

Minimal basis solver for FHI-aims

or the rant about documentation

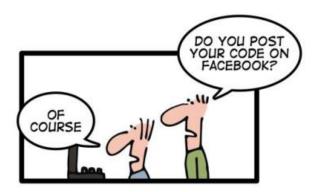
Andrei Sobolev, MS1P e.V.

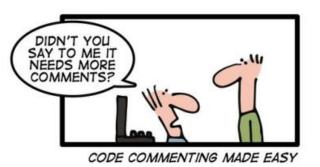
Let me introduce myself...

Let me introduce myself...

The outline

Quantum Mechanics 101


The concepts and how they are used in AIMS


Minimal basis solvers in AIMS

Yes, there are several

The rant about documentation

We need more comments!

QM 101

Schrödinger equation (in B-O approximation): $\widehat{H}\Psi = E\Psi$ $\widehat{H} = \sum_{k} \frac{p_{k}^{2}}{2m_{e}} + \sum_{I,k} \frac{Z_{I}}{2|\vec{R}_{I} - \vec{r}_{k}|} - \sum_{k \neq k'} \frac{1}{2|\vec{r}_{k} - \vec{r}_{k'}|}$

Density functional theory (rewrite everything in terms of electron density):

 $E_{tot} \leq \langle \Psi | \hat{H} | \Psi \rangle; \Psi = \Psi[n]; \exists n_0: E_{total} \to min$ $E_{tot} = E[n] = T[n] + V[n] + V_{es}[n] + E_{xc}[n]$

*** Kohn-Sham equations:**

$$\begin{bmatrix} -\frac{\nabla^2}{2} + v(\vec{r}) \end{bmatrix} \psi_k(\vec{r}) = \epsilon_k \psi_k(\vec{r})$$
$$\sum_k |\psi_k(\vec{r})|^2 = n(\vec{r}); \ v(\vec{r}) = v_{ei}(\vec{r}) + v_{es}(\vec{r}) + v_{xc}(\vec{r})$$

More QM 101

Solving Kohn-Sham equations:

 Rewrite them in terms of basis decomposition coefficients in matrix form; solve selfconsistently:

Initial guess: e.g.,
$$C_{ki}^{(0)}$$

Update density $n^{(m)}(\mathbf{r})$
Update $v_{es}^{(m)}, v_{xc}^{(m)}$
 $h_{ij}^{(m)} = \int d^3 r \varphi_i(\mathbf{r}) \hat{h}_{KS}^{(m)} \varphi_j(\mathbf{r})$
Solve for updated $C_{ki}^{(m+1)}$
repeat until $n^{(m+1)} = n^{(m)}$

$$\psi_k(r) = \sum_i c_{ki} \phi_i(r);$$

$$\sum_{i} c_{ki} h_{ji} = \sum_{i} \epsilon_k c_{ki} s_{ji}$$

 An all-electron electronic structure code based on numeric atom-centered orbitals (NAOs)
 NAOs:

$$\phi_{i[lm]}(\vec{r}) = \frac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

IV

* $u_i(\vec{r})$ – tabulated

The choice allows to subdivide KS equations into radial and angular parts and simplify the radial equation:

$$\left[-\frac{1}{2}\nabla^{2} + \frac{1}{2}\frac{l(l+1)}{r^{2}} + v(r) + v_{cut}(r)\right]u_{i}(r) = \epsilon_{i}u_{i}(r)$$

11

Basis in FHI-aims

Minimal + "Tiers"

- Minimal basis = occupied free atom orbitals
 {u}⁽⁰⁾
- - Ionic 2+ wavefunctions needed!

```
valence
            2 S
                2.
    valence
            2 D
               2.
    ion occupancy
    ion occ
            2 5
               1.
    ion occ
            2 D
               1.
18 #
   Suggested additional basis functions. For production calculations,
   uncomment them one after another (the most important basis functions are
   listed first).
   Constructed for dimers: 1.0 A, 1.25 A, 1.5 A, 2.0 A, 3.0 A
 "First tier" - improvements: -1214.57 meV to -155.61 meV
    hydro 2 p 1.7
    hvdro 3 d 6
    hydro 2 s 4.9
   "Second tier" - improvements: -67.75 meV to -5.23 meV
     hydro 4 f 9.8
     hydro 3 p 5.2
     hydro 3 s 4.3
     hydro 5 g 14.4
53 #
     hydro 3 d 6.2
   "Third tier" - improvements: -2.43 meV to -0.60 meV
```

More QM 101: Zeroth order regular approximation

Relativistic Dirac equation:

$$\begin{pmatrix} V & c\boldsymbol{\sigma} \cdot \boldsymbol{p} \\ c\boldsymbol{\sigma} \cdot \boldsymbol{p} & -2c^2 + V \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = \epsilon \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

Eliminate small component:

$$\widehat{H}^{\text{esc}}\phi = \left(V + \boldsymbol{\sigma} \cdot \boldsymbol{p} \frac{c^2}{2c^2 + \epsilon - V} \boldsymbol{\sigma} \cdot \boldsymbol{p}\right)\phi = \epsilon\phi$$

Put Pauli matrices in, rewrite:

$$\left(V + p \frac{c^2}{2c^2 + \epsilon - V} p + ip \frac{c^2}{2c^2 + \epsilon} \times p \cdot \sigma\right) \phi = \epsilon \phi$$

Scalar relativity term
(for elements with Z > 20)
Scalar relativity term

ZORA

* Expand \widehat{H}^{esc} in $\frac{1}{2c^2 - V}$, take zeroth expansion order $\widehat{H}^{zora} = V + p \frac{c^2}{2c^2 - V}p$

Substitute \hat{H}^{zora} for Hamiltonian in Schrödinger equation, do the math once again, arrive to the following radial KS equation:

$$-\frac{c^2}{2c^2 - V}\nabla^2 + \frac{c^2}{2c^2 - V}\frac{l(l+1)}{r^2} + v(r) + v_{cut}(r)\bigg]u_i(r) = \epsilon_i u_i(r)$$

- Van Wüllen, 1999: Substitute V for V_{free atom} ("atomic ZORA")
 - Regains gauge invariancy
 - Removes unphysical forces in ZORA calculations

Minimum basis solvers in aims

SRATOM

 A self-consistent solver of radial Schrödinger equation with scalar relativity on a logarithmic grid

AtomSphere

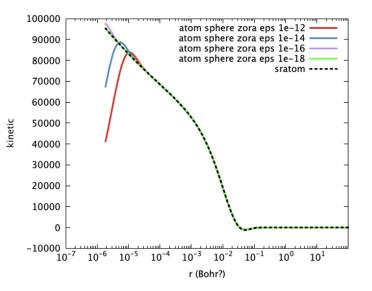
 SCF free atom solver based on the (unpublished) work done by Stefan Goedecker (seems that it was initially the part of ABINIT?)

AtomSphere

- I don't understand how this subroutine works, I don't have the time to understand it, and they're not paying me to understand it. You're on your own, kid!

Uses xclib interface

Scalar relativity was initially not implemented


Work done by Rungdong Zhao and Yi Yao

Also uses logarithmic grid

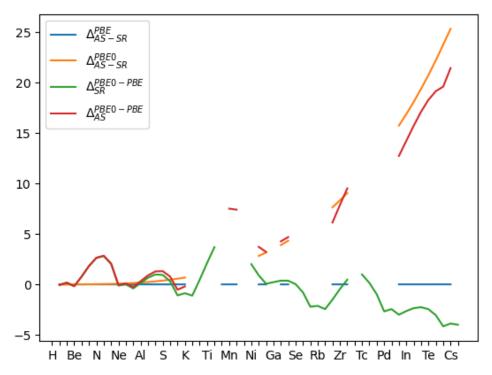
• But different that that in aims: $r_i = r_0(e^{\alpha i} - 1)$

Work done by Yi Yao

	minimal	Time(s)	
atom sphere zora eps 1e-12	-205851.160476344	6.3s	1s kinetic
atom sphere zora eps 1e-14	-205851.166311959	9.2s	
atom sphere zora eps 1e-16	-205851.168340841	22.5s	
atom sphere zora eps 1e-18	-205851.168544115	69.0s	Xe atom
sratom	-205851.169346916		

To summarize my modification:

1. the atom sphere+atomic zora works.

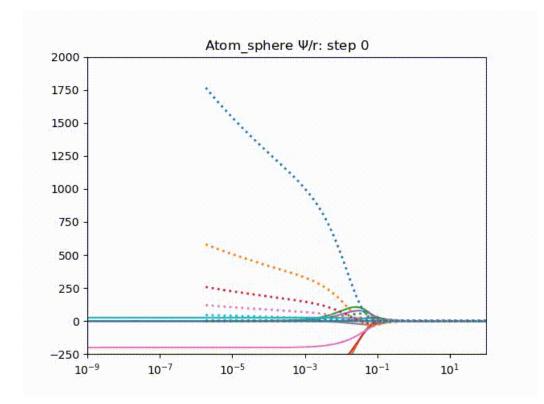

2. I optimized the atom sphere zora solver with better initial guess for relativistic potential. A single convergence parameter atom sphere zora eps is introduced in the control.in file. I set the default to be 1e-14 for now.
Wish list:

1. initial guess (both wavefunctions and relativistic potential from sratom PBE).

2. extensive tests for different atoms/xc...

Checking if AtomSphere really works...

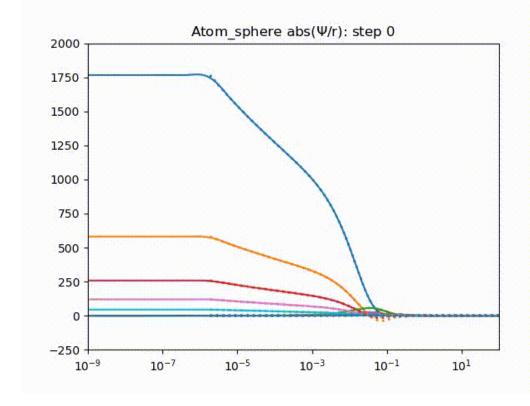
The difference between free atom energies got from different minimum basis solvers


It seems to work!

- but only for PBE XC potential
- and for selected elements

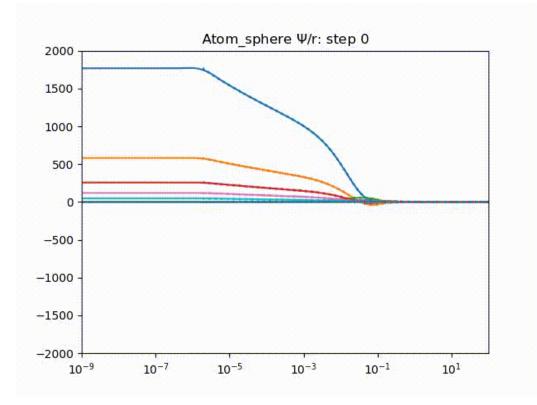
For hybrid PBE0
 AtomSphere gives up
 to 20 eV higher energy
 than SRATOM foe
 heavy elements

Putting SR WFs into AS


- AtomSphere
 wavefunctions
 (compared to
 SRATOM) for Xe atom;
 starting point $\phi_0(r) = r^l e^{-0.9Z_{eff}r}$
- The wavefunctions converge to the SRATOM counterparts

Putting SR WFs into AS

- AtomSphere


 wavefunctions
 (compared to
 SRATOM) for Xe atom;
 starting point:
 SRATOM
 wavefunctions
- The wavefunctions do not converge to the SRATOM counterparts

Putting SR WFs into AS

- AtomSphere ionic wavefunctions

 (compared to
 SRATOM) for Xe atom;
 starting point:
 SRATOM
 wavefunctions
- The wavefunctions diverge

Let's have a glimpse at the code

Language	files	blank	comment	code
Fortran 90	71	4953	8632	335697
Fortran 77	21	230	3496	8041
CMake	5	7	15	102
C/C++ Header	2	5	Θ	53
SUM:	99	5195	12143	343893

***~344k lines of code**

8k in F77 | 336k in F90

12k lines of comments

3.5k in F77 | 8.5k in F90

Comment ratio: 44% in F77 | 2.5% in F90

Why writing documentation is important?

For you

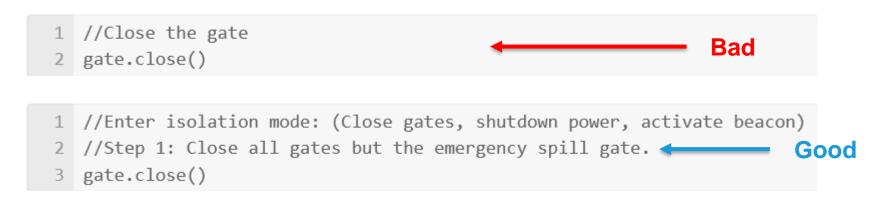
- You will be using your code in 6 months
- You want people to use your code and give you credit

For others

- Others will use your code and build upon it
- Others will be encouraged to contribute to your code

For science

- Encourage open science
- Allow reproducibility and transparency



Good practices when commenting the code

Make comments meaningful

```
x += 1; // increment x
END; # END
x = x * 1.1221432243293; /* Joes fiddle factor don't know what it is
but it doesnt work without it */
a = (INT64)b * (INT64)c; /* INT64 = INT32 * INT32 */
```

Try to answer questions: "What has been done?", "What needs to be done"; "Why it needs to be done?"

Good practices when commenting the code

Good code still needs documenting

- And it's almost impossible to write a good code in FORTRAN
- Use implicit none
- Write the equation (or the link) and the numerical method that is used to solve it

if (nang.eq.12) then
 A. H. Stroud, Prentice Hall 1971, page 296
 integrates up to order 5 (.eq. up to x^5 or x^1*y^2*z*2)

Code and comments should be written at the same

time

	r 1=rnum1/rdenom1 call detnp(nrad,rr,r1,nmod(iprin,l+1,isp)) !! UNCOMMENT TO SET VIRTUAL ORBITALS
else	
j	if (.not.cut_atom.and.rprb.gt.0.d0) then r2=rprb*rnum2
	call detnp(nrad,rr,r2,nmod(iprin,l+1,isp))

Back to AtomSphere

The comments:

The comments: <pre>!! SETTING UP DIFFERENT SEGMENTS ! Finite nucleus Coulomb potential !! confinement potential !! Add para Settion for potential !!!!!FIXME: Building 1/2 d^2/dr^2 - Z/r + 1(1+1)/2r^2</pre>	<pre>! Since the Hartree potential is calculated we can now add the core charge ! This (vxc) is needed only for checking purposes ! Add Hartree Fock terms ! Add hartree and XC contributions to gradient ! calculate Lagrange multiplier matrix</pre>
<pre>!GS Orthogonalization of psi !! SOLVING SCF CYCLE</pre>	!! THIS PART DECIDES THE VALUE OF NMOD FOR EACH ORBITAL
! if there is no convergence within 50 steps of the 2000 loop the shift are presumably not optimal and they will be set equal to the eigenvalues of the previous 3000 loop	<pre>! transform psi, grad and grads to canonical ones ! add constraints to gradient ! residues</pre> WTF?
calculate charge densities chergy and potential	<pre>! precondition gradient ! Update wavefunction ! set up DIASCHARACE SCF ! set up difference</pre>
<pre>! calculate calculate unconstrained gradient ! calculate unconstrained gradient ! hh (kinetic energy + local potential) times psi ! Add hartree contribution ! Add XC terms</pre>	<pre>! calculate new line ! copy to work array, right hand side, boundary elements ! solve linear system ! update wavefunction</pre>
	<pre>! orthogonalize wavefunctions !! End of SCF</pre>

Look at the precondition gradient

! precondition gradient if (ids.eq.1) then ! Since preconditioner is fixed, it has to be calculated only in first iteration do 1=0,1max do iprin=1, max(nprin(l+1,1), nprin(1+1,2))do j=1, nrad pot0(j,iprin,l+1)=shift(iprin,l+1) !use constant local potential if (cut atom) then pot0(j,iprin,l+1)=pot0(j,iprin, l+1) + cutoff_pot(rr(j), cutoff_type, r_cut, w cutoff, scale cutoff) else if (rprb.gt.0.d0) then pot0(j,iprin,l+1)=pot0(j,iprin,l+ 1)+.5d0*(rr(j)/rprb**2)**2 end if enddo enddo enddo z=0.d0 ! local potential entirely contained in potloc call crthhp(nspol,nprinx,nprin, nrad, 1max, rr, z, pot0, hhp) endif

!** TRIDIAGONAL SYMMETRIC
PRECONDITIONING HAMILTONIAN MATRIX

subroutine crthhp(nspol,nprinx, nprin,nrad,lmax,rr,znuc,pot0,hhp) ! Calculates a tridiagonal symmetric preconditioning hamiltonian matrix hhp in a basis of linear finite elements implicit real*8 (a-h, o-z)

dimension rr(nrad),hhp(2,nrad, nprinx,lmax+1),pot0(nrad,nprinx, lmax+1),nprin(lmax+1,nspol)

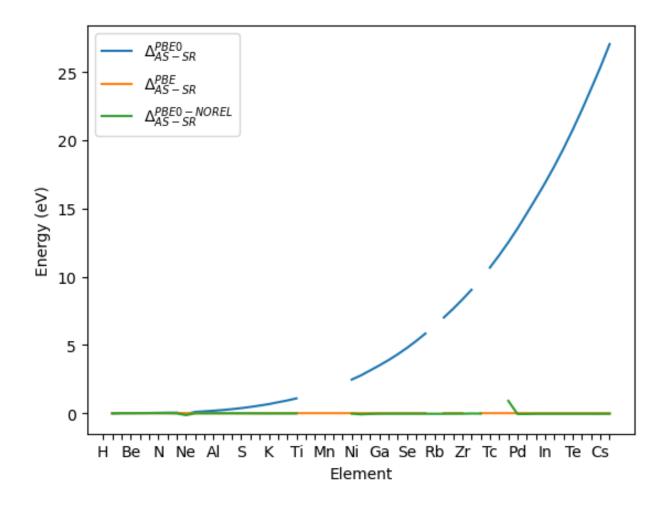
Preconditioner

Solving Schrödinger equation for orthogonal basis is equivalent to minimizing the constrained gradient

$$\vec{g} = H\vec{u} - \epsilon\vec{u}$$

★ Eigenvalues converge faster then eigenvectors; let \vec{u} be approximate eigenvector and $\vec{u} + \vec{p}$ be the true eigenvector; then \vec{p} is found as $\vec{p} = (H - \epsilon I)^{-1}\vec{g}$ and at each step \vec{u}_i can be found as

$$\vec{u}_i = \vec{u}_{i-1} - t\vec{p}$$


where t is of the order of 1.

Solution to the AtomSphere problem

Change the Hamiltonian preconditioner matrix to include ZORA terms

2394	2394	00 2092,1=1,00-1
2395		<pre>- aa=const*(rr(i+1)-rr(i))</pre>
	2395	+ ! aa=const*(rr(i+1)-rr(i))
	2396	+ aa=damprel(i+1)*l*(l+1)*.3333333333333333300*(rr(i+1)-rr(i))
2396	2397	r1=r2
2397	2398	r2=rr(i+1)
2398	2399	dr=r2-r1
		@@ -2401,7 +2402,8 @@ end subroutine detnp
2401	2402	r1r2=r1*r2
2402	2403	p=q
2403	2404	q=pot0(i+1,iprin,l+1)
2404		- tt=(r1q + r1r2 + r2q)/dr*.166666666666666666
	2405	+ ! tt=(r1q + r1r2 + r2q)/dr*.1666666666666666666666666666666666666
	2406	+ tt=damprel(i+1)*(r1q + r1r2 + r2q)/dr*.333333333333333333333333333333333333
2405	2407	ss=dr*(10.d0*p*r1q + 2.d0*q*r1q + 4.d0*p*r1r2 + &

Results

Hybrids still do not work correctly (reason – nonlocal free atom potential) Also, several elements did not converge

Conclusions

AtomSphere works now (sort of...)

- Hybrids are not working as the free-atom potential is non-local
- MetaGGAs still need some time to be implemented
- My advice to you: Comment your code
 But comment wisely ^(C)

user manua

feedbacl

Just a reminder, we have GIMS which is also being actively developed

and we desperately need the feedback!

https://gims-dev.ms1p.org

Graphical Interface for Materials Simulations / 🛓 Desktop application	Choose your code FHH arms exercise SETTINGS Choose GIMS version Development •
Calculation Apps Simple Calculation ③ Band Structure	3 GW Calculation 0
Elemental Apps Structure Builder ③ Control Generator	 Output Analyzer
Software enabling GIMS: <u>ASE</u> • <u>Spglib</u> • <u>three.js</u>	s • <u>Flask</u>

Version 1.1.0 • Release Notes • Contributing • DOI: 10.21105/joss.02767