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This talk:
How to adapt heat transport simulation techniques developed 

for semi-empirical potentials to first-principles calculations.



FIRST-PRINCIPLES APPROACHES 

Order of 
interaction

Thermal 
Equilibrium

Finite Size 
Effects

Disorder

Boltzmann-
Transport Eq.
Non-Equilib. 

MD
Laser-flash 

MD
Green-Kubo 

MD



 ⇠
X

s

c2
s !2

s ns(ns + 1) ⌧s

Group velocity Frequency Equilibrium 
population

phonon 
lifetime

BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929). 

q1
q2

q3

⌧(q)

Scattering

Harmonic phonon theory ?



Phonon Lifetimes from First Principles

• from Density Functional Perturbation Theory ~!(r3)
D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).

• from fitting the forces in ab initio MD ~!(r3)-!(r4)
K. Esfarjani, and H. T. Stokes, Phys. Rev. B 77, 144112 (2008).

• from fitting the AIMD phonon spectrum ~!(r3)
N. De Koker,  Phys. Rev. Lett. 103,125902 (2009).

• Density Functional Theory based Modeling 
J. Garg et al., Phys. Rev. Lett. 106, 045901 (2011).

Primitive (“perfect”) 0K - unit cell:

“Disorder”: Defects,  Alloying, ...
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Boltzmann-Transport-Eq. gives very accurate results 
for perfect crystals at low temperatures.



NON-EQUILIBRIUM MD
S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett. 104, 208501(2010).

heat
source

heat
sink

•Temperature gradient ∇T 
•Stationary heat flux J

⇓
Thermal conductivity can be calculated 

by applying Fourier‘ s Law.

J = � rT
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain
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This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain
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This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Non-equilibrium MD exhibits strong finite-size artifacts 
in supercells typically accessible within DFT/AIMD.

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
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where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
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This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Non-equilibrium MD can suffer from non-linear artifacts
in supercells typically accessible within DFT/AIMD.

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).
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T = TcoldT = Thot

„LASER FLASH“ MEASUREMENTS
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).



T = Tcold

heat diffusion

Time
T

em
p
er

at
ur

e

T = Tcold

T = Teq

T = Thot

@T (x, t)
@t

+ ↵

@

2
T (x, t)
@x

2
= 0

Heat Diffusion Equation:

„LASER FLASH“ MEASUREMENTS
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„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:



In the quasi-harmonic approximation, the
positions ri and the velocities vi are related to the
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t = 0

SUPERCELL PREPARATION
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).
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Interface Mismatch

SUPERCELL PREPARATION
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).



PHASE MATCHING
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

The cartesian displacements ri are related to the 
eigenfrequencies ωs and -vectors es of the dynamical matrix.
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harmonic 
approximation

random
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Maxwell-Boltzmann 
distributed amplitudes

Enforce consistent boundary conditions at the interface! 



PHASE MATCHING
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).
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„Phase matching“ reduces the artifacts by two orders of magnitude.
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„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.
(B) Let the heat diffuse via ab initio MD 

and monitor the temperature profile T(x,t).

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:
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The finite number of atoms leads to large 
temperature fluctuations.

„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).
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„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).



APPLICATION TO IMPURITIES IN SI
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

3

In this paper, we extend our earlier work [4] in sev-
eral ways. In Sec. II, we describe our theoretical method
in detail, including the specifics of supercell preparation,
the normal-mode phase matching at the hot/cold inter-
face, and the averaging required to obtain κ. In Sec. III,
we discuss the changes introduced by impurities in the
phonon density of states and the specific heat, predict
the temperature-dependence of the thermal conductivity
in the Si192 supercell, the dependence of κ on the con-
centration of impurities, and then focus on the change
in κ(T = 125 K) when the supercell contains 5.2 atomic
percent of vacancies or various isotopes of C, Si, Fe, or
Ge. The strong variation of κ with the impurity isotope
is correlated to the localization of some impurity-related
modes. The key results are discussed in Sec. IV.

II. METHODOLOGY

A. Supercell construction

The host crystal is represented by periodic supercells
constructed by stacking slices along a specific crystalline
direction. Most of our calculations are done with twelve
16-Si atoms slices stacked along the <100> direction to
create a parallelepiped which is 33 Å long and has a di-
ameter of 15 Å. We have also used [4] the Si384 and Si768

supercells to investigate the impact of the cross-sectional
area on the thermal conductivity (Fig. 1). A similar con-
struction can be performed for Si nanowires to investigate
the impact of the surface conditions or impurity content
on the thermal conductivity [31]. Because the thermal
conductivity calculations are highly computer intensive,
we restrict the Brillouin-zone sampling to the Γ point.

B. Electronic structure method

The first-principles DF calculations are carried out us-
ing the SIESTA package [32, 33], but our method is not
restricted to this particular electronic structure code. In-
deed, it has also been successfully used to calculate the
thermal conductivity of oxides [34] using the all-electron
simulation package FHI-aims [35].

In the SIESTA approach, the electronic core re-
gions are removed from the calculations using ab-initio
norm-conserving pseudopotentials with the Troullier-
Martins parameterization [36] in the Kleinman-Bylander
form [37]. The SIESTA pseudopotentials have been opti-
mized using the experimental bulk properties of the per-
fect solids and/or first-principles calculations [38] as well
as vibrational properties of free molecules or known de-
fects, when such experimental data are available.

The valence regions are treated using first-principles
spin-DF theory with the exchange-correlation poten-
tial of Ceperley-Alder [39] as parameterized by Perdew-
Zunger [40]. The calculations involving heavy elements

FIG. 1. (Color online) The Si192, Si384, and Si768 super-
cells consist of twelve Si16, Si32, and Si64 slices, respectively,
aligned along the <100> direction. The supercells are shown
with a random distribution of 5.2 atomic percent of substitu-
tional impurities (red atoms). The three supercells are 3.3 nm
long. Their diameters are 1.54, 2.44, and 4.50 nm, respec-
tively.

such as Fe or Ge are treated within the generalized gra-
dient approximation for the exchange-correlation poten-
tial [41]. The basis sets for the valence states are linear
combinations of numerical atomic orbitals [42, 43]. We
use a double-zeta basis set for H, C, and Si, and add po-
larizations functions for Ge. The basis set for Fe consists
of two sets of valence s and d’s and one set of p’s. The
charge density is projected on a real-space grid with an
equivalent cutoff of 350 Ryd to calculate the exchange-
correlation and Hartree potentials.

C. Vibrational spectra

The defect configurations must be optimized with care
using a conjugate gradient algorithm. Our standard re-
quirement is that the maximum force component be 0.003
to 0.001 eV/Å. Supercell preparation relies on accurate
dynamical matrices (see below) and unphysical negative
frequencies come up when the geometries are insuffi-

Si192 supercell containing ~5.2% impurities 

How do the 
properties of the impurities 

affect the 
thermal conductivity of the system?



Vacancies

Thermal conductivity can be controlled via the impurities‘ mass!

28Si

56Si

APPLICATION TO IMPURITIES IN SI
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).



APPLICATION TO IMPURITIES IN SI
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

Carbon

Iron

Germanium

Not all impurities are created equal!

12C

55Fe

74Ge



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~!(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Full low T Medium-
Large

as in 
supercell

Green-Kubo 
MD

Laser-flash MD yields accurate qualitative results 
at low temperatures within moderate computational costs. 

Quantitative predictions require finite size corrections, though.



GREEN-KUBO METHOD
R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 12,1203 (1957).

The thermal conductivity is 
related to the autocorrelation 

function of the heat flux

 ⇠
1Z

0

d⌧ h J(0) J(⌧)i
eq

Simulations of the thermodynamic equilibrium
⇓                 ⇓                 ⇓

Information about non-equilibrium processes

Fluctuation-Dissipation Theorem



THE ATOMISTIC HEAT FLUX
E. Helfand, Phys. Rev. 119, 1 (1960)

J(t) =
d

dt

 
X

i

ri(t)"i(t)

!
ri · · · Position of atom i

"i · · · Energy of atom i

Energy contribution εi of the individual atoms required!

⇒ Green-Kubo Method hitherto only 
used with classical potentials!



THE AB INITIO HEAT FLUX

J(t) =
d

dt

Z
r · "(r, t) dr "(r, t) · · · Energy density

Energy Density in Density Functional Theory:
B. Delley et al., Phys. Rev. B 27, 2132 (1983).

N. Chetty, and R. M. Martin, Phys. Rev. B 45, 6074 (1992).
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ASSESSING THE THERMAL CONDUCTIVITY

 =
V

3kBT 2

1Z

0

d⌧ h J(0) J(⌧)i
eq

Fourier Trans.
 =

V

3kBT 2
lim
!!0

|J(!)|2
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AIMD data

2x2x2 t-ZrO2 - T=1800 K

Finite Size Artifacts

Finite Size Artifacts 
artificially reduce the 
thermal conductivity 
at low frequencies!

J. L. Feldman et al., 
Phys. Rev. B 48, 12589 (1993).



PERIODIC BOUNDARY CONDITIONS
J J

J(t) =
d

dt

Z
r · "(r, t) dr

Small heat flux through boundaries 
leads to huge change in energy barycenter.
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AIMD data
Lorentzian Fit
Lorentzian Fit
(incl. Finite Size Corrections)

2x2x2 t-ZrO2 - T=1800 K

CORRECTING FOR FINITE SIZE EFFECTS
J. L. Feldman et al., Phys. Rev. B 48,12589 (1993).

FS(!) = (!) � ⇥FS(!) =
X

n

n

1 + ↵n !2
� art

1 + ↵art !2

Finite Size κFS(") is 
superposition of 

bulk conductivity κ(") 
and finite size 

effects ΘFS(")!

Finite Size 
corrected κ(")!



FINITE SIZE EFFECTS
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First-principles 
Green Kubo Simulations 

t-ZrO2  - T= 1800K

First-principles 
Green Kubo Simulations 

2  - T= 1800K

Supercell Size  � (k) [W/mK]

1x1x1 0.96

2x2x2 1.21

3x3x3 ~1.27

NEMD

Green-Kubo

typical DFT/AIMD supercells

Green-Kubo Simulations with Hardy’s Heat Flux 
exhibit only small finite size effects.
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APPLICATION TO ZIRCONIA

Experiment

Classical MD

2x2x2 Supercell, > 30ps AIMD / data point

Experiment:
  J.-F. Bisson et al., J. Am. Cer. Soc. 83, 1993 (2000).
  G. E. Youngblood et al., J. Am. Cer. Soc. 71, 255 (1988).
  S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:
  P. K. Schelling, and S. R. Phillpot, 
    J. Am. Cer. Soc. 84, 2997 (2001).

DFT-LDA-V(0K)
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APPLICATION TO ZIRCONIA

Experiment

Classical MD

DFT-LDA-V(T)

2x2x2 Supercell, > 30ps AIMD / data point

Experiment:
  J.-F. Bisson et al., J. Am. Cer. Soc. 83, 1993 (2000).
  G. E. Youngblood et al., J. Am. Cer. Soc. 71, 255 (1988).
  S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:
  P. K. Schelling, and S. R. Phillpot, 
    J. Am. Cer. Soc. 84, 2997 (2001).

DFT-LDA-V(0K)



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~!(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Full low T Medium-
Large

as in 
supercell

Green-Kubo 
MD

Full all T Small as in 
supercell

Ab initio Green-Kubo approach allows the accurate and 
predictive computation of lattice thermal conductivities κ 

at arbitrarily high temperatures!



CHALLENGES

Fourier‘s Law:

rT

J

J = � rT = �↵⇢ cV rT

 = 
photon

+ 
elec.

+ 
nucl.

Macroscopic 
Effect:

Microscopic 
Mechanisms



 = 
photon

+ 
elec.

+ 
nucl.

CHALLENGES

Fourier‘s Law:

rT

J

J = � rT = �↵⇢ cV rT

Macroscopic 
Effect:

Is the separation into 
electronic and nuclear 

thermal conductivities 
still valid at high 
temperatures?


