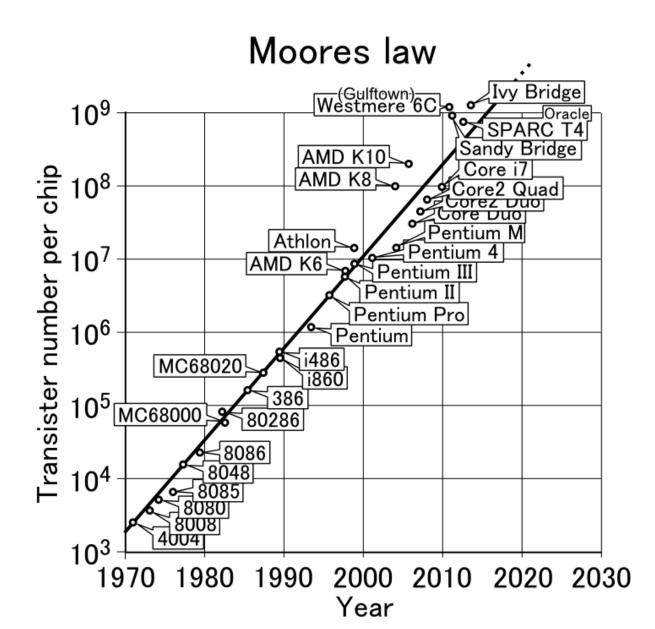
Machine Learning in Chemical Space

Anatole von Lilienfeld¹

Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University Basel

Many of the most relevant chemical properties of matter depend explicitly on atomistic details, rendering a first principles approach mandatory. Alas, even when using high-performance computers, brute force high-throughput screening of compounds with electronic structure theory is beyond any capacity for all but the simplest systems and properties due to the combinatorial nature of chemical space, i.e. all the compositional, constitutional, and conformational isomers. Consequently, efficient exploration algorithms should exploit all implicit redundancies present in high-throughput approaches. In this talk, I will describe recently developed statistical approaches for interpolating (Kriging) quantum mechanical observables in composition space. Examples will be presented for predicting properties of out-of-sample molecules or solids with high accuracy and small computational cost.

There's an on-going revolution ...



VISUALIZING PROGRESS

If transistors were people If the transistors in a microprocessor were represented by people, the following timeline gives an idea of the pace of Moore's Law.

	>		>		>		
2,300 Average music hall capacity		134,000 Large stadium capacity		32 Million Population of Tokyo		1.3 Billion Population of China	
1970	1980	1990	2000		2011		
Intel 4004	Intel 286		Pentium III		Core i7 Extreme Edition		

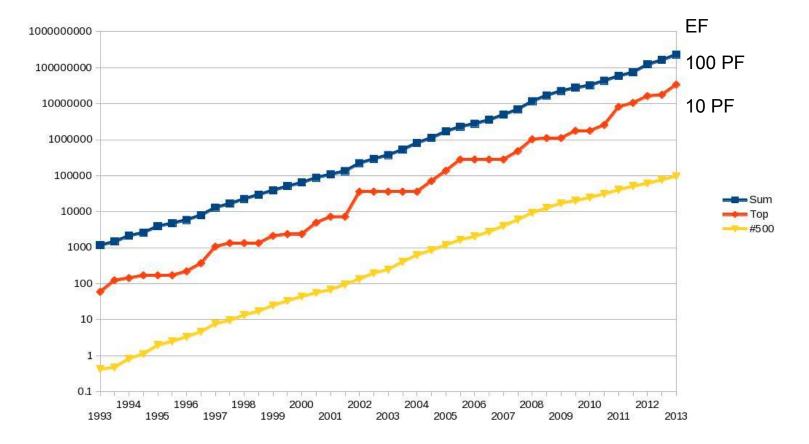
Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore's Law.

www.top500.org

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5- 2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
7	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0		IBM
8	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.		
9	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9		
10	DOE/NNSA/LLNL United States	Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393,216	4,293.:		

Computing power 1993-2013

If brick-and-mortar labs were to follow ... a 1 yr experiment in 1986 \rightarrow 1 s in 2015 (3x10⁷ speed-up)

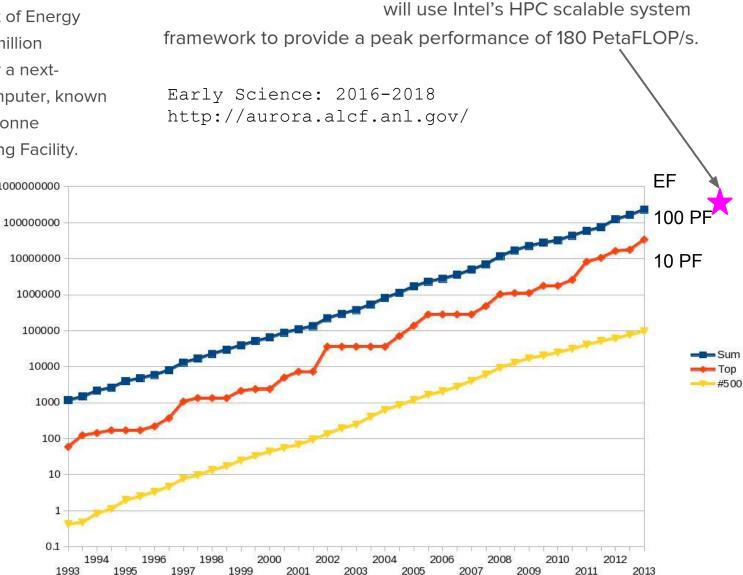


Apr 9 2015

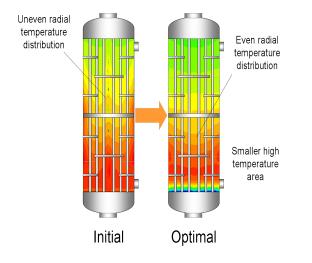
The U.S. Department of Energy announced a \$200 million investment to deliver a nextgeneration supercomputer, known as Aurora, to the Argonne Leadership Computing Facility.

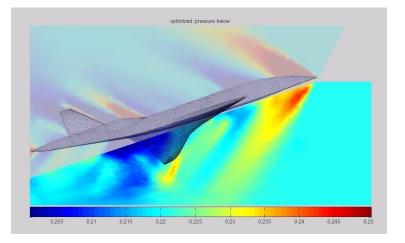
1000000000

1



Computational design ...





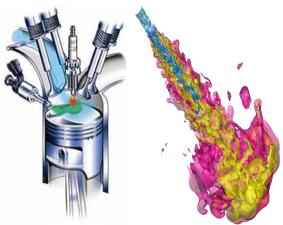


Figure 2: EcoBoost-with direct injection, fuel is injected into each cylinder or an engine in small, precise amounts.

Where is the design of new chemicals?

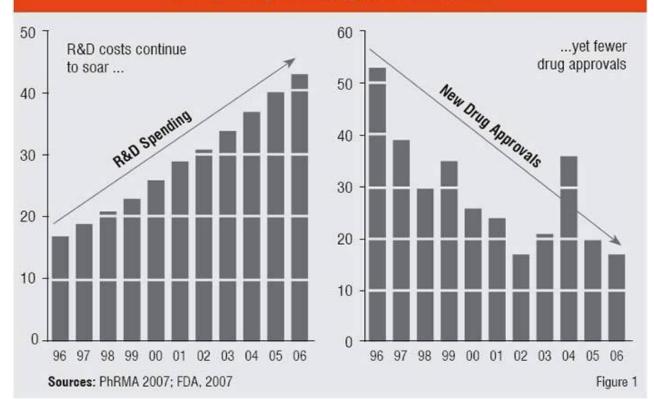
"Yeah, I see him too...But nobody wants to talk about it!"

Where is the design of new chemicals?

"Many societal challenges are chemical challenges" G. Whitesides

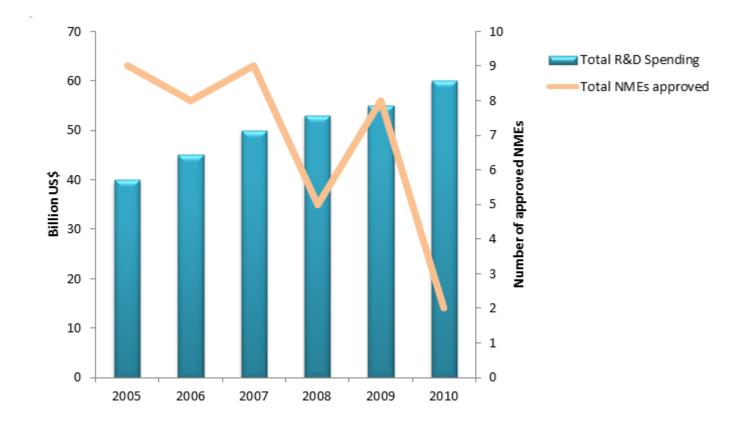
- ➤ health (drugs)
- ➢ infrastructure (rust)
- > water (desalinate)
- > energy (renewable)
- ➢ light (OLEDs)

R&D spending vs. FDA approvals, 1996-2006



- Infections
- Metabolic syndrome
- Aging
- Cancer

• • •



- Infections
- Metabolic syndrome
- Aging
- Cancer

• • •

Chemica × Minbox (2 × 💯 Google × 🙆 Talks - C × 💭 2014Sc × 🧖 2014W × Minbox (1 × 🥵 Proposa × 🥐 2014_C × V 🗅 CECAM/ × V 🖄 Phys. Re × Wind Green's × 🟧 The Labc × 🕅 Inbox (1 × V 🚱 Indentifyi ×

← → C 🗋 www.cadd.ethz.ch/laboratory.html

ETH Zurich → D-CHAB → IPW → Computer-Assisted Drug Design →

How to find us

The Laboratory

The Molecular Design Laboratory (MODLAB)

develops and implements new concepts, algorithms and software for rapid identification of bioactive tool compounds and pharmaceutical lead structures.

Head of group:

Prof. Gisbert Schneider 🗲

The molecular design cycle involves multiple scientific disciplines and requires rigorous trans-disciplinary thinking. We employ a broad repertoire of machine-learning methods and bio/cheminformatics techniques for automated hypothesis generation, activity prediction and validation.

⊕ ☆ ≡

About MODLAB

Lab Presentation: The Computer-Assisted Drug Design Group at ETH Zurich 2. MedChemWatch (2011) 12:55-57.

Schneider, G. (2012) From theory to bench experiment by computer-assisted drug design a. Chimia 66:120-124.

OPINION

Virtual screening: an endless staircase?

Gisbert Schneider

Abstract | Computational chemistry — in particular, virtual screening — can provide valuable contributions in hit- and lead-compound discovery. Numerous software tools have been developed for this purpose. However, despite the applicability of virtual screening technology being well established, it seems that there are relatively few examples of drug discovery projects in which virtual screening has been the key contributor. Has virtual screening reached its peak? If not, what aspects are limiting its potential at present, and how can significant progress be made in the future?

OPINION

Virtual screening: an endless staircase?

Gisbert Schneider

Abstract | Computational chemistry — in particular, virtual screening — can provide valuable contributions in hit- and lead-compound discovery. Numerous software tools have been developed for this purpose. However, despite the applicability of virtual screening technology being well established, it seems that there are relatively few examples of drug discovery projects in which virtual screening has been the key contributor. Has virtual screening reached its peak? If not, what aspects are limiting its potential at present, and how can significant progress be made in the future?

> Dynamic descriptions of molecules will have to replace our predominantly static view of both targets and ligands¹⁹. Molecular dynamics simulations can sample conformational ensembles of targets and ligands. However, some of the <u>popular</u> force-field approaches used to describe the energetics of molecular systems might be inadequate for drug design. Furthermore,

Nature Reviews (2010)

www.nature.com/reviews/drugdisc

OPINION

Virtual screening: an endless staircase?

Gisbert Schneider

Abstract | Computational chemistry — in particular, virtual screening — can provide valuable contributions in hit- and lead-compound discovery. Numerous software tools have been developed for this purpose. However, despite the applicability of virtual screening technology being well established, it seems that there are relatively few examples of drug discovery projects in which virtual screening has been the key contributor. Has virtual screening reached its peak? If not, what aspects are limiting its potential at present, and how can significant progress be made in the future?

> Dynamic descriptions of molecules will have to replace our predominantly static view of both targets and ligands¹⁹. Molecular dynamics simulations can sample conformational ensembles of targets and ligands. However, some of the <u>popular</u> force-field approaches used to describe the energetics of molecular systems might be inadequate for drug design. Furthermore,

If fifty million people say a foolish thing, it is still a foolish thing.

Anatole France

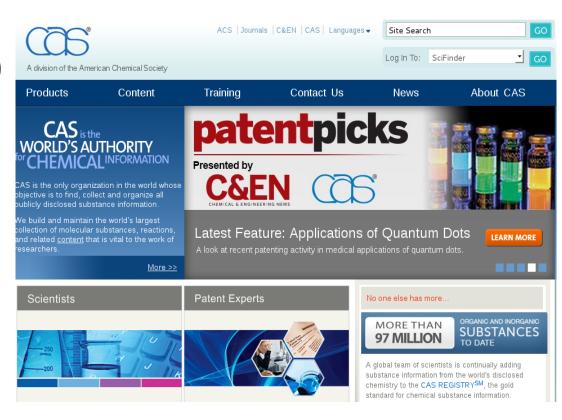
Nature Reviews (2010)

www.nature.com/reviews/drugdisc

Where is the design of new chemicals?

"Many societal challenges are chemical challenges" G. Whitesides

- ➤ health (drugs)
- infrastructure (rust)
- ➤ water (desalinate)
- > energy (renewable)
- ➢ light (OLEDs)



<u>Question:</u> How many?

American Chemical Society maintains CAS w

~97M substances (alloys, minerals, mixtures, polymers and salts)

~60M sequences (DNA, RNA, proteins)

~10k compounds being added on daily basis

<u>Question:</u> How many?

American Chemical Society maintains CAS w

~97M substances (alloys, minerals, mixtures, polymers and salts)

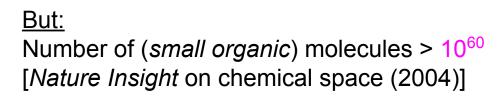
- ~60M sequences (DNA, RNA, proteins)
- ~10k compounds being added on daily basis

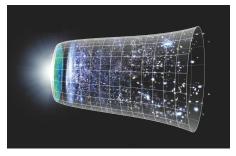
<u>But:</u>

Number of (*small organic*) molecules > 10⁶⁰ [*Nature Insight* on chemical space (2004)] <u>Question:</u> How many?

American Chemical Society maintains CAS w ~97M substances (alloys, minerals, mixtures, polymers and salts) ~60M sequences (DNA, RNA, proteins)

~10k compounds being added on daily basis





k years

weeks

years

M years

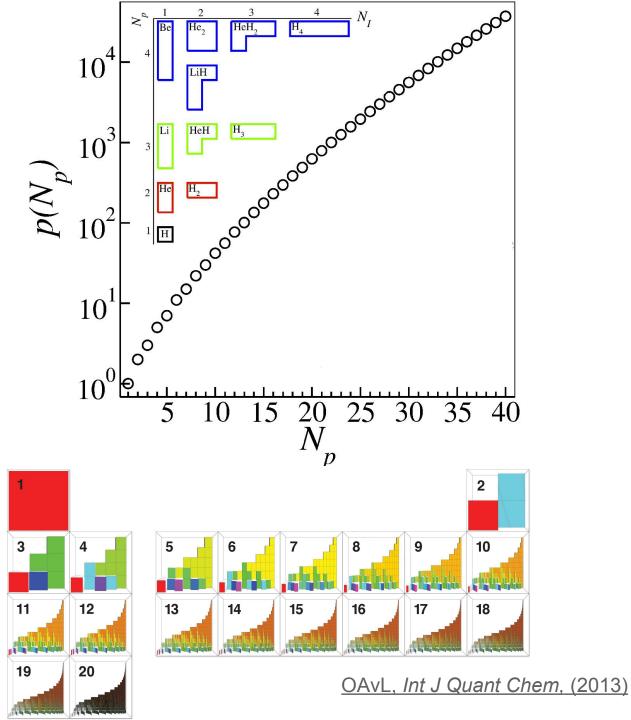
10 B years

Where is the design of new chemicals?

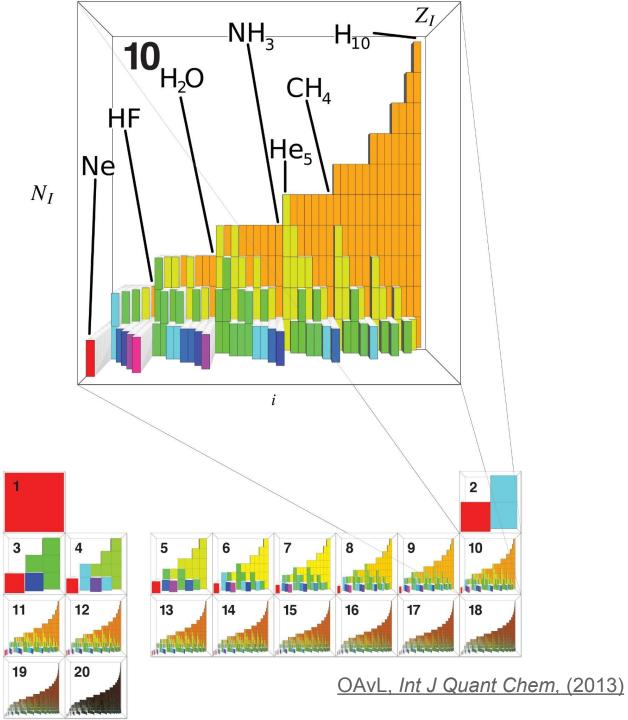
"Many societal challenges are chemical challenges" G. Whitesides

- ➤ health (drugs)
- ➢ infrastructure (rust)
- ➤ water (desalinate)
- > energy (renewable)
- ➢ light (OLEDs)

Composition

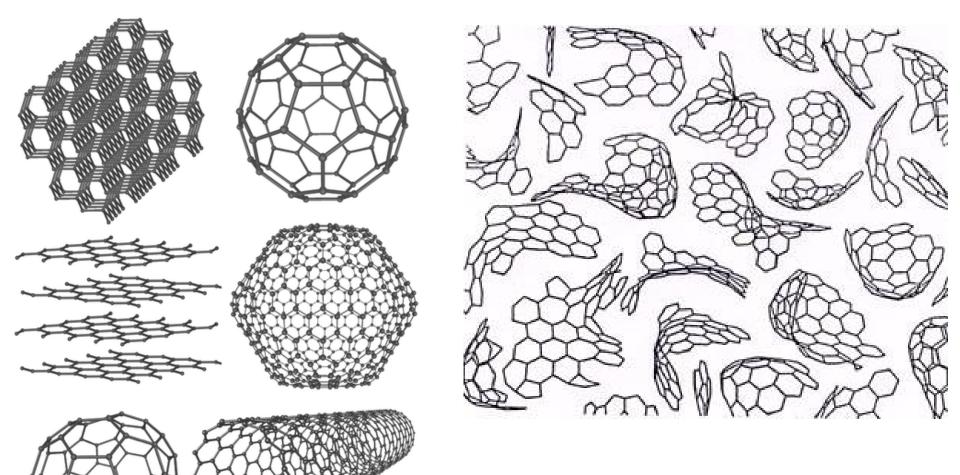


Composition 10 protons

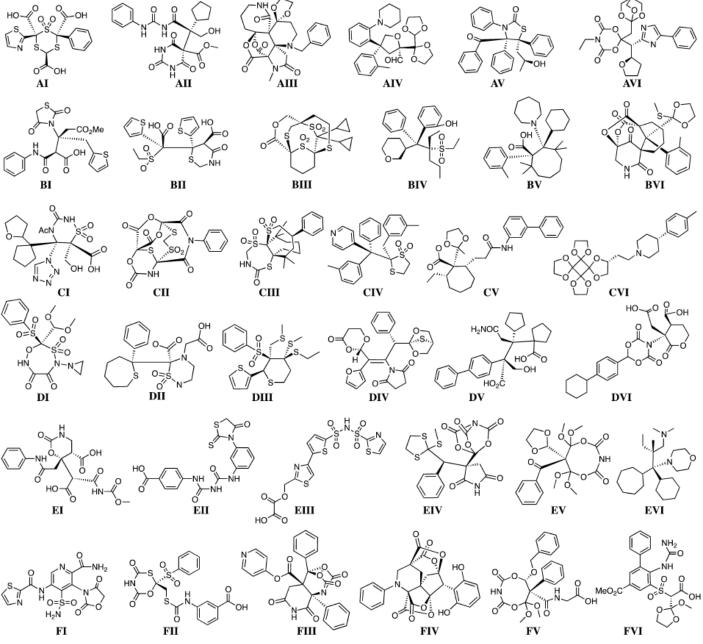


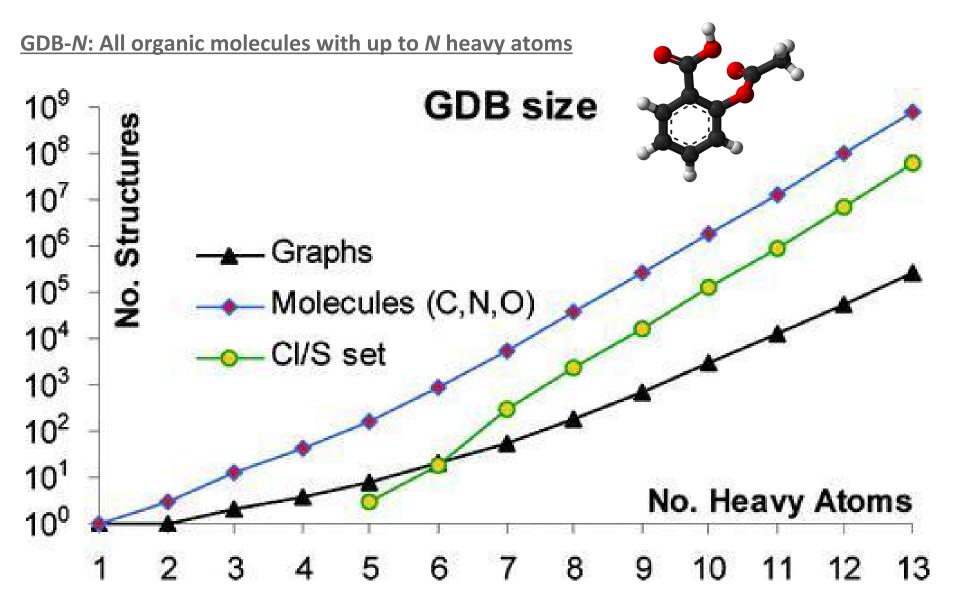
Spatial configuration

Carbon allotropes



Composition + Configuration





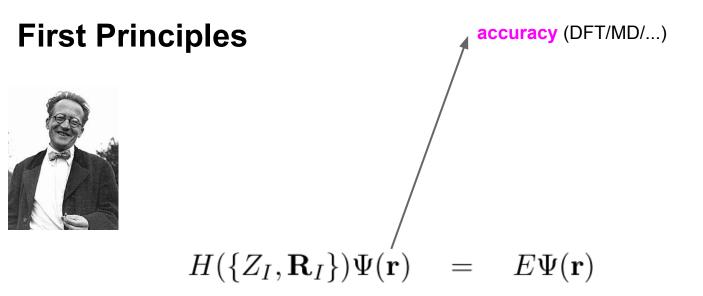
Fink, Bruggesser, Reymond ACIE (2005); Blum, Reymond JACS (2009), Ruddigkeit, Reymond, Chem Inf Model (2012)

First Principles

$$H(\{Z_I, \mathbf{R}_I\})\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

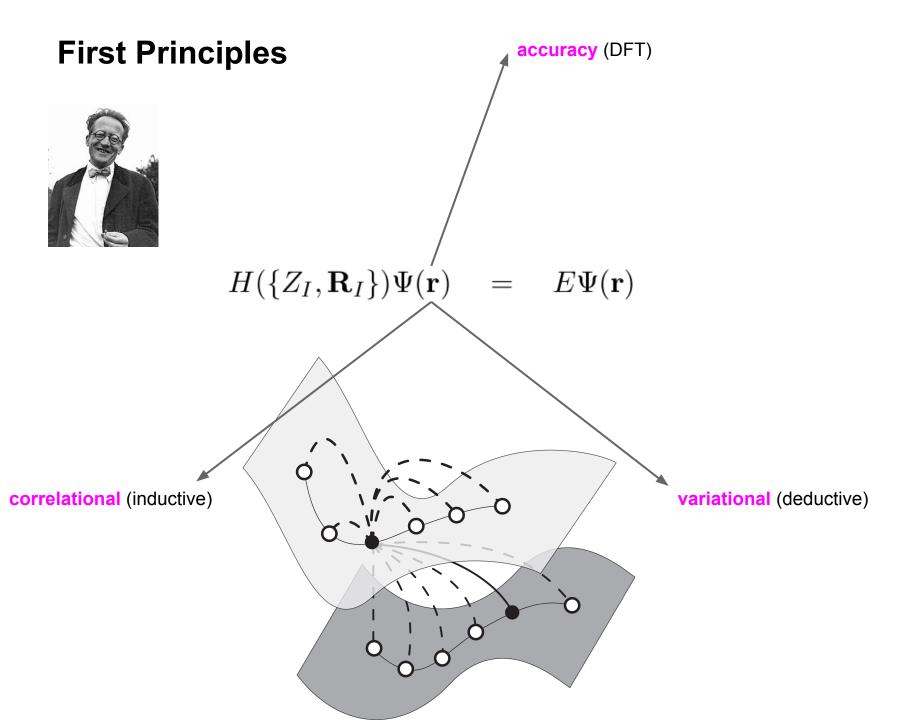
Why first principles?

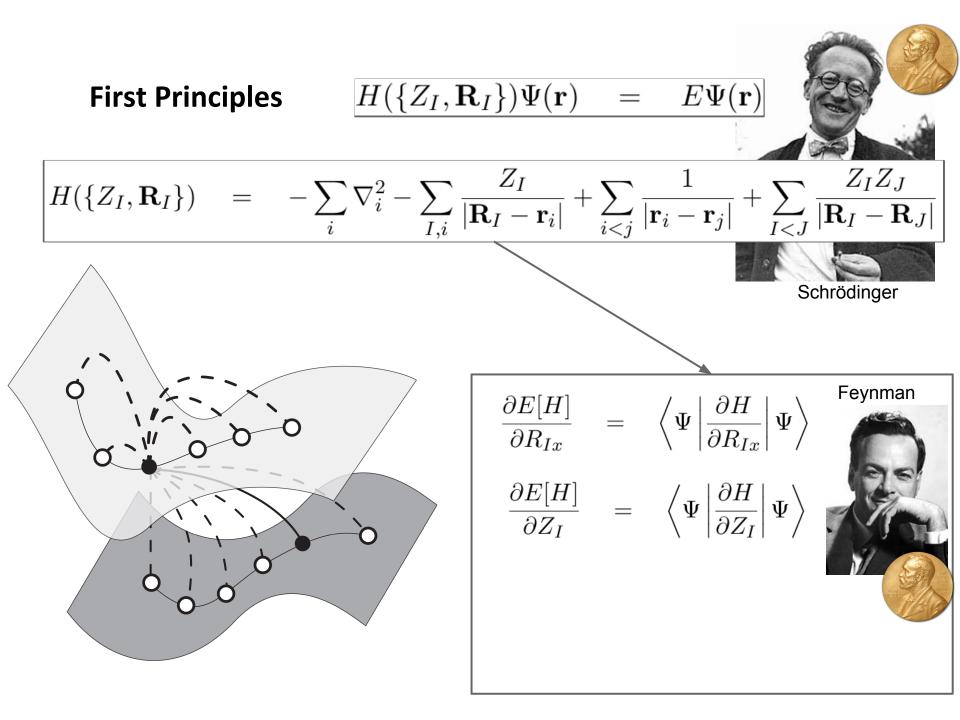
- 1. General: Any property
- 2. Transferable: Any compound and state
- 3. Rigorous: Guaranteed



Why first principles?

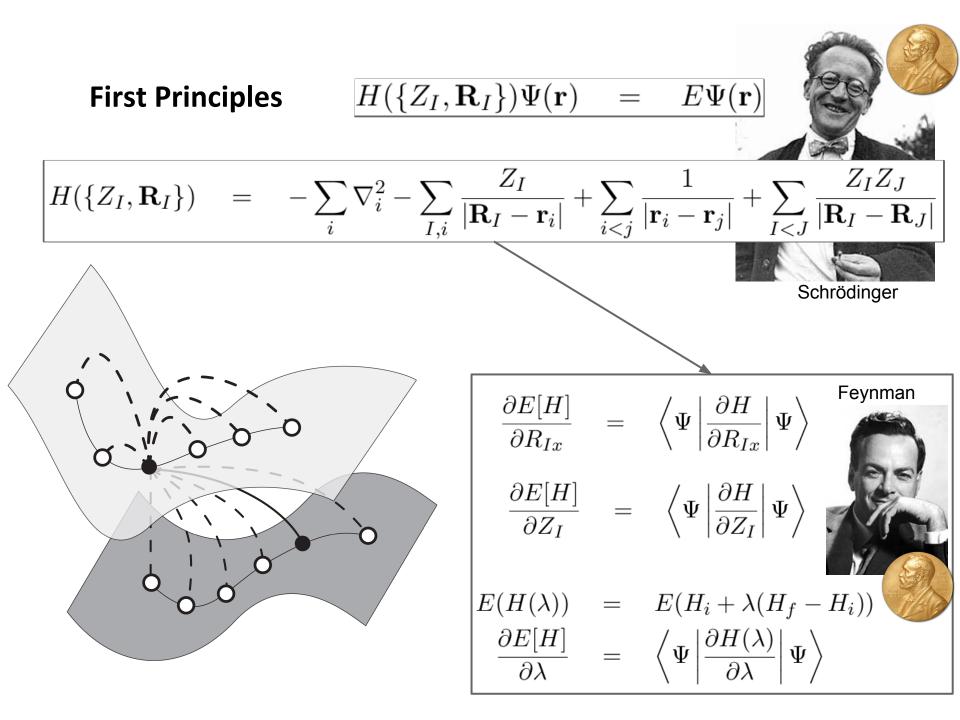
- 1. General: Any property
- 2. Transferable: Any compound and state
- 3. Rigorous: Guaranteed

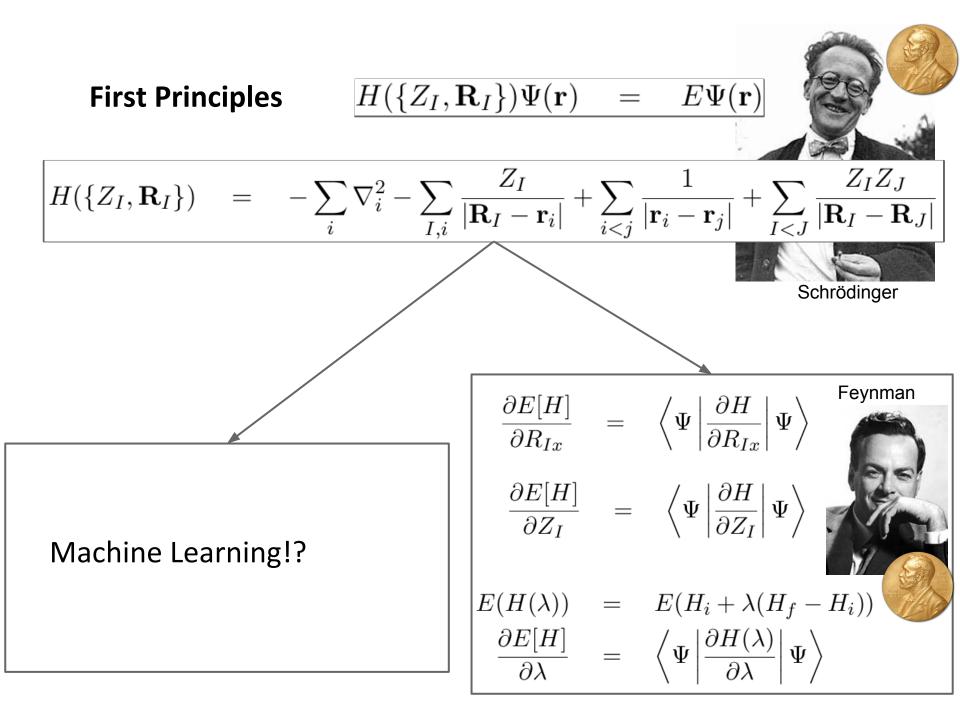


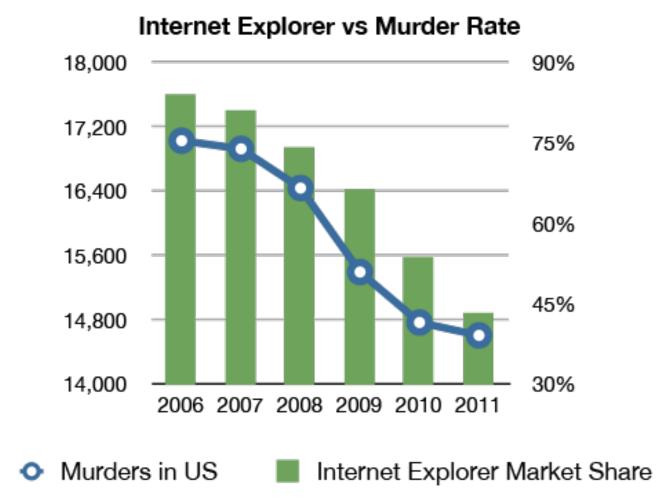


First Principles
$$H(\{Z_I, \mathbf{R}_I\})\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$
 $H(\{Z_I, \mathbf{R}_I\}) = -\sum_i \nabla_i^2 - \sum_{I,i} \frac{Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{I < j} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$ Wilson, J Phys Chem (1962); Politzer, Parr J Phys Chem
(1974); Weigend, Schrodt, Ahlrichs J Chem Phys;
(2004); Beratan, Yang et al J Am Chem Soc (2006);
Beste et al J Chem Phys (2006)Phys Rev Lett (2005); J Chem Phys (2006);
UNINCE
LETTING
LINE
LI

First Principles
$$H(\{Z_I, \mathbf{R}_I\})\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$
 $H(\{Z_I, \mathbf{R}_I\}) = -\sum_i \nabla_i^2 - \sum_{I,i} \frac{Z_I}{|\mathbf{R}_I - \mathbf{r}_i|} + \sum_{i < j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{I < J} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|}$ Wilson, J Phys Chem (1962); Politzer, Parr J Phys Chem
(1974); Weigend, Schrodt, Ahlrichs J Chem Phys
(2006); Beste et al J Chem Phys (2006);
Beste et al J Chem Phys (2006);
J Chem Phys (







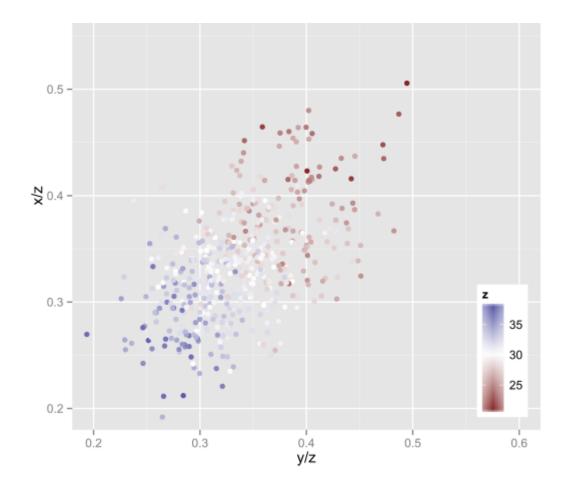
Correlation must *not* be used to infer a causal relationship, however if there is a causal relationship there must be a correlation ...

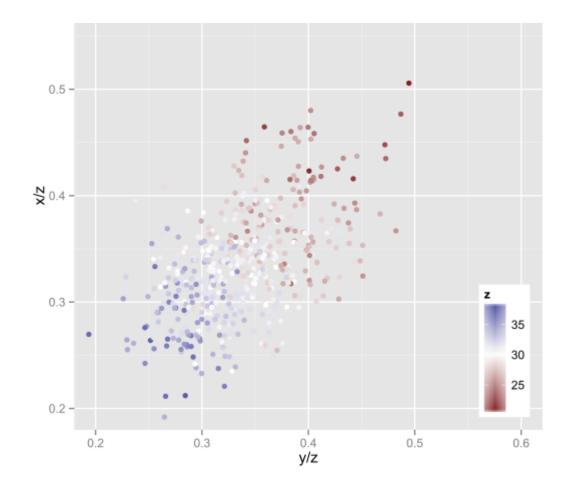
 \rightarrow Correlation is a necessary but not sufficient condition.

Dangerous: Humans have cognitive bias ["Thinking, Fast and Slow" Tversky and Kahneman, "Fooled by Randomness", Nassim Taleb]

Correlation can also be due to

- 1. chance (any two variables that change will correlate)
- 2. a common cause
- 3. identity relationships
- 4. spurious correlations

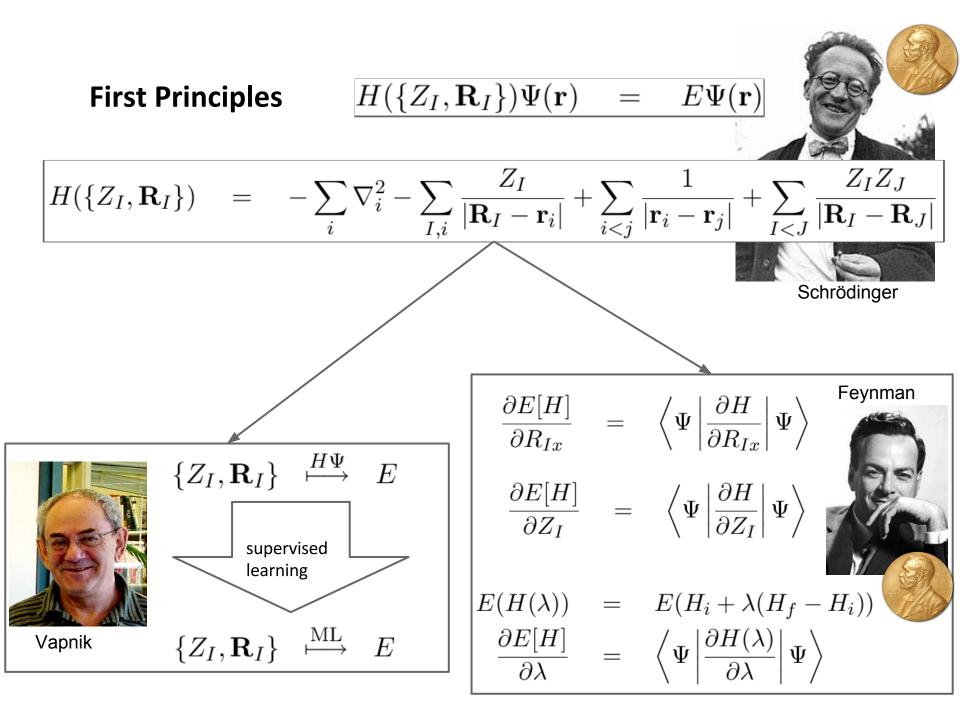




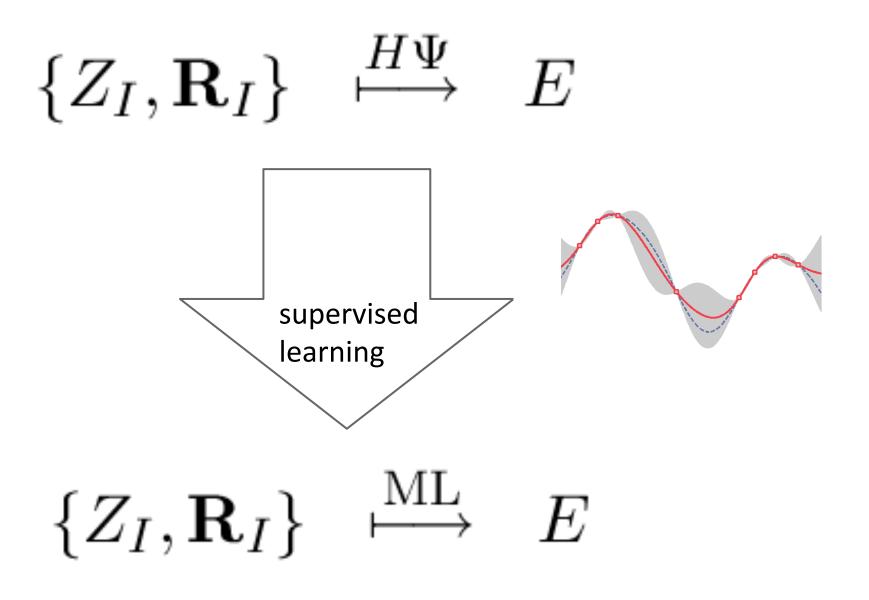
Spurious correlation for 500 draws of *x*,*y*,*z* from

 $\begin{array}{l} x,y \sim N(10,1) \\ z \sim N(30,9) \end{array}$

www.wikipedia.org



Machine Learning in Chemical Space



Data-driven Science

Inductive

- 1. Assume a law
- 2. Metric
- 3. Examples
- 4. Infer
- 5. New combination

Fast (ms) Arbitrary reference Automatic improvement

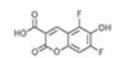
Transferable? Minimally condensed Deductive

- 1. Assume a law
- 2. Approximate
- 3. Solve
- 4. Predict
- 5. New regimes

Slow (depending on approx.) Approximation dependent Human improvement

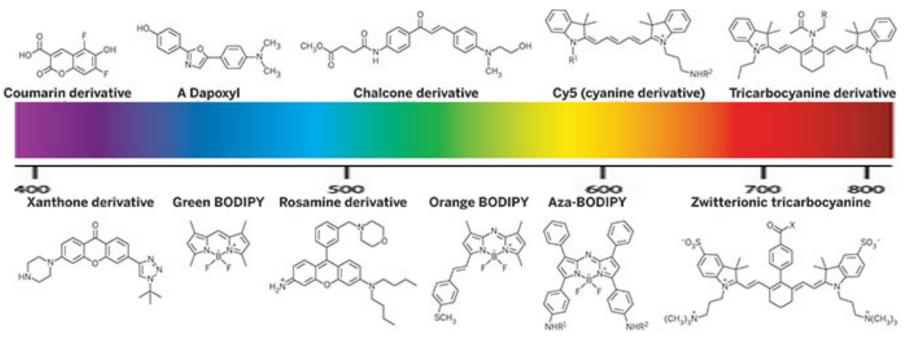
Transferable? Maximally condensed

Configuration + Composition \rightarrow Chemical Space



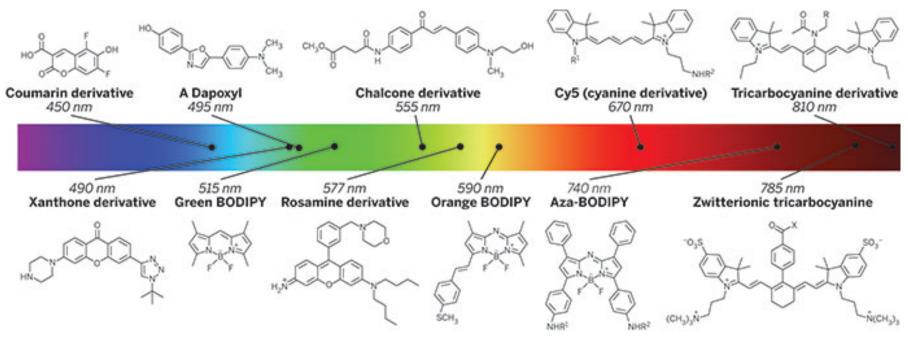
Coumarin derivative

Configuration + Composition \rightarrow Chemical Space



Young-Tae Chang et al C&E News 93 (12) 39-40 (2015)

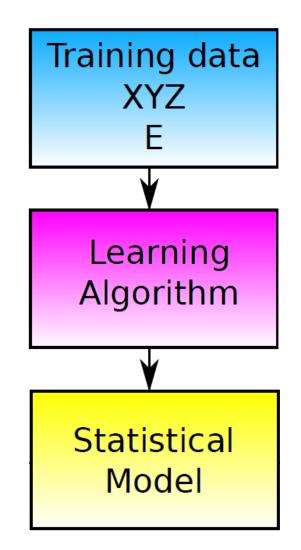
Configuration + Composition \rightarrow Chemical Space



Young-Tae Chang et al C&E News 93 (12) 39-40 (2015)

Machine Learning in Chemical Space

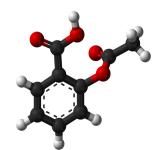
1. Train

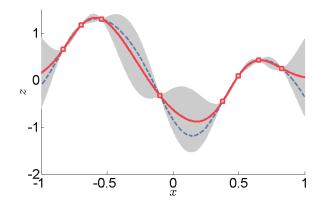


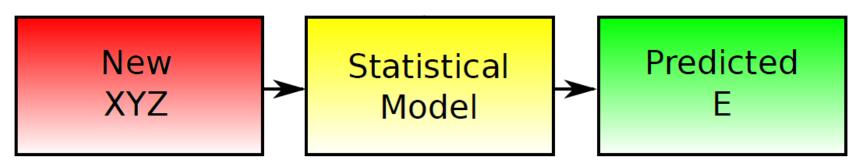
The bigger the data the better

Machine Learning in Chemical Space

- 1. Train
- 2. Predict







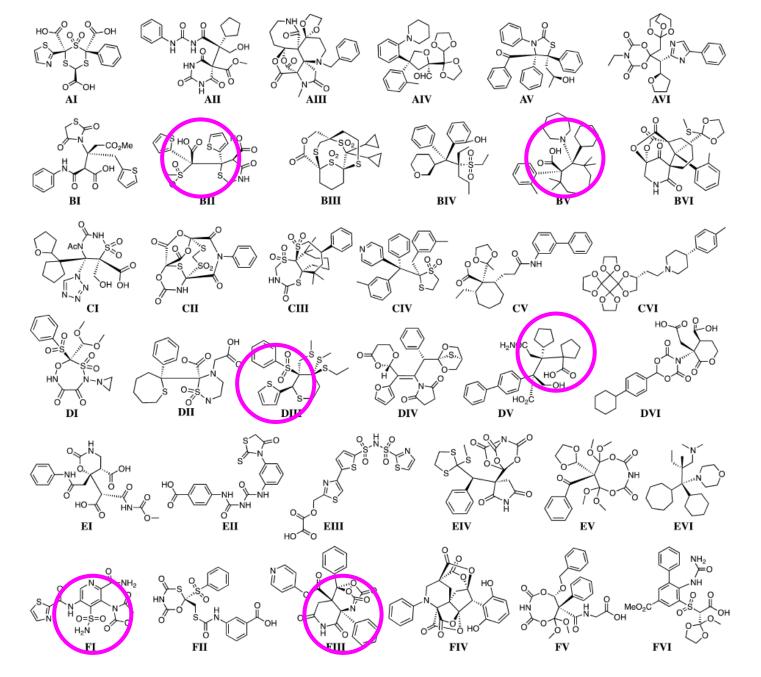
Kernel Ridge Regression

$$E^{est}(\mathbf{M}) = \sum_{i}^{N} \alpha_{i} k(\mathbf{M}, \mathbf{M}_{i})$$

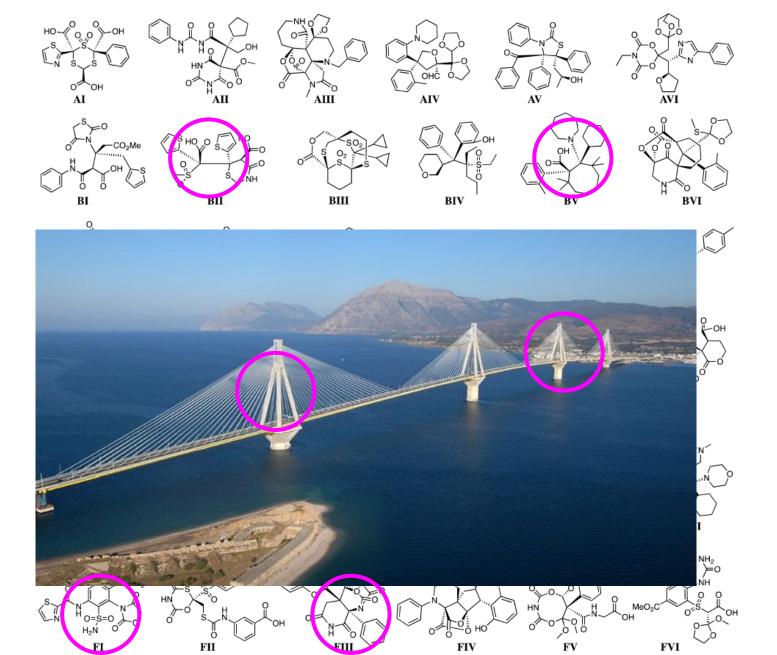
$$\min_{\alpha} = \left(\sum_{i} \left(E^{est}(\mathbf{M}_{i}) - E^{ref}_{i} \right)^{2} + \lambda \sum_{ij} \alpha_{i} \alpha_{j} k(\mathbf{M}_{i}, \mathbf{M}_{j}) \right)$$

 $\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{E}^{ref}$ Solution

$$k(\mathbf{M}, \mathbf{M}') = \exp\left(-\frac{d(\mathbf{M}, \mathbf{M}')^2}{2\sigma^2}\right)$$



Virshup, Yang, Beratan et al *J Am Chem Soc* (2013)

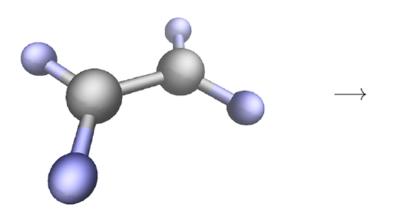


Virshup, Yang, Beratan et al J Am Chem Soc (2013)

Model

$$E^{est}(\mathbf{M}) = \sum_{i} \alpha_{i} e^{-\frac{d(\mathbf{M}, \mathbf{M}_{i})^{2}}{2\sigma^{2}}}$$

Need to compare \rightarrow What is **M**?

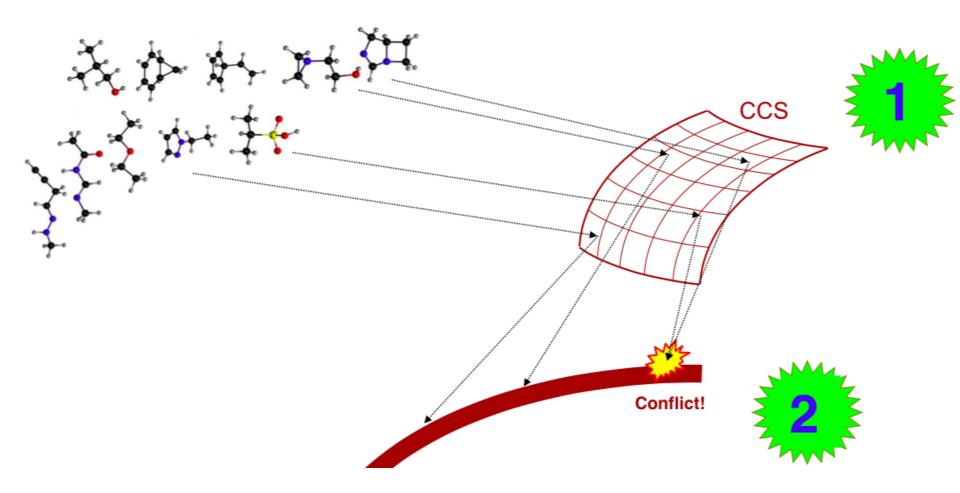


Crucial property

• unique

Desirable properties

- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length
- continuous



Slide from Klaus-Robert Mueller

The reason for the uniqueness requirement can be shown by *reductio ad absurdum* in three steps—in analogy to the first Hohenberg–Kohn theorem^[45]—for any quantum mechanical observable $\mathcal{O} = \langle \Psi | \hat{\mathcal{O}} | \Psi \rangle$. Here, the unperturbed ground-state Hamiltonian *H* is defined by its external potential, determined by $\{Z_I, \mathbf{R}_I\}$, the set of nuclear charges and coordinates, as well as number of electrons N_e . The variational principle yields the system's many-body wavefunction Ψ for any given *H*. i. Let *D* denote a descriptor that is not unique. Then, two systems $H_1 \neq H_2$ exist that differ in excess of the invariants, but they are mapped to the same descriptor value $d, H_1 \rightarrow d$ and $H_2 \rightarrow d$.

- i. Let *D* denote a descriptor that is not unique. Then, two systems $H_1 \neq H_2$ exist that differ in excess of the invariants, but they are mapped to the same descriptor value $d, H_1 \rightarrow d$ and $H_2 \rightarrow d$.
- ii. Because H_1 and H_2 differ by more than their property's invariances, they have different wave-functions, $\Psi_1 \neq \Psi_2$, yielding two different observables, $\mathcal{O}_1 = \langle \Psi_1 | \hat{\mathcal{O}} | \Psi_1 \rangle$ and $\mathcal{O}_2 = \langle \Psi_2 | \hat{\mathcal{O}} | \Psi_2 \rangle$. Here, we deliberately ignore the obvious exception and special situation of all observables which happen to be degenerate.

- i. Let *D* denote a descriptor that is not unique. Then, two systems $H_1 \neq H_2$ exist that differ in excess of the invariants, but they are mapped to the same descriptor value $d, H_1 \rightarrow d$ and $H_2 \rightarrow d$.
- ii. Because H_1 and H_2 differ by more than their property's invariances, they have different wave-functions, $\Psi_1 \neq \Psi_2$, yielding two different observables, $\mathcal{O}_1 = \langle \Psi_1 | \hat{\mathcal{O}} | \Psi_1 \rangle$ and $\mathcal{O}_2 = \langle \Psi_2 | \hat{\mathcal{O}} | \Psi_2 \rangle$. Here, we deliberately ignore the obvious exception and special situation of all observables which happen to be degenerate.
- iii. A trained statistical model predicts any observable \mathcal{O} solely based on descriptor input *d* leading to identical predictions $\mathcal{O}_1^{\text{pred}} = \mathcal{O}_2^{\text{pred}}$. In the limit of infinite training data, these predictions will be exact, implying $\mathcal{O}_1 = \mathcal{O}_2$, in contradiction to (ii).

		Η	Η	С	С
	Η	0.5	0:3	2.9	1.5
	Η	0:3	0.5	2.9	1.5
\bigwedge \longrightarrow $\mathbf{M} =$	С	2.9	2.9	36.9	14.3
	С	1.5	1.5	14.3	36.9
$\bigcirc \qquad \bigcirc \qquad \frown \qquad $	Η	0:2	0:2	1.5	2.9
$M_{IJ} = \begin{cases} 0.5Z_I^{2.4} & \forall \ I = J, \\ \frac{Z_I Z_J}{ \mathbf{R}_I - \mathbf{R}_J } & \forall \ I \neq J. \end{cases}$	Η	0:2	0:2	1.5	2.9
$ \mathbf{R}_I - \mathbf{R}_J $ \vee $I \neq 0$.					

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length
- continuous

Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- fill up w zeros
- sort/diagonalize/permutate

Η

0.2

0.2

1.5

2.9

0.5

0.3

Η

0.2

0.2

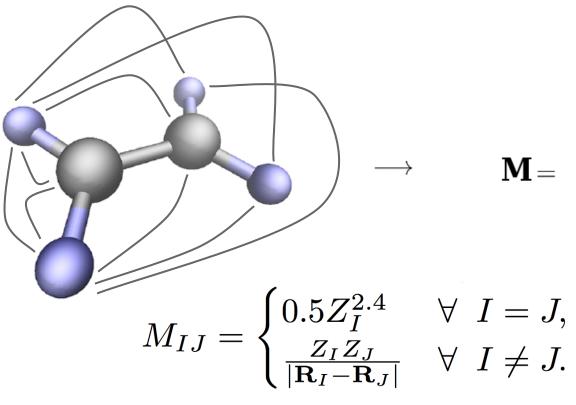
1.5

2.9

0.3

0.5

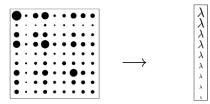
• continuous

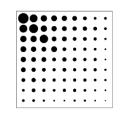


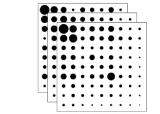
		Η	Η	С	С	Η	Η
	Η	0.5	0.3	2.9	1.5	0:2	0:2
	Н	0:3	0.5	2.9	1.5	0:2	0:2
	С	2.9	2.9	36.9	14.3	1.5	1.5
	С	1.5	1.5	14.3	36.9	2.9	2.9
r	Η	0:2	0:2	1.5	2.9	0.5	0:3
', T	Η	0:2	0:2	1.5	2.9	0:3	005

Desirable descriptors are

- unique
- translation invariant
- rotation invariant
- symmetry invariant
- index invariant
- constant length
- continuous



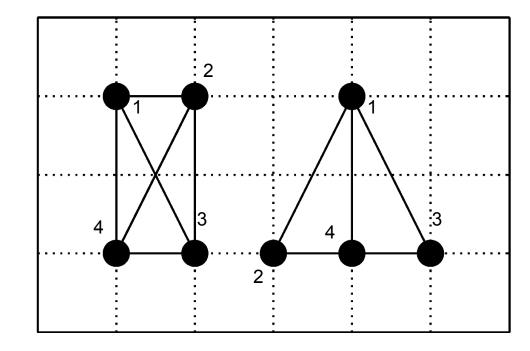




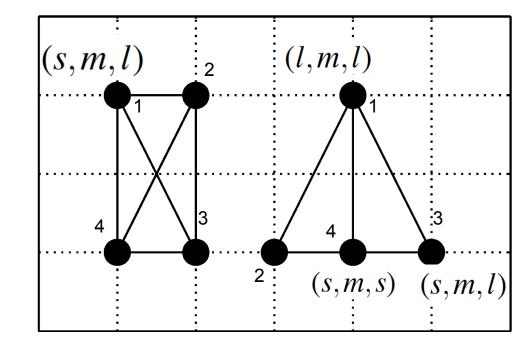
Coulomb-matrix

- unique
- translation
- rotation
- symmetry
- fill up w zeros
- sort/diagonalize/permutate
- continuous

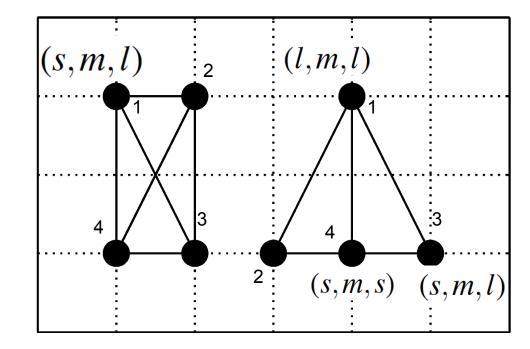
Homometric molecules?



Homometric molecules?

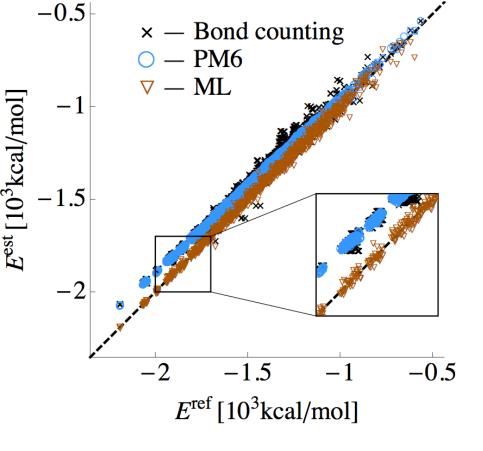


Homometric molecules?



	I	I	m
I		m	S
I	m		s
m	S	S	

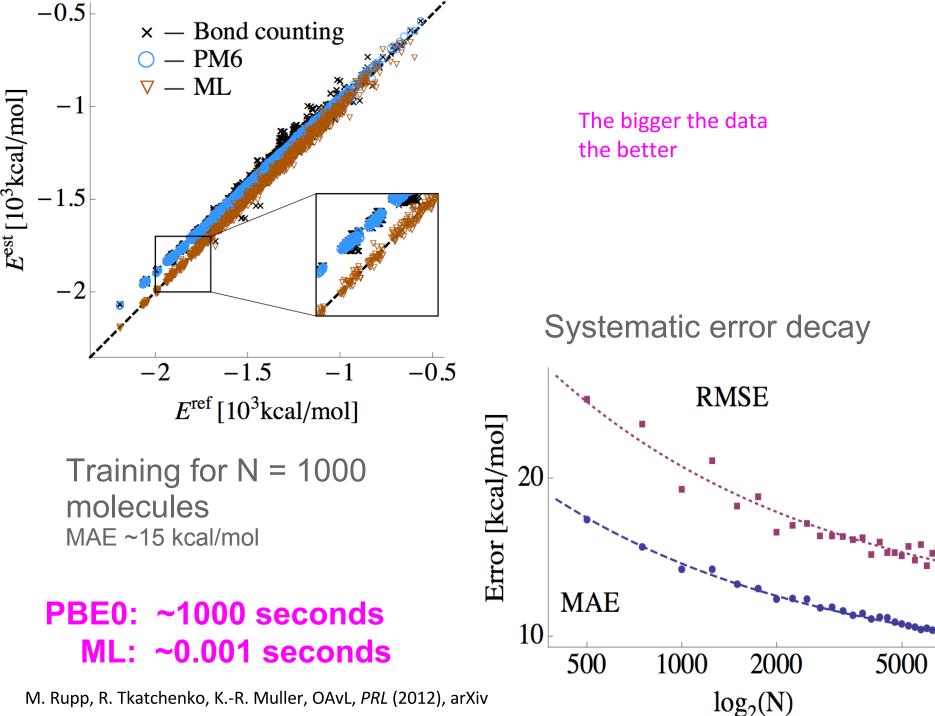
	S	I	m
s		m	I
I	m		s
m	I	s	



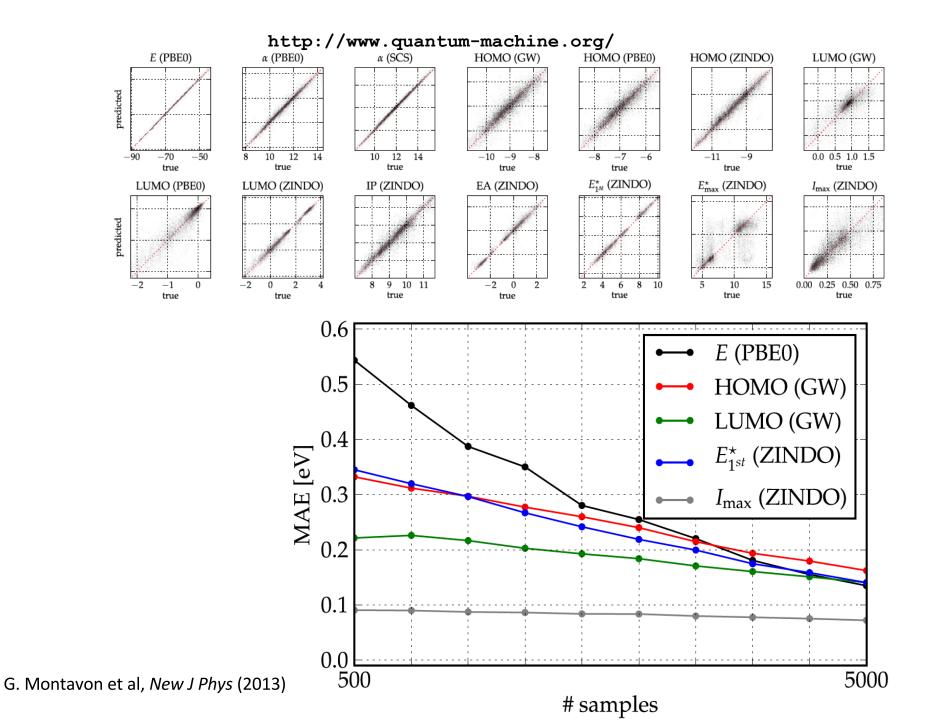
Training for N = 1000 molecules MAE ~15 kcal/mol

PBE0: ~1000 seconds ML: ~0.001 seconds

M. Rupp, R. Tkatchenko, K.-R. Muller, OAvL, PRL (2012), arXiv

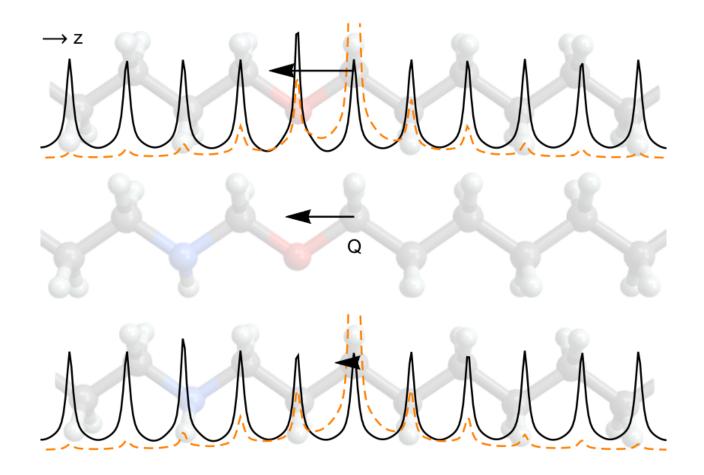


M. Rupp, R. Tkatchenko, K.-R. Muller, OAvL, PRL (2012), arXiv

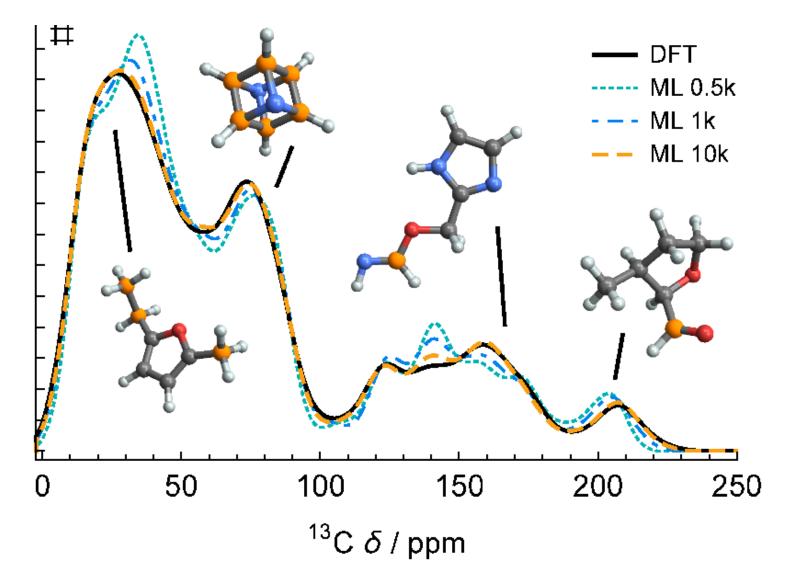


M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv

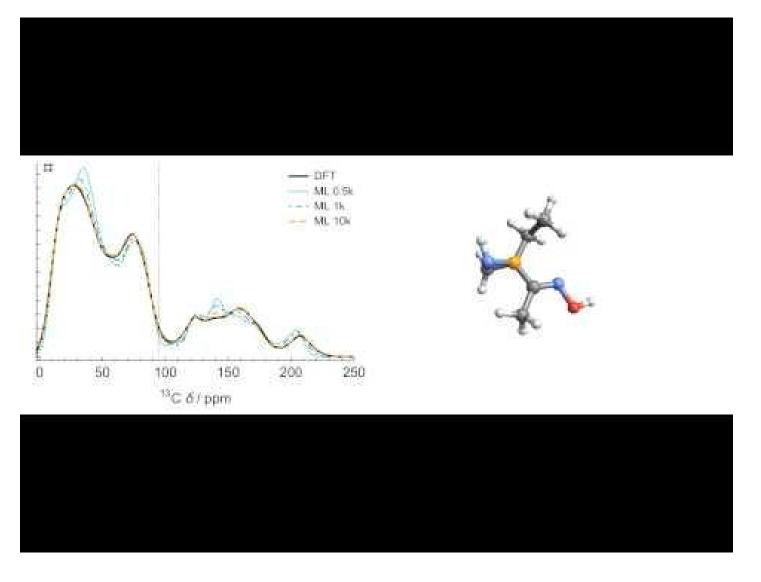
 $\langle \Psi | \partial_{\mathbf{R}_Q} \hat{H} | \Psi \rangle = \int \mathrm{d} \mathbf{r} \left(\mathbf{r} - \mathbf{R}_Q \right) Z_Q n(\mathbf{r}) / \| \mathbf{r} - \mathbf{R}_Q \|^3$



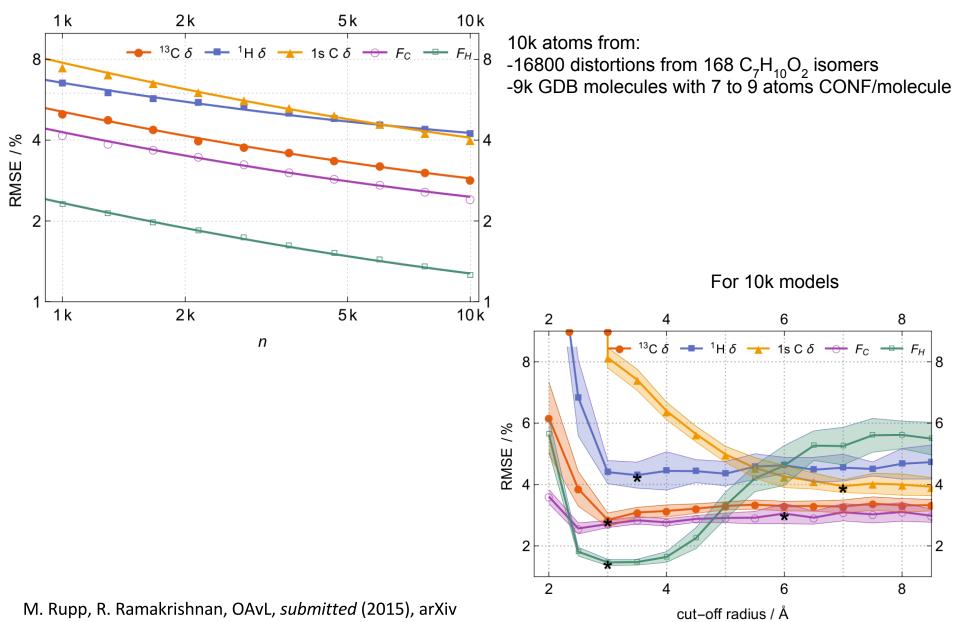
M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv

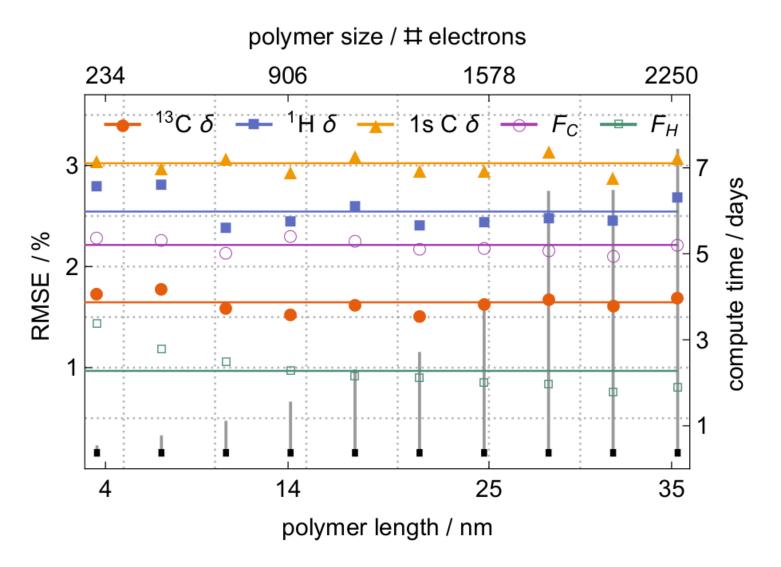


M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv



M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv





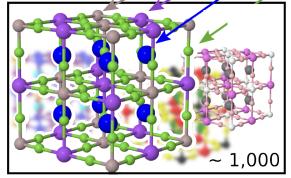
M. Rupp, R. Ramakrishnan, OAvL, submitted (2015), arXiv

Elpasolite (K₂NaAlF₆-symmetry) is a vitreous, transparent, luster, colorless and soft quaternary crystal in the Fm3m space group which can be found in the Rocky Mountains, Virginia, or the Apennines. It is the most abundant quaternary crystal present in the Inorganic Crystal Structure Database; and some Elpasolites emit light when exposed to ionic radiation, which makes them interesting material candidates for scintillator devices.

225: 1aAl 1bNa 1cK 1eF

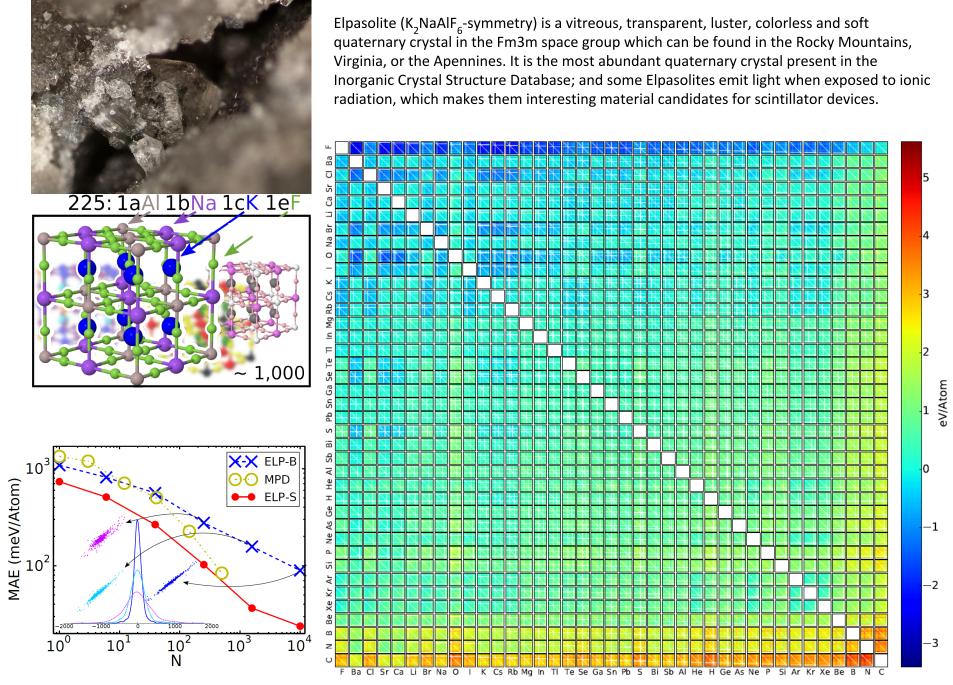
Faber et al, IJQC (2015), in preparation (2015)

225: 1aAl 1bNa 1cK 1eF



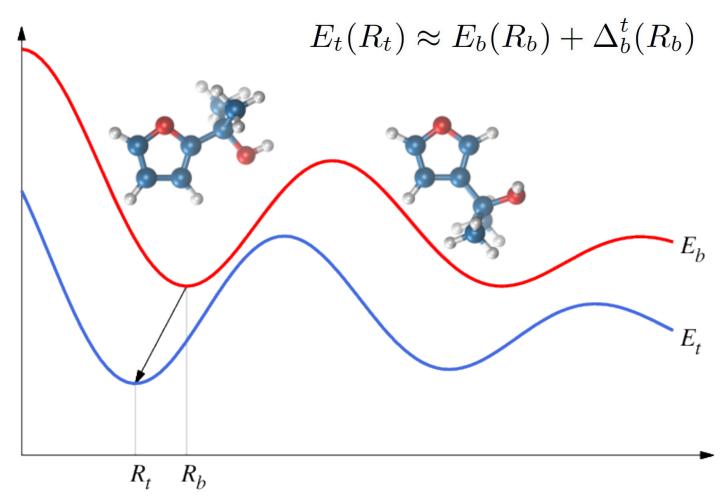
Faber et al, IJQC (2015), in preparation (2015)

Elpasolite (K₂NaAlF₆-symmetry) is a vitreous, transparent, luster, colorless and soft quaternary crystal in the Fm3m space group which can be found in the Rocky Mountains, Virginia, or the Apennines. It is the most abundant quaternary crystal present in the Inorganic Crystal Structure Database; and some Elpasolites emit light when exposed to ionic radiation, which makes them interesting material candidates for scintillator devices.

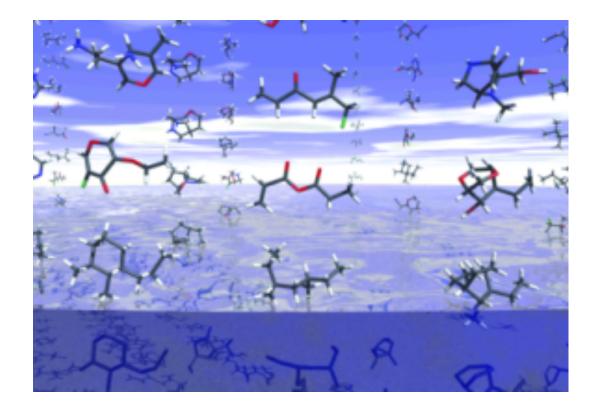


Faber et al, IJQC (2015), in preparation (2015)

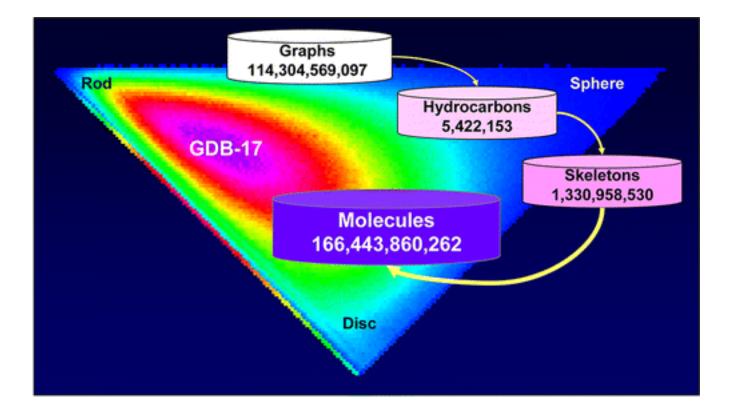
 $\Delta\textsc{-Machine Learning Approach}$

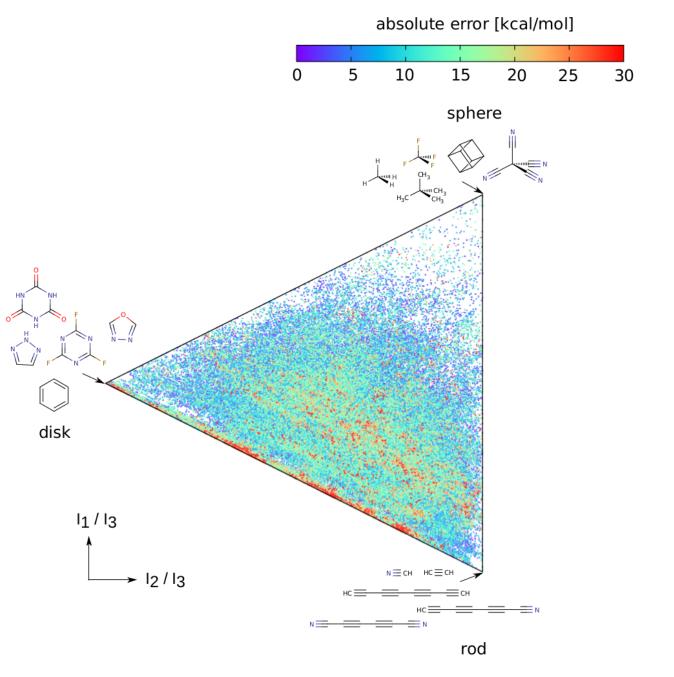


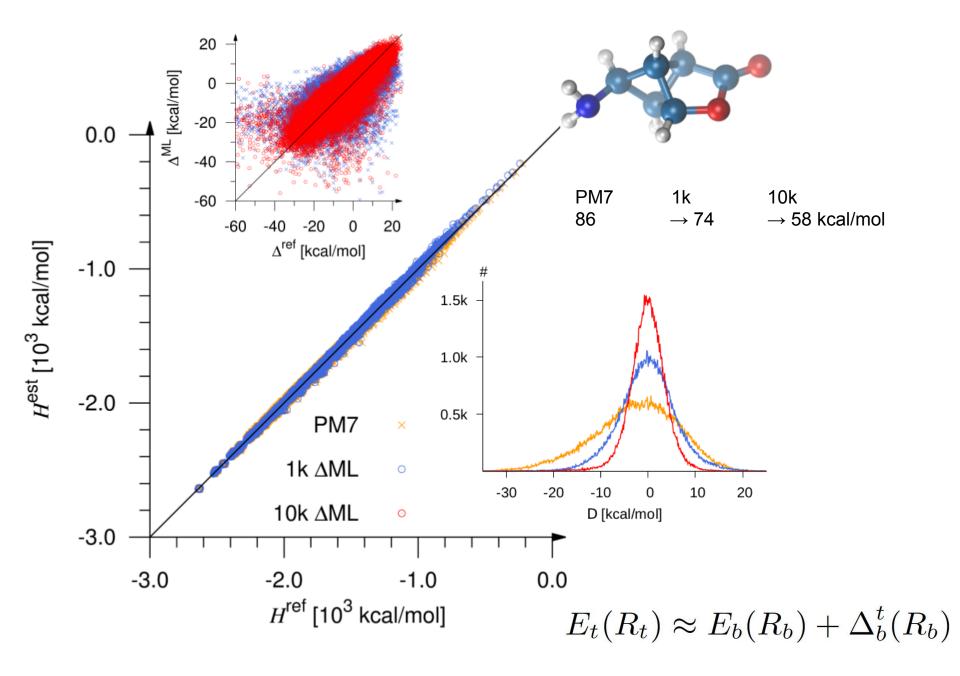
R Ramakrishnan et al JCTC (2015)

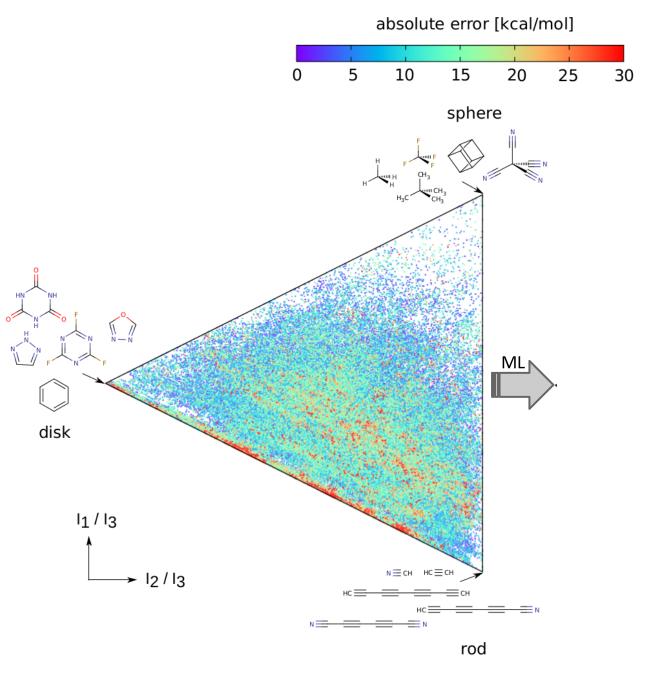


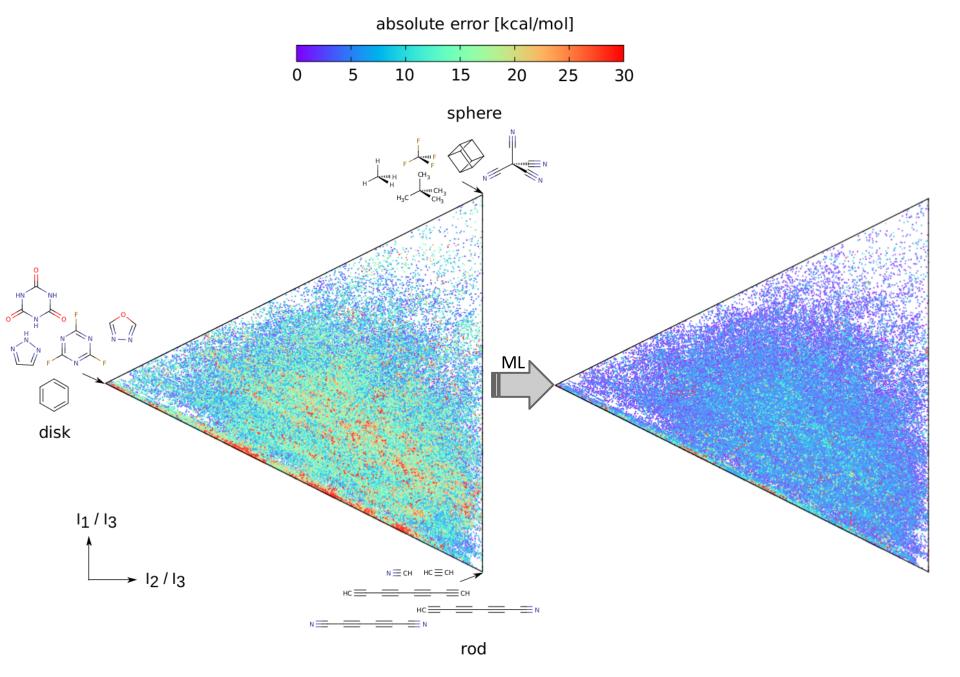
From GDB-17: All of GDB-9 \rightarrow 134k molecules

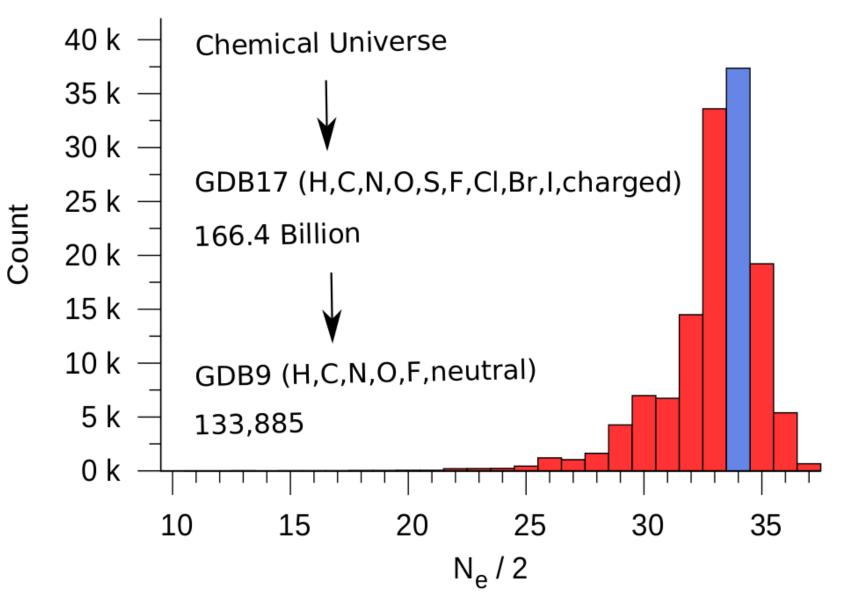




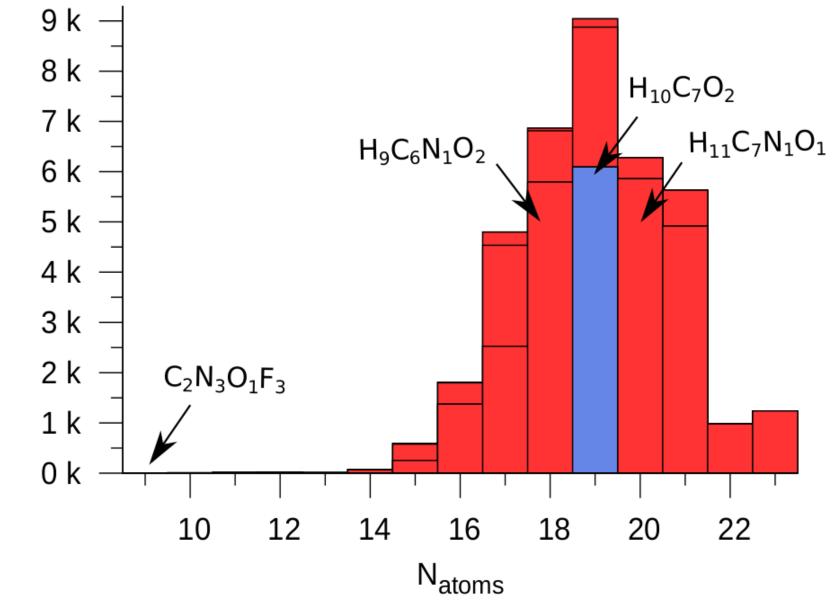


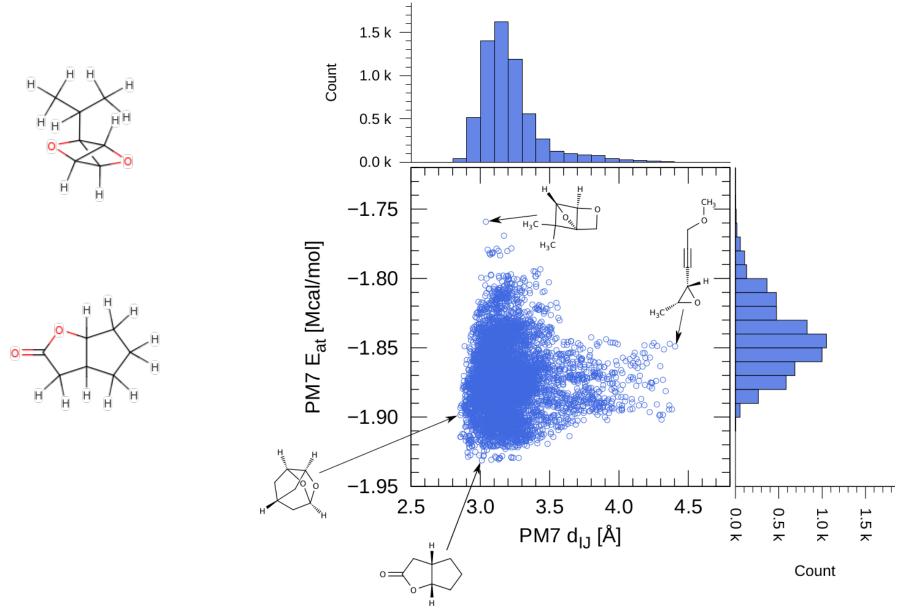


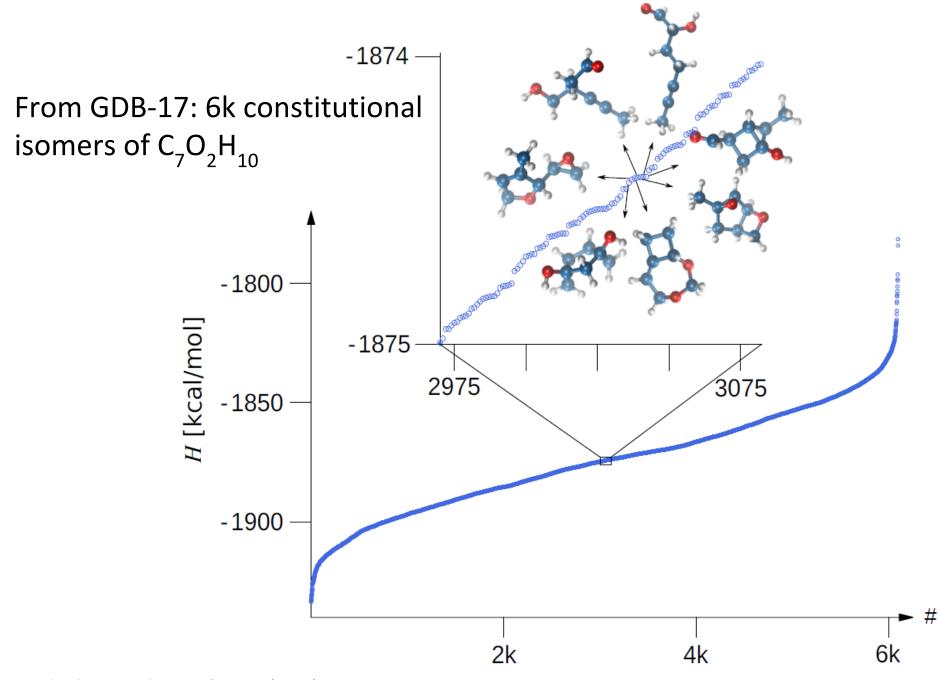




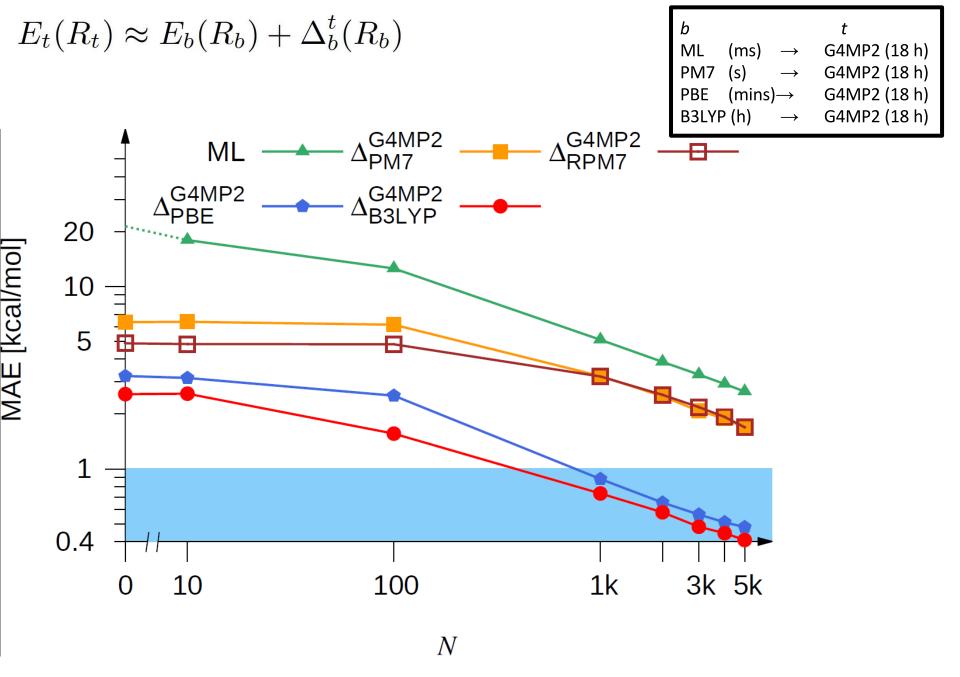
Count

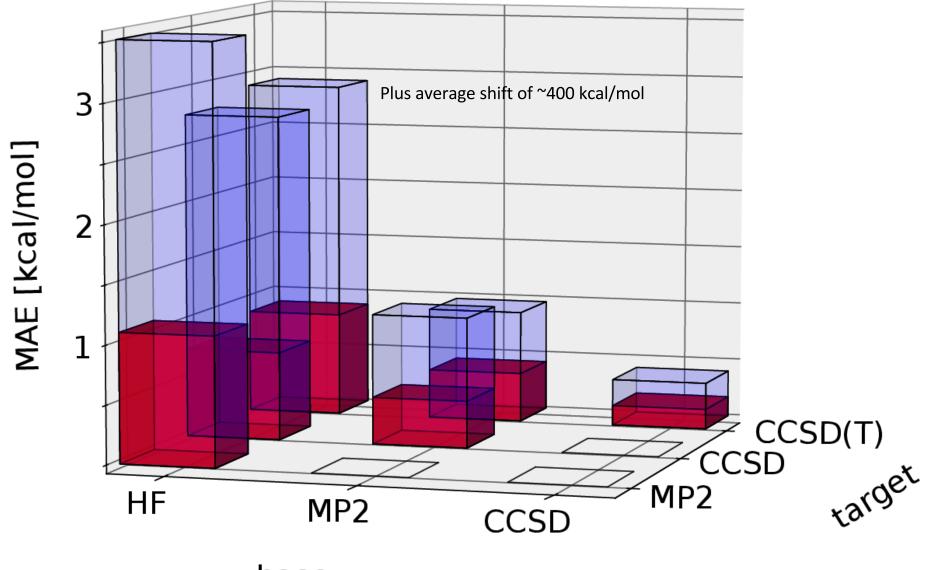




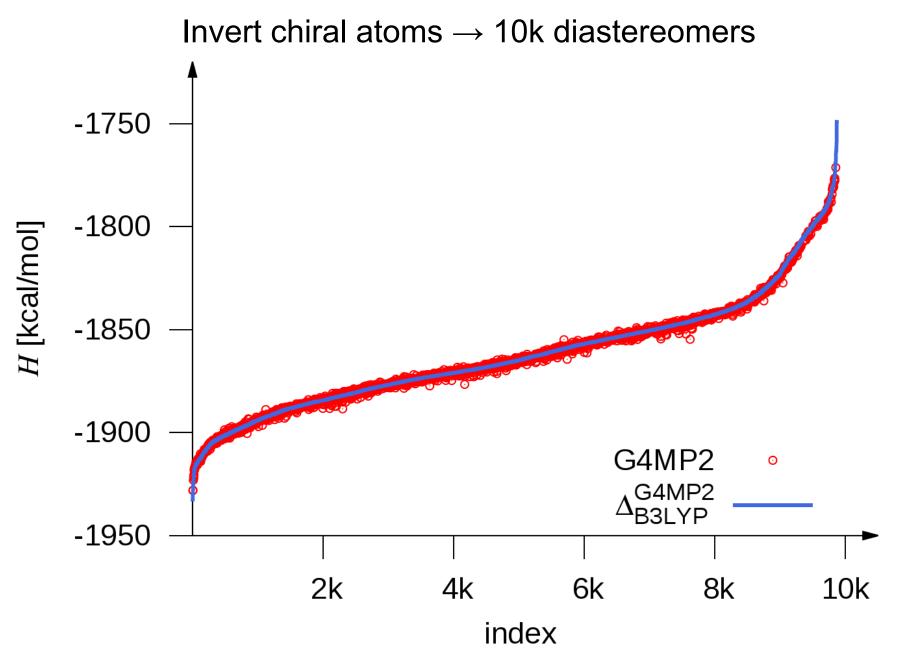


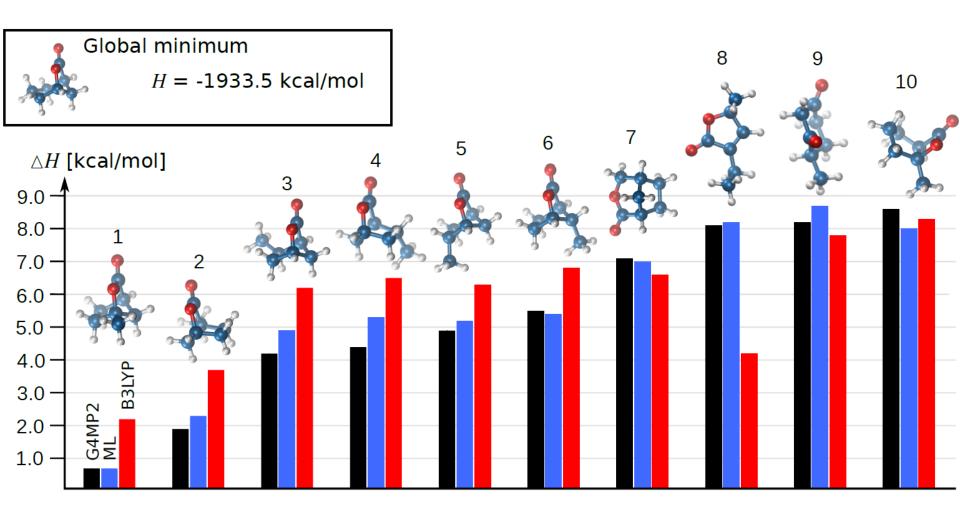
R Ramakrishnan et al Scientific Data (2014)



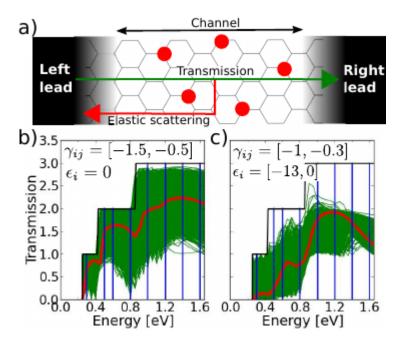


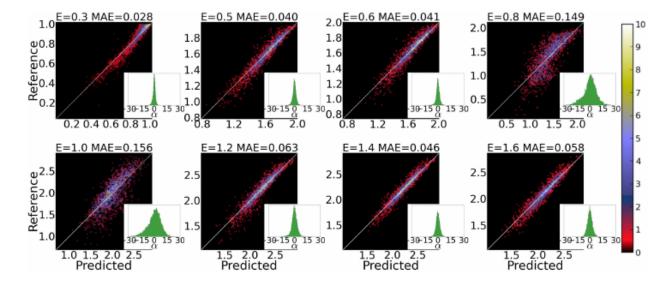
Invert chiral atoms \rightarrow 10k diastereomers



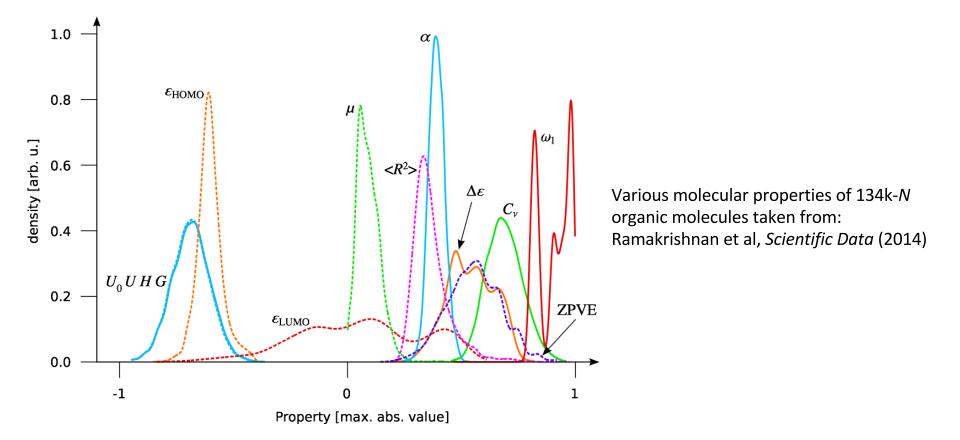








with A. Lopez-Bezanillal (ANL), accepted in PRB (2014), arxiv



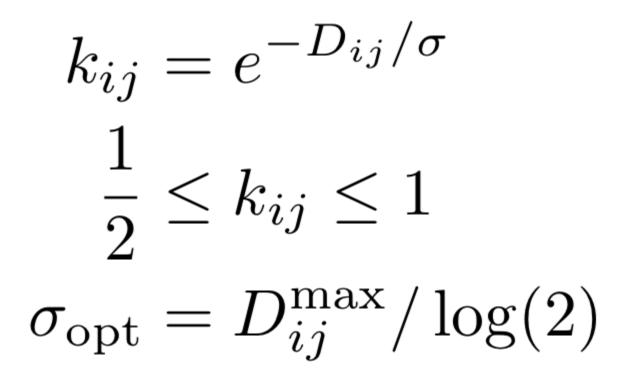
Ramakrishnan, OAvL, CHIMIA (2015), arXiv

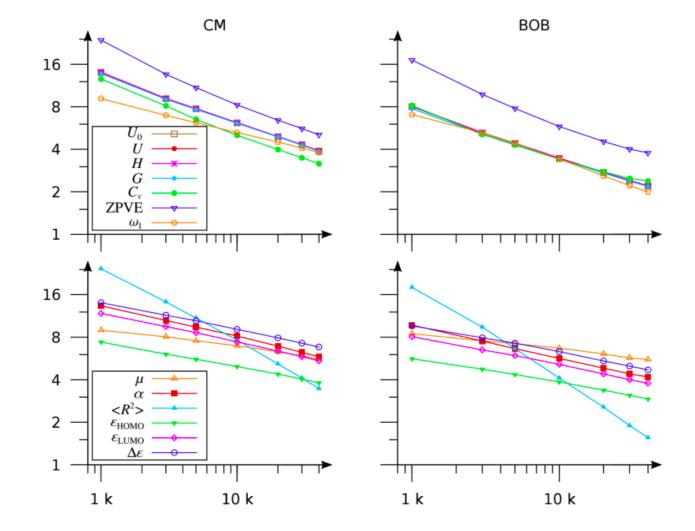
$$p_q = \sum_{t=1}^N c_t^p K_{qt}$$

$$\mathbf{c}^p = \left(\mathbf{K} + \lambda \mathbf{I}\right)^{-1} \mathbf{p}^r$$

We set $\lambda = 0 \dots$

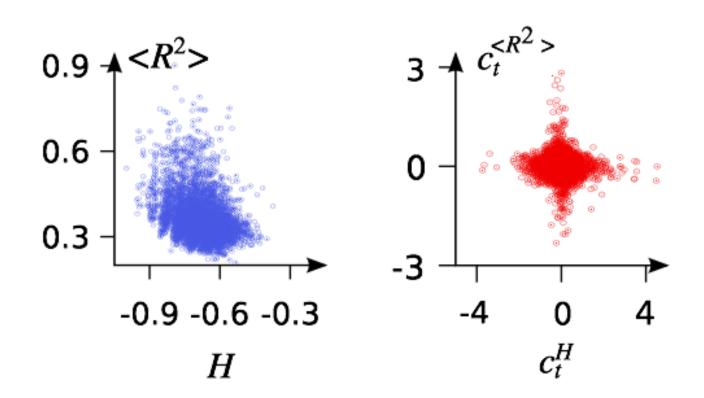
$$\mathcal{L} = (\mathbf{p}^r - \mathbf{K}\mathbf{c}^p)^{\mathrm{T}} (\mathbf{p}^r - \mathbf{K}\mathbf{c}^p) + \lambda \mathbf{c}^{p\mathrm{T}}\mathbf{K}\mathbf{c}^p$$
$$[\mathbf{c}^{p_1}\mathbf{c}^{p_2}\dots\mathbf{c}^{p_n}] = \mathbf{K}^{-1} [\mathbf{p}_1^r \mathbf{p}_2^r \dots \mathbf{p}_n^r] \quad \Rightarrow \quad \mathbf{C} = \mathbf{K}^{-1}\mathbf{P}^r$$

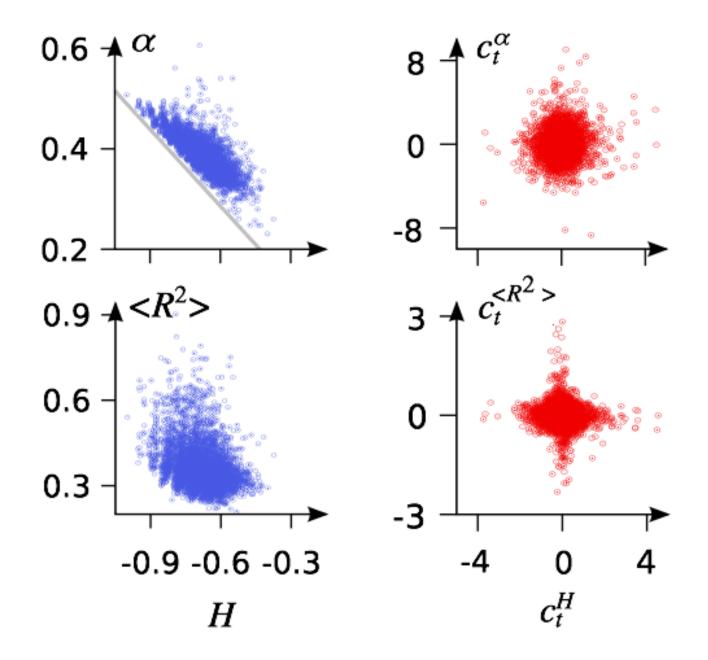




Tested on 134k-*N* organic molecules taken from: Ramakrishnan et al, *Scientific Data* (2014)

*BOB, Hansen et al, submitted (2015)





Concluding remarks

- 1. ML accuracy depends on
 - a. better descriptors
 - b. datasets
 - c. baseline
- 2. Systematic improvement (The bigger the better)
- 3. Milli-second predictions
- 4. **K** ~ Ψ, α ~ Ô

International Journal of Quantum Chemistry

© Wiley Periodicals, Inc.

Special Issue: Machine Learning and Quantum Mechanics

August 15, 2015

Volume 115, Issue 16 Pages i-xii, 1003-1139 Issue edited by: Matthias Rupp

Previous Issue | Next Issue

