High resolution TEM of organic molecules?

Cécile Hébert, EPFL

	Layout	a an an
• Introdu	uction: history and description of the T	ΈM
Contra Mass-T Diffract Phase Mass-T	st mechanisms hickness ion hickness in STEM	
• Aberra	tions and their corrections	
• Examp		
0/07/15	Summer School of the MD EDEL Conter, Schlore Disphare 2015	

Contrast formation in the TEM

- Mass-thickness contrast
- Diffraction
- Phase Contrast (High resolution)
- Scanning TEM: Mass-thickness contrast (Z-contrast)
- Chemical contrast (additional devices)

Contrast formation in the TEM

- Mass-thickness contrast
 - $-\,$ All specimens with variation of thickness and/or different Z
- Diffraction
- All crystalline specimen
- Phase Contrast (High resolution)
 Thin specimen; crystalline specimen in high resolution
- Scanning TEM: Mass-thickness contrast (Z-contrast) – All specimens with variation of thickness and/or different Z
 - Caution diffraction contrast may appear too
- Chemical contrast (additional devices)
 All specimen

The angle θ is related to the spatial frequency ν $\theta \approx \lambda \nu$ $\chi(\nu) = \pi \lambda (\Delta f \nu^2 + \frac{1}{2} C_s \lambda^2 \nu^4)$

• The phase shift $\chi(\nu)$ leads to contrast enhancements at specific Δf .

Scanning TEM (STEM)

Pt cataly

High-angle annular dark-field => compositional contrast: intensity $\propto t Z^2$ (thickness t, atomic number Z)

Focused e⁻ probe scanned on sample; disc and annular detectors in back focal (diffraction)

→ Scan beam

olane

Z-contrast exam

The advantages

(PA

- Improved resolution
 - At lower voltage! (beam sensitive materials)
 For large pole piece gap (in-situ experiments possible)
- Higher precision (better contrast)
 Lower dose possible
 - Higher frame rate (video)
- Less delocalisation

