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Equilibrium

Material _ (...where mostly phonons carry heat)

.

1

Bose-Einstein phonon distribution: 1, = kel —q

v=(q,s): compact index on phonon wave vectors and branches

Outline

Thermal transport and Boltzmann Equation
Phonons from first-principles

Solutions of the Boltzmann transport equation (BTE):
Relaxation time approximation + variational method

Applications: layered and 2D materials

Breakdowns of the Fourier law

Out-of-equilibrium

Material

.

Hot Cold

Fourier'slaw: Q= —kV T (Macroscopic)

Out-of-equilibrium phonon distribution n, — n,



Out-of-equilibrium

Material

N

Hot Cold

(Microscopic)
Fourier’s law: Q = Z n,v,hw, = —kVT

Out-of-equilibrium phonon dlstrlbutlon n, —n,

Key phonon scattering
mechanisms

* 3-phonon interaction (decay and coalescence)

0E

— —»
W}V‘ ‘\q’ (energy derivative wrt
ion displacements)
* extrinsic scattering * mass disorder (isotopes)
(grain boundaries, surfaces, ...) /
w
—_— Wq ©
—_— gs X AM
L

Out-of-equilibrium

Material

.

Hot Cold
. 1
Fourier’s law: Q = v Z NV, hw, = —kV T
Boltzmann Transport Equation (BTE): v,,VT Z Quun,

3-phonon scattering

Most of the thermal conductivity is determined by the 3-
phonon scatterings.

There are two kinds of processes: up or down events.
The probabilities are computed with the Fermi Golden rule

wq//

For the down process:  Dynamical matrix ‘ Xa
Wq
/ derivative /
dw -
Poa = NP Z V®(q, 9", —q')[Fngng (g + 1)
G qll
5q+q q,G(s(hwq +hu.)q// _hCUq/)
Conservation of Conservation

crystal momentum of energy



Scattering matrix

S
* Isotope scattering (mass disorder): c?‘ & I
gs x AM

2

— <3
Ng + nq/ *
éng;ss 2N SN Yawg” [nan’ + ] @) Zga ngl wg — wqr)
= a=1
* Extrinsic scatterings (e.g. finite size):
size q
g9 =7 Na g(Ng +1)dgq _>|

First issue

: : Harmonic force constants How to get them
Harmonic properties . L.
energies: hwy from first principles?
group velocities: ohwy / 9q

1) Frozen phonons
Anharmonic force . .
: ; constants 2) Density functional
Anharmonic properties .
Scattering rates perturbation theory
(DFPT)

Computing thermal conductivity

What do we need?
Harmonic force constants

Harmonic properties
energies: hwy
group velocities: ohwy / 0g

Anharmonic force

Anharmonic properties constants

Scattering rates

Perturbed phonon Sl Blis

populations

Phonon properties
Lattice Hamiltonian: H = Z p’b +V

Taylor Expansion of the potentlal energy of a crystal:

oV 52V
Va~VW+ UngipUy b
0 2; OUap | Z‘:,b, OUapOUy b | pFeclb
1 PV

ualbua’//b’ ua”/”b”

>
3! alba’ b o' 1" b1 8ualb8u0‘/llb/auo‘“,//b// 0

=Moo+ M+ Vot Vg+..

(lowest order) phonon-phonon interactions
Dynamical matrix:

phonon energies / velocities



Frozen phonons

* Build a supercell

+ Displace the atom (/b) by A, compute forces Fg = —%
alb
2
- Compute the dynamical matrix: b/ = 9V
OUapOU /by
. Fislriy +8)
A

 Displace two atoms by A, compute forces.

» Compute the anharmonic constants

¢lb/lbll//b” »*v
Tt =
e aua[baua///b/aua/////bu

1 ) , ) ,
~ i [ — FSL(re 4 A + D) + Fop (12 + A, 1%y, — A)

Disadvantages: + Pl iy — iy + ) = Flp (i — B,y = 0)]
+ calculations on large (expensive) supercells
* need to check if the displacement is small enough

Density Functional
Perturbation Theory

Perturb the potential (move an atom):  V/(r) = Vo(r) + AAV/(r)
Find the 1st order wavefunction response to the perturbation

2n+1 theorem: the knowledge of the wavefunction response of a system
up to the n-th order in the strength of an external perturbation is
sufficient to determine the energy derivative up to order 2n+1
Gonze and Vigneron, Phys. Rev. B 39, 13120 (1989)
Compute the second and third derivative of the energy.
For example, the third derivative is:

a E 5Exe[nl

- 62 (by|AV — €, 4y) SHe(n) n=n0n’(r)n’(r/)n/(r//)drdr/dru
It’s particularly convenient for DFT codes using a plane-wave basis: the
calculation can be performed directly in the reciprocal space!

To reciprocal space

Fourier transform the force constants computed on a grid, to get them at
any point of the Brillouin zone:

Saar (DD, G) = Z¢3‘Zi9'e"q’

! // 1/ 2 : 0b,I'b’, l”b” —iq'l’
waa/a”(qb, q b b ¢o¢o¢’a” q e q
/4

/////

From the first transform of 2™ order force constants we get phonon
energies

From the second transform of 3 order force constants, the scattering
probabilities

Note: the FT is the bottleneck of the BTE!

Frozen phonons DFPT

Easy to implement Complex to implement
Some parameters to tune Easy to use
Calculations in a supercell Calculations in primitive cell

Computation at any wave-vector

Wavevectors limited by the supercell (for plane-wave codes)

Hard to tell what’s the best/fastest method for you, ask an expert and then choose!
Frozen phonon softwares: Phonopy, Phon and many others

DFPT software: Quantum ESPRESSO, Abinit

Some recommended readings (and references therein):

DFPT: S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).
DFPT 3rd-order: L. Paulatto et al., Phys. Rev. B 87, 214303 (2013)



Second issue Boltzmann Transport Equation

The Boltzmann Transport Equation (BTE) in full is:

8hy 1" 1 ) "
Perturbed phonon Sl ol VUW = Z [PZ’U,(FI, +F,—F0)+ EPl’j V' (F,—F, —Fv )}
populations Lz
+ Z PSY(F, — F.») Omini, Phys. Rev. B 53, 9064 (1996)
Consider a small perturbation VT +PUF,
n, =n,+n,(n,+1)V (often you'll find it written in articles like the equation above)
Let’s introduce the scattering matrix A, the BTE is simply as:
(Linear) deviation of the
. . AF =b
phonon population with respect

to the equilibrium distribution

Solution of the BTE Scattering matrix properties

F_Ap A can be decomposed in two parts:

» The formal solution is simple in principles, hard in
practice: the inversion of the matrix is VERY expensive

A=
» Matrix size: NxN, N= #qpoints x #phonon modes Relaxation time:
(average time
 Typical values for silicon: integrate with 303 points (not = = between scatterings)
out n,(n, +1) .
too many...), 6 phonon modes: N=2x10° A =———buu [Depopulatlon] T_ 1 1 1
Ty ; - -3ph + Tisot + Toxtr

+ Notice also that matrix inversion scales as O(N3)! - / " isot
A =— Z (PZ,W - P+ Pz’,u”> + Py [Repopulation]

I///




Single mode relaxation time
approximation (SMA)

6u,y/ F = A_1b ~ b

Ty AOUt

out _
AL =

The inversion of a diagonal matrix is very simple, it’s
something we can do analytically!

Exact solutions

We can compute the thermal conductivity using the
complete matrix (i.e. solving the problem exactly.)

Note first: It has a very nice
hysical meaning!
* Aissymmetric: A, = A, P y/' °

« Alis positive definite. i.e. V vectorx: x-Ax >0

VZ/’+

AV,V’: [ Z (PV V,,,—|— m ”) ZPISO%-’-Pbe
v v

vl

v’ v isot
—§ j( v~ PU 4 PY )+ P

Single mode relaxation time
approximation (SMA)

The Boltzmann transport equation is often solved in the SMA
(because it’s simple!). Physical interpretation:

» Consider the time between phonon collisions: phonon lifetime (t, ).

» SMA: suppose that every time a phonon scatters, heat-flux is

dissipated in the process. The BTE is simplified:
on n,—n, _ 1
WIS M= o 1
The SMA-BTE can be solved analytically, the thermal conductivity
simply becomes:

_ 1 = = 2.2
k= Wzﬂ:ny(ny +1)(w, )2 V2T,

Entropy of phonons

Let’s use the Boltzmann entropy
S=kgln W
The entropy of an ensemble of bosons is:
S=—kg /[nu Inn, — (n, +1)In(n, + 1)]dv

The result is true, strictly speaking, for non-interacting
phonons close to equilibrium... We cheat a little, and hope
it still works close to equilibrium (where n, — n,, is small)



Entropy production

S= —kB/[n,, Inn, — (n, +1)In(n, + 1)]dv

Let’s compute the time derivative, and expand in Taylor
series to first order.
There’s some algebra, but the end result is:

/ dn 1 / aF,

at
There are two terms: in the first, two phonon populations are
coupled, in the second there’s only one phonon population

Diffusion entropy

The term F - b is related to the diffusion entropy:
as

—| =—=F-bVT
dt diff T
= lT/Fyh,,(hu +1)VTv,hw,
= lT (n, — n,)v, hw,
_Q
T

dt T/ dn +1T/V§z{d”

The second term implies the increase of the internal energy
with time.

U=/nl,flwydu

We don’t allow it (dU/dt=0) and set it to zero

Focus on the first term.

dn
% T/F

The BTE is essentially: an, = ony

ot at JURNET:

Thus, we suppose we can split the entropy in two terms,
diffusion + scattering

scatt

Electric diffusion entropy

If we were to study electrical currents (the Boltzmann theory for
electrons is almost the same), the thermal gradient would be
replaced by an electrical field and we would find:

oS = —lF - beE
at field T

/Fv Edv
Ee/ (N, — n,)dv

E-J

N

Joule Heat

?
1
T



Thermodynamical
interpretation of the BTE

* We start with the BTE: AF =b

» Take a scalar product:

T T
VTF AF = v—Fb
* Let’s define the production of scattermg entropy as:
d—S = V—TF AF
dt scatt T
* The BTE can be interpreted as:
das| __ds
dt scatt dt diff

Variational principle 2

We could solve the BTE by trying to minimise the entropy
production.

Alternatively, (and more conveniently) we can maximise a thermal

conductivity functional

1
k=max o, (2F -b— F - AF)
Property of the functional:

* It’s a quadratic form

» The stationary point exists and is unique

Variational principle 1
dS> 2nd law of

The matrix A is positive definite = — .
P at — thermodynamics

Solving the BTE means finding the phonon population (F) such that
as
dat

Therefore, rather than solving an algebraic equation, we can
minimize the entropy-production functional!

=0

The thermal conductivity can be defined in terms of the two
entropies: 1

k= kg T2V

(2F - b— F - AF)

Past approaches

* Build a trial function, with some variational parameters
» Compute the conductivity functional
* Optimise the variational parameters
Example: Hamilton and Parrot, Phys. Rev. 178, 1284 (1969)
_q-vi vT
Fo= VT S ang
BEDUE
Already with only n=1 you can improve upon the relaxation

time approximation. In exchange, you increase the
complexity of the calculation.



Conjugate gradient

Iteratively try to improve the conductivity:
* Initial guess Fo
* Loop:
* Fre1 = Fx+ ok (b - AFk)
1

* check convergence on k = m@F -b—F - AF)

Mathematically stable, always convergent!

Applications

Variational

Inexpensive

It's an approximation!

References:

J.M. Ziman, Electrons and Phonons, Oxford university p
R.A.H. Hamilton et al., Phys. Rev. 178, 1284 (1969)

G. Fugallo et al., Phys. Rev. B 88, 045430 (2013)

Iterative (non-variational) methods:

Moderately expensive
(~10 times SMA)

Exact

ress (1964)

M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996)

D.A.Broido et al., Phys. Rev. B 72, 014308 (2005)

When to use what? (no definitive answer, but more on this later)

Silicon Germanium
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Thermal Conductivity [W/mK]

1 J Garget al.,
PRL 106,
045901 (2011)
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The first-principles BTE + SMA often works very well (in 3D)
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Fugallo et al.,
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6109 (2014)

Sometimes the SMA
can be incorrect,
even in 3D materials,
and even at high
temperatures.

200 400 600 800

Temperature (K)

The simulation results are in good agreement with experiments on
graphite, but only if the BTE is solved exactly!

1

in-plane k (W / mK)
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Graphite to graphene
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graphene
bilayer
graphite

. EXP graphite

Moreover, the
SMA predicts
incorrect
gualitative trends
upon reduction of
dimensionality.
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Temperature (K)

1600

To make things
more complicated,
SMA errors are
direction
dependent.

In the out-of-plane
direction, the SMA
works well (few %

2000 error)

Thermal transport in 2D materials

— — - Graphene

— — - Graphane
Boron nitride
Fluorographene

<, Y,

"y Molybdenum disulphide 1

200 400 600
Temperature (K)

The physics of phonon
transport in 2d
materials shares many
similarities with
graphene

The exact variational
solution is always
required when dealing
with 2D materials and/
or planar materials.

What do these materials have in common?



Umbklapp vs Normal

N-Process

U-Process

« Normal (N) scattering conserve mechanical momentum

e Umklapp (U) scattering do not conserve momentum.

It can be shown that only U contribute explicitly to thermal
resistivity (U scattering can reverse the direction of the heat flux)

Sc

atte

ring rates

Graphene

©)

10

Boron nitride

400 600
Temperature (K)
T
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200

| |
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Temperature (K)
T

Graphane

Fluorographene

s |
10 200

400 600
Temperature (K)

,
200

|
400 600
Temperature (K)

Molybdenum disulphide

400 600 8
Temperature (K)

On average, Normal processes are the most frequent at any
temperature in the 2D materials studied. The mechanical
momentum of phonons is thus a well conserved quantity.

Graphene scattering rates

10— 1 }
a PE 1 Cepellotti et al.,

ook -| Nat. Commun.
. F 1 6, 7400 (2015)
N i
é 107"E
|

10°H-

/ Graphene -— Zi{
10-37 L | L L L | L L L | L L L
200 400 600 800

Temperature (K)

Using SMA gquantities (i.e. lifetimes), we can check that
normal processes take place with highest frequency

Zl/ CV27T/TII;
Zy CV

Average scattering rate: I =

Failure of the SMA

The failure of the SMA in 2D materials is induced by the
large number of normal scattering events

Even at high temperature, phonon lifetimes are dominated
by normal processes:

1 1 1 1

—_ = —t — " —
TTRY NN

Therefore, the thermal conductivity is largely determined by
N processes (that shouldn’t give any thermal resistance!):

1 - 2.2 N
k—wzyzny(ny+1)(hwy) v2r



H e at t ra n Sfe r Scattering centers .
N @ ron disipae Umklapp freezing?

x Dissipative N-Process U-Process

Heat: N\N\/»

SMA WX LH U - K :

The SMA tends to ——
X underestimate the g " N B T A
thermal conductivity

A similar situation happens in Umklapp freezing: at low
temperatures, only acoustic phonons close to the Gamma point

N (JJ'
‘ LH Uu (with very small momentum) can be excited.

N A‘r
Exact N . Can we use low-temperature methods to describe the
conductivity of 2D materials at room temperature?

Callaway model

Let’s keep a relaxation time model and take advantage of the
concept of the drifting distribution.

Callaway model

c=—kB/[nymny—(ny+1)|n(ny+1)}d1/—55— V.P

We distinguish Resistive (R) from Normal (N) scattering events.

The former relax the distribution to the Bose—Einstein
P = [ hqn,dv equilibrium, whereas the latter relax to the drifting distribution:
The drifting dlstrlt?utlon is the most probable <3||str|but|on VTah” _n,—h, n,— pdrift
under the constraint of momentum conservation. Vu =% ~ N
oT 7] T
Phys. Rev. 113, 1046 (1959)
0L =0 = ndrift — 1 This method was originally developed to describe the thermal
5n, v T gbw,—q-V)/keT _ 1 gihatly P

conductivity of Germanium at cryogenic temperatures, where N
processes dominate (under Umklapp freezing)



Callaway model

T The model is simple and
— — - Graphene

S — — - Graphane reproduces well the results of
Boron nitride :
10 Fluorographene | the exact solution of the BTE.
- Molybdenum disulphide

Transport is dominated by the
presence of N processes

Room-temperature conditions
of 2D materials are analogous

~
~——
~———

10°F 4 to low-temperature conditions

e of solids characterised by
Temperature (K) Umklapp freezing.

Phonon-transport regimes

Ballistic € > N and € > R
Poiseuille N>E>R

A Ziman N>R>E
Kinetic R>Nand R> €
Representlatwe Scattering rates of extrinsic (E),
3D Solld Normal (N) and resistive (R)
processes

2 Poiseuille regime:

o - —
= 2 c 8
»w O © —
= .2 SRS
© O .= £ N
mao N ¥ R

10 _20 30 ” \

Temperature (K)

N

N processes dominate, and the
phonon fluid feels the “walls”

Phonon-transport regimes

3D Solid

Ballistic
Ziman
Kinetic

Representative

v

© |Poiseuille

—_

20 30
Temperature (K)

Ballistic € > N and &€ > R
Poiseuille N>ESR
Ziman N>R>E
Kinetic R>Nand R> €

Scattering rates of extrinsic (E),
Normal (N) and resistive (R)

processes

Ballistic regime:

N,

Typically poorly described

in the BTE, with the 1

scattering rate — =
Tv

Poiseuille regime

N>E>R

similarities with the flow
of a viscous fluid in a

pipe.

(Picture from Nat. Commun.
6, 7290 (2015)

Vu

L

* Internal scattering
dominated by N
processes, and heat
dissipation happening
due to extrinsic
processes (surfaces, ...)

» Called Poiseuille after the



Phonon-transport regimes

Ballistic € > Nand € > R

Poiseuille N>ESR

Ziman N>R>E
Kinetic R > Nand R> &
Representative Scattering rates of extrinsic (E),
3D Solid Normal (N) and resistive (R)

processes

Ziman regime:

AN

Ballistic &> N and € > R

Poiseuille N>ES>R
Ziman N>R>E
Kinetic R>Nand R> &

Scattering rates of extrinsic (E),
Normal (N) and resistive (R)
processes

Cepellotti et al.,
Nat. Commun.
6, 7400 (2015)

X
o
= S c O
n O S =
= o0 ()
T o £ £
mao N ¥ .
10 20 30
Temperature (K)
20000 T
L \\keo 7 4
I k. y i Representative
15000 ‘\ 3D Solid
— I \\ ! i~
E \\il & &
= 10000 A 33§ 3
=3 S\ T o £ £
< ; nao N & .
L ; 10 20 30
5000 r Temperature (K)
I ',.,'Iktallistic
S Graphene
2 L P S N
C.0 200 400 600

Temperature (K)

Hydrodynamic phonon transport has been observed (in few

materials) at cryogenic temperatures. In 2D materials, it’s present

at room temperature

Phonon-transport regimes

Ballistic € > N and &€ > R

Poiseuille N>ESR
A Ziman N>R>E
Kinetic R>Nand R> €

Representative
3D Solid

Scattering rates of extrinsic (E),
Normal (N) and resistive (R)
processes

= o Kinetic regime:
© =
2 8 § =
52 E &
sy - =
nao N ¥ R U U—
10 20 30 g \ /
Temperature (K)
u

This is the most common high-T regime

where SMA is expected to work (often)

Breakdowns of
Fourier’s law



Fourier’s law from the BTE

Consider the BTE (for simplicity, we work with the relaxation

time approximation: 8n __n= n,
8T T
n,—n
v, n,(n, +1 Vi=- 2"
v (7 )kBT2 T,

Multiply the BTE by: Z v, P, T,
v

The BTE becomes:
Z Ay (P + V2w, P, VT = = (0, — ,)w, v,

kVT =-Q

The BTE “contains” the Fourier’s law

“?\k“i\ 200000
104 s )9 \:1 9 L e Heat flux in small systems with
\&* AT Yy .
\\ w\v 3\1\ rough edges is space dependent,

%}i i\\ + more conducting at the centre.
‘\R\\“ \

But if the heat is thermalised on a distance (mean free path)
smaller than the sample size, than k is roughly constant.

To estimate the mean free path, we perturb the scattering
operator with: peoxtr o vy
L
Its physical meaning: any phonon, with velocity v,, will be
thermalised after it has traveled for a distance L.
extry, L L (Nothing travels further

T = —V, =
v Ty, Y than a distance L)

Validity of Fourier’s law
Q=—-kVT

Can we always use Fourier’s law to reconstruct the temperature
profile? i.e. when is k a constant of the material?

If the material is infinite (thermodynamic limit), the law holds and k is
constant.

If the material is finite, the BTE needs to be solved in real space, with
boundary conditions!

N, (X) — n,(X) on,
n, — nl/(X) Vuvnu(X) = _VT vn, 7‘/ W
k becomes space dependent: Q(x) = —k(x)VT
and we should to solve the BTE rather than the Fourier’s law!

vT

Graphene s MFP

600

5000 —rrrm—r v
g [ éxact

1 4000} =

< 400 § 1

= L 4 3000 ]

~ - .

s 1 2000 .

~ 200 ] L @ 4

] 1000} = .

L £ oo Xu ]

e Ol ol ]

801 01 1 10 100 1000 601 04 1 10 100 1000
L (um) L (um)
Sim: Nano Lett. 14, 6109 (2014)  Exp: Nat. Commun. 5, 3689 (2014)
In'graphene, the mean free paths extends up to 1mm (T=300K)
The intrinsic thermal conductivity is defined only for larger samples
Below that, Fourier’s law does not hold, and we should use the BTE!



k (W / mK)

Comparison with experiments?

The comparison

6000——————
| toum } between simulation
‘\ @ Chen result§ and '
@ Faugeras experiments is not
4000} ® Balandin fully justified:
i Simulations describe
an infinite crystal,

2000

while measurements
are on small systems.

Some experiments

0 200 400
Temperature (K)
Balandin Nano Lett. 8, 902 (2008)
Chen, ACS Nano 5, 321 (2011)
Faugeras, ACS Nano 4, 1889 (2010)

—g0o0 infer their results from
the Fourier’s law,
which does not hold.

More work to be done!

Fourier’s law in the time domain

One can correct the Fourier equation to include the build-
up time of the temperature response:

oT
CW-FVQ:O

The temperature profile is thus given by thermal waves:

7—33% + Q = _kVT
or® 10T _
azt Tss ot

(Ves)?V2T =0

We define second sound as the case in which the thermal
profile can be described by a wave equation

Fourier’s law in the time domain

Energy balance equation for phonons:
(C=specific heat, Q=heat flux):

oT
Ca_t + V . Q = 0
Fourier’s law: Q=—kVT

Combining the two one obtains the diffusion equation:

1 0T 5
2cll 2Tt -
kcat v 0

Some fundamental problems: the diffusion equation leads to
an infinite propagation velocity under a temperature pulse.

Second sound profile

Diffusive behaviour

P Second sound

In response to a temperature pulse, a wave-packet of phonons is created,
which is dissipated in a characteristic time T

Often the time dependent oscillations are smoothed out quickly, so that
most of the times only the diffusive behaviour is observed
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Second sound from BTE

The second sound expression can also be derived from the first-principles BTE:
1. The energy continuity equation can be obtained from the BTE

~ pdrift

2. Assume that: n,~=n,

Assume also the Callaway approximation to the scattering operator.
The (time dependent) BTE can be written as:

<T1—R>‘1 %’;’” +kVT(X, 1)+ Q(x, 1) =0

In this way we obtain a closed expression for the second sound lifetime

Thus, the parameters for second sound can be obtained from the BTE

Linearity of the solution

We quantify the

— Graphene - )

— Graphane E .amount of the linearity
Boron nitride 1 in the out-of-
Fluorographene 1 AT

— Molybdenum disulphide equilibrium

distribution by defining
a scalar product:

>, G Ry,

‘ \/zy CVFE\/ZU CVq?/

L L L | L L L L L L
200 400 600 800
Temperature (K)

Drifting distribution

Normalized
deviation
of distribution

Second sound requires:

n, ~ ngrlﬂ

4sxi0¢ The approximation holds if
- sox10¢  the deviation function Fis

18419° linear in momentum
0.0
= -1.5x10°6 ~ 7 = =
f PR n, =, + A, (A, + 1)V TF,
i 5x10-6
T it _ 1
ZA mode in graphene v elw,—q-V)/ksT _ A
(Picture from Nat. Commun. 6, — F - - 1 q . V
7290 (2015) ~ N, +n,(n,+1) T
B

Second sound

ength

10° T T
F )\SS _ VSSTSS : g:zguzﬂz Heat can propagate N
ol Boron nitride ] the for.m of a wave
g Fluorographene 3 gyer distances of 1
N e Molybdenum disulphide .
£ | 1 micron at room
= 0L .
g 1OE.L temperature in
< T .
......................... graphene, a distance
e . well Compaﬁble with
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Conclusions

First principles phonons + BTE: accurate, parameter-free results

Two main approaches to compute phonons from first principles:
frozen phonon and DFPT (my favourite!)

The (linearised) BTE can be solved in the relaxation-time
approach or (since recently) in an exact way, as with the
variational method.

The relaxation time approximation fails in layered/2D materials

The BTE provides insights on thermodynamic properties of the
system, like the entropy, or the validity of Fourier’s law

The BTE can distinguish between different thermal conductivity
regimes (ballistic, kinetic, hydrodynamic)



