Machine Learning in Chemical Space

Anatole von Lilienfeld*
Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel
Materials (MARVEL), Department of Chemistry, University Basel

Many of the most relevant chemical properties of matter depend explicitly on atomistic details, rendering a first principles
approach mandatory. Alas, even when using high-performance computers, brute force high-throughput screening of
compounds with electronic structure theory is beyond any capacity for all but the simplest systems and properties due to
the combinatorial nature of chemical space, i.e. all the compositional, constitutional, and conformational isomers.
Consequently, efficient exploration algorithms should exploit all implicit redundancies present in high-throughput
approaches. In this talk, | will describe recently developed statistical approaches for interpolating (Kriging) quantum
mechanical observables in composition space. Examples will be presented for predicting properties of out-of-sample
molecules or solids with high accuracy and small computational cost.



There’s an on-going revolution ...
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VISUALIZING PROGRESS

I
f -t I_a ﬂ S l S‘t O |_S W e |—e e O ‘ e If the transistors in a micropracessor were represented by peaple,
the following timeline gives an idea of the pace of Moore’s Law.
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Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore’s Law.
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National Super Computer
Center in Guangzhou
China

DOE/SC/Oak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National
Laboratory
United States

Swiss National

Supercomputing Centre [CSCS)

Switzerland

King Abdullah University of
Science and Technology
Saudi Arabia

Texas Advanced Computing
Center/Univ. of Texas
United States

Forschungszentrum Juelich
(FZJ)
Germany

DOE/NNSA/LLNL
United States

SYSTEM

Tianhe-2 [MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-

2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P
NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini
interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom
IBM

K computer, SPARC64 VlIIfx 2.0GHz, Tofu interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom
IBM

Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries
interconnect , NVIDIA K20x
Cray Inc.

Shaheen Il - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries
interconnect
Cray Inc.

Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz,
Infiniband FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom
Interconnect
IBM

Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom
Interconnect
IBM
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Computing power 1993-2013

If brick-and-mortar labs were to follow ... a 1 yr experiment in 1986 — 1 s in 2015 (3x10” speed-up)
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The U.S. Department of Energy
announced a $200 million framework to provide a peak performance of 180 PetaFLOP/s.

will use Intel’s HPC scalable system

investment to deliver a next-
generation supercomputer, known Early Science: 2016-2018
as Aurora, to the Argonne http://aurora.alcf.anl.gov/

Leadership Computing Facility.
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"Yeah, | see him too...But nobody wants to talk about it!"
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“Many societal challenges are chemical challenges”
G. Whitesides

health (drugs)
infrastructure (rust)
water (desalinate)

energy (renewable)
light (OLEDs)




R&D spending vs. FDA approvals, 1996-2006
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How to find us The Laboratory

The Molecular Design
Laboratory (MODLAB)
develops and implements new
concepts, algorithms and
software for rapid identification of
bioactive tool compounds and
pharmaceutical lead structures.

Head of group:

Prof. Gisbert Schneider 2

The molecular design cycle involves multiple scientific disciplines and
requires rigorous trans-disciplinary thinking. We employ a broad
repertoire of machine-learning methods and bio/cheminformatics
techniques for automated hypothesis generation, activity prediction and
validation.

About MODLAB

Lab Presentation: The
Computer-Assisted Drug
Design Group at ETH
Zurich . MedChemWatch
(2011) 12:55-57.

Schneider, G. (2012) From
theory to bench experiment
by computer-assisted drug
design . Chimia 66:120-124.



OPINION

Virtual screening: an endless
staircase?

Gisbert Schneider

Abstract | Computational chemistry — in particular, virtual screening —can
provide valuable contributions in hit- and lead-compound discovery. Numerous
software tools have been developed for this purpose. However, despite the
applicability of virtual screening technology being well established, it seems
that there are relatively few examples of drug discovery projects in which

virtual screening has been the key contributor. Has virtual screening reached
its peak? If not, what aspects are limiting its potential at present, and how can
significant progress be made in the future?

Nature Reviews (2010)
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Dynamic descriptions of molecules
will have to replace our predominantly
static view of both targets and ligands".
Molecular dynamics simulations can sample
conformational ensembles of targets and
ligands. However, some of the popular
force-field approaches used to describe the
energetics of molecular systems might be
inadequate for drug design. Furthermore,

Nature Reviews (2010)

www.nature.com/reviews/drugdisc
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If fifty million people say a
foolish thing, it is still a foolish
thing.

Anatole France
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“Many societal challenges are chemical challenges”

health (drugs)
infrastructure (rust)
water (desalinate)

energy (renewable)
light (OLEDs)

G. Whitesides

@ ACS |Journals | C&EN | CAS | Languagesw Site Search

LogInTo:  SciFinder -

Products Content Training Contact Us About CAS

CAS... patentpicks

WORLD’S AUTHORITY
" CHEMICALNFORMATION Presented by

&
AS is the only organization in the world whose
bbjective is to find, collect and organize all

bublicly disclosed substance information. CHEMICAL & ENGINEERING NEWS

A division of the American Chemical Society

e build and maintain the world's largest

ollection of molecular substances, reactions, LateSt Featu re: Applications Of Quantu m DOtS VLEARN —

bind related content that is vital to the work of
esearchers. A look at recent patenting activity in medical applications of quantum dots.

More >> ]

Scientists Patent Experts No one else has more

MORE THAN gRLGJANICANDNORGANlC

97 MILLION BSJANCES

A global team of scientists is continually adding
substance information from the world's disclosed
chemistry to the CAS REGISTRYSM, the gold
standard for chemical substance information




Question: How many?

American Chemical Society maintains CAS w

~97M substances (alloys, minerals, mixtures, polymers and salts)
~60M sequences (DNA, RNA, proteins)

~10k compounds being added on daily basis



Question: How many?

American Chemical Society maintains CAS w

~97M substances (alloys, minerals, mixtures, polymers and salts)
~60M sequences (DNA, RNA, proteins)

~10k compounds being added on daily basis

But:
Number of (small organic) molecules > 10°°
[Nature Insight on chemical space (2004)]
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American Chemical Society maintains CAS w

~97M substances (alloys, minerals, mixtures, polymers and salts)
~60M sequences (DNA, RNA, proteins)

~10k compounds being added on daily basis
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Number of (small organic) molecules > 10 k years
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Spatial configuration

Carbon allotropes
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Virshup, Yang, Beratan et al J Am Chem Soc (2013)



GDB-N: All organic molecules with up to N heavy atoms

GDB size

10°
105 :
10’
108 -
10° -

—a— (Graphs
—e— Molecules (C,N,QO)
—o— CI/S set

No. Structures

No. Heavy Atoms

1 2 3 4 656 6 7 8 9 10 11 12 13

Fink, Bruggesser, Reymond ACI/E (2005); Blum, Reymond JACS (2009), Ruddigkeit, Reymond, Chem Inf Model (2012)



First Principles

H({Z1,R1})¥(r) = EY(r)

Why first principles?

1. General: Any property

2. Transferable: Any compound and state
3. Rigorous: Guaranteed



First Principles accuracy (DFT/MDL...)

H({Z;,R;})¥(r) = FEY(r)

Why first principles?

1. General: Any property

2. Transferable: Any compound and state
3. Rigorous: Guaranteed



First Principles accuracy (DFT)

correlational (inductive) variational (deductive)
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First Principles H({Z;,R;})¥(r) =

H({Z;,Rr}) = _ZVQ Z|Rj—rz|+z|rz_r.7| Z|

Wilson, J Phys Chem (1962); Politzer, Parr J Phys Chem
(1974); Weigend, Schrodt, Ahlrichs J Chem Phys
(2004); Beratan, Yang et al J Am Chem Soc (2006);
Beste et al J Chem Phys (2006)

Schrodinger

Phys Rev Lett (2005); J Chem Phys (2006); OF [H] OH Feynman
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First Principles H{Z;,R;})¥(r)

H({Z;,Rr}) = _ZVQ Z:|RI—rz|+2:|rz—rJ| Z|

Wilson, J Phys Chem (1962); Politzer, Parr J Phys Chem
(1974); Weigend, Schrodt, Ahlrichs J Chem Phys
(2004); Beratan, Yang et al J Am Chem Soc (2006);
Beste et al J Chem Phys (2006)

Phys Rev Lett (2005); J Chem Phys (2006); J Chem Phys
(2009); Int J Quant Chem (2013); CHIMIA (2014)

ya

REVIEW
LLETTERS

Schrodinger

OE[H]

E(H(N))
OE[H]
I\

Feynman

OH
= v
< 8RI£U

OH
<‘I’ 071

Y)
Y)

= E(H;+\NH; —
- (%)

O\




First Principles H({Z;,R;})¥(r) =

Schrodlnger

E(H(\) = E(H;+\H; -
o (o)




First Principles
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Internet Explorer vs Murder Rate
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Correlation must not be used to infer a causal relationship, however if there is
a causal relationship there must be a correlation ...
— Correlation is a necessary but not sufficient condition.

Dangerous: Humans have cognitive bias [“Thinking, Fast and Slow” Tversky and
Kahneman, “Fooled by Randomness”, Nassim Taleb]

Correlation can also be due to

1. chance (any two variables that change will correlate)
2. acommon cause

3. identity relationships

4. spurious correlations
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Spurious correlation for 500
draws of x,y,z from

x,y ~ N(10,1)
2~ N(30,9)

www.wikipedia.org
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Machine Learning in Chemical Space

(71, R} 22 E

supervised
learning
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Data-driven Science

Inductive

1. Assume a law

2. Metric

3. Examples

4. Infer

5. New combination

Fast (ms)
Arbitrary reference
Automatic improvement

Transferable?
Minimally condensed

Deductive
1. Assume a law
2. Approximate
3. Solve
4. Predict
5. New regimes

Slow (depending on approx.)
Approximation dependent
Human improvement

Transferable?
Maximally condensed



Configuration + Composition — Chemical Space
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Configuration + Composition — Chemical Space
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CM 3

Coumarin derivative A Dapoxyl Chalcone derivative Cy5 (cyanine derivative)  Tricarbocyanine derivative
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Young-Tae Chang et al C&E News 93 (12) 39-40 (2015)



Configuration + Composition — Chemical Space
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Machine Learning in Chemical Space
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Model

The bigger the data
the better




Machine Learning in Chemical Space

1. Train

2. Predict

I A

Statistical o Predicted
XYZ Model E




Kernel Ridge Regression

N
E<M) = % ak(M, M)
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Virshup, Yang, Beratan et al J Am Chem Soc (2013)



0 O
HOJ{ Q.0 ?—OH

S_ % 8.7

Virshup, Yang, Beratan et al J Am Chem Soc (2013)



Model
_d(M,M;) 2

E O{,Le 202

1

Eest (M)

Crucial property
® unique

Need to compare
— What is M?

Desirable properties
e translation
invariant
e rotation invariant
e symmetry
— invariant
e index invariant
e constant length
e continuous




Slide from Klaus-Robert Mueller



The reason for the uniqueness requirement can be shown
by reductio ad absurdum in three steps—in analogy to the first
Hohenberg-Kohn theorem*—for any quantum mechanical
observable O=(¥|0|¥). Here, the unperturbed ground-state
Hamiltonian H is defined by its external potential, determined
by {Z;,R,}, the set of nuclear charges and coordinates, as well
as number of electrons N.. The variational principle yields the
system’s many-body wavefunction ¥ for any given H.

OAVL, R. Ramakrishnan, M. Rupp, A. Knoll, 1JQC (2015), arXiv



i. Let D denote a descriptor that is not unique. Then, two
systems H, # H, exist that differ in excess of the invari-
ants, but they are mapped to the same descriptor value
d,H1 —>dandH2—>d.

OAVL, R. Ramakrishnan, M. Rupp, A. Knoll, 1JQC (2015), arXiv



i. Let D denote a descriptor that is not unique. Then, two
systems H, # H, exist that differ in excess of the invari-
ants, but they are mapped to the same descriptor value
d Hy — d and H, — d.

ii. Because H; and H, differ by more than their property’s
invariances, they have different wave-functions, ¥, # ¥,,
yielding two different observables, O;=(¥,;|0|¥;) and
O,=(¥,|0|¥,). Here, we deliberately ignore the obvious
exception and special situation of all observables which
happen to be degenerate.

OAVL, R. Ramakrishnan, M. Rupp, A. Knoll, 1JQC (2015), arXiv



i. Let D denote a descriptor that is not unique. Then, two
systems H, # H, exist that differ in excess of the invari-
ants, but they are mapped to the same descriptor value
d Hy — d and H, — d.

ii. Because H; and H, differ by more than their property’s
invariances, they have different wave-functions, ¥, # ¥,,
yielding two different observables, O;=(¥,;|0|¥;) and
O,=(¥,|0|¥,). Here, we deliberately ignore the obvious
exception and special situation of all observables which
happen to be degenerate.

iii. A trained statistical model predicts any observable O
solely based on descriptor input d leading to identical
predictions OP?=8"4, In the limit of infinite training
data, these predictions will be exact, implying O1=0,, in
contradiction to (ii).

OAVL, R. Ramakrishnan, M. Rupp, A. Knoll, 1JQC (2015), arXiv
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Desirable descriptors are

unique

translation invariant
rotation invariant
symmetry invariant
index invariant
constant length
continuous
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Homometric molecules?




Homometric molecules?




Homometric molecules?
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-0.5+ ,
x — Bond counting
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Training for N = 1000

molecules
MAE ~15 kcal/mol

PBEO: ~1000 seconds
ML: ~0.001 seconds

M. Rupp, R. Tkatchenko, K.-R. Muller, OAvL, PRL (2012), arXiv
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http://www.quantum-machine.org/
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An Atom in Many Molecules

M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv


https://drive.google.com/file/d/0BxXDhC5EnVIiNE9nZFJpbXhJbXM/view?usp=sharing

An Atom in Many Molecules
(U|OR,H|¥) = [dr(r— Rq)Zgn(r)/|r — Rell’

TNk

SN UNESIN N

M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv



An Atom in Many Molecules

100 150 200
3C &/ ppm

M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv



An Atom in Many Molecules

M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv


http://www.youtube.com/watch?v=ZQ3KtucI97o

An Atom in Many Molecules

1k 2k 5k 10k

10k atoms from:
8 _16800 distortions from 168 C7H1OO2 isomers
-9k GDB molecules with 7 to 9 atoms CONF/molecule
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An Atom in Many Molecules
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Elpasolite (KZNaAIF6-symmetry) is a vitreous, transparent, luster, colorless and soft
quaternary crystal in the Fm3m space group which can be found in the Rocky Mountains,
Virginia, or the Apennines. It is the most abundant quaternary crystal present in the
Inorganic Crystal Structure Database; and some Elpasolites emit light when exposed to ionic
radiation, which makes them interesting material candidates for scintillator devices.

Faber et al, IJQC (2015), in preparation (2015)
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MAE (meV/Atom)

Elpasolite (K,NaAlF -symmetry) is a vitreous, transparent, luster, colorless and soft
quaternary crystal in the Fm3m space group which can be found in the Rocky Mountains,
Virginia, or the Apennines. It is the most abundant quaternary crystal present in the
Inorganic Crystal Structure Database; and some Elpasolites emit light when exposed to ionic
radiation, which makes them interesting material candidates for scintillator devices.

il [N T T ) S
S| 153 5 S L IR
GE A B (AN : N NI 5
& [
SE[E i
Z| 0
o 5 Si|E >
o
SIEL 13
i i
g
e 2
e ig? S
1R OE R
It}
5 1
" N T
iy N - ER E
T o
3 XX ELP-B|]| @
107 &=~ = 0
K- MPD P
I
&
2 -1
Q
z
2 a.
107} @
z -2
A4
%
,,,,, ~ N g
—IZOOO -1000 ) 1009 . . o IR
0 1 2 3 4 —
10 10 10 10 10" = ] —3
N o 15 i SRS o E‘q-~l~~'~'~e§~(ﬂ[§-~s~ S ‘-ll’_

FBaClSrCaliBrNaO | K CsRbMgin Tl TeSe GaSnPb S Bi Sb Al He H GeAs Ne P Si Ar Kr Xe Be B N C

Faber et al, IJQC (2015), in preparation (2015)

eV/Atom



A-Machine Learning Approach
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From GDB-17: All of GDB-9 — 134k molecules
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Supervised-learning: Learning energy and geometry?
—p Thermochemistry
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Supervised-learning: Learning energy and geometry?
—p Thermochemistry
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Supervised-learning: Learning energy and geometry?
—p Thermochemistry
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From GDB-17: 6k constitutional

isomers of C702H10
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Invert chiral atoms — 10k diastereomers

R Ramakrishnan et al JCTC (2015)



Invert chiral atoms — 10k diastereomers
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Global minimum
2 = -1933.5 kcal/mol
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Channel

Transmission

Elastic scattering
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Various molecular properties of 134k-N
organic molecules taken from:
Ramakrishnan et al, Scientific Data (2014)
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Oopt = Dmax/log( )
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Concluding remarks

1.

ML accuracy depends on

a. better descriptors
b. datasets
c. baseline

Systematic improvement (The bigger the better)

Milli-second predictions
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