps             ns            µs            ms           

space

Heat Transport Mechanisms

TIME AND LENGTH SCALES

Semi-empirical potentials:

First-principles approaches:

+ vast experience
+ established methodologies
– accuracy is a question

+ more accurate interactions
– limited time and length scales

BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929).  

D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).

Boltzmann-Peierls-Transport-Equation describes the evolution 
of the phonon phase space distribution f(ω,q,t).

f(ω,q,t) f(ω,q,t+dt)Boltzmann 
Transport 
Equation

Boltzmann-Peierls-Transport-Equation
of the 

f(x,p,t) f(x,p,t+dt)Boltzmann 
Transport 
Equation

Single-mode relaxation time approximation 

Harmonic phonon theory

Group velocity Frequency Equilibrium  
population

phonon  
lifetime

?

(A) BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929).  

D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).

 ⇠
X

s

v2s !2
s ns(ns + 1) ⌧s

FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects Disorder

Boltzmann-
Transport Eq. ~"(r3) low T Minute Parameter

Non-Equilib. 
MD

Laser-flash 
MD

Green-Kubo 
MD

Boltzmann-Transport-Eq. gives very accurate results  
for perfect crystals at low temperatures.



Non-Equilibrium MD 
S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett. 104, 208501(2010).

heat 
source

heat 
sink

•Temperature gradient ∇T 
•Stationary heat flux J

⇓
Thermal conductivity can be calculated 

by applying Fourier‘ s Law.

J = � rT

1
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4
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.

COMPARISON OF ATOMIC-LEVEL SIMULATION . . . PHYSICAL REVIEW B 65 144306

144306-5

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).

FINITE SIZE EFFECTS
Stillinger-Weber-Potential

1


⇠

✓
1

l1
+

4

Lz

◆
Finite Size Corrections

mean free path

supercell length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/Lz (nm)-1

0

1

2

3

4

1/
κ 

(W
/m

K
)-1

Si T=1000K

Si T=500K

Diamond T=1000K

typical DFT/AIMD supercells

1
leff

!
1
l!

"
4
Lz
. "3#

Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.

COMPARISON OF ATOMIC-LEVEL SIMULATION . . . PHYSICAL REVIEW B 65 144306

144306-5

Stillinger-Weber-Potential

Non-equilibrium MD exhibits strong finite-size artifacts  
in supercells typically accessible within DFT/AIMD.

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Stillinger-Weber-Potential

Non-equilibrium MD can suffer from non-linear artifacts 
in supercells typically accessible within DFT/AIMD.

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).

FINITE SIZE EFFECTS



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects Disorder

Boltzmann-
Transport Eq. ~"(r3) low T Minute Parameter

Non-Equilib. 
MD Full all T Huge

as in 
supercell

Laser-flash 
MD

Green-Kubo 
MD

Non-Equilibrium MD approaches are in principle exact,
in DFT however prohibitively costly to converge accurately. 

Heat

T = TcoldT = Thot

„LASER FLASH“ MEASUREMENTS 
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).
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Extract the heat diffusivity α by fitting T(x,t)

„LASER FLASH“ MEASUREMENTS 
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).

„LASER FLASH“ SIMULATIONS 
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.

Mimic the „Laser-Flash Measurements“  
in ab initio MD simulations:



In the harmonic approximation, the 
positions ri and the velocities vi are related to the 
vibrational eigenfrequencies ωs and -vectors es.

Maxwell-Boltzmann 
distributed amplitudes

random 
phase

harmonic  
approximation

r0i + �ri = +

X

s

As(T )

cos (�s + !st)p
Mi

· es

vi = �
X

s

As(T )

sin (�s + !st)p
Mi

· !s · es

Setup of the Cell in Non-Equilibrium

(A) Prepare two supercells: a small hot one and a large cold one.
(B) Let the heat diffuse via ab initio MD  

and monitor the temperature profile T(x,t).

Mimic the „Laser-Flash Measurements“  
in ab initio MD simulations:

„LASER FLASH“ SIMULATIONS 
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).
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Monitor temperature  
of the central cell

The finite number of atoms leads to large  
temperature fluctuations.

„LASER FLASH“ SIMULATIONS 
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009); C. Carbogno, Phys. Rev. B 84, 035317 (2011).

„LASER FLASH“ SIMULATIONS 
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009); C. Carbogno, Phys. Rev. B 84, 035317 (2011).
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SiGe, Stillinger-Weber Potential,
Courtesy of Philip Howell, Siemens AG
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Laser-flash approach exhibits strong finite-size artifacts  
in supercells typically accessible within DFT/AIMD.
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Preparation of the supercell in non-equilibrium via the harmonic 
approximation allows to use rather small thermal gradients.

unphysically large ∇T ≫ 109K/m
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FINITE SIZE EFFECTS FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects Disorder

Boltzmann-
Transport Eq. ~"(r3) low T Minute Parameter

Non-Equilib. 
MD Full all T Huge

as in 
supercell

Laser-flash 
MD Full low T

Medium-
Large

as in 
supercell

Green-Kubo 
MD

Laser-flash MD yields accurate qualitative results  
at low temperatures within moderate computational costs.  

Quantitative predictions require finite size corrections, though.



FLUCTUATION-
DISSIPATION THEOREM

The fluctuations of the forces in thermodynamic equilibrium is 
related to the generalized resistance in non-equilibrium  

for linear dissipative systems.
H. B. Callen, and T. A. Welton, Phys. Rev. 83, 34 (1951).

Brownian Motion: 
A. Einstein,  Ann. Phys. 322, 549 (1905).

The erratic motion of the particles
is closely related to

frictional force under perturbation.

Random walk in 2D

The thermal conductivity is 
related to the autocorrelation 

function of the heat flux
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Simulations of the thermodynamic equilibrium 
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Information about non-equilibrium processes

Fluctuation-Dissipation Theorem
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GREEN-KUBO METHOD 
R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 12,1203 (1957).
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THE ATOMISTIC HEAT FLUX 
E. Helfand, Phys. Rev. 119, 1 (1960).
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Equation:
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⇒ Barycenter not well defined  
in periodic boundary conditions!



PERIODIC BOUNDARY CONDITIONS
J J

Small heat flux through boundaries  
leads to huge change in energy barycenter. 

⇒ Artifical scattering at the cell’s boundaries!
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THE ATOMISTIC HEAT FLUX 
E. Helfand, Phys. Rev. 119, 1 (1960).
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in periodic boundary conditions!

THE ATOMISTIC HEAT FLUX 
E. Helfand, Phys. Rev. 119, 1 (1960).

E(r) =
X

i

Ei �(r�Ri)

Energy decomposition

J(t) =
d

dt

0

@
X

i>j

(Ri �Rj)Eij

1

AE(r) =
X

i

0

@
X

j

Eij

1

A �(r�Ri)

Continuity 
Equation:

J(t) =

Z
j(r)dr

@E(r)

@t
+r · j(r) = 0

J(t) =
d

dt

 
X

i

RiEi

!Heat flux

➾

➾

⇒ Correct heat flux definition requires an energy 
decompositions in pairwise interactions.

Helfands’ Heat Flux   Hardys’ Heat Flux  

THE VIRIAL HEAT FLUX
R. J. Hardy,  Phys. Rev. 132,168 (1963).
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AN AB INITIO VIRIAL FOR THE NUCLEI

U(R) = h (r)|H(R) | (r)i
Ab initio: Interactions driven by electrons
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…and so is the virial!

ALL-ELECTRON FORMALISM FOR  
TOTAL ENERGY STRAIN DERIVATIVES  

F. Knuth, C. Carbogno, V. Atalla, V. Blum, and M. Scheffler, Comp. Phys. Comm. 190, 33 (2015).
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APPLICATION TO ZIRCONIA
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potential

2x2x2 Supercell, > 200ps AIMD / data point

Experiment:
  J.-F. Bisson et al., J. Am. Cer. Soc. 83, 1993 (2000).
  G. E. Youngblood et al., J. Am. Cer. Soc. 71, 255 (1988).
  S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Semi-empirical MD:
  P. K. Schelling, and S. R. Phillpot, 
    J. Am. Cer. Soc. 84, 2997 (2001).
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The Tetragonal-Cubic Phase Transition
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S. Fabris, A. T. Paxton, and M. W. Finnis, Phys. Rev. B 63, 094101 (2001).
C. Carbogno, C. G. Levi, C. G. Van de Walle, and M. Scheffler, Phys. Rev. B 90, 144109 (2014).
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CONVERGING THERMAL CONDUCTIVITIES
C. Carbogno, R. Ramprasad, and M. Scheffler (in preparation).

Computational Details:

• pristine Si (diamond)
• up to 1 million atoms 
• up to 256 ns per trajectory
• average over 10 trajectories
• Tersoff potential 
• LAMMPS code
 

Converging the thermal conductivity of Silicon  
requires at least

10 times 10 ns of MD in a 512 atom cell.

typical DFT typical DFT

HOW TO BOOST CONVERGENCE?

Decompose heat flux 
into contributions from 
higher/lower orders of 
the Taylor expansion

Rapid Decay!
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Can be (time + size!) converged 
independently since it solely depends 

on the force constants!
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THE QUASI-PARTICLE PICTURE
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Real Space
Jha(t) =

X

sq

ns(q, t) !
2
s(q) vs(q)

Reciprocal Space

Real & Reciprocal space
picture give exact same 
thermal conductivity! 

Reciprocal space
heat flux better suited  

for extrapolation!
J. Chen, G. Zhang, and B. Li, 

Physics Letters A 374, 2392 (2010).
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Experiment

DFT-LDA

DFT-LDA 
+ Extrapolation

EXTRAPOLATED CONDUCTIVITY

Extrapolation procedure yields satisfactory results!

DFT-LDA 
+ Size & Time Corrections

FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects Disorder

Boltzmann-
Transport Eq. ~!(r3) low T Minute Parameter

Non-Equilib. 
MD Full all T Huge

as in 
supercell

Laser-flash 
MD Full low T

Medium-
Large

as in 
supercell

Green-Kubo 
MD

Full all T Small as in 
supercell

Ab initio Green-Kubo approach allows the accurate and 
predictive computation of lattice thermal conductivities κ 

at arbitrarily high temperatures!


