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Overview

- Motivation
- Nonequilibrium Green’s functions and the Kadanoff-Baym equations
- lllustrative examples

- Electron-electron interactions
- Electron-vibron interactions (preliminary results)



The time-dependent quantum transport problem

Consider a molecule (or quantum dot) attached to leads
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Calculate the time evolution of observables of this system when a
bias is applied.



Fundamental questions in quantum transport

- How long does it take before a steady state is reached (i.e what are the
switch times) and how does it depend on e-e and e-ph interactions!?

- Are steady states always reached and are they unique !
(bistability)

- What are the current and density distributions in the leads and the
molecule (i.e. where in the molecule does the current flow and can we
regulate this ) ?

- What is the influence of the contact region? (Image charge effect)

- Can we determine the level structure of the molecule from
transient spectroscopy!



Challenge for theoretical description, since we deal with :

- Open systems
- Nonequilibrium systems
- Electron-electron and electronic-vibrational interactions

electron-electron interactions
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Time evolution of a many-body system

The time-dependent electron-phonon Hamiltonian

AN

H(t) = Hyp + He (1) + He 1,

H(t) =h(t) + W K

Electron-phonon/vibron
Interactions

Kinetic energy Electron-electron interactions
+

time-dependent
external potential
(bias, gate voltage, laser etc.)



The goal is calculate the time-dependent expectation values of
observables :

H = ] initial correlations Hy = H(to)




The time contour (L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965)
Konstantinov and Perel’ , JETP 12,142(1961))
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Electron propagators

We define the Keldysh contour-ordered Green function as :

G(1,2) = —i(Telbu (D)} (2)]) = 0(t1,12)G™ (1,2) + 0(t2, t1)G=(1,2)

m o
G~ (1,2) = —i{u (L)Y (2)) Propagation of a “particle” (added electron)

G<(1,2) = i{¥}(2)¥r(1))  Propagation of a“hole” (removed electron)

Natural tool in quantum transport; electrons are continuously added and
removed from the central system




Phonon propagators

We define the Keldysh contour-ordered phonon propagator as :
D(1,2) = —i(To[Adg (D AGH(2)]) = 0(t1,t2) D (1,2) + 0(t2, t1)D<(1,2)

L= it

D~ (1,2) = —i{Adg(1)Atdg(2)])
Displacement correlation function
D=(1,2) = —i(Ady(2) Aty (1))

Electrons interact via phonon-propagators




The equation of motion for the propagators attain the form

effect of e-e and e-ph interactions
on electronic motion l

(10, — h(1))G(1,2) =46(1,2) + /dS ¥|G, D|(1,3)G(3,2)

A

A space-time dependent nonlocal
potential describing the effects of e-e
and e-ph interactions

p

—(8,521 +w?)D(1,2) = §(1,2) + /dBH[G,D](l,S)D(S,Q)

effect of e-e and e-ph interactions
on vibronic motion



By splitting the equation of motion in components, one obtains the set
of Kadanoff-Baym equations. For example for the lesser component G* :

Time-dependent
external field

(i0;, — h(1))G=(1,2) — /dX3ZHF(1,X3t1)G<(X3t1,2)

— /t1 d3[X”(1,3) — £<(1,3)]G<(3,2) — /t2 d2Y<(1,3)[G7(3,2) — G=(3,2)]

to to

”

Collision or electron
correlation terms : \

Memory kernels Initial correlations

to—10
+/ d3x1(1,3)G!(3,2)

to




The corresponding self-energy diagrams to 2nd order are :

s 8B e LT

The interaction lines can represent Coulomb interactions
or phonon propagators (also mixed diagrams)

If the equations of motion are solved self-consistently then
we can guarantee satisfaction of conservation laws
(electron particle number, energy, momentum)



Conserving many-body approximations

Hartree-Fock ? = ? - i\»ﬁ

w s 0. LB




Kadanoff-Baym equations: practical solution

For practical solution the Green function is expanded into one-particle states

G(1,2) = Z pi(x1)Gij(t1, t2) ] (x2)

For the one-particle states we can, for instance, use the solutions
to the Hartree-Fock or Kohn-Sham equations

The e-e interaction attains the form

gkt = / dx / dx' 5 (%) (X )o(r — ' )er (X )t (x)

The Kadanoff-Baym equations become equations for time-dependent
matrices



The electronic self-energy for second Born is e.g. given by

2Bt ) = 6(t, )T (t) + =P (¢, ¢)
Zf}m(?ﬁ) = —iz Gri(t,t7)(2vik; — virj)

kl
2
Zgj)(t,t') — Z Gl (t,t')Gmn(t,t')qu(t',t) Uiqu(%lnpj — Unlpj)
klmnpq

(Nils Erik Dahlen, RvL,
Phys.Rev.Lett. 98, 153004 (2007))

If we use the notation

00 6]
Foa= | fmem Fxg= /O ar £(r)g(7)

to



then the full set of Kadanoff-Baym equations is compactly given as

10, GS(t1, 1) = RIFE)GS(t1,t0) + [25-GA L 2R . G5 + 1.6 (¢4, )

L0, G5 (t,ts) = GS(t1,ta)h () + |GS - 24+ GR .25 1 G121 (11, 1)
0,01, 7) = [2R.¢1+ 21 xaM| (¢, 7)
—ia,Glrt) = |al- 24+ 6M x| @,1)

where all products are matrix products and the retarded and advanced functions
are defined as

KR E) =0t —t) [k~ (¢, 1) — k<(t, )]

EA ) = =0t — [k~ (¢, 1) — E<(t,1")]




Time propagation of the Kadanoff-Baym equations

Solve equilibrium case ::> Carry out time-stepping in the double-time
on the imaginary axis plane ( possibly with external field applied)
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Quantum transport

The one-body part of the Hamiltonian is projected onto different

regions
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The Green function and the self-energy attain the form

G Gue Gir 0 0
G=|6cL Y9cc Yrc
' OrL 9cr YRR 0

SV = 0 Egg[gcc]
0

with equations of motion for the complete system

10.G(z, 2")

—10,,G(z, 2")

0(z,2")1 +H(2)G(z, 2"
/dz >MB(2,2)G(z,2)
5(2,2)1 + G(z, 2/ H(2)
/dz G(z,2)2MP(z, 2)




The equation of motion

The equation of motion projected on the central region has the form

{ié’zl — Hcc(z)}gcc(z, z')

=6(z,2')1 + /dz {21(\%3’ + Eem} (2,2)Gce(Z,2)

where on top of the a many-body self-energy we also have
an effective embedding self-energy

Sem(2,2) =Y Bema(2,2") =) Hoa 8aal(2z, 2 )Hac



Calculating the current

The total current flowing out of reservoir (X is given by :

AN, (t
T (t) = dt( ) ORI [GS, (1 1) Hac!

This gives after some manipulations:

t
Lo (t) — _QRGTIC/ dt’ {GEC’(tv t/)ZeAm,a(t/a t) + GBC (t7 t/)zgm,a(ta t/)
0

—ip
—2ReTr¢ / dt’ {ch(t,t’)zgm,a(t’,t)}
0)

Memory of initial correlations

Long time limit leads under some assumptions to Meir-Wingreen formula



The spectral function

The spectral function for a nonequilibrium system is defined as

A(t,t) = TrA(t,t) Aii(t,t) = (Dol{asm (), al ()} o)

Y

In equilibrium the spectral function only depends on the

difference of the time coordinates and can be Fourier transformed
to give

Asi(w) = (W al [ wo) Po(w + B — BN
k

+ )TN a o) P (w — B + Ep )
k

It shows peaks at electron addition and removal energies



In the nonequilibrium case it is convenient to Fourier transform
with respect to the relative times:

wwt

dw t t

which can be calculated from the Green function as

“dt t L
A(T,w) = —ImTr¢ - e’ G —GSc(T+ 5 1 — 5)

In the long time limit the spectral function becomes independent
of T when a steady state is being reached

lim A(T,w) = A(w)

T'— o0



Simple example: e-e interactions

Interaction

Vijkl = Vi;0410k

Viz 1 =]

”Uij —

Vi ' '
- - 1
2|i—7]| 7 J

Time-dependent bias

Vis — 1.5

Ur(t) = =Ur(t) = U 0(t — to)

Hoppings:
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The Green function

For the highest occupied molecular orbital the Green function
matrix element has the following structure (imaginary part displayed)

30 0O

géC,HH(tla tQ)



The transient currents
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Steady state regime

The spectral functions

|.2 (dashed line)

U=
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Time-dependent buildup of the |-V curves

Hartree-Fock

HF
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electron correlations beyond mean-field wash out |-V features



The time-dependent dipole moment
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Electron-phonon interactions (test systems)

Holstein lattice system (very preliminary results from Friday last week)
H=wyy ala;—ty éle;—Y
’ (2,5) ’

U; = d}; + a; displacement

S

~.
|
N

& site density



Example | : Formation of a polaron after the switch-on of the
electronic-vibrational interaction

A

H(t) = woa'a + egc'¢ — gB(t)(a" + a)éle

\ \

single mode sudden switch-on of electron-phonon
Interaction

We use a self-energy in the self-consistent Born approximation

@

77N
) SCBA = 1+ =&



Spectral functions

| g=0,0.1,02....1.0
A(w) Uncoupled electron
AT Jj-%\ — l
T\ N —
R —— A —A— A(T,w)
Ay AE/‘V\I a<\ 2N
7~ /“:( A A N
I | | - |
-1 0 1 2
w
Polaron shift and side bands
Wy — 0.5
€0 — 0
Polaron 05 0 140
0.5 !

g:OS W 1.5



Optical response of a Holstein dimer

2
H = —(¢léy + &ler) + vd(t)i +w02afaz gy i,
1=1 =

5717; (t)

Uj

Xij(t) =

This amounts to a

solution of the

Bethe-Salpeter egn

with phonon-dressed

Green functions




Outlook

- We will study transient phenomena in time-dependent transport
involving both electron-electron and electron-phonon interactions
(for example SSH + e-e interactions)

Open issues, to be studied:
- What is the combined effect for e-e and e-ph interactions?

a) Structure of transients, |-V curves

b) Bistability

c) Gap closing/image charge effects with phonons

d) What level of many-body perturbation theory do we need?
(vertices beyong SCBA, mixed e-e / e-ph diagams)

- Towards realistic systems, can we cut memory depth to save
computational cost without loosing accuracy?



Questions for the discussion

- The SCBA approximation is valid in the weak coupling limit.
How to get beyond it?

Or, in general, what is the importance of terms that are
higher order in the electron-phonon interaction?

(we also need to expand the Hamiltonian to higher order
in the displacements which leads to new vertices)

- What is the interplay between e-e and e-ph interactions!?
(Bistability, gap closing, image charge effects, etc.)

- What is the importance of solving the Kadanoff-Baym
equations for the phonon propagators as well?
(heating effects)



