Elastic and Inelastic Electron-Phonon Scattering in Quantum Dots

Oleg Prezhdo **U.** Rochester

CECAM

Electron-Phonon Dynamics in QDs

<u>Elastic</u>

Luminescence linewidths Coherences between single and multiple excitons, etc. Semiclassical corrections to quantum-classical simulations

<u>Inelastic</u>

Charge cooling Phonon-assisted Auger processes Electron transfer from QD to TiO₂ Photochemistry on QD surface (e.g. water splitting)

We study these processes in other nanoscale materials as well

Outline

Nonadiabatic Molecular Dynamics with TDDFT

- Quantum-classical approximations
- Decoherence & zero-point energy corrections

Quantum Dots

- Electron-Phonon Relaxation & Phonon Bottleneck
- Multiple Exciton Generation and Recombination

Nonadiabatic Molecular Dynamics

Nonadiabatic MD: Coupling between potential surfaces opens channels for system to change electronic states.

electrons treated quantum-mechanically

nuclei treated classically

Time-Domain DFT for Nonadiabatic Molecular Dynamics

Electron density derives from Kohn-Sham orbitals $\rho(x) = \sum_{p} |\varphi_{p}(x)|^{2} \qquad |\Psi\rangle = |\varphi_{p}(x_{1},t)\varphi_{q}(x_{2},t)\dots\varphi_{v}(x_{N},t)\rangle_{SD}$ DFT functional *H* depends on nuclear evolution *R*(*t*) Variational principle gives $i\hbar \frac{\partial \varphi_p(x,t)}{\partial t} = H\varphi_p(x,t) \quad p = 1,2...$ **Orbitals are expanded in adiabatic KS basis** $\varphi_p(x,t) = \sum c_p^{\alpha}(t) \chi^{\alpha}(x)$ $H(x;R(t))\chi^{\alpha}(x;R(t)) = \varepsilon^{\alpha}(R(t))\chi^{\alpha}(x;R(t))$ $i\hbar c^{\alpha} = \sum_{\beta} c^{\beta} \left(\varepsilon^{\beta} \delta_{\alpha\beta} - i\hbar \left\langle \chi^{\alpha} \left| \overrightarrow{\nabla}_{R} \right| \chi^{\beta} \right\rangle \cdot \overrightarrow{R} \right)$

Time-Domain DFT in Many-Body Kohn-Sham Basis

C. Craig, W. Duncan, O. V. Prezhdo Phys. Rev. Lett. 95, 163001 (2005)

Need to define states to hop between

$$|\varphi_{a}\varphi_{b}\cdots\varphi_{p}\rangle = \sum_{\substack{j\neq k\neq\cdots\neq l}}^{N_{e}} C_{j\cdots l}(t) |\tilde{\varphi}_{j}\tilde{\varphi}_{k}\cdots\tilde{\varphi}_{l}\rangle$$

$$i\hbar\frac{\partial}{\partial t}C_{q\cdots v}(t) = \sum_{a\cdots p}^{N_{e}} C_{a\cdots p}(t)[E_{q\cdots v}\delta_{aq}\cdots\delta_{pv}$$

$$+ \mathbf{D}_{a\cdots p;q\cdots r}\cdot\dot{\mathbf{R}}].$$

$$\mathbf{D}_{a\cdots p;q\cdots r}\cdot\dot{\mathbf{R}} = -i\hbar\langle\tilde{\varphi}_{a}\tilde{\varphi}_{b}\cdots\tilde{\varphi}_{p}|\frac{\partial}{\partial t}|\tilde{\varphi}_{q}\tilde{\varphi}_{r}\cdots\tilde{\varphi}_{v}\rangle$$

non-zero only if different in one orbital

Why KS Representation Works

S. Fischer, B. Habenicht, A. Madrid, W. Duncan, O. V. Prezhdo, J. Chem. Phys. **134**, 024102 (2011)

- 1. KS excitations close to LR/TDDFT (in contrast to HF and CIS)
- 2. Typically, no bond-breaking, conformational changes, etc.
- 3. Many-electron systems, single excitation is a small perturbation
- 4. Averaging over many initial conditions and pathways

Silicon Quantum Dot

S. Fischer, B. Habenicht, A. Madrid, W. Duncan, O. V. Prezhdo, J. Chem. Phys. **134**, 024102 (2011)

Silicon Quantum Dot

S. Fischer, B. Habenicht, A. Madrid, W. Duncan, O. V. Prezhdo, J. Chem. Phys. **134**, 024102 (2011)

Silicon Quantum Dot

S. Fischer, B. Habenicht, A. Madrid, W. Duncan, O. V. Prezhdo, J. Chem. Phys. **134**, 024102 (2011)

$$P_{i \to j} = \exp\left[-\frac{4}{3}\frac{U_{ij}}{\hbar}\left(\frac{2U_{ij}}{d^2U_{ij}/dt^2}\right)^{1/2}\right]$$

W. H. Miller, T. F. George, *J. Chem. Phys.* **56**, 5637 (1972)

$$P_{i \to j}^{tot} = 1 - \prod_{n} (1 - P_{n,i \to j})$$

	KS/B3LYP			LR/B3LYP		
Fransition S ₂ –S ₁	Probabilities (Time, fs)		Total	Probabilities (Time, fs)		Total
	0.887	0.766	0.974	0.981	0.946	0.999
	(1526)	(1569)		(1535)	(1576)	
S_3-S_2	0.572		0.572	0.851	0.850	0.978
	(1541)			(1536)	(1589)	
S_4-S_3	0.709	0.759	0.930	0.965	0.402	0.979
	(1546)	(1576)		(1531)	(1579)	
S_5-S_4	0.936	0.713	0.982	0.955	0.925	0.997
	(1536)	(1575)		(1536)	(1576)	
S_6-S_5	0.961	0.477	0.980	0.967	0.892	0.996
	(1533)	(1574)		(1534)	(1565)	
S7-S6	0.484		0.484	0.580	0.993	0.997
	(1550)			(1549)	(1581)	
S_8-S_7	0.906		0.906	0.867		0.867
	(1536)			(1534)		
S_9-S_8	0.830	0.887	0.981	0.897	0.803	0.980
	(1543)	(1572)		(1539)	(1587)	
$S_{10} - S_9$	0.894	0.674	0.966	0.963	0.495	0.981
	(1521)	(1576)		(1518)	(1576)	

Theoretical Questions our group is interested in

✓ How to couple quantum and classical dynamics? quantum influence on classical trajectory

✓ Can one do better than classical mechanics for nuclear motion? zero-point motion, tunneling, branching, loss of coherence

Quantum-Classical Lie Bracket

O. V. Prezhdo, V. V. Kisil *Phys. Rev. A* 56 162 (1997)
O. V. Prezhdo *J. Chem. Phys.* 124 201104 (2006)

$$[A,B]_{qc} = -\frac{i}{\hbar}[A,B] + \frac{1}{2}(\{A,B\} - \{B,A\})$$

quantum commutator + classical Poisson bracket

problems with Jacobi identity:

$$[[A,B]_{qc},C]_{qc} + [[B,C]_{qc},A]_{qc} + [[C,A]_{qc},B]_{qc} = 0$$

Practical solution: derive everything quantum mechanically, take classical limit at the end

Ehrenfest (mean-field)

time-dependent Hellmann-Feynman theorem gives Newton equation

Bohmian Quant.-Class. Mechanics

C. Brooksby, O. V. Prezhdo Phys. Rev. Lett. 86, 3215 (2001); ibid 90, 118902 (2003)

 $\psi(x,t) = \sqrt{\rho(x,t)}e^{iS(x,t)/\hbar}$ gives Newton eq. $m\ddot{x} = -\nabla_r [V(x) + Q(x)]$ with non-local quantum potential $Q(x) = -\frac{\hbar^2}{2m} \frac{\nabla_x^2 \sqrt{\rho(x)}}{\sqrt{\rho(x)}}$

Quantum (x) – Classical (R) $M\ddot{R} = -\nabla_R [V_R(R) + V_{xR}(x, R)] \quad \text{drop } Q(R)$ $m\ddot{x} = -\nabla_x [V_x(x) + V_{xR}(x, R) + Q(x)]$

Bohmian Quant.-Class. Mechanics

C. Brooksby, O. V. Prezhdo Phys. Rev. Lett. 86, 3215 (2001); ibid 90, 118902 (2003)

$$M\ddot{R} = -\nabla_R \left[V_R(R) + V_{xR}(x, R) \right] - \text{Bohmian}$$

$$\frac{M\ddot{R}}{R} = -\nabla_R \left[V_R(R) + Tr_x \rho(x) V_{xR}(x,R) \right] - \text{Ehrenfest}$$

Advantage: correlation between quantum and classical particles (branching)

In practice, Bohmian trajectories are obtained from Schrodinger eq.

Highly simplified representation of O₂ interacting with Pt

J. Strömquist, S. Gao, J. Chem. Phys. 106, 5751 (1997); D.S. Sholl, J.C. Tully, J. Chem. Phys. 109, 7702 (1998)

$$H(q,Q) = T_{q} + T_{Q} + V_{q}(q) + V_{q}(Q) + V_{qQ}(q,Q)$$

$$V_{Q}(Q) = \frac{M\Omega^{2}Q^{2}}{2}$$

$$V_{q}(q) = a(e^{-2b(q-c)} - 2e^{-b(q-c)})$$

$$V_{qQ}(q,Q) = Ae^{-B(q-Q)}$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0$$

time $(10^{-14}s)$

Surface Hopping

a.k.a., quantum-master equationwith time-dependent transition rates:non-perturbative

- correct short time dynamics

Trajectory branching: Tully, *JCP* **93**, 1061 (1990);

Within TDDFT: Craig, Duncan, Prezhdo *PRL* **95**, 163001 (2005)

Detailed balance / thermal equilibrium (due to hop rejection): Parahdekar, Tully JCP **122**, 094102 (2005)

Schrodinger Cat and Decoherence

In Nanomaterials System - electrons, spins; Bath - phonons

 $B_0 >$

Franck-Condon Factor and Decoherence

$$\sum_{\{B_2\}} \left| \left\langle B_1 \right| B_2 \right\rangle \right|^2 \delta(E_1 - E_2)$$
$$= \int e^{i(E_1 - E_2)t/\hbar} \left\langle B_1(t) \right| B_2(t) \right\rangle dt$$

Bath (vibrational) wave functions diverge

This affects evolution of (electronic) system

Decoherence and Surface Hopping

O. V. Prezhdo, P. J. Rossky, *Phys. Rev. Lett.* 81, 5294 (1998)
O. V. Prezhdo, *Phys. Rev. Lett.* 85, 4413 (2000)

Reduced density matrix: $\rho = \langle B | \rho^{S-B} | B \rangle$ $\left\| \begin{array}{c} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{array} \right\| \rightarrow \left\| \begin{array}{c} \rho_{11} & \rho_{12} \langle B_2 | B_1 \rangle \\ \rho_{21} \langle B_1 | B_2 \rangle & \rho_{22} \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\| \left\| \begin{array}{c} \rho_{12} \rightarrow 0 \\ \rho_{12} \rightarrow 0 \end{array} \right\|$ $\rho_{12} \rightarrow 0$ ρ_{1

Decoherence and Surface Hopping

O. V. Prezhdo, P. J. Rossky, *Phys. Rev. Lett.* 81, 5294 (1998)
O. V. Prezhdo, *Phys. Rev. Lett.* 85, 4413 (2000)

Reduced density matrix:
$$\rho = \langle B | \rho^{S-B} | B \rangle$$
 $\begin{vmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{vmatrix} \rightarrow \begin{vmatrix} \rho_{11} & \rho_{12} \langle B_1 \\ \rho_{21} \langle B_1 | B_2 \rangle & \rho_{22} \end{vmatrix}$ $\rho = \langle B | \rho^{S-B} | B \rangle$ $\rho_{12} \rightarrow 0$ on decoherence time scale $\rho_{21} \langle B_1 | B_2 \rangle & \rho_{22} \end{vmatrix}$ hopping probability $P_{12} \sim \rho_{12}$

Quantum Zeno Effect

With decoherence: $P_{12} = |T_{12}|^2 + |T_{12}|^2 + ... |^2 T_{12}$ Without decoherence $P_{12} = |T_{12} + T_{12} + ... |^2$

Decoherence makes transitions less likely $|0.1|^2 + |0.1|^2 < |0.1 + 0.1|^2$

Stochastic Mean-Field (SMF)

O. V. Prezhdo J. Chem. Phys. 111, 8366 (1999); Phys. Rev. Lett. 85, 4413 (2000)

Stochastic Schrodinger equation in place of regular SE in Ehrenfest

$$\frac{d\Psi}{=-iH}\Psi dt - \frac{\gamma}{2} L^{+}L \Psi dt + \sqrt{\gamma}L \Psi dW$$

- L system-bath interaction
- γ decoherence rate

Advantages

- 1. Includes decoherence
- 2. Gives branching
- 3. Infinitesimal velocity rescaling, (but every time-step)

Decoherence Induced Surface Hopping (DISH)

H. Jaeger, S. Fisher, O. V. Prezhdo J. Chem. Phys. 137, 22A545 (2012)

Evolve in an adiabatic state. Hop when a decoherence event occurs. Rescale velocity as before in SH.

Advantages

- 1. Includes decoherence
- 2. Gives branching
- 3. Nuclear evolution in pure states
- 4. Gives detailed balance / thermal equilibrium

Evaluating Decoherence Times

Kamisaka, Kilina, Yamashita, Prezhdo, Nano Lett. 6, 2295 (2006)

Optical response function

$$D(t) = \exp(i\omega t) \left\langle \exp\left[-\frac{i}{\hbar} \int_0^t \Delta E(\tau) \, \mathrm{d}\tau\right] \right\rangle_T$$

2nd order cumulant approximation

$$D(t) = \exp(-g(t))$$
$$g(t) = \int_0^t d\tau_1 \int_0^{\tau_1} d\tau_2 C(\tau_2)$$

$$C(t) = \left\langle \Delta E(t) \; \Delta E(0) \right\rangle_T$$

Evaluating Decoherence Times

Kamisaka, Kilina, Yamashita, Prezhdo, Nano Lett. 6, 2295 (2006)

Gaussian approximation Optical response function $D(t) = \exp(i\omega t) \left\langle \exp\left[-\frac{i}{\hbar} \int_0^t \Delta E(\tau) \, \mathrm{d}\tau\right] \right\rangle_T \tau_D = \left[\left\langle \sum_n \frac{1}{2a_n \hbar^2} \left(\mathbf{F}_{1n} - \mathbf{F}_{2n}\right)^2 \right\rangle_T \right]^{-1/2}$ 2nd order cumulant approximation $a_n = \frac{6mk_{\rm B}T}{k^2}$ thermal de Broglie width $D(t) = \exp(-g(t))$ $g(t) = \int_0^t d\tau_1 \int_0^{\tau_1} d\tau_2 C(\tau_2)$ | B₀ > _ $C(t) = \langle \Delta E(t) \ \Delta E(0) \rangle_{T}$ in (6,4) CNT 7557 Defect 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 Bn 0 200 600 800 1000 400 Time (fs)

Quantized Hamilton Dynamics

O. V. Prezhdo, Y. V. Pereverzev J. Chem. Phys. 113, 6557 (2000)
O. V. Prezhdo Theor. Chem. Acc. 116, 206 (2006)

$$V = \frac{q^2}{2} + \frac{q^3}{3}$$

$$\frac{d < q^>}{dt} = ; \quad \frac{d }{dt} = - " - "$$
but $\neq " """$ and
$$\frac{d < q^2>}{dt} = \equiv 2 < pq>_s \qquad \frac{d < pq>_s}{dt} = - -$$

the infinite hierarchy is terminated by a closure

$$< q^{3} > \approx 3 < q^{2} > < q > - 2 < q >^{3}$$

Harmonic Oscillator in Mapped QHD-2

QHD-2 takes care of zero-point-energy

Metastable Cubic Potential in Mapped QHD-2

hbar Mass

Double-Slit Potential in Mapped QHD-2

potential seen by a narrow wavepacket potential seen by a wide wavepacket

$$V(q) + \frac{1}{2}V^{(2)}(q)s^2$$

QMF-2 equations require no new quantum calculation !

Quantized Ehrenfest

C. Brooksby, O. V. Prezhdo, *Chem. Phys. Lett.*, **346** 463 (2001)

Highly simplified representation of O₂ interacting with Pt

J. Strömquist, S. Gao, J. Chem. Phys. 106, 5751 (1997); D.S. Sholl, J.C. Tully, J. Chem. Phys. 109, 7702 (1998)

Energy Transfer (Tunneling) and Dephasing

D.S. Kilin, Yu.V. Pereverzev, O.V. Prezhdo, J. Chem. Phys., 120 11209 (2004)

$$\mathbf{H} = \Omega \left(\mathbf{a}^{+}\mathbf{a} + \frac{1}{2} \right) + \omega \mathbf{S}_{z} + g \left(\mathbf{a}^{+}\mathbf{S}_{-} + \mathbf{a}\mathbf{S}_{+} \right)$$

Spin-Boson/Marcus Model

Jaynes-Cummings Model

- same curvatures
- no displacement
- resonance (rotating wave) approx.

Quantum Result

ENERGY TRANSFER (TUNNELING):

spin oscillation

DEPHASING:

wave-packet splits spin stops oscillating

Evolution of <S_z> by QHD

$$\alpha = a^{+}S_{-} + aS_{+}$$
$$\beta = a^{+}S_{-} - aS_{+}$$
$$\gamma = \left(a^{+}a + \frac{1}{2}\right) + S_{2}$$

$$\begin{split} & d \left\langle \alpha \gamma^{n} \right\rangle / dt = -\delta \left\langle \beta \gamma^{n} \right\rangle \\ & d \left\langle \beta \gamma^{n} \right\rangle / dt = -\delta \left\langle \alpha \gamma^{n} \right\rangle + g \left\langle S_{z} \gamma^{n+1} \right\rangle \\ & n = 0, 1, 2... \\ & d \left\langle S_{z} \gamma^{n} \right\rangle / dt = g \left\langle \beta \gamma^{n} \right\rangle \end{split}$$

closure: $\langle \mathbf{S}_{z} \mathbf{\gamma}^{2} \rangle \approx 2 \langle \mathbf{S}_{z} \mathbf{\gamma} \rangle \langle \mathbf{\gamma} \rangle + \langle \mathbf{S}_{z} \rangle \langle \mathbf{\gamma}^{2} \rangle - 2 \langle \mathbf{S}_{z} \rangle \langle \mathbf{\gamma} \rangle^{2}$

 $\langle \gamma \rangle, \langle \gamma^2 \rangle$ are constants of motion, <u>linear system of ODE</u> $\langle S_z \rangle, \langle \alpha \rangle, \langle \beta \rangle, \langle S_z \gamma \rangle, \langle \alpha \gamma \rangle, \langle \beta \gamma \rangle$ - 6 variables

Evolution of <S_z> by QHD

D.S. Kilin, Yu.V. Pereverzev, O.V. Prezhdo, J. Chem. Phys., 120 11209 (2004)

$$\langle S_{z} \rangle(t) = -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{1}^{2}} (1 - \cos \omega_{1} t) + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} - 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t) + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} - 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t) + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} - 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{g^{2} \sqrt{\gamma_{0}} (\sqrt{\gamma_{0}} + 1)}{2\omega_{2}^{2}} (1 - \cos \omega_{2} t)$$

$$= -\frac{1}{2} + \frac{1}{2} + \frac$$

State-Specific Dynamics a.k.a. multi-configuration mean-field

D.S. Kilin, Yu.V. Pereverzev, O.V. Prezhdo, J. Chem. Phys., 120 11209 (2004)

$$\langle q | 0 \rangle \langle 0 | \rangle \simeq \langle q \rangle (1/2 + \langle S_z \rangle)$$

 $\langle q | 1 \rangle \langle 1 | \rangle \simeq \langle q \rangle (1/2 - \langle S_z \rangle)$

 $\frac{\text{closure:}}{\langle S_z \rangle} \simeq \langle \tilde{a} \rangle \langle S_z \rangle}{\langle S_z \rangle} - \text{as before}$

Summary for TDDFT / NAMD

- Surface hopping is needed to describe inelastic scattering
- Kohn-Sham representation works well for surface hopping in nanoscale materials
- Decoherence (elastic scattering) is fast in condensed phases
- Stochastic Mean-Field (SMF) and Decoherence Induced Surface Hopping (DISH) "derive" a SH algorithm from decoherence
- Quantized Hamilton Dynamics (QHD) provides models for zeropoint energy and decoherence

Electron-Phonon Dynamics in QDs

rates of carrier cooling

mechanisms for carrier multiplication

Shaller, Klimov *PRL* **92** 186601 (2004); Ellingson, Beard, Johnson, Yu, Micic, Nozik, Shabaev, Efros, *Nano Lett.* **5** 865 (2005)

Schaller, Pietryga, Goupalov, Petruska, Ivanov, Klimov Phys. Rev. Lett. **95** 196401 (2005)

Electron-Phonon Relaxation

No phonon bottleneck.

Times are similar to biexciton creation times

Larger dots relax more slowly ?!

Nair, Bawendi Phys. Rev. B 76 081304(R) (2007)

Original multiplication experiments could not be reproduced by other groups.

Experimental conditions and data interpretation are very important.

McGuire, Joo, Pietryga, Schaller, Klimov Acc. Chem. Res. **41** 1810 (2008)

Pandey, Guyot-Sionnest, Science 322 929 (2008)

Electron-phonon bottleneck found for electrons in CdSe QDs, in the absence of holes

Excitons in PbSe QDs: 2010

Zhu group, *Science* **328** 1543 (2010); Parkinson group, *Science* **330** 63 (2010); Nozik group, *Science* **334** 1530 (2011)

50 fs injection time

absorbed photon-to-current efficiency

Structural Relaxation PbSe QDs

Kilina, Kilin, Prezhdo, ACS Nano, 3, 93 (2009) Kilina, Craig, Kilin, Prezhdo, J. Phys. Chem. C 111 4871 (2007)

32 atoms P	b ₁₆ Se ₁₆	d=1.0nm
------------	----------------------------------	---------

Bulk,	Bulk, Relaxed, H	
T=0 K	T=0 K	T=300 K

(LUMO) (LUMO+1) (LUMO+2) (LUMO+3)

(LUMO) (LUMO+1) (LUMO+2) (LUMO+3)

states mix

Absorption Spectra of PbSe QDs

Kilina, Kilin, Prezhdo, *ACS Nano*, **3**, 93 (2009) Kilina, Craig, Kilin, Prezhdo, *J. Phys. Chem.* C **111** 4871 (2007)

Comparison of Relaxation, PbSe

Kilina, Kilin, Prezhdo, *ACS Nano*, **3**, 93 (2009) Kilina, Craig, Kilin, Prezhdo, *J. Phys. Chem.* C **111** 4871 (2007)

Sub-picosecond times agree with experiment e.g. Gdor et al. ACS Nano **6**, 3269 (2012)

Similar relaxation times for electrons and holes

Larger dot relaxes more slowly due to weaker electron-phonon coupling

Phonon Bottleneck for 1P **Electron in CdSe Quantum Dots**

Pandey, Guyot-Sionnest, Science 322 929 (2008)

Phonon Bottleneck for 1P Electron in CdSe Quantum Dots

Relaxation time ~ 1ns

Pandey, Guyot-Sionnest, Science 322 929 (2008)

Neukirch, Kilina, Kilin, Prezhdo, in preparation

Electrons relax much faster than holes ! (despite nearly symmetric DOS)

Enhanced Energy Losses due to Ligands: Active Phonon Modes

Kim, Madrid, Prezhdo, Dalton Trans., 45, 10069 (2009)

Ge

Low frequency modes are active for both electrons and holes

> However, high frequency (ligand) modes are active only for electrons

Si

Phonon-Assisted Auger Processes

Kim, Prezhdo, *Nano Lett.*, **11**, 1845 (2011) Kim, Prezhdo, *ACS Nano*, **6**, 1239 (2012)

ME Generation

Kim, Prezhdo, *Nano Lett.*, **11**, 1845 (2011) Kim, Prezhdo, *ACS Nano*, **6**, 1239 (2012)

Auger processes are slower than electron-phonon relaxation, multiple excitons are created while interacting with light

ME Recombination

Kim, Prezhdo, *Nano Lett.*, **11**, 1845 (2011) Kim, Prezhdo, *ACS Nano*, **6**, 1239 (2012)

SE population MER 6 5 e< 2.8 Eg MEG 4 Energy of SE, 3 2 3 Si₂₉H₂₄ 6 MEG 5 3.5 Eg MER 3 2 0.8 1.2 0.4 Time, ps

Robel et al. PRL 102 177404 (2009)

sub-10ps for small QDs rate theories give much longer times

Electron-Phonon Dynamics in QDs

- Inelastic scattering on 10-100fs timescale (luminescence, single & multiple exciton coherences)
- Electron-phonon relaxation on a picosecond timescale
- ✓ Phonon bottleneck in special cases
- ✓ Phonon-assisted Auger processes are predicted
- Phonons drive adiabatic and nonadiabatic electron transfer

Selected Publications

Surface hopping within TDDFT *Phys. Rev. Lett.* **95,** 163001 (2005) /original implementation/ *J. Chem. Phys.* **113,** 6557 (2000) *Phys. Rev. Lett.* **100**, 197402 (2008) /decoherence corrected/ *Theor. Chem. Acc.* **116**, 206 (2006) J. Am. Chem. Soc., 134, 15648 (2012) /spin-orbit interactions/

Quantized Hamilton dynamics

Decoherence based surface hopping/ J. Chem. Phys. 111, 8366 (1999) /stochastic mean-field/ *Phys. Rev. Lett.* **85**, 4413 (2000) /anti-Zeno effect/ J. Chem. Phys. 137, 22A545 (2012) /decoherence induced SH/

Ouantum dots

Chem. Phys. Lett. – Frontier **460** 1 (2008) Acc. Chem. Res 42 2005 (2009) *Chem. Science* **2** 400 (2011)

Ouantum-classical Lie bracket *Phys. Rev. A* 56 162 (1997) J. Chem. Phys. **124** 201104 (2006)

Bohmian quantum-classical dynamics *Phys. Rev. Lett.* **86**, 3215 (2001)

Group Picture

Questions Arising in our Research

- When is classical description of phonons valid?
- What quantum corrections are needed and when (zero point energy, decoherence)?
- Are there alternatives to surface hopping; can one "derive" surface hopping?
- Surface hopping requires states, can we use DFT?
- Can we model light-matter interactions separate from electron-phonon dynamics?

Pure-Dephasing: Luminescence, ME Generation & ME Fission

Madrid, Hyeon-Deuk, Prezhdo, ACS Nano 3 2487 (2009) Luminescence

Phonon-induced	pure-dephasing	times, fs
----------------	----------------	-----------

T=300K/100K	$\mathrm{Si}_{29}\mathrm{H}_{24}$	$\mathrm{Cd}_{33}\mathrm{Se}_{33}$	$\mathrm{Pb}_{68}\mathrm{Se}_{68}$	$\mathrm{Pb}_{16}\mathrm{Se}_{16}$
Luminescence	4 / 7	10 / 16	9 / 23	7 / -
ME Generation	4 / 7	5 / 9	5 / 11	4 / -
ME Fission	80 / 310	—	_	_

ME Generation

ME Fission

Luminescence – 50meV linewidth, agree with exp. ME Generation – rapid 10fs dephasing ME Fission – 100fs

More Realistic Ligands: Electronic Structure

Kilina, Velizhanin, Ivanov, Prezhdo, Tretiak ACS Nano, 6, 6515 (2012)

Ligand Contribution to Electron-Phonon Relaxation

Kilina, Velizhanin, Ivanov, Prezhdo, Tretiak ACS Nano, 6, 6515 (2012)

50 fs injection time Zhu group, *Science* **328** 1543 (2010) absorbed photon-to-current efficiency Parkinson group, *Science* **330** 63 (2010)

e⁻ transfer from QDs to TiO₂

Long, Prezhdo J. Am. Chem. Soc.**133** 19240 (2011)

- 10 fs time; mostly adiabatic ET strong donor-acceptor coupling
- ET is driven by high frequency polar phonons

Hartree-Fock Band Structure

Fischer, Isborn, Prezhdo, Chem. Science, 2, 400 (2011)

- 1. Small dots represent large dot DOS
- 2. Huge one-electron gap
- 3. Symmetric vs. asymmetric DOS
- 4. Secondary gaps in PbSe DOS

Spectra and Multiple Excitons

Fischer, Isborn, Prezhdo, Chem. Science, 2, 400 (2011)

CdSe spectra agree with experiment JACS 128, 629 (2006)

- 1. Sharp onset of multiple excitons
- 2. Above threshold: double excitons in PbSe; single, double and superpositions in CdSe

Direct Mechanism: Si Clusters

- 1. Complete and fairly sharp transition
- 2. Si is more similar to PbSe than CdSe due to symmetric band structure

Universal Optical Response in Si Clusters

$$\sigma_{abs}(\omega) = \frac{9\omega V}{c} \frac{\epsilon_2(\omega)}{[\epsilon_1(\omega) + 2]^2 + \epsilon_2(\omega)^2}$$

Classical Mie theory matches ab initio calculations on very small clusters, independent of bonding configuration

Calculations for Charged PbSe Dots

Fischer, Isborn, Prezhdo, Chem. Science, 2, 400 (2011)

Conduction band transitions overwhelm MEs

> Much higher ME threshold

