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Carbon
12.01

Sp3 Diamond-like

ta-C ta-C:H

HC polymers
sputtered a-C(:H)
no films

glassy carbon
graphitic C

J Robertson, Mat Sci Eng 2002

TABLE II. Radii (in atomic units) for maxima in
radial wave functions of atomic C, Si, and Ge. The
values 7, and 7, are for valence s, p orbitals of the
s'p? atomic configuration. The value #, is for the d
orbital of the s!p?d! atomic configuration.

Vs *p ¥q
C 1.21 1.21 8.51
Si 1.75 2.13 4,89
Ge 1.76 2,14 6.25

MT Yin & ML Cohen, PRL 1983
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Mass enhancement in metals

low-T heat capacity
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ARPES kinks in 2D materials
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CH Park, FG et al, Nano Lett 2009
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Quasiparticle theory of e-ph interaction in metals
S Engelsberg, JR Schrieffer, Phys Rev 1963

Gk,w) =

W — €k

CECAM LAUSANNE 2012 F. GIUSTINO



Gawd UNIVERSITY OF

ELECTRON-PHONON INTERACTION IN METALS {#) OXTFORD
Non-interacting Including e-ph interaction
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See also: A Eiguren, C Ambrosch-Draxl, PM Echenique, PRB 2009
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First-principles theory of e-ph interaction
L Hedin and S Lundqvist, Solid State Physics 1969

GW framework
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Example: graphene
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CH Park, FG, ML Cohen, SG Louie, PRL 2007
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Temperature dependence of band gaps

silicon gallium arsenide
1.20 1.6 —
- 117 eV si 1.oev
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KP O'Donnel, X Chen, Appl Phys Lett 1991
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REVIEWS OF MODERN PHYSICS, VOLUME 77, OCTOBER 2005

Isotope effects on the optical spectra of semiconductors

Manuel Cardona*

Max-Planck-institut fuer P wung, L trasse 1, D-70569 Swuttgart, Y F P hy R 1 9 5 1
Germany a n ! S e V

M. L. W. Thewalt
Physics Department, Simon Fraser University, Burnaby, B.C. V5A 156, Canada

E. Antoncik, Czechosl J Phys 1955

Since the end of the cold war, macroscopie amounts of separated stable isotopes of mast ele
have been available “off the shelf” at affordable prices. Using these materials, single erystals of m
semiconductors have been grown and the dependence of their physical properties on isolopic
composition has been investigated. The most conspicuous effects observed have o do with the

dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic .

propertics of solids through the mechanism of electron-phonon inieraction, in particular, in the P B Alle n V H eine J Ph S C 1 9 7 6
corresponding optical excilation spectra and energy gaps. This review contains  brict introduction to ) ) y

the history, availability, and characterization of stable isotopes, including their many

science and technology. 1t is followed by a concise discussion of the effects of isolopic composition on

the vibrational spectra, including the influence of average isolopic masses and isotopic disorder on the

Che final sections deal with the effects of electron-phonon interaction on enery ps, the

concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis
on silicon, and the effects of isotopic composition of the host material on the optical transitions a r o n a et a —_—
between the bound states of hydrog 1

iic impurities.

spplications in

phonons,
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Frozen lattice
calculation

Band gap (eV)
=
O
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Temperature (K)

M Cardona & MLW Thewalt, Rev Mod Phys 2005

CECAM LAUSANNE 2012 F. GIUSTINO



Gawd UNIVERSITY OF

TEMPERATURE-DEPENDENCE OF BANDGAP 2 OXFORD

oV 1 0%V
_ 1/0 e — a2
Viu) =V"+ ﬁuu+28u2u

Eox(u) = nk + (nk| l nk) + Z [ ’mk + q| l Ink)|?

mq nk Efm,k—|—q

 Thermal average of displacements
e Harmonic
» Adiabatic

e Semiclassical
Allen & Heine, J Phys C 1976
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SE DW
Aepk = A epk - A Cnk

Fan (self-energy)

2Ngy + 1
APFE Enk — Z / = |9mn,1/(ka Q)|2
m£n.v QBZ €Enk — €mk+q

the same term as for metals
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SE DW
AEnk = A Enk T A Cnk

Debye-Waller

QBZ Enk Emk

ADWEnk — Z / dq anV _:{{ mn, I/(k q)]

essential for the theory to be translationally invariant
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dq 2nqgy, +1
AD _ qr DW k 2
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quy
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Where is Debye-Waller

in the theory of metals?

PHYSICAL REVIEW B VOLUME 26, NUMBER 3 1 AUGUST 1982

Generalization of the theory of the electron-phonon interaction:
Thermodynamic formulation of superconducting- and normal-state properties

Warren E. Pickett
Naval Research Laboratory, Washington, D.C. 20375
(Received 25 January 1982)

A thermodynamic formulation for the electron self-energy is given which is applicable
when the electronic spectrum possesses structure on the scale of phonon frequencies, pro-
vided only that the ratio of phonon phase velocity to electron Fermi veloeity is small
Electron-phonon, Coulomb, and electron-defect interactions are included on an equal foot-
ing and it is shown that their different frequency dependencies lead to specific effects
on the Eliashberg self-energy: (a) The Coulomb interaction contributes nothing of essence
to the normal-state self-energy (in this isotropic approximation) but retai s usual de-
pairing effect upon the superconducting gap function, (b} defects affect superconducting
properties primarily through a broadening of the electronic spectrum, and (c) phonons
contribute a thermal shift and broadening as wel the mass enhar
zation to intens lectron-phonon, electron-electron, and electron-defect intes
stants is necessary to redevelop an intuition into the cts of these interactions. The
change in the structure of the Eliashberg equation due to a nonconstant density of states
(DOS) and the consequent interplay between static and thermal disorder is analyzed in
detail, with a central feature being the change in frequency dependence of the self-energy .
compared to a constant DOS solution. The effect of DOS structure on the superconduct- W/
ing transition temperature T, which is manifested in the defoct dependence of T, is
analyzed in detail. Further it is proposed that an extension of the self-cc tent Eliash-
berg approach be extended above T to determine the normal-state self-energy and there-
by the electronic contribution to thermody
to affect the spin susceptibility at finite temperature. Reinterpretation of several of the

lous prop of A15 in terms of the present theory is suggested.
Several aspects of the theory are compared to experimental data for Nb;Sn.

ment. A gencrali-

ction con-

nic quantities. Phonon broadening is shown

I. INTRODUCTION 1o be assumed that Midgal's theorem is inapplica-
ble if N'(E) is not constant [to within (m /M)'/%]

In this form of the Hamiltonian W describes

Deeply ingrained in the formal theory of the in-
teracting electron-phonon (e-ph) system in metals
are two simplifying approximations. The first is
an extension of the adiabatic, or Born-Oppen-
heimer approximation' in which the light electrons
are considered to respond instantaneously to the
heavy ions (of mass M). Central to the theory of
e-ph systems is Migdal's theorem,” which demon-
strates that nonadiabatic effects can be obtained
accurately by low-order Feynman-Dyson perturba-
tion theory, to lowest order in an expansion param-
eter of the order of (m /M)'/? << 1. The second
simplification is the assumption of a constant den-
sity of states (CDOS) over a region +{} around the
Fermi energy Ef, where i1 is a few times of the
mean phonon frequency. This approximation al-
lows the DOS function N (E) to be approximated
by N{Ef) in certain energy integrals. The two ap-
proximations in fact are related, and it often seems

26

over a range +11 around Ep. As will be shown in
this paper, however, there exists an important re-
gime within which the CDOS approximation may
be relaxed in a straightforward manner while re-
taining Migdal's simplification. The resulting gen-
eralizations of the CDOS expressions often are not
intuitively obvious, and the consequences involve a
reinterpretation of many of the properties of this
class of materials.

That structure in the DOS on the scale of {t
should be expected in crystals containing several
transition-metal atoms per unit cell can be deduced
from general considerations.” Elemental transition

metals are known to have peak structure in their
DOS which may be only a few tenths of an eV
wide. A compound with (for example} ten atoms
per unit cell will have 10 times the number of
bands in the same overall bandwidth, leading to
structure on the order of hundredths of an eV.

1186

band electrons, for which the electron-static lattice
and electron-electron interactions have been includ-
ed in a mean-field sense. For the electron-lattice
interaction the remaining coupling is given, to
second order in the ion displacement, by the “
electron-phonon Hamiltonian H, _;,. The second-
order term, which has not been displayed explicit-

ly, is required to keep the theory translationally in-

CECAM LAUSANNE 2
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* Negligible thermal expansion

Diamond . o
* Negligible excitonic effects
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Logothetidis, Petalas, Polatoglou & Fuchs, PRB 1992
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Slow convergence over unoccupied states
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Band gap (eV)
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Experimental band gap (eV)

0 5 10 15
Experimental band gap (eV)

data from: SG Louie, Topics in computational materials science 1997
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Open questions
Dynamical theory inconsistent with translational invariance

Linewidth to be used in energy denominators

1
w - 67n}k+q :‘: qu 1 ?/6

Enk i

Off-diagonal Debye-Waller (Gonze)

Hedin-Lundqvist formulation missing DW term

' +00
?/ .
Spn(x,x"w) = ﬂ/ do' G(x, % w + ) Wy (r. v/, w')e™"?
— 00
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SUPERCONDUCTIVITY
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5

How can we calculate Tc ? McMillan equation

_ Wiog B 1.04(1 + /\)
A—pr(1-0.620)] 20 ! ! ! ! !

200 TR TR '
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A from mass-enhancement in the normal state
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Kindergarten picture: )\ — NF V;;p

sp2 carbon sp3 carbon
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sp2 carbon: graphene
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sp3 carbon: diamond
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DOS

>
energy

3D

L Boeri, J Kortus
& OK Andersen PRL 2003

sp3 carbon & large DOS | —p low-dimensional diamond? I
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sp3 carbon: graphane | e b
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Beyond McMillan's ? Anisotropic Eliashberg

" THEORY OF SUPERCONDUCTING T,

e

PB Allen & B Mitrovic, Solid State Physics 1982 =

1
+
e
‘\
ﬂ 1
]
;
-
—

* Details of electron-phonon physics -

P

Z(k, an) — —kBT Z 7,\'3@(1{,, ?:wnr)f'g Z ‘gkkfy‘QDy(k — k,; iwn _ iwn’)
k’'n’ v
—kgT Y 73G (K iwn ) 7sW(k — k')
k'n’

See also: ME: HJ Choi et al, Nature 2001"' SCDFT: M Luders et al, PRB 2005; MAL Marques et al, PRB 2005
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Eliashberg equation for the superconducting gap

, W]CBT
Ak, iwy) = Nier) kz (e —er )Mk, k', n —n')
! A
A (K, {wy)

L *9 . — /
H (UJ |wn|)] [wir’ +A2(k/,iwn!)]l/2

3rg.uk

(Renorm factor Z set to 1 in this slide for clarity)
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Roxana Margine
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ER Margine & FG, in preparation
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Open questions

Off-diagonal matrix elements for degenerate bands

Only bands near the Fermi level

Nearly-constant density-of-states at the Fermi level
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what about the Coulomb parameter 4™ ?

Dynamically-screened Coulomb interaction

W(r,r';w) :/dr”v(r, r'e t(x", 1r'; w)

::;:,. The same quantity that
R \\‘ we calculate in SternheimerGWwW

! TN
! TR
! 1
! !
.—.
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QUANTUMJESPRESSD

ko, EPVV

DOWNLOAD AND INSTALL SEARCH

Most recent snapshot of the code available here:

(Standardization of examples - 21 Dec 2011) PROJECT

EPW-2.3.3 has been downloaded 51 times. W A N N I E R 9 0

EPW-2.3.4 has been downloaded 227 times.

EPW-2.3.4-patched has been downloaded 205 times.
EPW-2.3.5 has been downloaded 48 times.
EPW-2.3.6 has been downloaded 65 times.

To install epw: SOURCE CODE

1) download version 4.0.3 of quantun-ESPRESSO here:

EPW-2.3.6 with QE-4.0.3
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