Real-Time Path Integrals for Laser Driven Carrier-Phonon Dynamics in Quantum Dots

Martin Glässl, Vollrath Martin Axt

Universität Bayreuth

08.11.2012

Introduction

Path Integral Approach

Selected Results

Martin Glässl (Universität Bayreuth)

Introduction

Quantum Dots

AFM image of quantum dots

Energy schemes in comparison

Quantum Dots

AFM image of quantum dots

Energy schemes in comparison

Quantum dots are of high technological interest for various applications:

- single or entangled photon sources,
- new lasers,
- quantum information processing devices, ...

Quantum Dots

AFM image of quantum dots

Energy schemes in comparison

Quantum dots represent prototypes of quantum dissipative systems:

 \Rightarrow Fascinating opportunities to study system-environment interactions

Interaction with Phonons

Discrete energy levels \Rightarrow

- suppression of real transitions:
 "phonon bottleneck"
- elastic scattering processes: "pure dephasing"

Pure dephasing coupling

- virtual transitions without change of occupations
- dominant dephasing mechanism in strongly confined quantum dots
- prototype of a non-Markovian interaction

Model

Hamiltonian for a laser-driven phonon-coupled L-level QD-system

$$\begin{split} H &= \sum_{\nu} \hbar \omega_{\nu} |\nu\rangle \langle \nu| - \sum_{\nu\nu'} \hbar M_{\nu\nu'} |\nu\rangle \langle \nu'| \\ &+ \sum_{\mathbf{q}} \hbar \omega_{\mathbf{q}} \, b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}} + \sum_{\mathbf{q}\nu} \hbar \big(\gamma_{\mathbf{q}}^{\nu} b_{\mathbf{q}} + \gamma_{\mathbf{q}}^{\nu*} b_{\mathbf{q}}^{\dagger} \big) |\nu\rangle \langle \nu| \end{split}$$

- Electronic system comprises L levels
- M: Matrix of dipole interactions with a classical light field
- $b^{\dagger}_{\mathbf{q}}$: creation operator of a phonon with wave vector \mathbf{q} and energy $\hbar\omega_{\mathbf{q}}$
- $\gamma_{\mathbf{q}}^{\nu}$: carrier-phonon coupling constants (pure dephasing processes)
- GaAs: deformation potential coupling to LA phonons dominates

Model

Hamiltonian for a laser-driven phonon-coupled L-level QD-system

$$\begin{split} H &= \sum_{\nu} \hbar \omega_{\nu} |\nu\rangle \langle \nu| - \sum_{\nu\nu'} \hbar M_{\nu\nu'} |\nu\rangle \langle \nu'| \\ &+ \sum_{\mathbf{q}} \hbar \omega_{\mathbf{q}} \, b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}} + \sum_{\mathbf{q}\nu} \hbar \big(\gamma_{\mathbf{q}}^{\nu} b_{\mathbf{q}} + \gamma_{\mathbf{q}}^{\nu*} b_{\mathbf{q}}^{\dagger} \big) |\nu\rangle \langle \nu| \end{split}$$

Aim: Calculate dynamics of the electronic subsystem

- Analytical solutions are only known for limiting cases
- Usually: Treatment of the carrier-phonon coupling within approximations \Rightarrow Validity of results is unclear
- Here: Real-time path integrals: no approximations!

Path Integral Approach

• Reduced electronic density matrix:

 $\widehat{\overline{
ho}}(t) = \operatorname{Tr}_{
hoh}\left[\widehat{U}(t)\widehat{
ho}(0)\widehat{U}^{\dagger}(t)
ight], \qquad ext{where } \widehat{U}(t) = \widehat{T}\exp\left(rac{i}{\hbar}\int_{0}^{t}\widehat{H}(au)d au
ight)$

- Reduced electronic density matrix: $\widehat{\overline{\rho}}(t) = \operatorname{Tr}_{ph} \left[\widehat{U}(t) \widehat{\rho}(0) \widehat{U}^{\dagger}(t) \right], \quad \text{where } \widehat{U}(t) = \widehat{T} \exp \left(\frac{i}{\hbar} \int_{0}^{t} \widehat{H}(\tau) d\tau \right)$
- Discretize time evolution operator $(t_n = n\varepsilon)$: $\widehat{U}(t_N) \approx e^{-i\epsilon \widehat{H}(t_N)/\hbar} e^{-i\epsilon \widehat{H}(t_{N-1})/\hbar} \dots e^{-i\epsilon \widehat{H}(t_1)/\hbar}$

- Reduced electronic density matrix: $\widehat{\overline{\rho}}(t) = \operatorname{Tr}_{ph} \left[\widehat{U}(t) \widehat{\rho}(0) \widehat{U}^{\dagger}(t) \right], \quad \text{where } \widehat{U}(t) = \widehat{T} \exp \left(\frac{i}{\hbar} \int_{0}^{t} \widehat{H}(\tau) d\tau \right)$
- Discretize time evolution operator $(t_n = n\varepsilon)$: $\widehat{U}(t_N) \approx e^{-i\epsilon \widehat{H}(t_N)/\hbar} e^{-i\epsilon \widehat{H}(t_{N-1})/\hbar} \dots e^{-i\epsilon \widehat{H}(t_1)/\hbar}$
- Insert identity-operators $\widehat{I}_n = \left(\sum_{\alpha_n} |\alpha_n\rangle\langle\alpha_n|\right) \otimes \left(\int d\mu_n |\mathcal{Z}_n\rangle\langle\mathcal{Z}_n|\right)$: $\widehat{U}(t_N) \approx e^{-i\epsilon\widehat{H}(t_N)/\hbar} \widehat{I}_{N-1} \dots \widehat{I}_1 e^{-i\epsilon\widehat{H}(t_1)/\hbar}$

- Reduced electronic density matrix: $\widehat{\overline{\rho}}(t) = \operatorname{Tr}_{ph} \left[\widehat{U}(t) \widehat{\rho}(0) \widehat{U}^{\dagger}(t) \right], \quad \text{where } \widehat{U}(t) = \widehat{T} \exp \left(\frac{i}{\hbar} \int_{0}^{t} \widehat{H}(\tau) d\tau \right)$
- Discretize time evolution operator $(t_n = n\varepsilon)$: $\widehat{U}(t_N) \approx e^{-i\epsilon \widehat{H}(t_N)/\hbar} e^{-i\epsilon \widehat{H}(t_{N-1})/\hbar} \dots e^{-i\epsilon \widehat{H}(t_1)/\hbar}$
- Insert identity-operators $\widehat{l}_n = \left(\sum_{\alpha_n} |\alpha_n\rangle\langle\alpha_n|\right) \otimes \left(\int d\mu_n |\mathcal{Z}_n\rangle\langle\mathcal{Z}_n|\right)$: $\widehat{U}(t_N) \approx e^{-i\epsilon\widehat{H}(t_N)/\hbar} \widehat{l}_{N-1} \dots \widehat{l}_1 e^{-i\epsilon\widehat{H}(t_1)/\hbar}$
- Integrate out phonon degrees of freedom

- Reduced electronic density matrix: $\widehat{\overline{\rho}}(t) = \operatorname{Tr}_{ph} \left[\widehat{U}(t) \widehat{\rho}(0) \widehat{U}^{\dagger}(t) \right], \quad \text{where } \widehat{U}(t) = \widehat{T} \exp \left(\frac{i}{\hbar} \int_{0}^{t} \widehat{H}(\tau) d\tau \right)$
- Discretize time evolution operator $(t_n = n\varepsilon)$: $\widehat{U}(t_N) \approx e^{-i\epsilon \widehat{H}(t_N)/\hbar} e^{-i\epsilon \widehat{H}(t_{N-1})/\hbar} \dots e^{-i\epsilon \widehat{H}(t_1)/\hbar}$
- Insert identity-operators $\widehat{I}_n = \left(\sum_{\alpha_n} |\alpha_n\rangle\langle\alpha_n|\right) \otimes \left(\int d\mu_n |\mathcal{Z}_n\rangle\langle\mathcal{Z}_n|\right)$: $\widehat{U}(t_N) \approx e^{-i\epsilon\widehat{H}(t_N)/\hbar} \widehat{I}_{N-1} \dots \widehat{I}_1 e^{-i\epsilon\widehat{H}(t_1)/\hbar}$
- Integrate out phonon degrees of freedom

$$\Rightarrow \overline{\rho}_{\alpha_N\beta_N} = e^{i\Omega t(\beta_N - \alpha_N)} \sum_{\{\alpha_n, \beta_n\}} \prod_{n=1}^N M_{\alpha_n}^{\alpha_{n-1}} M_{\beta_n}^{\beta_{n-1}*} \times \prod_{n'=1}^n e^{\mathcal{S}_{nn'}} \overline{\rho}_{\alpha_0\beta_0}(0)$$

Influence functional $S_{nn'} = -[\zeta(\alpha_n) - \zeta(\beta_n)] [K_{n-n'}\zeta(\alpha_{n'}) - K^*_{n-n'}\zeta(\beta_{n'})]$

Memory Kernel & Memory Truncation Scheme

$$K_{n\neq0} = \int_{(n-1)\epsilon}^{n\epsilon} d\tau \int_{0}^{\epsilon} d\tau' \Gamma(\tau - \tau') \quad \text{and} \quad K_{0} = \int_{0}^{\epsilon} d\tau \int_{0}^{\tau} d\tau' \Gamma(\tau - \tau')$$
$$\Gamma(t) = \int_{0}^{\infty} d\omega J(\omega) \left[\cos(\omega t) \coth\left(\frac{\hbar\omega}{2k_{B}T}\right) - i \sin(\omega t) \right]$$

Spectral density $J(\omega)$ is of the superohmic coupling type: $J(\omega)\propto\omega^3$ for $\omega
ightarrow0$

Memory Kernel & Memory Truncation Scheme

$$K_{n\neq0} = \int_{(n-1)\epsilon}^{n\epsilon} d\tau \int_{0}^{\epsilon} d\tau' \Gamma(\tau - \tau') \quad \text{and} \quad K_{0} = \int_{0}^{\epsilon} d\tau \int_{0}^{\tau} d\tau' \Gamma(\tau - \tau')$$
$$\Gamma(t) = \int_{0}^{\infty} d\omega J(\omega) \left[\cos(\omega t) \coth\left(\frac{\hbar\omega}{2k_{B}T}\right) - i \sin(\omega t) \right]$$

Spectral density $J(\omega)$ is of the superohmic coupling type: $J(\omega) \propto \omega^3$ for $\omega \to 0$

- K_n tends sufficiently fast to zero
- \Rightarrow Memory truncation:

Choose a cutoff n_c such that $K_{n>n_c} = 0$

• Enables calculations for arbitrarily long times

Augmented Density Matrix & Paths

$$\Rightarrow \overline{\rho}_{\alpha_N\beta_N} = e^{i\Omega t(\beta_N - \alpha_N)} \sum_{\{\alpha_n, \beta_n\}} \prod_{n=1}^N M_{\alpha_n}^{\alpha_{n-1}} M_{\beta_n}^{\beta_{n-1}*} \times \prod_{n'=1}^n e^{\mathcal{S}_{nn'}} \overline{\rho}_{\alpha_0\beta_0}(0)$$

Augmented Density Matrix & Paths

$$\Rightarrow \overline{\rho}_{\alpha_N\beta_N} = e^{i\Omega t(\beta_N - \alpha_N)} \sum_{\{\alpha_n, \beta_n\}} \prod_{n=1}^N M_{\alpha_n}^{\alpha_{n-1}} M_{\beta_n}^{\beta_{n-1}*} \times \prod_{n'=n-n_c}^n e^{S_{nn'}} \overline{\rho}_{\alpha_0\beta_0}(0)$$

Augmented Density Matrix & Paths

$$\Rightarrow \overline{\rho}_{\alpha_{N}\beta_{N}} = e^{i\Omega t(\beta_{N}-\alpha_{N})} \sum_{\{\alpha_{n},\beta_{n}\}} \prod_{n=1}^{N} M_{\alpha_{n}}^{\alpha_{n-1}} M_{\beta_{n}}^{\beta_{n-1}*} \times \prod_{n'=n-n_{c}}^{n} e^{S_{nn'}} \overline{\rho}_{\alpha_{0}\beta_{0}}(0)$$

 Introduce augmented density matrix R: (N. Makri and D. Makarov, J. Chem. Phys. 102, 4600 (1995))

 $R_n = T_{n,...,n-n_c-1} R_{n-1}$ Recurrence without memory

 Augmented density matrix is given as a function of paths, where at time step n each path is given as a sequence of the form (α_n,..., α_{n-n_c}, β_n,..., β_{n-n_c})

⇒ Each path is a sequence of the length $2(n_c + 1)$ ⇒ For a L-level system, there are $L^{2(n_c+1)}$ possible paths

Memory Depth & Convergence Properties

Memory depth is given by $n_c \varepsilon$ and has to be chosen sufficiently long:

Example: Temperature-dependence of the stationary offdiagonal element ρ_{01}

Long memory depths for

- low temperatures and
- weak fields

M. Glässl et al., PRB 84, 195311 (2011)

Specifics due to the superohmic Coupling

Comparison with exact long time asymptotics yields the constraint:

 $\sum_{n=0}^{n_c} \operatorname{Re}[K_n] = 0$

Specifics due to the superohmic Coupling

Comparison with exact long time asymptotics yields the constraint: $\sum_{n=0}^{n_c} \operatorname{Re}[K_n] = 0$

Example: Time dependence of the optical polarization after an ultrafast pulse

- Numerical results with enforcing the constraint are indistinguishable from analytical results
- Simulations without this constraint show qualitatively different long time asymptotics

A. Vagov et al., PRB 83, 094303 (2011)

Quantum kinetic density matrix approach:

- Set up Heisenberg equations of motion for $\langle dc \rangle$ and $\langle c^{\dagger}c \rangle$
- Equations contain single phonon assisted density matrices like $\langle c^{\dagger}c \; b_{\mathbf{q}} \rangle$
- Equations for single assisted quantities contain double assisted quantities, ...
 - \Rightarrow Infinite hierarchy of higher-order density matrix elements
 - \Rightarrow Truncate hierarchy by factorizing higher order terms on a chosen level

4th-Order correlation expansion:

- ullet Include all quantities with up to four operators like $\langle c^{\dagger}c~b_{\mathbf{q}}b_{\mathbf{q}'}\rangle$
- Factorize higher order assisted density matrices like $\langle c^{\dagger}c~b_{\mathbf{q}}b_{\mathbf{q}'}b_{\mathbf{q}''}\rangle$

F. Rossi and T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)

Path Integrals vs. 4th-Order Correlation Expansion

Increase coupling constants $|\gamma_q|^2$ by a factor α .

Correlation expansion breaks down at strong couplings and/or high T

M. Glässl et al., PRB 84, 195311 (2011)

Selected Results

Experimental Results: Pulsed Excitation

A. J. Ramsay et al., PRL $104,\,017402$ (2010)

A. J. Ramsay et al., PRL 105, 177402 (2010)

Damped oscillations with renormalized period

Excellent agreement with theoretical predictions!

- J. Förstner et al., PRL 91, 127401 (2003)
- A. Krügel et al., Appl. Phys. B: Lasers Opt. 81, 897 (2005)
- A. Vagov et al., PRL 98, 227403 (2007)

Constant Driving: Stationary Nonequilibrium

Constant Driving: Stationary Nonequilibrium

Long-time dynamics:

• positive detunings:

stationary occupation > 0.5

- negative detunings:
 - stationary occupation < 0.5

Constant Driving: Stationary Nonequilibrium

Long-time dynamics:

o positive detunings:

stationary occupation $> 0.5\,$

 negative detunings: stationary occupation < 0.5

What characterizes the stationary nonequilibrium state?

M. Glässl et al., PRB 84, 195311 (2011)

Coupling to a quantized light field instead of coupling to a classical field:

 $H = \hbar\omega_{x} |X\rangle \langle X| - \frac{\hbar g \left(a^{\dagger} |0\rangle \langle X| + a |X\rangle \langle 0|\right)}{|1\rangle \langle X|} + \sum_{\mathbf{q}} \hbar\omega_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} b_{\mathbf{q}} + \sum_{\mathbf{q}} \hbar \left(\gamma_{\mathbf{q}} b_{\mathbf{q}} + \gamma_{\mathbf{q}} b^{\dagger}_{\mathbf{q}}\right) |X\rangle \langle X|$

Coupling to a quantized light field instead of coupling to a classical field:

 $H = \hbar\omega_{x} |X\rangle \langle X| - \hbar g \left(a^{\dagger} |0\rangle \langle X| + a |X\rangle \langle 0| \right) + \sum_{\mathbf{q}} \hbar\omega_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} b_{\mathbf{q}} + \sum_{\mathbf{q}} \hbar \left(\gamma_{\mathbf{q}} b_{\mathbf{q}} + \gamma_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} \right) |X\rangle \langle X|$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Coupling to a quantized light field instead of coupling to a classical field:

 $H = \hbar\omega_{x} |X\rangle \langle X| - \hbar g \left(a^{\dagger} |0\rangle \langle X| + a |X\rangle \langle 0| \right) + \sum_{\mathbf{q}} \hbar\omega_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} b_{\mathbf{q}} + \sum_{\mathbf{q}} \hbar \left(\gamma_{\mathbf{q}} b_{\mathbf{q}} + \gamma_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} \right) |X\rangle \langle X|$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Coupling to a quantized light field instead of coupling to a classical field:

 $H = \hbar\omega_{x} |X\rangle \langle X| - \hbar g \left(a^{\dagger} |0\rangle \langle X| + a |X\rangle \langle 0| \right) + \sum_{\mathbf{q}} \hbar\omega_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} b_{\mathbf{q}} + \sum_{\mathbf{q}} \hbar \left(\gamma_{\mathbf{q}} b_{\mathbf{q}} + \gamma_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} \right) |X\rangle \langle X|$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Coupling to a quantized light field instead of coupling to a classical field:

 $H = \hbar\omega_{x} |X\rangle \langle X| - \hbar g \left(a^{\dagger} |0\rangle \langle X| + a |X\rangle \langle 0| \right) + \sum_{\mathbf{q}} \hbar\omega_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} b_{\mathbf{q}} + \sum_{\mathbf{q}} \hbar \left(\gamma_{\mathbf{q}} b_{\mathbf{q}} + \gamma_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} \right) |X\rangle \langle X|$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Acoustic phonon coupling strongly affects the dynamics, even at T = 0.

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

Initial cavity preparation: coherent state with $\langle n \rangle = 5$

A stronger light-matter coupling reduces the visibility of the revival for parameters usually accessible in experiments.

M. Glässl et al., PRB 86, 035319 (2012)

Exciton-Biexciton System: Relaxation Dynamics

Exciton-Biexciton System: Relaxation Dynamics

Polarization parameter $\gamma = f_{\sigma_+}/f_{\sigma_-}$

Exciton-Biexciton System: Relaxation Dynamics

Phonon induced damping strongly depends on the polarization although the carrier-phonon interaction is spin-independent!

M. Glässl et al., PRB 85, 195306 (2012), M. Glässl et al., to be published

Robust Biexciton Preparation via Adiabatic Rapid Passage

Excitation with a linearly polarized frequency-swept Gaussian pulse (chirp α):

$$dE = \frac{A}{\sqrt{2\pi\tau\tau_0}} \exp(-\frac{t^2}{2\tau^2}) \exp(-it(\omega_0 + at)) \quad \text{with} \quad a = \alpha/(\alpha^2 + \tau_0^4)$$
$$\tau = \sqrt{\alpha^2/\tau_0^2 + \tau_0^2}$$

Robust Biexciton Preparation via Adiabatic Rapid Passage

Excitation with a linearly polarized frequency-swept Gaussian pulse (chirp α): $dE = \frac{A}{\sqrt{2\pi\tau\tau_0}} \exp(-\frac{t^2}{2\tau^2}) \exp(-it(\omega_0 + at)) \quad \text{with} \quad a = \alpha/(\alpha^2 + \tau_0^4)$ $\tau = \sqrt{\alpha^2/\tau_0^2 + \tau_0^2}$

Robust Biexciton Preparation via Adiabatic Rapid Passage

Excitation with a linearly polarized frequency-swept Gaussian pulse (chirp α): $dE = \frac{A}{\sqrt{2\pi\tau\tau_0}} \exp(-\frac{t^2}{2\tau^2}) \exp(-it(\omega_0 + at)) \quad \text{with} \quad a = \alpha/(\alpha^2 + \tau_0^4)$

$$\Delta = \begin{bmatrix} 10 \\ 0.8 \\ 0.6 \\ 0.7 \\$$

High fidelity preparation only for low temperatures and positive chirps.

M. Glässl et al., to be published

 $\tau = \sqrt{\alpha^2 / \tau_0^2 + \tau_0^2}$

- Acoustic phonons strongly affect the dynamics of driven quantum dots
- Phonons mostly hinder but can sometimes also enable control schemes

- Real-time path integrals allow for numerically exact calculations
- Method is applicable for an almost unlimited parameter range
- Low-temperature studies are numerically most demanding
- Numerical effort rises drastically with the number of electronic levels
- Superohmic coupling requires a special treatment