

THERMAL CONDUCTIVITY AT HIGH TEMPERATURES FROM FIRST PRINCIPLES

Christian Carbogno^{1,2}, Ramamurthy Ramprasad^{2,3}, and Matthias Scheffler^{1,2}

1: MATERIALS DEPARTMENT, UNIVERSITY OF CALIFORNIA SANTA BARBARA

2: FRITZ-HABER-INSTITUT DER MAX-PLANCK-GESELLSCHAFT, BERLIN

3: CHEMICAL, MATERIALS & BIOMOLECULAR ENGINEERING, UNIVERSITY OF CONNECTICUT, STORRS

HEATTRANSPORT

Macroscopic Effect:

Fourier's Law: $\mathbf{J} = -\kappa \nabla T = -\alpha \rho c_V \nabla T$

 $\kappa = \kappa_{\rm photon} + \kappa_{\rm elec.} + \kappa_{\rm nucl.}$

HEATTRANSPORT

Macroscopic Effect:

Fourier's Law: $\mathbf{J} = -\kappa \nabla T = -\alpha \rho c_V \nabla T$

Microscopic Mechanisms

TIME AND LENGTH SCALES

TIME AND LENGTH SCALES

TIME AND LENGTH SCALES

space

This talk:

How to adapt heat transport simulation techniques developed for <u>semi-empirical potentials</u> to <u>first-principles calculations</u>.

FIRST-PRINCIPLES APPROACHES

	Order of interaction	Thermal Equilibrium	Finite Size Effects	Disorder
Boltzmann- Transport Eq.				
Non-Equilib. MD				
Laser-flash MD				
Green-Kubo MD				

BOLTZMANN TRANSPORT EQUATION

R. Peierls, Ann. Phys. 395,1055 (1929).

Group velocity Frequency Equilibrium phonon Harmonic phonon theory ?

Phonon Lifetimes from First Principles

Primitive ("perfect") 0K - unit cell:

- from Density Functional Perturbation Theory ~O(r³)
 D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).
- from fitting the forces in ab initio MD ~O(r³)-O(r⁴)
 K. Esfarjani, and H.T. Stokes, Phys. Rev. B 77, 144112 (2008).
- from fitting the AIMD phonon spectrum ~O(r³)
 N. De Koker, Phys. Rev. Lett. 103,125902 (2009).

"Disorder": Defects, Alloying, ...

• Density Functional Theory based Modeling J. Garg et al., Phys. Rev. Lett. **106**, 045901 (2011).

FIRST-PRINCIPLES APPROACHES

	Order of interaction	Validity & Applicability	Finite Size Effects	Disorder
Boltzmann- Transport Eq.	~@(r³)	low T	Minute	Parameter
Non-Equilib. MD				
Laser-flash MD				
Green-Kubo MD				

Boltzmann-Transport-Eq. gives very accurate results for perfect crystals at low temperatures.

NON-EQUILIBRIUM MD

S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett. 104, 208501 (2010).

P. Schelling, S. Phillpot, and P. Keblinski, *Phys. Rev. B* **65**, 144306 (2002).

Non-equilibrium MD exhibits strong finite-size artifacts in supercells typically accessible within DFT/AIMD.

Non-equilibrium MD can suffer from non-linear artifacts in supercells typically accessible within DFT/AIMD.

FIRST-PRINCIPLES APPROACHES

	Order of interaction	Validity & Applicability	Finite Size Effects	Disorder
Boltzmann- Transport Eq.	~@(r³)	low T	Minute	Parameter
Non-Equilib. MD	Full	all T	Huge	as in supercell
Laser-flash MD				
Green-Kubo MD				

Non-Equilibrium MD approaches are in principle exact, in DFT however prohibitively costly to converge accurately.

"LASER FLASH" MEASUREMENTS

W. J. Parker et al., J. Appl. Phys. **32**, 1679 (1961).

"LASER FLASH" MEASUREMENTS

W. J. Parker et al., J. Appl. Phys. **32**, 1679 (1961).

T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

Mimic the "Laser-Flash Measurements" in ab initio MD simulations:

(A) Prepare two supercells: a small hot one and a large cold one.

Setup of the Cell in Non-Equilibrium

In the quasi-harmonic approximation, the positions r_i and the velocities v_i are related to the vibrational eigenfrequencies ω_s and -vectors e_s.

SUPERCELL PREPARATION

T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

heat diffusion axis

SUPERCELL PREPARATION

T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

PHASE MATCHING

T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

The cartesian displacements \mathbf{r}_i are related to the eigenfrequencies $\boldsymbol{\omega}_s$ and -vectors \mathbf{e}_s of the dynamical matrix.

Enforce consistent boundary conditions at the interface!

PHASE MATCHING

T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

$T=T_1=T_2$

Random Phases

Phase Matching

"Phase matching" reduces the artifacts by two orders of magnitude.

T. M. Gibbons and S. K. Estreicher, *Phys. Rev. Lett.* **102**, 255502 (2009).

Mimic the "Laser-Flash Measurements" in ab initio MD simulations:

(A) Prepare two supercells: a small hot one and a large cold one.

(B) Let the heat diffuse via *ab initio* MD and monitor the temperature profile T(x,t).

T. M. Gibbons and S. K. Estreicher, *Phys. Rev. Lett.* **102**, 255502 (2009).

The finite number of atoms leads to large temperature fluctuations.

T. M. Gibbons and S. K. Estreicher, *Phys. Rev. Lett.* **102**, 255502 (2009).

APPLICATION TO IMPURITIES IN SI

T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

Si192 supercell containing ~5.2% impurities

How do the properties of the impurities affect the thermal conductivity of the system?

APPLICATION TO IMPURITIES IN SI

T. M. Gibbons and S. K. Estreicher, *Phys. Rev. Lett.* **102**, 255502 (2009).

Thermal conductivity can be controlled via the impurities' mass!

APPLICATION TO IMPURITIES IN SI

T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

Not all impurities are created equal!

FIRST-PRINCIPLES APPROACHES

	Order of interaction	Validity & Applicability	Finite Size Effects	Disorder
Boltzmann- Transport Eq.	~@(r³)	low T	Minute	Parameter
Non-Equilib. MD	Full	all T	Huge	as in supercell
Laser-flash MD	Full	low T	Medium- Large	as in supercell
Green-Kubo MD				

Laser-flash MD yields accurate qualitative results at low temperatures within moderate computational costs. Quantitative predictions require finite size corrections, though.

GREEN-KUBO METHOD

R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 12, 1203 (1957).

Fluctuation-Dissipation Theorem

Simulations of the thermodynamic equilibrium

$$\kappa \sim \int_{0}^{\infty} d\tau \left\langle \mathbf{J}(0) \mathbf{J}(\tau) \right\rangle_{eq}$$

The thermal conductivity is related to the autocorrelation function of the heat flux

THE ATOMISTIC HEAT FLUX

E. Helfand, *Phys. Rev.* **19**, 1 (1960)

$$\mathbf{J}(t) = \frac{d}{dt} \left(\sum_{i} \mathbf{r}_{i}(t) \varepsilon_{i}(t) \right) \qquad \begin{array}{c} \mathbf{r}_{i} & \cdots & \text{Position of atom } i \\ \varepsilon_{i} & \cdots & \text{Energy of atom } i \end{array} \right)$$

Energy contribution \mathbf{E}_i of the **individual atoms** required!

⇒ Green-Kubo Method hitherto only used with classical potentials!

THE AB INITIO HEAT FLUX

$$\mathbf{J}(t) = \frac{d}{dt} \int \mathbf{r} \cdot \varepsilon(\mathbf{r}, t) d\mathbf{r}$$

$$\varepsilon(\mathbf{r},t)$$
 ... Energy density

Energy Density in Density Functional Theory: B. Delley et al., Phys. Rev. B 27, 2132 (1983). N. Chetty, and R. M. Martin, Phys. Rev. B 45, 6074 (1992).

 $\varepsilon(\mathbf{r}, \{\mathbf{R}\}) d\mathbf{r} \Leftrightarrow$ Harris-Foulkes Total Energy Functional

$$\varepsilon(\mathbf{r}, \{\mathbf{R}\}) = \sum_{i} T_{i} + \sum_{l} \varepsilon_{l} f_{l}^{occ} |\Psi_{l}(\mathbf{r})|^{2} - n(\mathbf{r}) v_{xc} [n(\mathbf{r})]$$
$$+ E_{xc} [n(\mathbf{r})] - \frac{1}{2} n(\mathbf{r}) v_{es}(\mathbf{r}) + \frac{1}{2} \sum_{ij} \frac{Z_{i} Z_{j}}{|\mathbf{R}_{i} - \mathbf{R}_{j}|} \delta(\mathbf{r} - \mathbf{R}_{i})$$

ASSESSING THE THERMAL CONDUCTIVITY

Fo

$$\kappa = \frac{V}{3k_B T^2} \int_{0}^{\infty} d\tau \left\langle \mathbf{J}(0) \; \mathbf{J}(\tau) \right\rangle_{\epsilon}$$

urier Trans.

$$\kappa = \frac{V}{3k_BT^2} \lim_{\omega \to 0} |\mathbf{J}(\omega)|^2$$

Finite Size Artifacts artificially reduce the thermal conductivity at low frequencies!

J. L. Feldman *et al.*, *Phys. Rev. B* **48**, 12589 (1993).

PERIODIC BOUNDARY CONDITIONS

Small heat flux through boundaries leads to huge change in energy barycenter.

CORRECTING FOR FINITE SIZE EFFECTS

J. L. Feldman et al., Phys. Rev. B 48,12589 (1993).

$$\kappa_{FS}(\omega) = \kappa(\omega) - \Theta_{FS}(\omega) = \sum_{n} \frac{\kappa_n}{1 + \alpha_n \,\omega^2} - \frac{\kappa_{\text{art}}}{1 + \alpha_{\text{art}} \,\omega^2}$$

Green-Kubo Simulations with Hardy's Heat Flux exhibit only small finite size effects.

APPLICATION TO ZIRCONIA

Experiment:

J.-F. Bisson et al., J.Am. Cer. Soc. 83, 1993 (2000).
G. E. Youngblood et al., J.Am. Cer. Soc. 71, 255 (1988).
S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:

P. K. Schelling, and S. R. Phillpot, J.Am. Cer. Soc. **84**, 2997 (2001).

APPLICATION TO ZIRCONIA

Experiment:

J.-F. Bisson et al., J.Am. Cer. Soc. 83, 1993 (2000).
G. E. Youngblood et al., J.Am. Cer. Soc. 71, 255 (1988).
S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:

P. K. Schelling, and S. R. Phillpot, J.Am. Cer. Soc. **84**, 2997 (2001).

FIRST-PRINCIPLES APPROACHES

	Order of interaction	Validity & Applicability	Finite Size Effects	Disorder
Boltzmann- Transport Eq.	~@(r³)	low T	Minute	Parameter
Non-Equilib. MD	Full	all T	Huge	as in supercell
Laser-flash MD	Full	low T	Medium- Large	as in supercell
Green-Kubo MD	Full	all T	Small	as in supercell

Ab initio Green-Kubo approach allows the accurate and predictive computation of lattice thermal conductivities K at arbitrarily high temperatures!

CHALLENGES

Macroscopic Effect:

Fourier's Law: $\mathbf{J} = -\kappa \nabla T = -\alpha \rho c_V \nabla T$

Microscopic Mechanisms

CHALLENGES

Macroscopic Effect:

Fourier's Law: $\mathbf{J} = -\kappa \nabla T = -\alpha \rho c_V \nabla T$ $\kappa = \kappa_{\text{photon}} + \kappa_{\text{elec.}} + \kappa_{\text{nucl.}}$

Is the separation into <u>electronic</u> and <u>nuclear</u> thermal conductivities still valid at high temperatures?