Ultrafast relaxation dynamics in graphene

Impact of carrier-phonon and carrier-carrier scattering

Ermin Malić, Torben Winzer, and Andreas Knorr

Technische Universität Berlin, Department for Theoretical Physics

CECAM workshop on vibrational coupling, Lausanne, November 9, 2012

Motivation

- Density matrix formalism offers microscopic access to non-equilbirium dynamics after a short-pulse excitation
- It is possible to track the way of excited carriers down to equilibrium resolved in time, energy, and momentum

Carbon nanostructures

A. K. Geim and K. S. Novoselov, Nature Materials 6, 183 (2007)

Graphene

- **Graphene** is an ideal 2-dim structure to study relaxation dynamics due to its **zero-bandgap** and **linear dispersion**
- Microscopic insights are crucial for graphene-based applications

Relaxation channels

Carrier-carrier scattering

Carrier-phonon scattering

- Intra- and interband scattering channels are important
- Auger processes need to be taken into account
- Intervalley scattering via optical K phonons is efficient

Theoretical approach

Microscopic quantities

- Microscopic polarization (transition probability) $p_{k}(t) = \langle a_{ck}^{+} a_{vk} \rangle$
- Occupation probability

 $\rho_{\mathbf{k}}^{\lambda}(t) = \langle a_{\lambda \mathbf{k}}^{+} a_{\lambda \mathbf{k}} \rangle$

Phonon occupation

$$n_{\boldsymbol{q}}^{j}(t) = \langle b_{j\boldsymbol{q}}^{+}b_{j\boldsymbol{q}}\rangle$$

- Second quantization with creation and annihilation operators a^+ , a and b^+ , b
- Temporal evolution of quantity O(t) is determined via Heisenberg equation of motion $i\hbar \frac{d}{dt}O(t) = [O(t)]H_- \leftarrow$ Hamilton operator

Graphene Bloch equations $\dot{\rho}_{k}^{\lambda}, \dot{p}_{k}, \dot{n}_{q}^{j}$

Hamilton operator

$$H = H_0 + \frac{H_{c-l}}{H_{c-l}} + \frac{H_{c-c}}{H_{c-ph}}$$

.

 $\begin{aligned} & \text{free-particle carrier-light interaction} & \text{carrier-carrier interaction} \\ & = \sum_{l} \varepsilon_{l} a_{l}^{+} a_{l}^{-} + \frac{i e_{0} \hbar}{m_{0}} \sum_{l,l'} M_{l,l} \cdot A(t) a_{l}^{+} a_{l'}^{-} + \frac{1}{2} \sum_{l_{1},l_{2},l_{3},l_{4}} V_{l_{3},l_{4}}^{l_{1},l_{2}} a_{l_{1}}^{+} a_{l_{2}}^{+} a_{l_{4}} a_{l_{3}} \\ & + \sum_{i} \hbar \omega_{i} b_{i}^{+} b_{i}^{-} + \sum_{l,l'} \sum_{i} (g_{l,l'}^{i}) a_{l}^{+} b_{i}^{-} a_{l'}^{-} + h.c.) \end{aligned}$

The required band structure and matrix elements
are calculated with tight-binding wave functions
$$\psi_{k}^{\lambda}(r) = C_{k,A}^{\lambda} \Phi_{k,A}(r) + C_{k,B}^{\lambda} \Phi_{k,B}(r)$$
$$\Phi_{k,i}(r) = \frac{1}{\sqrt{N}} \sum_{R_{j}} e^{ik \cdot R_{j}} \phi_{j}(r - R_{j})$$
with 2p_z-orbital functions $\phi_{j}(r - R_{j})$
$$|\mathbf{a}_{i}| = a_{0}$$
$$|\mathbf{b}_{i}| = \frac{a_{0}}{\sqrt{3}}$$

Band structure

- Solution of the Schrödinger equation $H\psi_k^{\lambda}(r) = \varepsilon_k^{\lambda}\psi_k^{\lambda}(r)$ gives the **eigenfunction** $\psi_k^{\lambda}(r)$ including the coefficients $C_{k,i}^{\lambda}$ and the eigenvalues ε_k^{λ}
- Considering contributions of **nearest-neighbor** carbon atoms yields:

$$\left[egin{array}{c} \epsilon^{\lambda}_{m k} = pprox \pm \hbar
u_F |m k| \end{array}
ight]$$

with the Fermi velocity $v_F \approx c/300$, which can be extracted from experiment

Optical matrix element

• The optical matrix element $M_{l,l'} = \langle \Psi_l(r) | \nabla | \Psi_{l'}(r) \rangle$ can be analytically evalutated within the **nearest-neighbor tight-binding** approximation:

$$\boldsymbol{M}_{\boldsymbol{k},\boldsymbol{k'}}^{\lambda\lambda'} = \delta_{\boldsymbol{k},k'} \frac{M}{|\boldsymbol{e}(\boldsymbol{k})|} \Re \boldsymbol{e} \left[\boldsymbol{e}^*(\boldsymbol{k}) \sum_{i=1}^3 \boldsymbol{e}^{i\boldsymbol{k}\cdot\boldsymbol{b}_i} \frac{\boldsymbol{b}_i}{|\boldsymbol{b}_i|} \right]$$

- Carrier-light coupling is strongly anisotropic around the Dirac point
- Maximal carrier-light interaction is found at the M point (saddle point)

Coulomb matrix element

• The Coulomb matrix element reads (with compound indices $l_i = k_i$, λ_i)

$$V_{l_{3},l_{4}}^{l_{1},l_{2}} = \int d\mathbf{r} \int d\mathbf{r}' \Psi_{l_{1}}^{*}(\mathbf{r}) \Psi_{l_{2}}^{*}(\mathbf{r}') V(\mathbf{r}-\mathbf{r}') \Psi_{l_{4}}(\mathbf{r}') \Psi_{l_{3}}(\mathbf{r})$$

• Within the nearest-neighbor tight-binding approximation, we obtain

$$V_{l_{3},l_{4}}^{l_{1},l_{2}} = \frac{e_{o}^{2}}{2\varepsilon_{0}q} \left[\left(\frac{q \, a_{B}}{Z_{eff}} \right)^{2} + 1 \right]^{-6} \alpha_{l_{3},l_{4}}^{l_{1},l_{2}} \underbrace{\delta_{q,k_{3}-k_{1}}\delta_{q,k_{4}-k_{2}}}_{\mathbf{k}_{3},l_{4}} \leftarrow \frac{\mathsf{momentum}}{\mathsf{conservation}}$$

with TB-coefficients $\alpha_{l_{3},l_{4}}^{l_{1},l_{2}} = \frac{1}{4} \left(1 + c_{\lambda_{1}\lambda_{3}} \frac{e^{*}(k_{1})e(k_{3})}{|e^{(k_{1})}e(k_{3})|} \right) \left(1 + c_{\lambda_{2}\lambda_{4}} \frac{e^{*}(k_{2})e(k_{4})}{|e^{(k_{2})}e(k_{4})|} \right)$

- Coulomb processes with large momentum transfer are strongly suppressed (decay scales with $1/q^{13}$)
- Coulomb interaction $V \propto 1 \pm e^{i\Delta\phi}$ prefers parallel intraband scattering along the Dirac cone

Carrier-phonon matrix element

- Focus on strongly coupling optical phonons (ΓLO, ΓΤΟ, Κ)
- Carrier-phonon matrix elements $g_{q,j}^{kk',\lambda\lambda'} = \langle \Psi_{k,\lambda}(r) \mid \Delta V_{q,\gamma} \mid \Psi_{k',\lambda'}(r) \rangle$ can be expressed as (Mauri et al.): $|kk',\lambda\lambda'|^2 = a_0\sqrt{3} \approx 2(1 + \lambda\lambda') = (1 + \lambda\lambda')$

$$|g_{\boldsymbol{q}\Gamma j}^{\boldsymbol{k}\boldsymbol{k}',\lambda\lambda'}|^{2} = \frac{a_{0}\sqrt{3}}{2A}g_{\Gamma}^{2}\left(1+c_{j}^{\lambda\lambda'}\cos(\phi+\phi')\right)$$
$$|g_{\boldsymbol{q}K}^{\boldsymbol{k}\boldsymbol{k}',\lambda\lambda'}|^{2} = \frac{a_{0}\sqrt{3}}{2A}\tilde{g}_{K}^{2}\left(1-c_{K}^{\lambda\lambda'}\cos(\phi-\phi')\right)$$

with $\tilde{g}_{\Gamma}^2 = 0.0405 eV^2, \tilde{g}_K^2 = 0.0994 eV^2$

J. Maultsch et al., PRL 92, 75501 (2004)

which can be extracted from experiment exploiting Kohn anomalies

Phonon-induced intra- (λ = λ[`]) and interband (λ ≠ λ[`]) scattering shows a distinct angle-dependence for different phonon modes

S. Piscanec et al., PRL 93, 185503 (2004)

Correlation expansion

- Hamilton operator H is known \rightarrow derivation of **Bloch equations** $\dot{\rho}_{k}^{\lambda}, \dot{p}_{k}, \dot{n}_{q}^{j}$ applying the Heisenberg equation $i\hbar\dot{\rho}_{k}^{\lambda} = [\rho_{k}^{\lambda}, H]_{-}$
- Many-particle interaction leads to a hierarchy problem (system of equations is not closed)

$$\frac{d}{dt} \langle a_1^+ a_2 \rangle \propto \langle a_A^+ a_B^+ a_C^- a_D \rangle$$
$$\frac{d}{dt} \langle a_A^+ a_B^+ a_C^- a_D \rangle \propto \langle a_1^+ a_2^+ a_3^+ a_4^- a_5^- a_6^- \rangle \dots$$

Solution by applying the correlation expansion and systematic truncation
 Example: Hartree-Fock factorization (single-particle quantities only)

$$\langle a_A^+ a_B^+ a_C^- a_D^- \rangle = \langle a_A^+ a_D^- \rangle \langle a_B^+ a_C^- \rangle - \langle a_A^+ a_C^- \rangle \langle a_B^+ a_D^- \rangle + \langle a_A^+ a_B^+ a_C^- a_D^- \rangle^{\alpha}$$

-> closed system of equations (already sufficient for description of excitons)

Markov approximation

• For description of scattering processes, dynamics of two-particle quantities is necessary $\sigma_{ABCD} = \langle a_A^+ a_B^+ a_C a_D \rangle$ (second-order Born)

$$\frac{d}{dt}\sigma_{ABCD}(t) = \frac{i}{\hbar}\Delta\varepsilon \ \sigma_{ABCD}(t) + \frac{i}{\hbar}Q(t) - \gamma \ \sigma_{ABCD}(t)$$

with the scattering term Q(t) including only single-particle quantities

- Für 2-dim systems, such as graphene with $A = (k_x, k_{y_1}\lambda)$, the evaluation of equations is a **numerical challenge** (memory, CPU time)
- Markov approximation neglects quantum-kinetic memory effects:

$$\sigma_{ABCD}(t) = \frac{i}{\hbar} \int_{-\infty}^{\infty} e^{\left(\frac{i}{\hbar}\Delta\varepsilon + \gamma\right)s} Q(t \not) ds \approx -i\pi Q(t) \,\delta\left(\Delta\varepsilon\right) \quad (\gamma \to 0)$$

closed system of equations

 Dynamics of carriers, phonons, and microscopic polarization within second order Born-Markov approximation

$$\dot{\rho}_{\mathbf{k}}^{\lambda}(t) = 2\mathrm{Im}\left(\Omega_{\mathbf{k}}^{*}(t)\mathbf{p}_{\mathbf{k}}(t)\right) + \Gamma_{\mathbf{k},\lambda}^{in}(t)\left(1 - \rho_{\mathbf{k}}^{\lambda}(t)\right) - \Gamma_{\mathbf{k},\lambda}^{out}(t)\rho_{\mathbf{k}}^{\lambda}(t)$$
$$\dot{p}_{\mathbf{k}}(t) = -i\omega_{\mathbf{k}}p_{\mathbf{k}}(t) - i\Omega_{\mathbf{k}}(t)\left(\rho_{\mathbf{k}}^{c}(t) - \rho_{\mathbf{k}}^{v}(t)\right) - \gamma_{2,\mathbf{k}}(t)p_{\mathbf{k}}(t) + \tilde{\gamma}_{2,\mathbf{k}'}(t)$$
$$\dot{n}_{\mathbf{q}}^{j}(t) = \Gamma_{j,\mathbf{q}}^{out}(t)\left(n_{\mathbf{q}}^{j}(t) + 1\right) - \Gamma_{j,\mathbf{q}}^{in}(t)n_{\mathbf{q}}^{j}(t) - \gamma_{j}(n_{\mathbf{q}}^{j}(t) - n_{0})$$
$$H = H_{0} + H_{c-1} + H_{c-c} + H_{c-nh}$$

Carrier-light coupling describes the generation of optically excited
 non-equilibrium carrier distribution

Nano Lett. 10, 489 (2010); PRB 84, 205406 (2011)

 Dynamics of carriers, phonons, and microscopic polarization within second order Born-Markov approximation:

$$\dot{\rho}_{\mathbf{k}}^{\lambda}(t) = 2\mathrm{Im}\left(\Omega_{\mathbf{k}}^{*}(t)\mathbf{p}_{\mathbf{k}}(t)\right) + \Gamma_{\mathbf{k},\lambda}^{in}(t)\left(1 - \rho_{\mathbf{k}}^{\lambda}(t)\right) - \Gamma_{\mathbf{k},\lambda}^{out}(t)\rho_{\mathbf{k}}^{\lambda}(t)$$
$$\dot{p}_{\mathbf{k}}(t) = -i\omega_{\mathbf{k}}p_{\mathbf{k}}(t) - i\Omega_{\mathbf{k}}(t)\left(\rho_{\mathbf{k}}^{c}(t) - \rho_{\mathbf{k}}^{v}(t)\right) - \gamma_{2,\mathbf{k}}(t)p_{\mathbf{k}}(t) + \tilde{\gamma}_{2,\mathbf{k}'}(t)$$
$$\dot{n}_{\mathbf{q}}^{j}(t) = \Gamma_{j,\mathbf{q}}^{out}(t)\left(n_{\mathbf{q}}^{j}(t) + 1\right) - \Gamma_{j,\mathbf{q}}^{in}(t)n_{\mathbf{q}}^{j}(t) - \gamma_{j}(n_{\mathbf{q}}^{j}(t) - n_{0})$$

• Time-, momentum-, and angle-resolved Coulomb and phonon scattering rates $\Gamma_{\boldsymbol{k},\lambda}^{in} = \Gamma_{\boldsymbol{k},\lambda}^{in,cc} + \Gamma_{\boldsymbol{k},\lambda}^{in,cp}$

$$\Gamma_{\boldsymbol{k},\lambda}^{in,cc} = \frac{2\pi}{\hbar} \sum_{\boldsymbol{l}_1,\boldsymbol{l}_2,\boldsymbol{l}_3} W_{\boldsymbol{l}_2\,\boldsymbol{l}_3}^{\boldsymbol{k}\lambda\,\boldsymbol{l}_1\,\boldsymbol{*}} (2W_{\boldsymbol{l}_2\,\boldsymbol{l}_3}^{\boldsymbol{k}\lambda\,\boldsymbol{l}_1\,\boldsymbol{*}} - W_{\boldsymbol{l}_3\,\boldsymbol{l}_2}^{\boldsymbol{k}\lambda\,\boldsymbol{l}_1\,\boldsymbol{*}}) \rho_{\boldsymbol{l}_2}\rho_{\boldsymbol{l}_3} (1-\rho_{\boldsymbol{l}_1})\delta(\varepsilon_{\boldsymbol{k}\lambda} + \varepsilon_{\boldsymbol{l}_1} - \varepsilon_{\boldsymbol{l}_2} - \varepsilon_{\boldsymbol{l}_3})$$

screened Coulomb matrix elements Pauli blocking

Nano Lett. 10, 489 (2010); PRB 84, 205406 (2011)

 Dynamics of carriers, phonons, and microscopic polarization within second order Born-Markov approximation:

$$\dot{\rho}_{\mathbf{k}}^{\lambda}(t) = 2\mathrm{Im}\left(\Omega_{\mathbf{k}}^{*}(t)\mathbf{p}_{\mathbf{k}}(t)\right) + \Gamma_{\mathbf{k},\lambda}^{in}(t)\left(1 - \rho_{\mathbf{k}}^{\lambda}(t)\right) - \Gamma_{\mathbf{k},\lambda}^{out}(t)\rho_{\mathbf{k}}^{\lambda}(t)$$
$$\dot{p}_{\mathbf{k}}(t) = -i\omega_{\mathbf{k}}p_{\mathbf{k}}(t) - i\Omega_{\mathbf{k}}(t)\left(\rho_{\mathbf{k}}^{c}(t) - \rho_{\mathbf{k}}^{v}(t)\right) - \gamma_{2,\mathbf{k}}(t)p_{\mathbf{k}}(t) + \tilde{\gamma}_{2,\mathbf{k}'}(t)$$
$$\dot{n}_{\mathbf{q}}^{j}(t) = \Gamma_{j,\mathbf{q}}^{out}(t)\left(n_{\mathbf{q}}^{j}(t) + 1\right) - \Gamma_{j,\mathbf{q}}^{in}(t)n_{\mathbf{q}}^{j}(t) - \gamma_{j}(n_{\mathbf{q}}^{j}(t) - n_{0})$$

• Time-, momentum-, and angle-resolved Coulomb and phonon scattering rates $\Gamma_{\boldsymbol{k},\lambda}^{in} = \Gamma_{\boldsymbol{k},\lambda}^{in,cc} + \Gamma_{\boldsymbol{k},\lambda}^{in,cp}$ $\Gamma_{\boldsymbol{k},\lambda}^{in,cp} = \sum |g_{\boldsymbol{q},j}^{\boldsymbol{k}\boldsymbol{k}',\lambda\lambda'}|^2 f_{\boldsymbol{k}+\boldsymbol{q}}^{\lambda'} \Big((n_{\boldsymbol{q}}^j+1)\delta(\varepsilon_{\boldsymbol{k}+\boldsymbol{q},\lambda'}-\varepsilon_{\boldsymbol{k},\lambda}-\hbar\omega_{\boldsymbol{q},j}) + n_{\boldsymbol{q}}^j \delta(\varepsilon_{\boldsymbol{k}+\boldsymbol{q},\lambda'}-\varepsilon_{\boldsymbol{k},\lambda}) \Big)$

$$\sum_{\boldsymbol{q},\boldsymbol{\lambda},\boldsymbol{\lambda}}^{n,cp} = \sum_{\boldsymbol{q},\boldsymbol{j},\boldsymbol{\lambda}'} |g_{\boldsymbol{q},\boldsymbol{j}}^{\boldsymbol{k}\boldsymbol{k}',\boldsymbol{\lambda}\boldsymbol{\lambda}'}|^2 f_{\boldsymbol{k}+\boldsymbol{q}}^{\boldsymbol{\lambda}'} \left((n_{\boldsymbol{q}}^{j}+1)\delta(\varepsilon_{\boldsymbol{k}+\boldsymbol{q},\boldsymbol{\lambda}'}-\varepsilon_{\boldsymbol{k},\boldsymbol{\lambda}}-\hbar\omega_{\boldsymbol{q},\boldsymbol{j}}) + n_{\boldsymbol{q}}^{j}\delta(\varepsilon_{\boldsymbol{k}+\boldsymbol{q},\boldsymbol{\lambda}'}-\varepsilon_{\boldsymbol{k},\boldsymbol{\lambda}}+\hbar\omega_{\boldsymbol{q},\boldsymbol{j}}) \right)$$
phonon emission phonon absorption

Nano Lett. 10, 489 (2010); PRB 84, 205406 (2011)

\

 Dynamics of carriers, phonons, and microscopic polarization within second order Born-Markov approximation:

$$\dot{\rho}_{\mathbf{k}}^{\lambda}(t) = 2 \mathrm{Im} \left(\Omega_{\mathbf{k}}^{*}(t) \mathbf{p}_{\mathbf{k}}(t) \right) + \Gamma_{\mathbf{k},\lambda}^{in}(t) \left(1 - \rho_{\mathbf{k}}^{\lambda}(t) \right) - \Gamma_{\mathbf{k},\lambda}^{out}(t) \rho_{\mathbf{k}}^{\lambda}(t)$$
$$\dot{p}_{\mathbf{k}}(t) = -i \omega_{\mathbf{k}} p_{\mathbf{k}}(t) - i \Omega_{\mathbf{k}}(t) \left(\rho_{\mathbf{k}}^{c}(t) - \rho_{\mathbf{k}}^{v}(t) \right) - \gamma_{2,\mathbf{k}}(t) p_{\mathbf{k}}(t) + \tilde{\gamma}_{2,\mathbf{k}'}(t)$$
$$\dot{n}_{\mathbf{q}}^{j}(t) = \Gamma_{j,\mathbf{q}}^{out}(t) \left(n_{\mathbf{q}}^{j}(t) + 1 \right) - \Gamma_{j,\mathbf{q}}^{in}(t) n_{\mathbf{q}}^{j}(t) - \gamma_{j}(n_{\mathbf{q}}^{j}(t) - n_{0})$$

- Time-, momentum-, and angle-resolved Coulomb and phonon scattering rates $\Gamma_{k,\lambda}^{in} = \Gamma_{k,\lambda}^{in,cc} + \Gamma_{k,\lambda}^{in,cp}$
- **Diagonal** and **off-diagonal dephasing** of the microscopic polarization

$$\gamma_{2,\boldsymbol{k}}(t) = \frac{1}{2} \sum_{\lambda} \left(\Gamma_{\boldsymbol{k},\lambda}^{in}(t) + \Gamma_{\boldsymbol{k},\lambda}^{out}(t) \right), \ \tilde{\gamma}_{2,\boldsymbol{k}}(t) = \sum_{\boldsymbol{k}'} \left(T_{\boldsymbol{k}\boldsymbol{k}'}^{a}(t) p_{\boldsymbol{k}'}(t) + T_{\boldsymbol{k}\boldsymbol{k}'}^{b}(t) p_{\boldsymbol{k}'}^{*}(t) \right)$$

Nano Lett. 10, 489 (2010); PRB 84, 205406 (2011)

Outline

- Anisotropy, thermalization, and cooling
- Auger-induced carrier multiplication
- Transient optical gain

Generation of a non-equilibrium

- Optical excitation according to a recent experiment (T. Elsaesser, MBI Berlin):
 - pulse width 10 fs
 - excitation energy 1.5 eV
 - pump fluence 1 µJcm⁻²
 - linear polarization (x-axis)

Generation of a non-equilibrium

- Optical excitation according to a recent experiment (T. Elsaesser, MBI Berlin):
 - pulse width 10 fs
 - excitation energy 1.5 eV
 - pump fluence 1 µJcm⁻²
 - linear polarization (x-axis)
- Generation of an anisotropic
 non-equilibrium carrier distribution
- Maximal occupation perpendicular to polarization of excitation pulse (90°)
- Origin lies in the anisotropy of the carrier-light coupling element

Anisotropic non-equilibrium

• Generation of an **anisotropic non**equilibrium carrier distribution

Orientational relaxation

 (t_0)

 $\rho_{k,\,\phi}$

 Generation of an anisotropic nonequilibrium carrier distribution

- Orientational relaxation accounts for isotropy already after 50 fs
 - Good agreement with recent experiments (H. Kurz, RWTH Aachen A. Hartschuh, LMU München)

APL , *in print* (2012)

Carrier-carrier vs. carrier-phonon

Different phonon modes

 $\mathbf{q_p} \parallel \mathbf{k}$: parallel scattering with $q_p = \frac{\omega_{\Gamma LO}}{\nu_F}$ (conserves anisotrop)

- **FLO phonons** prefer **intraband** scattering across the Dirac cone with $q > q_p$
 - → isotropic carrier distribution

- **FLO phonons** prefer **intraband** scattering across the Dirac cone with $q > q_p$
 - → isotropic carrier distribution

- **FLO phonons** prefer **intraband** scattering across the Dirac cone with $q > q_p$
 - → isotropic carrier distribution
- Interband processes with $q < q_p$ important at later times (carrier recombination)

- **ΓTO phonons** strongly prefer **parallel scattering** along the Dirac cone conserving the initial **anisotropy**
- They contribute to an ultrafast carrier thermalization and cooling

Phonons account for isotropy

- **Carrier-phonon** coupling is **efficient** for scattering **across** the Dirac cone $\Delta \phi \neq 0$
 - → isotropic distribution
- Carrier-carrier and carrier-phonon channels in competition for scattering along the Dirac cone $\Delta \phi = 0$

• Significant relaxation takes place already during the excitation pulse

- Significant relaxation takes place already during the excitation pulse
- Carrier-carrier and carrier-phonon scattering are in direct competition

- Significant relaxation takes place already during the excitation pulse
- Carrier-carrier and carrier-phonon scattering are in direct competition
- Thermalized distribution reached within the first 50-100 fs

Carrier cooling

- Carrier cooling takes place on a picosecond time scale
- **Optical phonons** (in particular ΓLO, ΓTO and *K* phonons) are more **efficient** than acoustic phonons

Carrier dynamics

Carrier dynamics is characterized by **two processes**:

 Carrier-carrier and carrier-phonon scattering leads to thermalization on fs time scale

Phonon-induced carrier cooling occurs on ps time scale

PRB 84, 205406 (2011) Nano Lett. 10, 4839 (2010)

Experiment in the infrared regime

- High-resolution pump-probeexperiment to measure differential transmission in graphene
- Excitation energy in the infrared region at 1.5 eV
- Temporal resolution is 10 fs
- Initial increase of transmission is due to the **absorption bleaching**
- Flowing decay is characterized by two time constants:

$$T_1 = 140 \text{ fs}; T_2 = 0.8 \text{ ps}$$

T. Elsaesser (Max-Born Institut, Berlin)

PRB 83, 153410 (2011)

Theory-experiment comparison

- Theory is in good agreement with experiment:

 *τ*₁ corresponds to thermalization, *τ*₂ described carrier cooling
- Observed negative DTS still under debate in literature

Challenge: Impact of the substrate

PRB 83, 153410 (2011)

- Anisotropy, thermalization, and cooling
- Auger-induced carrier multiplication
- Transient optical gain

Auger scattering

• Auger scattering changes the number of charge carriers in the system

Inverse Auger recombination or **impact ionization (II)**

gained electron in cond. band gained hole in valence band

Impact ionization

• Auger scattering changes the number of charge carriers in the system

• In **conventional semiconductors** (band gap, parabolic band structure) Auger scattering is **inefficient** due to energy and momentum conservation

And in graphene?

Carrier density

• Carrier density increases during the excitation pulse

 Auger scattering leads to carrier multiplication (CM)

 Auger scattering leads to carrier multiplication (CM)

- Auger scattering leads to carrier multiplication (CM)
- Asymmetry between II and AR in favor of impact ionization (II)

Impact of phonons

 Carrier-phonon scattering reduces CM on a ps time scale

- Auger scattering leads to carrier multiplication (CM)
- Asymmetry between II and AR in favor of impact ionization (II)

- Carrier multiplication shows a clear dependence on the pump fluence
- Two regions with CM > 1 and CM < 1 with **phonon-induced cross-over**

→ Experimental confirmation of CM by Kurz (RWTH Aachen)

PRB Rapid 85, 241404(R) (2012)

Outline

- Anisotropy, thermalization, and cooling
- Auger-induced carrier multiplication
- Transient optical gain

Transient population inversion

- Population inversion occurs in the high-excitation regime (>0.2 mJcm⁻²)
- Spectrally and temporally limited depending on pump fluence

Transient population inversion

- For a pump fluence of 2.5 mJcm⁻², population inversion found in the first 300 fs up to a carrier energy of 400 meV
 - → Good agreement with a recent experiment: *PRL 108, 167401 (2012)*

Optical gain manifested in **negative conductivity** (fluences > 2 mJcm⁻², first 200 fs, energy up to 550 meV)

arXiv: 1209.4833 (2012)

Impact of phonons

- For a pump fluence of 2.5 mJcm⁻², population inversion found in the first 300 fs up to a carrier energy of 400 meV
- Intraband scattering with phonons plays a crucial role: the gain region is strongly reduced without phonons

arXiv: 1209.4833 (2012)

Microscopic mechanism

arXiv: 1209.4833 (2012)

Relaxation dynamics in graphene

Future challenges

 Non-Markov relaxation dynamics including quantum-kinetic memory effects

Calculations for CNTs reveal **oscillations** in occupation

- Impact of the substrate is unknown and so far widely neglected in literature
- Number of relaxation channels strongly reduced close to Dirac point Prediction of "supercollisions": disorder-assisted carrier-phonon scattering

