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Equilibrium
Material

BoseIEinstein(phonon(distribu7on:

(…where(mostly(phonons(carry(heat)

ν=(q,s):(compact(index(on(phonon(wave(vectors(and(branches

OutIofIequilibrium

Hot Cold

Material

Fourier’s(law:

OutIofIequilibrium(phonon(distribu7on

(Macroscopic)



OutIofIequilibrium

Hot Cold

Material

Fourier’s(law:

OutIofIequilibrium(phonon(distribu7on

(Microscopic)

OutIofIequilibrium

Hot Cold

Material

Fourier’s(law:

Boltzmann(Transport(Equa7on((BTE):(

Key(phonon(scabering(
mechanisms

L

• 3Iphonon(interac7on((decay(and(coalescence)

• mass(disorder((isotopes)• extrinsic(scabering(((((((((((((
(grain(boundaries,(surfaces,(…)

(energy(deriva7ve(wrt(
ion(displacements)

Most(of(the(thermal(conduc7vity(is(determined(by(the(3I
phonon(scaberings.(

There(are(two(kinds(of(processes:(up(or(down(events.( 
The(probabili7es(are(computed(with(the(Fermi(Golden(rule(

For(the(down(process:

3Iphonon(scabering

Conserva7on(
of(energy

Conserva7on(of(
crystal(momentum

Dynamical(matrix(
deriva7ve



Scabering(matrix
• Isotope(scabering((mass(disorder):(

• Extrinsic(scaberings((e.g.(finite(size):

L

Compu7ng(thermal(conduc7vity
What(do(we(need?

Anharmonic properties 
Scattering rates

Perturbed phonon 
populations

Harmonic properties 
energies: ħων 
group velocities: ∂ħων / ∂q

Solve BTE 

Anharmonic force 
constants 

Harmonic force constants 

First(issue

How(to(get(them(
from(first(principles?(

1)(Frozen(phonons(

2)(Density(func7onal(
perturba7on(theory(
(DFPT)

Anharmonic properties 
Scattering rates

Harmonic properties 
energies: ħων 
group velocities: ∂ħων / ∂q

Anharmonic force 
constants 

Harmonic force constants 

Phonon(proper7es
La;ce(Hamiltonian:

Taylor(Expansion(of(the(poten7al(energy(of(a(crystal:

Dynamical(matrix:(
phonon(energies(/(veloci7es

(lowest(order)(phononIphonon(interac7ons



Frozen(phonons
• Build(a(supercell(

• Displace(the(atom((lb)(by(Δ,(compute(forces(

• Compute(the(dynamical(matrix:(

• Displace(two(atoms(by(Δ,(compute(forces.(

• Compute(the(anharmonic(constants

Disadvantages:((
• calcula7ons(on(large((expensive)(supercells(
• need(to(check(if(the(displacement(is(small(enough

To(reciprocal(space
Fourier(transform(the(force(constants(computed(on(a(grid,(to(get(them(at(
any(point(of(the(Brillouin(zone:(

From(the(first(transform(of(2nd(order(force(constants(we(get(phonon(
energies(

From(the(second(transform(of(3rd(order(force(constants,(the(scabering(
probabili7es

Note:(the(FT(is(the(bobleneck(of(the(BTE!

Density(Func7onal  
Perturba7on(Theory

Perturb(the(poten7al((move(an(atom):(

Find(the(1st(order(wavefunc7on(response(to(the(perturba7on(

2n+1%theorem:(the(knowledge(of(the(wavefunc7on(response(of(a(system(
up(to(the(n0th(order(in(the(strength(of(an(external(perturba7on(is(
sufficient(to(determine(the(energy(deriva7ve(up(to(order(2n+1(

Compute(the(second(and(third(deriva7ve(of(the(energy. 
For(example,(the(third(deriva7ve(is:(

It’s(par7cularly(convenient(for(DFT(codes(using(a(planeIwave(basis:(the(
calcula7on(can(be(performed(directly(in(the(reciprocal(space!

Gonze(and(Vigneron,(Phys.(Rev.(B(39,(13120(( ︎1989︎)
Hard(to(tell(what’s(the(best/fastest(method(for(you,(ask(an(expert(and(then(choose!(

Frozen(phonon(soowares:(Phonopy,(Phon(and(many(others(

DFPT(sooware:(Quantum(ESPRESSO,(Abinit(

Some(recommended(readings((and(references(therein):(

DFPT:(S.(Baroni(et(al.,(Rev.(Mod.(Phys.(73,(515((2001).  
DFPT(3rdIorder:(L.(Paulabo(et(al.,(Phys.(Rev.(B(87,(214303((2013)

Frozen phonons DFPT

Easy to implement Complex to implement

Some parameters to tune Easy to use

Calculations in a supercell Calculations in primitive cell

Wavevectors limited by the supercell Computation at any wave-vector 
(for plane-wave codes)



Second(issue

Perturbed phonon 
populations

Solve BTE 

(Linear)(devia7on(of(the(
phonon(popula7on(with(respect(
to(the(equilibrium(distribu7on

Consider(a(small(perturba7on(∇ T

Boltzmann(Transport(Equa7on
The(Boltzmann(Transport(Equa7on((BTE)(in(full(is:(

(ooen(you’ll(find(it(wriben(in(ar7cles(like(the(equa7on(above) 
Let’s(introduce(the(scabering(matrix(A,(the(BTE(is(simply(as:(

Omini,(Phys.(Rev.(B(53,(9064((1996)

Solu7on(of(the(BTE

• The(formal(solu7on(is(simple(in(principles,(hard(in(
prac7ce:(the(inversion(of(the(matrix(is(VERY(expensive(

• Matrix(size:(NxN,((N=((#qpoints((x((#phonon(modes((

• Typical(values(for(silicon:(integrate(with(303(points((not(
too(many…),(6(phonon(modes:(N=2x105(

• No7ce(also(that(matrix(inversion(scales(as(O(N3)!

Scabering(matrix(proper7es

Repopula7on

Depopula7on

A(can(be(decomposed(in(two(parts:

Relaxa7on(7me:(
(average(7me(  
between(scaberings)

A(=(



Single(mode(relaxa7on(7me(
approxima7on((SMA)

The(inversion(of(a(diagonal(matrix(is(very(simple,(it’s(
something(we(can(do(analy7cally!

A(≈(

Single(mode(relaxa7on(7me(
approxima7on((SMA)

The(Boltzmann(transport(equa7on(is(ooen(solved(in(the(SMA(
(because(it’s(simple!).(Physical(interpreta7on:(

• Consider(the(7me(between(phonon(collisions:(phonon(life7me((τν().((

• SMA:(suppose(that(every(7me(a(phonon(scabers,(heatIflux(is(
dissipated(in(the(process.(The(BTE(is(simplified:(

• The(SMAIBTE(can(be(solved(analy7cally,(the(thermal(conduc7vity(
simply(becomes:(

Exact(solu7ons
We(can(compute(the(thermal(conduc7vity(using(the(
complete(matrix((i.e.(solving(the(problem(exactly.)((

Note(first:(

• A(is(symmetric:(

• A(is(posi7ve(definite.(i.e.(∀(vector(x:(

3

The linearized BTE can then be written in the following
form34:

�cqj

✓
@n̄qj

@T

◆
=

X

q0
j

0
,q00

j

00

h
P

q00
j

00

qj,q0
j

0(fEX

qj

+ f

EX

q0
j

0 � f

EX

q00
j

00)

+
1

2
P

q0
j

0
,q00

j

00

qj

(fEX

qj

� f

EX

q0
j

0 � f

EX

q00
j

00)
i

+
X

q0
j

0

P

isot

qj,q0
j

0(fEX

qj

� f

EX

q0
j

0)

+ P

be

qj

f

EX

qj

(4)

where the sum on q0 and q00 is performed in the Brillouin
Zone (BZ). The EX superscript of the first order pertur-
bation f

EX denotes the exact solution of the BTE, to be
distinguished from the approximated solutions that we
will discuss later.
In Eq. 4 the anharmonic scattering processes as well as
the scattering with the isotopic impurities and the bor-
der e↵ect are considered. More specifically (see Fig.1)
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other mode q0

j

0 to generate a third phonon mode q00
j

00.

While P

q0
j

0
,q00

j

00

qj

is the scattering rate at the equilib-
rium of a process where a phonon mode qj decays in
two modes q0

j

0 and q00
j

00.

P

q00
j

00

qj,q0
j

0 P

q0
j

0
,q00

j

00

qj

P

isot

qj,q0
j

0 P

be

qj

qj

qj

qj

qj

q0
j

0

q0
j

0

q0
j

0

q00
j

00
q00

j

00

q0
j

0

Figure 1. Phonon scattering processes in a finite size anhar-
monic crystal in presence of isotopic impurities.

The two scattering rates have the forms:
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with G the reciprocal lattice vectors. In order to evalu-
ate them it is necessary to compute the third derivative

V

(3) of the total energy of the crystal Etot({u
s↵

(R
l

)}),
with respect to the atomic displacement u
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), from
the equilibrium position, of the s-th atom, along the ↵

Cartesian coordinate in the crystal cell identified by the
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where Ecell is the energy per unit cell. The non-
dimensional quantity Xqj

is defined by
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being the orthogonal phonon eigenmodes normalized
on the unit cell and M

s

the atomic masses.
The rate of the elastic scattering with isotopic impurities
(see Fig.1) has the form35:
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where g
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hMsi2 is the average over the mass dis-
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Eventually, in a system of finite size, P

be

qj

describes the
reflection of a phonon from the border (see Fig.1):
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where L is the Casimir length of the sample and F a
correction factor depending on the width to length ratio
of the sample. Following the literature36–38 the border
scattering is treated in the relaxation time approxima-
tion and it results in a process in which a phonon from a
specific state(qj) is reemitted from the surface contribut-
ing only to the equilibrium distribution.
For the sake of clarity we will contract from here on the
vector q and branch index j in a single mode index ⌫.
The BTE of Eq. 4 can be written as a linear system in
matrix form:

AfEX = b (12)
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a) Symmetric   

 b) positive semi-definite 

Properties of matrix A 

BTE$as$a$system$of$linear$eq.$

It(has(a(very(nice( 
physical(meaning!

Entropy(of(phonons
Let’s(use(the(Boltzmann(entropy(

The(entropy(of(an(ensemble(of(bosons(is:(

The(result(is(true,(strictly(speaking,(for(nonIinterac7ng(
phonons(close(to(equilibrium…(We(cheat(a(lible,(and(hope(
it(s7ll(works(close(to(equilibrium((where(((((((((((((((((is(small)



Entropy(produc7on

Let’s(compute(the(7me(deriva7ve,(and(expand(in(Taylor(
series(to(first(order.  
There’s(some(algebra,(but(the(end(result(is:(

There(are(two(terms:(in(the(first,(two(phonon(popula7ons(are(
coupled,(in(the(second(there’s(only(one(phonon(popula7on

The(second(term(implies(the(increase(of(the(internal(energy(
with(7me.(  
 
 
We(don’t(allow(it((dU/dt=0)(and(set(it(to(zero(

Focus(on(the(first(term.(

The(BTE(is(essen7ally:((

Thus,(we(suppose(we(can(split(the(entropy(in(two(terms,(
diffusion(+(scabering

Diffusion(entropy
The(term(F&I&b(is(related(to(the(diffusion(entropy:&

Electric(diffusion(entropy
If(we(were(to(study(electrical(currents((the(Boltzmann(theory(for(
electrons(is(almost(the(same),(the(thermal(gradient(would(be(
replaced(by(an(electrical(field(and(we(would(find:(

Joule(Heat



Thermodynamical(
interpreta7on(of(the(BTE

• We(start(with(the(BTE:(

• Take(a(scalar(product:(

• Let’s(define(the(produc7on(of(scabering(entropy(as:(

• The(BTE(can(be(interpreted(as:

Varia7onal(principle(1
The(matrix(A(is(posi7ve(definite(⇒(

Solving(the(BTE(means(finding(the(phonon(popula7on((F)(such(that(

Therefore,(rather(than(solving(an(algebraic(equa7on,(we(can(
minimize(the(entropyIproduc7on(func7onal!(

The(thermal(conduc7vity(can(be(defined(in(terms(of(the(two(
entropies:(

2nd(law(of( 
thermodynamics

Varia7onal(principle(2
We(could(solve(the(BTE(by(trying(to(minimise(the(entropy(
produc7on.(

Alterna7vely,((and(more(conveniently)(we(can(maximise(a(thermal(
conduc7vity(func7onal(

Property(of(the(func7onal:(

• It’s(a(quadra7c(form(

• The(sta7onary(point(exists(and(is(unique

Past(approaches
• Build(a(trial(func7on,(with(some(varia7onal(parameters(

• Compute(the(conduc7vity(func7onal(

• Op7mise(the(varia7onal(parameters(

Example:(Hamilton(and(Parrot,(Phys.(Rev.(178,%1284((1969)(

Already(with(only(n=1(you(can(improve(upon(the(relaxa7on(
7me(approxima7on.(In(exchange,(you(increase(the(
complexity(of(the(calcula7on.



Conjugate(gradient

Itera7vely(try(to(improve(the(conduc7vity:(

• Ini7al(guess(F0&

• Loop:(

• Fk+1(=(Fk(+(αk((b(I(AFk)(

• check(convergence(on

Mathema7cally(stable,(always(convergent!

References:(  
J.M.(Ziman,(Electrons(and(Phonons,(Oxford(university(press((1964)  
R.A.H.(Hamilton(et(al.,(Phys.(Rev.(178,%1284((1969)  
G.(Fugallo(et(al.,(Phys.(Rev.(B(88,%045430((2013)(

Itera7ve((nonIvaria7onal)(methods: 
M.(Omini(and(A.(Sparavigna,(Phys.(Rev.(B(53,(9064(( ︎1996︎)  
D.A.Broido(et(al.,(Phys.(Rev.(B(72,(014308((2005)

SMA Variational

Inexpensive Moderately expensive 
(~10 times SMA)

It’s an approximation! Exact

When(to(use(what?((no(defini7ve(answer,(but(more(on(this(later)

Applica7ons

Silicon(Germanium

The(firstIprinciples(BTE(+(SMA(ooen(works(very(well((in(3D)

J.(Garg(et(al., 
PRL(106,(
045901((2011)

conductivity k!" (defined by the heat current in the !th
direction for a temperature gradient along the " direction)
is then given by

k!" ¼ @2
N!kBT

2

X

#

c!#c"#!
2
#n#ðn# þ 1Þ$#; (1)

where ! and " are the Cartesian directions, c, !, n, and $
are the phonon group velocities, frequencies, equilibrium
populations, and relaxation times, respectively, # repre-
sents the vibrational mode ðq; jÞ (q is the wave vector and j
the phonon branch), and T, !, and N are the temperature,
cell volume, and size of the q-point mesh, respectively. The
scattering rate 1=$# of a phonon mode # is taken to be the
sum of a term describing harmonic scattering due to mass
disorder (1=$#a) and a term describing anharmonic scat-
tering (1=$#b) as in Matthiessen’s rule.

The harmonic scattering rates due to mass disorder are
calculated by using perturbation theory [19]:

1

$#a
¼ %

2
g!2

#Dð!#Þ; (2)

where g (defined before) takes into account the magnitude
of mass disorder and Dð!Þ is the phonon density of states
(normalized to unity) of the virtual crystal. Though the
expression for harmonic scattering [Eq. (2)] is valid for
small mass disorder, its use leads to good agreement with
experimentally measured phonon linewidths, even in the
case of the Ni0:55Pd0:45 alloy, where the atomic species
are chemically similar but mass disorder is large
(mPd=mNi ¼ 1:812) [20].

The anharmonic scattering rates are computed by using
the lowest-order three-phonon scattering processes in the
single-mode relaxation time approximation via [9,21]

1

$#b
¼ %

X

q0;j0;j00
jV3ðj;%q; j0; q0; j00; q00Þj2

& ½ð1þ nj0q0 þ nj00q00Þ&ð!j0q0 þ!j00q00 %!j;%qÞ
þ 2ðnj00q00 % nj0q0Þ&ð!j0q0 %!j00q00 %!j;%qÞ(; (3)

where V3ðj;%q; j0; q0; j00; q00Þ are the three-phonon cou-
pling matrix elements [21]. These anharmonic scattering
rates for any composition are computed first by using the
phonon modes of the virtual crystal corresponding to that
composition; later we will also incorporate the effect of
disorder by performing explicit calculations on supercells
with random distributions of Si and Ge masses for the
relevant composition. The 2nd- and 3rd-order interatomic
force constants are obtained on a 10& 10& 10 and 3&
3& 3 supercell, respectively; for all density-functional
perturbation theory calculations a 8& 8& 8 Monkhorst-
Pack [22] mesh is used to sample electronic states in the
Brillouin zone, and an energy cutoff of 20 Ry is used
for the plane-wave expansion. We carefully tested conver-
gence of all measured quantities with respect to these
parameters. First-principles calculations within density-
functional theory are carried out by using the PWSCF and

PHONON codes of the QUANTUM-ESPRESSO distribution [23]
with norm-conserving pseudopotentials based on the ap-
proach of von Barth and Car [24].
The approach outlined above yields an excellent agree-

ment between the computed and measured values at 300 K
[12,25] for the alloy thermal conductivity at all composi-
tions (Fig. 1). Notably, the thermal conductivity is found
to drop sharply after only a small amount of alloying. This
is due to the strong harmonic scattering of phonons even
in the dilute alloy limit. Our approach predicts that in the
composition range 0:2< x< 0:8 the alloy thermal con-
ductivity becomes nearly independent of composition,
in excellent qualitative and quantitative agreement with
experiments.
This low thermal conductivity in SixGe1%x with respect

to pure Si or pure Ge is better understood from the analysis
of the relative contribution of the different scattering
mechanisms. As shown in Fig. 2(a) for Si0:5Ge0:5, thermal
conductivity even at temperatures as high as 500 K is
dominated by phonon modes below 1 THz (at 100, 300,
and 500 K, respectively, 82%, 65%, and 58% of the heat is
conducted by phonons of frequency less than 1 THz, while
13%, 23%, and 27% is conducted by phonons between 1
and 2 THz; optical frequencies for Si and Ge are 15.67 and
9.27 THz, respectively, at the zone center). In pure silicon,
on the other hand, phonon modes up to 6 THz contribute
in similar measures to thermal conductivity [Fig. 2(a)];
harmonic scattering [Fig. 2(b)] completely annihilates the
heat-carrying ability of these higher frequency modes
leading to the observed sudden drop in conductivity.
While disagreement with measured resistivity value [26]

is less than 10% at 300 K for Si0:3Ge0:7, it becomes larger at
higher temperatures [open squares in Fig. 3(a)]. Though the
effect of four-phonon processes has been estimated to be
small [27], we should note that up to now scattering rates
were computed by using the phonon modes of the virtual
crystal, without taking into account the effect of a random
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FIG. 1 (color online). Composition dependence of the thermal
conductivity in SixGe1%x at 300 K. Solid black circles show our
predicted thermal conductivities, to be compared with the
experimental values of Stohr and Klemm (Ref. [25]) and
Abeles (Ref. [12]) (red open squares and blue open diamonds,
respectively).
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The(simula7on(results(are(in(good(agreement(with(experiments(on(
graphite,(but(only(if(the(BTE(is(solved(exactly!

Some7mes(the(SMA(
can(be(incorrect,(
even(in(3D(materials,(
and(even(at(high(
temperatures.

Fugallo(et(al., 
NanoLeb.(14,(
6109((2014)

Graphite(outIofIplane
To(make(things(
more(complicated,(
SMA(errors(are(
direc7on(
dependent.(

In(the(outIofIplane(
direc7on,(the(SMA(
works(well((few(%(
error)
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Graphite(to(graphene

• Moreover,(the(
SMA(predicts(
incorrect(
qualita7ve(trends(
upon(reduc7on(of(
dimensionality.
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Thermal(transport(in(2D(materials
The(physics(of(phonon(
transport(in(2d(
materials(shares(many(
similari7es(with(
graphene(

The(exact(varia7onal(
solu7on(is(always(
required(when(dealing(
with(2D(materials(and/
or(planar(materials.
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Callaway

a)

b)
What(do(these(materials(have(in(common?



Umklapp(vs(Normal

• Normal((N)(scabering(conserve(mechanical(momentum(

• Umklapp((U)(scabering(do(not(conserve(momentum.(

It(can(be(shown(that(only(U(contribute(explicitly(to(thermal(
resis7vity((U(scabering(can(reverse(the(direc7on(of(the(heat(flux)

Graphene(scabering(rates

Using(SMA(quan77es((i.e.(life7mes),(we(can(check(that(
normal(processes(take(place(with(highest(frequency
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Cepello;(et(al.,((
Nat.(Commun.((
6,(7400((2015)

Average(scabering(rate:

Scabering(rates

On( average,( Normal( processes( are( the( most( frequent( at( any(
temperature( in( the( 2D( materials( studied.( The( mechanical(
momentum(of(phonons(is(thus(a(well(conserved(quan7ty.
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Failure(of(the(SMA
The(failure(of(the(SMA(in(2D(materials(is(induced(by(the(
large(number(of(normal(scabering(events(

Even(at(high(temperature,(phonon(life7mes(are(dominated(
by(normal(processes:(

Therefore,(the(thermal(conduc7vity(is(largely(determined(by(
N(processes((that(shouldn’t(give(any(thermal(resistance!):(



SMA

Exact
N

N

U

U

N

N

Non(dissipa7ve

Dissipa7ve

Scabering(centersHeat(transfer

The(SMA(tends(to(
underes7mate(the(
thermal(conduc7vity

Heat:

Umklapp(freezing?

A(similar(situa7on(happens(in(Umklapp(freezing:(at(low(
temperatures,(only(acous7c(phonons(close(to(the(Gamma(point(
(with(very(small(momentum)(can(be(excited.(

Can(we(use(lowItemperature(methods(to(describe(the(
conduc7vity(of(2D(materials(at(room(temperature?

Callaway(model

The(drioing(distribu7on(is(the(most(probable(distribu7on(
under(the(constraint(of(momentum(conserva7on.

⇒

Callaway(model
Let’s(keep(a(relaxa7on(7me(model(and(take(advantage(of(the(
concept(of(the(drioing(distribu7on.(

We(dis7nguish(Resis7ve((R)(from(Normal((N)(scabering(events.(
The(former(relax(the(distribu7on(to(the(Bose—Einstein(
equilibrium,(whereas(the(laber(relax(to(the(drioing(distribu7on:(

This(method(was(originally(developed(to(describe(the(thermal(
conduc7vity(of(Germanium(at(cryogenic(temperatures,(where(N(
processes(dominate((under(Umklapp(freezing)

Phys.(Rev.(113,(1046((1959)



Callaway(model
The(model(is(simple(and(
reproduces(well(the(results(of(
the(exact(solu7on(of(the(BTE.(

Transport(is(dominated(by(the(
presence(of(N(processes(

RoomItemperature(condi7ons(
of(2D(materials(are(analogous(
to(lowItemperature(condi7ons(
of(solids(characterised(by(
Umklapp(freezing.
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TABLES

Classification of thermal transport regimes
Ballistic E � N and E � R
Poiseuille N � E � R
Ziman N � R � E
Kinetic R � N and R � E

Table I. Classification of different regimes of thermal conduc-
tivity as a function of the linewidths of different scattering
events: normal (N), resistive (R - combining both Umklapp
and isotopic), and extrinsic (E). Poiseuille and Ziman hydro-
dynamics are characterized by dominant N scattering against
all other mechanisms.

Ballis7c(regime:

Typically(poorly(described(
in(the(BTE,(with(the(
scabering(rate(

Scabering( rates( of( extrinsic( (E),(
Normal( (N)( and( resis7ve( (R)(
processes
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TABLES

Classification of thermal transport regimes
Ballistic E � N and E � R
Poiseuille N � E � R
Ziman N � R � E
Kinetic R � N and R � E

Table I. Classification of different regimes of thermal conduc-
tivity as a function of the linewidths of different scattering
events: normal (N), resistive (R - combining both Umklapp
and isotopic), and extrinsic (E). Poiseuille and Ziman hydro-
dynamics are characterized by dominant N scattering against
all other mechanisms.

Scabering( rates( of( extrinsic( (E),(
Normal( (N)( and( resis7ve( (R)(
processes

N( processes( dominate,( and( the(
phonon(fluid(feels(the(“walls”

Poiseuille(regime

• Internal(scabering(
dominated(by(N(
processes,(and(heat(
dissipa7on(happening(
due(to(extrinsic(
processes((surfaces,(…)(

• Called(Poiseuille(aoer(the(
similari7es(with(the(flow(
of(a(viscous(fluid(in(a(
pipe.
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TABLES

Classification of thermal transport regimes
Ballistic E � N and E � R
Poiseuille N � E � R
Ziman N � R � E
Kinetic R � N and R � E

Table I. Classification of different regimes of thermal conduc-
tivity as a function of the linewidths of different scattering
events: normal (N), resistive (R - combining both Umklapp
and isotopic), and extrinsic (E). Poiseuille and Ziman hydro-
dynamics are characterized by dominant N scattering against
all other mechanisms.

The transport of phonons, which are the dominant heat
carriers in non-metallic solids, is usually diffusive and
describable by Fourier’s law of heat conduction. Regimes

where Fourier’s law breaks down, such as ballistic1 and
hydrodynamic2 phonon transport, were discovered in bulk
materials more than 50 years ago, but these phenomena were
observed only at extremely low temperatures3–5. Recent studies
of low-dimensional materials, however, have highlighted the
practical importance of ballistic phonon transport in applications
such as thermoelectric materials6 and electronic devices7,8. In this
work, we discuss how hydrodynamic phonon transport as well as
ballistic phonon transport can be significant in a two-dimensional
material, particularly in graphene.

The term hydrodynamic phonon transport arose from its
similarity with macroscopic transport phenomena in fluids. In
fluid flow, mass transport is mainly due to the macroscopic
motion of molecules with a drift velocity. Likewise, phonons in
the hydrodynamic regime exhibit macroscopic drift motion. In
this sense, hydrodynamic phonon transport is different from the
more well-known diffusive or ballistic phonon transport. During
diffusive transport, heat is transferred through multiple scattering
events among phonons without macroscopic drift motion.
During ballistic transport, it is assumed that there is no internal
scattering. Hydrodynamic transport, on the other hand, includes
many phonon scattering events. The drift motion of phonons in
the hydrodynamic regime causes two interesting hydrodynamic
transport phenomena that cannot occur in either diffusive or
ballistic regimes: phonon Poiseuille flow (Fig. 1a) and second
sound (Fig. 1c), which are analogous to Poiseuille flow and

ordinary sound in a fluid, respectively, which will be discussed
later.

Despite the interesting features of hydrodynamic phonon
transport, the temperature range in which it was observed was too
low and narrow to consider for practical applications. For
example, the reported temperature range for phonon Poiseuille
flow is 0.5–1.0 K (ref. 5) and for second sound the range is
10–20 K (ref. 9). The extremely stringent temperature conditions
for hydrodynamic phonon transport are due to Umklapp
scattering (hereafter U-scattering), which destroys the crystal
momentum. In contrast, scatterings between molecules conserve
total momentum. As such, for hydrodynamic transport to occur,
U-scattering should be negligibly weak compared with the other
three-phonon scattering, which conserves crystal momentum,
normal scattering (hereafter N-scattering). One way to suppress
U-scattering is to consider low temperatures, but at too low
temperatures transport becomes ballistic without internal
scattering, leaving only a very narrow temperature range for
hydrodynamic transport. In addition to U-scattering, the
scattering of phonons by impurities such as isotopes does not
conserve crystal momentum, and isotope enrichment imposes
another difficulty for hydrodynamic phonon transport (hereafter
R-scattering denotes Umklapp and isotope scatterings).

Here, we show that suspended graphene (hereafter graphene),
unlike three-dimensional materials, is remarkably well suited
for hydrodynamic phonon transport. Using first-principles
calculations, we show drift motion of phonons, phonon Poiseuille
flow and second sound in graphene at significantly higher and
wider temperature ranges compared with those seen in three-
dimensional materials. Then, we discuss how the significant
hydrodynamic phonon transport in graphene stems from its
two-dimensional features.

Results
Displaced distribution function. An indication of the hydro-
dynamic transport, the macroscopic drift motion, can be found in
the distribution function. For example, for molecules in fluid
flow, the Maxwell distribution displaced by a drift velocity is
considered an equilibrium distribution10. Similarly, if there is no
R-scattering among phonons, the displaced Bose–Einstein
distribution has been commonly assumed for the equilibrium
distribution of phonons11.

Nd
BE ¼

1

exp ‘ o" q#uð Þ
kBT

! "
" 1

ð1Þ

where :, o and q represent the Planck constant, phonon
frequency and phonon wavevector, respectively. The drift velocity
is represented by the displacement, u, in the phonon distribution.
In the displaced distribution, the displacement is a constant for
all phonon modes regardless of polarization and wavevector,
describing the macroscopic drift motion of phonons having the
same velocity. Assuming a small drift velocity, this displaced
distribution can be linearized to

Nd
BE ¼ N0

BEþ
‘

kBT
N0

BE N0
BEþ 1

# $
q # u ð2Þ

where N0
BE is the Bose–Einstein distribution.

On the basis of the assumption of the displaced phonon
distribution in the absence of R-scattering, past work derived
macroscopic governing equations that describe hydrodynamic
phonon transport12. However, it has remained elusive to our
knowledge whether the absence of R-scattering necessarily leads
to the displaced distribution. Moreover, the validity of the
displaced distribution in real materials, where R-scattering cannot
be completely avoided, has not been explicitly confirmed. In this

DiffusiveHydrodynamic

TimeTime

Hydrodynamic Diffusive

Figure 1 | The different macroscopic transport phenomena in
hydrodynamic and diffusive regimes. (a,b) The steady-state heat flux
profiles in hydrodynamic and ballistic regimes, respectively, under a
temperature gradient. (a) Phonons in the hydrodynamic regime exhibit a
non-uniform heat flux profile like the mass flux profile of fluid flow in a tube.
In the hydrodynamic regime, the main mechanism for momentum loss is
diffuse boundary scattering. Therefore, the flux is small near the boundary.
(b) In the diffusive regime, however, the heat flux profile has a uniform
shape. This is because transport resistance is mainly due to intrinsic
momentum loss scattering called Umklapp scattering rather than diffuse
boundary scattering. The Umklapp scattering can occur anywhere inside a
sample, leading to a uniform heat flux profile. (c,d) The propagation of a
heat pulse in the hydrodynamic and diffusive regimes, respectively.
(c) In the hydrodynamic regime, a heat pulse propagates like a pressure
pulse (ordinary sound) in a fluid without significant damping. The invoked
pulse can transmit through the sample and finally arrive at the edge of the
sample with well-preserved pulse shape. (d) In the diffusive regime,
however, a heat pulse is significantly damped and cannot propagate.
The pulse smears out and reaches the edge of the sample after a relatively
long time. The width and length of the sample are assumed to be much
larger than the phonon mean free path.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7290

2 NATURE COMMUNICATIONS | 6:6290 | DOI: 10.1038/ncomms7290 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

(Picture from Nat. Commun. 
6, 7290 (2015)
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Classification of thermal transport regimes
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Table I. Classification of different regimes of thermal conduc-
tivity as a function of the linewidths of different scattering
events: normal (N), resistive (R - combining both Umklapp
and isotopic), and extrinsic (E). Poiseuille and Ziman hydro-
dynamics are characterized by dominant N scattering against
all other mechanisms.

Scabering( rates( of( extrinsic( (E),(
Normal( (N)( and( resis7ve( (R)(
processes
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Table I. Classification of different regimes of thermal conduc-
tivity as a function of the linewidths of different scattering
events: normal (N), resistive (R - combining both Umklapp
and isotopic), and extrinsic (E). Poiseuille and Ziman hydro-
dynamics are characterized by dominant N scattering against
all other mechanisms.
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This(is(the(most(common(highIT(regime(
where(SMA(is(expected(to(work((ooen)

2D(phononItransport(regimes
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Hydrodynamic(phonon(transport(has(been(observed((in(few(
materials)(at(cryogenic(temperatures.(In(2D(materials,(it’s(present(
at(room(temperature
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Breakdowns(of(  
Fourier’s(law



Fourier’s(law(from(the(BTE
Consider(the(BTE((for(simplicity,(we(work(with(the(relaxa7on(
7me(approxima7on:(

Mul7ply(the(BTE(by:(

The(BTE(becomes:(

The(BTE(“contains”(the(Fourier’s(law

Validity(of(Fourier’s(law

Can(we(always(use(Fourier’s(law(to(reconstruct(the(temperature(
profile?(i.e.(when(is(k(a(constant(of(the(material?(

If(the(material(is(infinite((thermodynamic(limit),(the(law(holds(and(k(is(
constant.(

If(the(material(is(finite,(the(BTE(needs(to(be(solved(in(real(space,(with(
boundary(condi7ons!(

k(becomes(space(dependent: 
and(we(should(to(solve(the(BTE(rather(than(the(Fourier’s(law!

But(if(the(heat(is(thermalised(on(a(distance((mean(free(path)(
smaller(than(the(sample(size,(than(k(is(roughly(constant.(

To(es7mate(the(mean(free(path,(we(perturb(the(scabering(
operator(with:(

Its(physical(meaning:(any(phonon,(with(velocity(vν,(will(be(
thermalised(aoer(it(has(traveled(for(a(distance(L.

Heat(flux(in(small(systems(with(
rough(edges(is(space(dependent,(
more(conduc7ng(at(the(centre.

(Nothing(travels(further(
than(a(distance(L)

Graphene’s(MFP

In(graphene,(the(mean(free(paths(extends(up(to(1mm((T=300K)(
The(intrinsic(thermal(conduc7vity(is(defined(only(for(larger(samples(
Below(that,(Fourier’s(law(does(not(hold,(and(we(should(use(the(BTE!
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Comparison(with(experiments?
The(comparison(
between(simula7on(
results(and(
experiments(is(not(
fully(jus7fied:(

Simula7ons(describe(
an(infinite(crystal,(
while(measurements(
are(on(small(systems.(

Some(experiments(
infer(their(results(from(
the(Fourier’s(law,(
which(does(not(hold.
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More(work(to(be(done!
Balandin(Nano(Leb.(8,(902((2008)

Faugeras,(ACS(Nano(4,(1889((2010)
Chen,(ACS(Nano(5,(321((2011)

Fourier’s(law(in(the(7me(domain
Energy(balance(equa7on(for(phonons: 
((C=specific(heat,(Q=heat(flux):(

Fourier’s(law:(

Combining(the(two(one(obtains(the(diffusion(equa7on:(

Some(fundamental(problems:(the(diffusion(equa7on(leads(to(
an(infinite(propaga7on(velocity(under(a(temperature(pulse.

One(can(correct(the(Fourier(equa7on(to(include(the(buildI
up(7me(of(the(temperature(response:(

The(temperature(profile(is(thus(given(by(thermal(waves:((

We(define(second(sound(as(the(case(in(which(the(thermal(
profile(can(be(described(by(a(wave(equa7on

Fourier’s(law(in(the(7me(domain Second(sound(profile
Q Diffusive(behaviour

Second(sound

In(response(to(a(temperature(pulse,(a(waveIpacket(of(phonons(is(created,(
which(is(dissipated(in(a(characteris7c(7me(τss(

Ooen(the(7me(dependent(oscilla7ons(are(smoothed(out(quickly,(so(that(
most(of(the(7mes(only(the(diffusive(behaviour(is(observed



Second(sound(from(BTE
The(second(sound(expression(can(also(be(derived(from(the(firstIprinciples(BTE:(

1. The(energy(con7nuity(equa7on(can(be(obtained(from(the(BTE(

2. Assume(that: 
 
Assume(also(the(Callaway(approxima7on(to(the(scabering(operator.  
The((7me(dependent)(BTE(can(be(wriben(as: 
 
 
 
 
In(this(way(we(obtain(a(closed(expression(for(the(second(sound(life7me(

Thus,(the(parameters(for(second(sound(can(be(obtained(from(the(BTE

Drioing(distribu7on

The(approxima7on(holds(if(
the(devia7on(func7on(F(is(
linear(in(momentum

ZA(mode(in(graphene(
(Picture(from(Nat.&Commun.(6,(
7290((2015)

Second(sound(requires:

Linearity(of(the(solu7on

We(quan7fy(the(
amount(of(the(linearity(
in(the(outIofI
equilibrium(
distribu7on(by(defining(
a(scalar(product:(
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Second(sound(length

Second(sound(propaga7on:

Heat(can(propagate(in(
the(form(of(a(wave(
over(distances(of(1(
micron(at(room(
temperature(in(
graphene,(a(distance(
well(compa7ble(with(
current(dimensions(of(
samples.
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Conclusions
• First(principles(phonons(+(BTE:(accurate,(parameterIfree(results(

• Two(main(approaches(to(compute(phonons(from(first(principles:(
frozen(phonon(and(DFPT((my(favourite!)(

• The((linearised)(BTE(can(be(solved(in(the(relaxa7onI7me(
approach(or((since(recently)(in(an(exact(way,(as(with(the(
varia7onal(method.(

• The(relaxa7on(7me(approxima7on(fails(in(layered/2D(materials(

• The(BTE(provides(insights(on(thermodynamic(proper7es(of(the(
system,(like(the(entropy,(or(the(validity(of(Fourier’s(law(

• The(BTE(can(dis7nguish(between(different(thermal(conduc7vity(
regimes((ballis7c,(kine7c,(hydrodynamic)


