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Defects in Solids at Realistic Conditions

Sergey V. Levchenko

Fritz-Haber-Institut der MPG, Berlin

Defects at work: Semiconductors
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Materials modeling

x
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Position of every atom in the crystal (Bravais lattice):

332211321 )0,0,0(),,( aaarr nnnnnn 

lattice vector: 
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Example: two-dimensional Bravais lattice

1a

2a

primitive unit cells
12 23 aa 

The form of the primitive unit cell is not unique
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Most common crystal structures

primitive cubic face-centered 
cubic (fcc)

body-centered 
cubic (bcc)

)0,0,1(1 aa
)0,1,0(2 aa
)1,0,0(3 aa

)0,1,1(21 aa
)1,0,1(22 aa
)1,1,0(23 aa

)1,1,1(21  aa
)1,1,1(22  aa
)1,1,1(23  aa

Most common crystal structures

primitive cubic face-centered 
cubic (fcc)

body-centered 
cubic (bcc)

hexagonal

)0,0,1(1 aa
)0,23,21(2  aa

)1,0,0(3 ca

)0,1,1(21 aa
)1,0,1(22 aa
)1,1,0(23 aa

)1,1,1(21  aa
)1,1,1(22  aa
)1,1,1(23  aa
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Most common crystal structures

face-centered 
cubic (fcc)

)0,1,1(21 aa
)1,0,1(22 aa
)1,1,0(23 aa

Most elemental semiconductors 
(C, Si, Ge):

one more atom per cell
at 

diamond structure

)41,41,41(a

Most common crystal structures

face-centered 
cubic (fcc)

)0,1,1(21 aa
)1,0,1(22 aa
)1,1,0(23 aa

Most compound semiconductors 
(GaAs, InP, GaSb, ZnSe, CdTe):

one more atom per cell
at )41,41,41(a

zincblende structure
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Most common crystal structures

face-centered 
cubic (fcc)

)0,1,1(21 aa
)1,0,1(22 aa
)1,1,0(23 aa

PbS, MgO, ZnO at high pressure:

one more atom per cell
at 

rocksalt structure

)21,21,21(a

Most common crystal structures

CdS, GaN, ZnO:

four atoms per unit cell

wurtzite structure

hexagonal

)0,0,1(1 aa
)0,23,21(2  aa

)1,0,0(3 ca
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Most common crystal structures

TiO2, SnO2:

six atoms per unit cell

rutile structure

tetragonal

)0,0,1(1 aa
)0,1,0(2 aa
)1,0,0(3 ca

Bloch’s theorem

Rr 

r
R

0

)()exp()( rkRRr  i

In an infinite periodic solid, the solutions of the 
one-particle Schrödinger equations must 
behave like

)()( rRr UU Periodic potential
(translational symmetry)

Consequently: 

)()(),()exp()( rRrrkrr uuui 

332211 aaaR nnn 

Index k is a vector in reciprocal space

332211 gggk xxx  ijji 2ag

1g

2g




 nm
l

aa
g 2 – reciprocal lattice vectors
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The meaning of k

chain of hydrogen atoms

 
j

sjk ajikx )()exp( 1

Adapted from: Roald Hoffmann, Angew. Chem. Int. Ed. Engl. 26, 846 (1987)

k shows the phase with which the orbitals are combined:

k = 0:  )2()()()0exp( 1110 aaaj ss
j

s 

k =      :   )3()2()()()exp( 11110 aaaajji sss
j

s π
a

a a a a

k is a symmetry label and a node counter, and also 

represents electron momentum

Bloch’s theorem: consequences

kGkGk krGrkr nn uiiui    ~)exp()]exp()[exp(

a Bloch state 
at k+G with 
index n

a Bloch state at k with 
a different index n’

kkk nnnh  ˆ

In a periodic system, the solutions of the Schrödinger equations are 

characterized by an integer number n (called band index) and a vector k:

For any reciprocal lattice vector 

332211 gggG nnn 

a lattice-periodic 
function u~

1g

2g

21 ggG 

Can choose to consider only k within single primitive 
unit cell in reciprocal space

)()(),()exp()( rRrrkrr kkkk nnnn uuui 
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Brillouin zones

A conventional choice for the reciprocal lattice unit cell

For a square lattice

For a hexagonal lattice

Wigner-Seitz cell

Wigner-Seitz cell

In three dimensions:

Face-centered 
cubic (fcc) lattice

Body-centered 
cubic (bcc) lattice

Electronic band structure

kn

k
0 π/a-π/a

For a periodic (infinite) crystal, there is an infinite number 

of states for each band index n, differing by the value of k

Band structure represents dependence of          on k

)(k
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Electronic band structure in three dimensions

z

Γ
Λ

L
U

X
WK

ΔΣ y
x

Brillouin zone of the fcc lattice

By convention,          are measured (angular-resolved 
photoemission spectroscopy, ARPES) and calculated 
along lines in k-space connecting points of high symmetry

kn
ε n

(k
),

 e
V

Al band structure (DFT-PBE)

Insulators, semiconductors, and metals

Eg>>kBT

Insulators (MgO, NaCl,
ZnO,…)

Eg~kBT

Semiconductors (Si, 
Ge,…) 

Eg=0

Metals (Cu, Al, Fe,…)

k
k

εF

In a metal, some (at least one) energy bands are only partially occupied

The Fermi energy εF separates the highest occupied states from lowest 
unoccupied
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“Physics of dirt”

k

E

metal

valence band

conduction band

occupied states

Fermi level

empty states

k

E

valence band

conduction band

semiconductor
(n-type)

defect states
(occupied)

“Physics of dirt”

k

E

metal

valence band

conduction band

occupied states

Fermi level

empty states

k

E

valence band

conduction band

semiconductor
(p-type)

defect states
(empty)
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“Physics of dirt”

k

E

metal

valence band

conduction band

occupied states

Fermi level

empty states

k

E

valence band

conduction band

semiconductor
(p-type)

defect states
(empty)

0 Temperature

re
si

st
iv

it
y

0 Temperature
re

si
st

iv
it

y
due to defects

due to vibrations

extrinsic

intrinsic

due to vibrations

“My precious!”: Perfect defected gems  

Cr:Al2O3 V:Al2O3
Fe:Al2O3 Fe:Al2O3

Fe,Ti:Al2O3

Impurities are responsible for the 
color of sapphire and many other 
precious stones
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Why oxides are semiconductors? 

TiO2 – a versatile functional material (paint, sunscreen, 
photocatalyst, optoelectronic material)

O Ti

Why oxides are semiconductors? 

TiO2 – a versatile functional material (paint, sunscreen, 
photocatalyst, optoelectronic material)

O Ti
k

E

valence band

conduction band

3.1 eV
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Why oxides are semiconductors? 

O Ti

TiO2 is an n-type 
semiconductor, whose 
conductivity depends on 
O2 pressure

pA = 1.3x10-4 atm

pB = 0.18 atm

M.D. Earle, Phys. Rev. 61, 56 (1941)

Why oxides are semiconductors? 

Different regimes correspond to different intrinsic defect 
distributions in ultrapure TiO2 M. K. Nowotny, T. Bak, and J. Nowotny, 

J. Phys. Chem. B 110, 16270 (2006)
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Why oxides are semiconductors? 

ZnO – another example of a very promising functional 
material, understood less than TiO2

O

Zn

wurtzite (stable)
zinkblende (can be obtained 
by growth on substrates with 
cubic lattice structure)

Band gap ~3.3 eV (direct), but (almost?) exclusively n-
type semiconductor

Why oxides are semiconductors? 

ZnO – another example of a very promising functional 
material, understood less than TiO2

O

Zn

wurtzite (stable)
zinkblende (can be obtained 
by growth on substrates with 
cubic lattice structure)

Can be used for blue/UV LED/lasers, and, in contrast to 
GaN, is available as large bulk single crystals 
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Why oxides are semiconductors? 

ZnO – another example of a very promising functional 
material, understood less than TiO2

O

Zn

wurtzite (stable)

There is no consensus on the 
nature of n-type conductivity, 
and whether reliable p-type 
doping is possible. However, 
there is hope (GaN story 
repeats itself):  

“…native point defects cannot explain the often-observed n-type 
conductivity, but the latter is likely to be caused by the 
incorporation of impurities during growth or annealing.”

A. Janotti and C.G. van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

Summary: When imperfections are useful

Tailoring defect properties has a tremendous potential 
for designing novel functional materials in many areas of 
technology (electronics, optics, catalysis, photocatalysis, 
thermoelectrics, optoelectronics, spintronics, etc.)

Understanding the electronic and atomic structure of 
defects is of great importance
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The “invisible agent”

“…The problem is that defects are often elusive 
species, highly diluted, and therefore difficult to detect. 
It is as if one wanted to identify all the men with a 
beard among the population of Europe from a satellite 
which is a few hundreds of kilometers away from the 
earth surface: the task is difficult, and it is easy to get 
confused.” (G. Pacchioni, ChemPhysChem 4, 1041 
(2003))

The “invisible agent”

“…The problem is that defects are often elusive 
species, highly diluted, and therefore difficult to detect. 
It is as if one wanted to identify all the men with a 
beard among the population of Europe from a satellite 
which is a few hundreds of kilometers away from the 
earth surface: the task is difficult, and it is easy to get 
confused.” (G. Pacchioni, ChemPhysChem 4, 1041 
(2003))

In fact, the situation is even more complex: The nature and 
concentration of defects depend on temperature, pressure, and 
charge-carrier doping
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Periodic and cluster models of defects

Embedded cluster model Periodic model

+ Higher-level ab initio methods 
can be applied

+/- Defects in dilute limit

- Effect of embedding on the 
electronic structure and Fermi 
level – ?

+ Robust boundary conditions

+ Higher defect concentrations

+/- Higher defect concentrations

- Artificial defect-defect 
interactions

Common point defect types 
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Common point defect types 

Defect complexes

Schottky defects Frenkel defects

Stoichiometric charge-
compensated vacancy 
combinations (VNa

- +VCl
+, 

VTi
4-+2VO

2+, etc.)

Pairs of a vacancy and 
the corresponding self-
interstitial (VNa

- + Nai
+)

Common point defect types 
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Atomic relaxation

“It was believed that the chemistry of defects in 
semiconductors is well described in first order by assuming 
high-symmetry, undistorted, lattice sites. Relaxations and 
distortions were believed to be a second-order correction. … 
The critical importance of carefully optimizing the geometry 
around defects and the magnitudes of the relaxation energies 
were not fully realized until the 1980s.” 

D.A. Drabold and S.K. Estreicher (Eds.) Theory of defects in semiconductors, Springer 2007

Atomic relaxation

D.A. Drabold and S.K. Estreicher (Eds.) Theory of defects in semiconductors, Springer 2007

Relaxations are especially important for charged defects
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Defect formation energy (T=0)

perfect
totalE

E

Defect formation energy (T=0)

perfect
totalE

E



e

qEEE  A
defected
total

perfect
totalA

defected
total EEEEE qf 
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Defect formation energy (T=0)

perfect
totalE

E



e

qEEE  A
defected
total

ZPE
perfect
totalA

defected
total EEEEEE qf 

zero-point energy 
contribution

Defect formation energy (T=0)



e

Formation energy depends on the final (initial) state of 
the removed (added) species

ZPE
perfect
totalA

defected
total EEEEEE qf 
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Defect formation energy (T=0)

ZPE
perfect
totalA

defected
total EEEEEE qf 

Contributions to the formation energy:

1) Bond breaking/making

2) Atomic relaxation and polarization (screening)

3) Change in zero-point vibrational energy

4) Final/initial state of removed/added atoms and charges

T>0

Real materials are open systems (in 
contact with an atmosphere and charge 
sources)

Two types of disorder at finite T:
• internal (vibrations, defect disorder, electronic 
disorder)
• external (disorder within the environment)

In thermodynamics, disorder is quantified by entropy
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Thermodynamics

At constant T a system minimizes its free energy (-TS), 
not the internal energy

UE total

At finite T a material can be characterized by internal 
energy instead of the total energy

U

If also volume V is constant, the energy minimized is 
Helmholtz free energy      :F

TSUF 

Thermodynamics

If (T,p) are constant, the energy minimized is Gibbs free 
energy


i

iiNTSpVUG 

Chemical potential        of the i-th atom type is the 
change in free energy as the number of atoms of that 
type in the system increases by 1

i

In thermodynamic equilibrium,        is the 
same in the whole system (surface, bulk, gas)

i
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Gibbs free energy of defect formation

ZPE
perfect
totalA

defected
total EEEEEE qf 

T = 0:

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  
T > 0:

),( ii pT – chemical potential of species i with partial pressure pi

qNi , – change in the number of atoms of species i and the 
charge upon defect formation

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  

Gibbs free energy of defect formation

)(Te – electronic chemical potential 

)(vib TF – change in the Helmholtz vibrational free energy:

vibvibvib )()( STTUTF 
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Gibbs free energy of defect formation

),( ii pT – chemical potential of species i with partial pressure pi

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  

can be easily calculated for an equilibrium with a close-to-ideal 
gas

Since in thermodynamic equilibrium        is the same in the whole 
system (surface, bulk, gas),  only        in the gas needs to be 
evaluated 

i
i

Electronic chemical potential

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  

is a property of the electronic reservoire

In a doped system,         is close to the Fermi level (the energy 
level separating occupied states from the empty states at T = 0) 

e
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Electronic chemical potential

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  

conduction band minimum
(CBm)

defect level

valence band maximum
(VBM)

n-doped       
near CBme

p-doped       
near VBMe

The defects will charge when        is below the defect level  e

Electronic chemical potential

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  
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Electronic chemical potential

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  

charge transition levels 
(can be measured!)

Electronic chemical potential

)(}){,(

)(),(}){,(}){,(

vibperfect

defected

TFpTG

TqNpTpTGpTG e

i

iiif



  

Accurate theoretical 
treatment of charge transfer 
(ionization) is necessary for 
reliable predictions of defect 
formation energies
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 lnkS

 – number of microstates

Configurational entropy

TSpVUG 

The system “solid+gas” will tend to the minimum of its free 
energy :

Configurational entropy

 lnkS

 – number of microstates

TSpVUG 

1) Solid: vibrational entropy (phonons) 

2) Solid: electronic entropy

3) Gas: vibrational, rotational, translational, etc. (part of          )

4) Solid: defect disorder

i
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Configurational entropy

 lnkS

TSpVUG 

 – number of microstates

equivalent defect sites in the soldN

n defects

If defects do not interact:

)!(!

!
ln,

)!(!

!
config

nNn

N
kS

nNn

N







Configurational entropy

equivalent defect sites in the soldN

n defects

If defects do not interact:
)!(!

!
lnconfig

nNn

N
kS




Stirling’s formula:

n

n
nnnn

2

)2ln(
~,1),1(ln)!ln(


 

 )ln()(lnlnconfig nNnNnnNNkS 

Good approximation only on a macroscopic scale
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Defect concentration

Minimize the free energy  of the system with respect to the 
number of defects

If defects do not interact:

0
config











n

S
TG

n

G
f

  1exp
1

1

internal






kTGN

n

f

)()( config0 nTSGnGnG f 

Defect concentration

)()( config0 nTSGnGnG f 

Minimize the free energy  of the system with respect to the 
number of defects

If defects do not interact:

  1exp
1

1

internal






kTGN

n

f

  1exp1  kTG
N

n
f

 kTG
N

n
f expinternal

– textbook formula 
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Defect concentration

)()( config nTSGnnG f 

Minimize the free energy  of the system with respect to the 
number of defects

  1exp
1

1

internal






kTGN

n

f

exponential dependence  accurate calculations are necessary 
for reliable predictions

Charged defects and charge compensation

for non-interacting defects

  1exp

1




kTGN

n

f

But can charged defects be considered as non-interacting?!

Q1 ≠ 0 Q2 ≠ 0

|| 21

21
interact

rr

QQ
V




Coulomb interaction – long-range!
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Defect-defect interactions

Local interactions:

• Local relaxation

• Chemical bonding

)exp(~0
}){,},{,(

sites kTGnn
n

npTG
fi

i

e 


 

Long-range (global) 
interactions:

• Charging

• Fermi level shifting

Charged defects at any finite 
concentration cannot be considered 
non-interacting

+

++

+

Charged defects and charge compensation

Q1 ≠ 0 Q2 ≠ 0

|| 21

21
interact

rr

QQ
V





 


ji ji

ji

rr

QQ
V

||2

1
interact

For a system of charges:

In the thermodynamic limit (N  ∞) the 
electrostatic energy of charges with any 
finite concentration diverges

Charged defects must be compensated in realistic materials
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Charged defects must be compensated

The compensation depends on the spatial distribution of the 
density of states near the Fermi level

1) A standard model for a uniform distribution: uniform 
background charge 

+

++

+

+ + +

+ + +

Bulk – OK 
(somewhat 
artificial)

Surface: 
compensating 
density largely in 
the vacuum region
(a posteriori correction exists)

H.-P. Komsa and A. Pasquarello, Phys. Rev. Lett. 110, 095505 (2013)

2) Impurity donors/acceptors – large concentrations, artificial 
interactions

L. Vegard, Z. Phys. 5, 17 (1921); M. Scheffler, Physica B+C 146, 176 (1987); O. 
Sinai and L. Kronik, Phys. Rev. B 87, 235305 (2013)

qMg = 12 – qdefect/NMg p-type doping in MgO

conduction band

valence band

conduction band

valence band

3) Simulate distributed doping with virtual crystal approximation 
– arbitrarily small concentrations with finite unit cells, correction 
for the dilute limit is needed

Charged defects must be compensated

4) Charge plate – strong artificial fields

- - -

+ + +

Δϕ > band gap 
for a 5-layer slab
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Charged defects and charge compensation

Typical dependence of the 
defect formation energy as a 
function of unit cell size

The compensated defects interact much weaker with each other

But they do interact strongly with the background (~1/L)

Charged defects in a doped material

)()(
2

1
)0()( config

3
2

0 nTSrdnGnnG f   Er

formation energy 
in the dilute limit

electrostatic energy 
at finite n

)!(!

!
lnconfig

nNn

N
kS












 

m

mm kTnEngkS )/)(exp()(lnconfig

The charged defects are screened by the compensating charge:
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Electrostatics in periodic calculations of charged defects

2OhostVBMvac
VCA
f

2

1
),())(,(),( EdEqdEdG q  

×

2OhostVBMvac
VCA
f

2

1
),())(,(),( EdEqdEdG q  

d
e

dEdqECrd
0

SCSC32

0
6

||
)(),(||

2

1




  E
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Formation energy of interacting defects
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Conclusions

• Defect formation energies and charge transition states depend on 
the spatial distribution of the density of states near the Fermi level

• Use space-charge effects to control interface properties, e.g., 
surface defect formation, adsorption energies, work function 
changes

• Model doping with VCA for realistic charge-carrier doping in 
periodic  calculations


