Theoretical investigation of light-matter coupling on nuclear dynamics

Author: Elia Stocco Supervisors: Mariana Rossi, Christian Carbogno

Coffee Talk: June 6th, 2023

Max-Planck-Institut für Struktur und Dynamik der Materie

Life and studies:

European, Italian: lived in Cantalupo (really small town close to Milan)

Life and studies:

European, Italian: lived in Cantalupo (really small town close to Milan)

- European, Italian: lived in Cantalupo (really small town close to Milan)
- Bachelor in Physics, in Milan (UNIMI) in 2019

- European, Italian: lived in Cantalupo (really small town close to Milan)
- Bachelor in Physics, in Milan (UNIMI) in 2019
- Master in Structure of Matter, in Pavia (UNIPV) in 2022

- European, Italian: lived in Cantalupo (really small town close to Milan)
- Bachelor in Physics, in Milan (UNIMI) in 2019
- Master in Structure of Matter, in Pavia (UNIPV) in 2022
- temporary position in FHI since October 1th 2022

- European, Italian: lived in Cantalupo (really small town close to Milan)
- Bachelor in Physics, in Milan (UNIMI) in 2019
- Master in Structure of Matter, in Pavia (UNIPV) in 2022
- temporary position in FHI since October 1th 2022
- ▶ PhD in MPSD in Hamburg (Mariana Rossi's group) from July 1th 2023

(a) Milan Cathedral

(b) "Palio" of Legnano

(c) Risotto e ossobuco

eula (e) Trippa 《 다 > 《 문 > 《 문 > 종명 - 성숙은

(a) Bresaola

(b) Pizzoccheri

(c) Gorgonzola

(a) Bresaola

(b) Pizzoccheri

(c) Gorgonzola

(a) Bresaola

(b) Pizzoccheri

(c) Gorgonzola

Introduction

Experimental results

Experimental results, by using a coherent laser pulse in the THz region:

- light-induced superconductivity in cuprates¹
- state manipulation/control in gas² and liquid³ phase systems
- polarization reversal in ferroelectric solids⁴

Light-Induced Superconductivity in a Stripe-Ordered Cuprate	Metastable ferroelectricity in optically strained SrTiO ₃ T. F. Nova ^{1,2*} , A. S. Disa ¹ , M. Fechner ¹ , A. Cavalleri ^{1,2,3*}
Nonlinear lattice dynamics as a basis for enhanced superconductivity in $YBa_2Cu_3O_{6.5}$	Polarizing an antiferromagnet by optical engineering of the crystal field
R. Mankowsky ^{1,2,3} *, A. Subedi ⁴ *, M. Först ^{1,3} , S. O. Mariager ⁵ , M. Chollet ⁶ , H. T. Lemke ⁶ , J. S. Robinson ⁶ , J. M. Glownia ⁶ , M. P. Minitti ⁶ , A. Frano ⁷ , M. Fechner ⁶ , N. A. Spaldin ⁶ , T. Loew ⁷ , B. Keimer ⁷ , A. Georges ^{4,5,10} & A. Cavalleri ^{1,2,3,11}	Dharmalingam Prabhakaran ³ , Paolo G. Radaelli ² and Andrea Cavalleri o ^{12,3}

Ultrafast Reversal of the Ferroelectric Polarization

R. Mankowsky,¹ A. von Hoegen,¹ M. Först,¹ and A. Cavalleri^{1,2}

¹Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany ²Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom (Received 21 January 2017; published 10 May 2017)

¹Science, 331(6014), 189–191.

²Phys. Rev. Lett., 107, 163603.

³Nature Communications, 8(1), 14963.

⁴Phys. Rev. Lett., 118, 197601.

Introduction

Ab initio approach

Previous approachs:

- nuclear motion modeled as driven <u>harmonic oscillators</u>^{5,6}
- no nuclear quantum effect nor lattice distortion
- Iowest-order anharmonicities only

Aim: develop an *ab initio* to study light-driven nuclear dynamics:

- method based on Molecular Dynamics
- Machine-Learning methods: speed-up and larger systems

Focus on:

- response of the system at varying E intensities and frequencies
- light-induced (structural) phase transitions
- light-driven control of the system state (out-of-equilibrium)

⁵Nature Physics 7, 854-856 (2011)

⁶Phys. Rev. B 89, 220301(R)

Theory Electric Dipole Approximation

The Hamiltonian $\hat{\mathcal{H}}_{tot}$ of the system of electrons and nuclei is:

$$\hat{\mathcal{H}}_{tot} = \hat{T}_e + \hat{V}_{ee} + \hat{V}_{en} + \hat{T}_n + \hat{V}_{nn}$$

Light-matter coupling using the Electric Dipole Approximation (EDA)⁷

$$\hat{\mathcal{H}}_{tot}^{\mathsf{E}} = \hat{\mathcal{H}}_{tot} - \mathbf{\Omega} \mathbf{P} \cdot \mathbf{E}(t)$$

$$(\Omega = unit cell volume)$$

In the previous equations:

- **P** is the polarization (dipole per unit volume)
- **E** is the external electric field (with wavelength λ)
- the approximation is valid as long as |λ| ≫ lattice parameter (long-wavelength limit → E is homogeneous over the system)

⁷John Wiley & Sons, Photons and Atoms

Polarization in periodic systems

P has an electronic and a nuclear contribution, i.e. $\mathbf{P} = \mathbf{P}^n + \mathbf{P}^e$:

▶ **P**^{*n*} is expressed through the classical formula:

$$\mathbf{P}^{n} = \frac{q_{e}}{\Omega} \sum_{l}^{N_{n}} Z^{l} \mathbf{R}^{l}$$
 (where \mathbf{R}^{l} is the l^{th} nucleus position)

(the derivative of) P^e is expressed using the Modern Theory of Polarization^{8,9}:

$$\partial_{\lambda} \mathbf{P}^{e} = \frac{q_{e}}{(2\pi)^{3}} \sum_{n}^{occ} \int_{\mathrm{BZ}} d^{3}\mathbf{k} \, 2\mathrm{Im} \, \langle \partial_{\lambda} u_{n\mathbf{k}} | \partial_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$

P is defined up to a quantum $|\mathbf{a}_i| q_e/\Omega$ along the lattice vector \mathbf{a}_i direction.

Born-Oppenheimer approximation

Classical nuclei and Born-Oppenheimer/adiabatic approximation:

▶ with **E** = **0**

electrons:
$$\hat{\mathcal{H}}_{e}(\mathbf{R}) |\psi_{\mathbf{R}}(\mathbf{r})\rangle = E_{\mathbf{R}}^{\mathrm{KS}} |\psi_{\mathbf{R}}(\mathbf{r})\rangle \qquad \xrightarrow{\mathrm{DFT}} \quad 0 = \frac{\partial E_{\mathbf{R}}^{\mathrm{KS}}[n]}{\delta n}$$

nuclei: $\mathcal{H}_{n}^{\mathbf{0}} = \mathsf{T}_{n} + \mathsf{V}_{nn} + E_{\mathbf{R}}^{\mathrm{KS}} \qquad \xrightarrow{\mathrm{MD}} \quad \mathbf{F}' = -\frac{\partial \mathcal{H}_{n}^{\mathbf{0}}}{\partial \mathbf{R}'}$

• with $\mathbf{E} \neq \mathbf{0}^{10}$

electrons:
$$0 = \frac{\delta \mathcal{F}_{\mathsf{R}}(\mathsf{E})}{\delta n} = \frac{\delta}{\delta n} \left(E_{\mathsf{R}}^{\mathsf{KS}} - \bigcap \Omega \mathsf{P} \cdot \mathsf{E} \right)$$

nuclei:
$$\mathcal{H}_{n}^{\mathsf{E}} = \mathsf{T}_{n} + \mathsf{V}_{nn} + \boxed{\mathcal{F}_{\mathsf{R}}(\mathsf{E})}$$

where $\mathcal{F}_{R}\left(E\right), E_{R}^{\text{KS}}$, and P depend *parametrically* on R

C -KS F 1

¹⁰Phys. Rev. Lett. 89, 117602

Weak field approximation

 $\mbox{Assumption: } {\bf E}$ is small enough s.t. we can discard any induced change in the electronic structure. 11

We can then safely rely on the following approximated approach:

electrons:

- KS equations are solved for $\mathbf{E} = \mathbf{0}$
- P is computed only at the end of the scf procedure
- the enthalpy is approximate with a linear expression in E:

$$\mathcal{F}_{\mathsf{R}}\left(\mathsf{E}
ight)\simeq\left.\mathcal{E}_{\mathsf{R}}^{^{\mathsf{KS}}}
ight|_{0}-\mathsf{E}\cdot\left.\mathsf{P}
ight|_{0}$$

nuclei: the nuclear Hamiltonian is then approximated with a linear expression in E:

$$\mathcal{H}_{n}^{\mathsf{E}} \simeq \mathsf{T}_{n} + \mathsf{V}_{nn} + E_{\mathsf{R}}^{\mathsf{KS}} - \Omega \mathsf{P} \cdot \mathsf{E}$$
$$= \mathcal{H}_{n}^{\mathsf{0}} - \boxed{\Omega \mathsf{P} \cdot \mathsf{E}}$$

¹¹Phys. Rev. B 107, 054102

Theory Born Effective Charge tensors

Within these approximations, the **forces** gain just a simple term:

$$\mathbf{F}' = -\frac{\partial \mathcal{H}_n^{\mathbf{E}}}{\partial \mathbf{R}'} \simeq \mathbf{F}^{\mathbf{0}'} + \boxed{\Omega \frac{\partial \mathbf{P}}{\partial \mathbf{R}'} \cdot \mathbf{E}}$$

We need to know the **Born Effective Charge** (BEC) tensors $Z_{ij}^{*'}$ of each ion *I*:

$$Z_{ij}^{*l} = rac{\Omega}{q_e} rac{\partial P_i}{\partial R_j^l}$$
 (qe elementary charge, Ω u.c. volume)

The BEC tensors can be computed using:

• finite differences : $Z_{ij}^{*\prime} \propto \Delta P_i / \Delta R_j^{\prime}$

▶ **DFPT**¹²:

$$Z_{ij}^{*I} = \frac{\Omega}{(2\pi)^3} \sum_{n}^{occ} \int_{BZ} d^3 \mathbf{k} \, 2 \mathrm{Im} \, \langle \frac{\partial u_{n\mathbf{k}}}{\partial R_j^I} | \frac{\partial u_{n\mathbf{k}}}{\partial k_i} \rangle + Z^4$$

¹²Rev. Mod. Phys. 73, 515

Implementation

i-PI protocol

How to sample NVE and NVT ensembles:

- the potential is now **time-dependent** due to the term $\Omega \mathbf{P} \cdot \mathbf{E}(t)$
- we need a new protocol to perform driven-MD within i-PI:

$$p(t + \Delta t/2) = p(t) + \left[F(q(t)) + eZ^* \cdot E(t)\right] \Delta t/2$$

$$q(t + \Delta t) = q(t) + p(t + \Delta t/2) \Delta t/m$$

$$p(t + \Delta t) = p(t + \Delta t/2) + \left[F(q(t + \Delta t)) + eZ^* \cdot E(t + \Delta t)\right] \Delta t/2$$

implemented sinusoidal E fields (with a gaussian envelope function too)

- ▶ P is not strictly needed for the dynamics, but the BEC tensors are
- but the BEC could depend on the positions R:

$$Z_{ij}^{*I}(\mathbf{R}) = \frac{\Omega}{q_e} \frac{\partial P_i(\mathbf{R})}{\partial R_j^I}$$

Implementation Driver

Quantum Espresso^{13,14,15}:

- plane-waves basis set
- Pseudo-Potentials
- different kind of functionals

Some modifications have been done:

- P is computed using the Resta formalism¹⁶ at each MD step
- DFPT calculations are performed "on-the-fly" (merged pw.x with ph.x)
- the BEC are computed at each MD step
- implemented communication with i-PI for P and Z^{*/}_{ij}

(ロ) (同) (E) (E) (E) (E) (O) (O)

¹³J. Phys.:Condens. Matter 21 395502 (2009)

¹⁴ J. Phys.:Condens. Matter 29 465901 (2017)

¹⁵J. Chem. Phys. 152 154105 (2020)

¹⁶Phys. Rev. Lett. 80, 1800

Results LiNbO₃: crystal structure

Properties:

- lattice: rhombohedral
- space group: 161
- ▶ u.c. volume: $\simeq 695a.u.^3$
- spontaneous polarization at 0 K: $\mathbf{P} \simeq 1.17 \left(\hat{\mathbf{v}}_1 + \hat{\mathbf{v}}_2 + \hat{\mathbf{v}}_3 \right) a.u.$

Nb (blue), Li (green), O (red)

	v_1	v ₂	v ₃	
(5.55	3.29	3.29) ×
	0.00	4.47	1.66	у
	0.00	0.00	4.15) z

cell parameters (angstrom).

LiNbO₃: BEC tensors

The BEC tensors have been computed as E-induced forces:

$$Z_{ij}^{*\prime} \propto \frac{\partial P_i}{\partial R_j^{\prime}} = -\frac{\partial^2 U}{\partial R_j^{\prime} \partial E_i} = \frac{\partial F_j^{\prime}}{\partial E_i}$$

Some examples of the computed BEC tensors:

$$Z^{*\text{Li}} = \begin{pmatrix} P_x & P_y & P_z \\ 1.21 & 0.09 & 0.18 \\ 0.20 & 1.00 & -0.11 \\ 0.01 & 0.21 & 0.97 \end{pmatrix} \stackrel{E_x}{E_z} \qquad Z^{*\text{Nb}} = \begin{pmatrix} P_x & P_y & P_z \\ 4.57 & -0.97 & 0.04 \\ -0.32 & 5.52 & -1.17 \\ -0.92 & 0.72 & 5.70 \end{pmatrix} \stackrel{E_x}{E_z} \quad Z^{*\text{O}} = \begin{pmatrix} P_x & P_y & P_z \\ -0.92 & 0.72 & 5.70 \end{pmatrix} \stackrel{E_z}{E_z}$$

Different atoms (of the same species too) could have really different BEC tensors.

LiNbO₃: BEC tensors

Why do we need to compute the BEC tensors at each MD step?

▶ **P** can not be assumed linear w.r.t. the displacements: $\Delta \mathbf{P} \neq Z_{const}^* \cdot \Delta \mathbf{R}$

LiNbO3: BEC tensors

Why do we need to compute the BEC tensors at each MD step?

- ▶ **P** can not be assumed linear w.r.t. the displacements: $\Delta \mathbf{P} \neq Z_{const}^* \cdot \Delta \mathbf{R}$
- > Z^* can not be assumed constant w.r.t. **R**.

LiNbO₃ (NVE@20K, $\Delta t = 1fs$)

Results LiNbO₃: BEC tensors convergence

The BEC tensors need to be converged w.r.t. **k**-points in DFPT calculatons. Here are the results for Nb in the $1\times1\times1$ primitive cell:

 $n_{k} = 1: \quad Z^{*Nb} = \begin{pmatrix} P_{x} & P_{y} & P_{z} \\ 4.6 & -1.0 & 0.0 \\ -0.3 & 5.5 & -1.2 \\ -0.9 & 0.7 & 5.7 \end{pmatrix} \stackrel{E_{x}}{E_{y}} \qquad \frac{-1}{N_{n}} \sum_{I} Z^{*I} = \begin{pmatrix} P_{x} & P_{y} & P_{z} \\ 1.75 & 0.88 & 0.50 \\ 0.88 & 0.46 & 0.30 \\ 0.59 & 0.30 & 0.21 \end{pmatrix} \stackrel{E_{x}}{E_{z}}$ $n_{k} = 2^{3}: \quad Z^{*Nb} = \begin{pmatrix} P_{x} & P_{y} & P_{z} \\ 5.2 & -0.9 & 0.2 \\ -0.2 & 6.0 & -1.2 \\ -0.9 & 0.9 & 6.2 \\ -0.9 & 0.9 & 6.2 \\ -0.2 & 6.0 & -1.2 \\ -0.9 & 0.9 & 6.2 \\ -0.9 & 0.9 & 6.1 \\ -0.2 & 6.0 & -1.2 \\ -0.9 & 0.8 & 6.1 \end{pmatrix} \stackrel{E_{x}}{E_{z}} \qquad \frac{1}{N_{n}} \sum_{I} Z^{*I} = \begin{pmatrix} P_{x} & P_{y} & P_{z} \\ 0.07 & 0.00 & 0.00 \\ 0.00 & 0.07 & 0.00 \\ 0.00 & 0.00 & 0.07 \\ 0.00 & 0.00 & 0.07 \\ 0.00 & 0.00 & 0.07 \\ 0.00 & 0.00 & 0.07 \\ 0.00 & 0.00 & 0.00 \\ 0.00 & 0.01 & 0.00 \\ 0.00 & 0.01 & 0.00 \\ 0.00 & 0.00 & 0.01 \\ E_{z} \end{bmatrix}$

 $pw.x + ph.x = eda.x does not work (yet) with <math>n_k > 1$: debugging!

LiNbO₃: BEC tensors convergence

Observation: the sum rule $\sum_{l} Z^{*l} = 0$ "does not improve" if we increase the cell size and keeping n_k fixed.

Explanation: the BEC tensors are expressed using a k-points derivative:

$$Z_{ij}^{*I} = \frac{\Omega}{(2\pi)^3} \sum_{n}^{occ} \int_{\mathsf{BZ}} d^3 \mathbf{k} \, 2\mathsf{Im} \, \langle \frac{\partial u_{n\mathbf{k}}}{\partial R_j^I} | \frac{\partial u_{n\mathbf{k}}}{\partial k_i} \rangle + Z^I$$

To get more accurate results we need a denser \mathbf{k} -grid.

Problem: for large cells DFPT calculations are really expensive!

time	$n_k = 1^3$	$n_k = 2^3$	$n_k = 4^3$
$N_a = 10$	1m	5m	33m
$N_a = 30$	бm	38m	4h45m
$N_a = 80$	1h20m	15h	/

Possible solution: Machine-Learn the BEC tensors and/or polarization.

Applied **E**-field with $E_{max} = 10^{-3}a.u.$ and $\omega = 19$ THz.

Question/outlook: how the system respond to an external perturbation?

Applied **E**-field with $E_{max} = 10^{-3}a.u.$ and $\omega = 19$ THz.

Question/outlook: how the system respond to an external perturbation?

Applied **E**-field with $E_{max} = 10^{-3}a.u.$ and $\omega = 19$ THz.

Question/outlook: how the system respond to an external perturbation?

Applied **E**-field with $E_{max} = 10^{-3}a.u.$ and $\omega = 19$ THz.

Question/outlook: how the system respond to an external perturbation?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LiNbO₃: Projection on vibrational modes

Vibrational modes energy of LiNbO₃.

The 2 highly populated modes have frequencies 14.5 and 23 THz.

Further analysis to validate the two coupled phonons model.

LiNbO₃: Two coupled phonons model

Simple mechanism for polarization reversal^{17,18}:

- there exists a low frequency phonon mode Q_P in the ferroelectric phase whose excitation induces changes in P
- the Q_P mode potential is a double well
- the Q_P mode is anharmonically coupled to a high frequency infrared-active phonon mode Q_{IR}

The potential of the two-phonons model is¹⁹:

$$V\left({{Q_P},{Q_{IR}}}
ight) = rac{1}{2}\omega _{IR}^2Q _{IR}^2 - rac{1}{4}\omega _P^2Q _P^2 + rac{1}{4}c _P^2Q _P^4 - a Q_P Q_{IR}^2$$

We can obtain the EOM to perform a qualitative and intuitive study of the phonon populations (when an external driving is applied).

¹⁷Phys. Rev. B 92, 214303

¹⁸ Phys. Rev. Lett., 118, 197601.

¹⁹Phys. Rev. Lett. 118, 197601

LiNbO₃

IR Raman activity

The IR activity \mathcal{I}_n of the vibrational mode \mathbf{Q}_n is defined as:

$$\mathcal{I}_{n} \stackrel{\text{def}}{=} \sum_{\alpha=x,y,z} \left| \frac{\partial P^{\alpha}}{\partial \mathbf{Q}_{n}} \right|^{2} = \sum_{\alpha=x,y,z} \left| \sum_{i}^{3N} \frac{\partial P^{\alpha}}{\partial \mathbf{R}_{i}} \frac{\partial \mathbf{R}_{i}}{\partial \mathbf{Q}_{n}} \right|^{2} = \sum_{\alpha=x,y,z} \left| Z^{*} \cdot \mathbf{N}_{n} \right|^{2}$$

where \mathbf{N} is the matrix whose columns are the vibrational modes.

LiNbO3 (1x1x1 u.c.) IR cross section

Conclusions

What has been done insofar:

- set up a theoretical framework to perform light-driven MD
- computation of Z* "on-the-fly" using DFPT
- ▶ implemented communication of P and Z^* between i-PI and QE
- preliminary study on LiNbO₃ (small cells)

What has to be done:

- machine-learn P and Z* to speed up MD simulations
- systematic study of LiNbO₃ with an external E field:
 - validate the two coupled phonons model
 - study the E-frequency/intensity response of the system
- ▶ implement <u>NPT</u> ensemble (improper piezoelectric tensor is needed)
- study <u>other materials</u>

Supplementary material

Further order terms

Let's go beyond the two approximations that have been adopted, i.e. slowly varying and weak fields.

High intensity fields: the E-induced changes on the electronic structure are

- no longer negligible \rightarrow solve KS equation with external **E** field
- \blacktriangleright still negligible, but results are not accurate \rightarrow consider the derivative w.r.t. E of the:
 - energy (i.e. polarizability) to properly defined a conserved quantity
 - BEC tensors, to get better values for the forces

Rapidly oscillating fields (high frequency/spatial inhomogeneity):

- consider quadrupole terms (computation could not be trivial at all)
- consider magnetic dipoles

Time to compute Z^* and **P**

time	$n_{k} = 1^{3}$	$n_k = 2^3$	$n_{k} = 4^{3}$
$N_a = 10$	1m	5m	33m
$N_a = 30$	бm	38m	4h45m
$N_{a} = 80$	1h20m	15h	/

Time to compute the BEC tensors using DFPT:

Time to perform a DFT calculation + polarization calculation:

time	$n_k = 1^3$	$n_k = 2^3$	$n_k = 4^3$
$N_a = 10$	10s	20s	2m
$N_{a} = 30$	34s	3m	17m
$N_a = 80$	бm	43m	4h

Electric polarization

Electronic polarization \mathbf{P}^{e} , classical expression for a continuous charge distribution:

$$\mathbf{P}^{e} = \frac{1}{\Omega} \int_{\Omega} d^{3}\mathbf{r} \, n(\mathbf{r}) \, \mathbf{r}$$

Electronic polarization \mathbf{P}^{e} , classical expression for a continuous charge distribution:

The Modern Theory of Polarization relies on a single-particle formalism (KS orbitals in Bloch-like form):

$$\partial_{\lambda} \mathbf{P}^{e} = \frac{q_{e}}{\left(2\pi\right)^{3}} \sum_{n}^{occ} \int_{\mathsf{BZ}} d^{3}\mathbf{k} \, 2\mathsf{Im} \, \langle \partial_{\lambda} u_{n\mathbf{k}} | \partial_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$

In FHI-aims the integral is performed along the direction of a reciprocal lattice vector $\mathbf{n}_i = \mathbf{b}_i / |\mathbf{b}_i|$:

$$P_i^e(1) - P_i^e(0) = \int_0^1 d\lambda \frac{\partial P_i^e}{\partial \lambda} \qquad \xrightarrow{\text{assume that}} \qquad P_i^e = \oint_{\mathbb{T}^1} d\mathbf{n}_i \frac{\partial P_i^e}{\partial \mathbf{n}_i}$$

References

Projection on vibrational modes

The vibrational modes n_l are the normalized mass-weighted eigenvectors of the dynamical matrix:

$$\underline{\underline{D}} \cdot \underline{\underline{\varepsilon}} = \underline{\underline{\varepsilon}} \cdot \underline{\underline{\Lambda}} \quad with \quad \Lambda_{ls} \stackrel{\text{def}}{=} \delta_{ls} \omega_s^2 \quad \to \quad \mathbf{n}_l \stackrel{\text{def}}{=} \frac{\underline{\underline{M}} \cdot \underline{\underline{\varepsilon}}_l}{\left| \underline{\underline{M}} \cdot \underline{\underline{\varepsilon}}_l \right|}$$

 $\Delta \mathbf{R}(t)$ and $\mathbf{v}(t)$ are expressed as a superpositions of vibrational modes:

$$\Delta \mathbf{R}(t) = \sum_{s}^{N_{n}} A_{s} \frac{\varepsilon_{s}}{\sqrt{\underline{M}}} \cos(\omega_{s}t + \phi_{s}) \rightarrow \sqrt{\underline{M}} \cdot \varepsilon_{l} \cdot \Delta \mathbf{R}(t) = A_{l} \cos(\omega_{l}t + \phi_{l})$$
$$\mathbf{v}(t) = \sum_{s}^{N_{n}} -A_{s} \omega_{s} \frac{\varepsilon_{s}}{\sqrt{\underline{M}}} \sin(\omega_{s}t + \phi_{s}) \rightarrow \omega_{l}^{-1} \sqrt{\underline{M}} \cdot \varepsilon_{l} \cdot \mathbf{v}(t) = -A_{l} \sin(\omega_{l}t + \phi_{l})$$

We then get

$$\mathcal{H}_{harm} = \sum_{s}^{3N} \frac{\omega_s^2 A_s^2}{2} = \sum_{s}^{3N} E_s \quad \longrightarrow \quad A_s^2 = \frac{2E_s}{\omega_s^2}$$

 $(A_s$ has the dimension of length imes mass^{1/2})

. .

LiNbO₃

Projection on vibrational modes

Thermalization using the GLE thermostat at 300K with $\omega_0 = 20 \text{cm}^{-1}$

LiNbO₃

Projection on vibrational modes

Thermalization using the GLE thermostat at 300K with $\omega_0 = 20 \text{cm}^{-1}$

The **equipartition theorem** is satisfied: $E_n = k_B T$.

<ロ> < 部 > < 臣 > < 臣 > 王国 の Q () 5/9

Variable lattice parameters

A time-dependent **E**-field can induce **structural distorsions**. Promote the lattice parameters \mathbf{a}_i to dynamical variables:

$$\mathcal{H}_{n,\mathbf{a}_{i}}^{\mathsf{E}}\left(\mathsf{R}^{\prime},\mathsf{p}^{\prime}
ight) \longrightarrow \mathcal{H}_{n}^{\mathsf{E}}\left(\boldsymbol{\theta}^{\prime},\boldsymbol{\omega}^{\prime},\mathsf{a}_{i},\boldsymbol{\kappa}_{i}
ight)$$

where θ^{I} are the fractional coordinates, ω^{I} the corresponding conjugate variables, and κ_{i} the conjugate variables to the lattice parameters \mathbf{a}_{i} :

$$\mathbf{A} \stackrel{\text{\tiny def}}{=} [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = \begin{bmatrix} a_{1x} & a_{2x} & a_{3x} \\ a_{1y} & a_{2y} & a_{3y} \\ a_{1z} & a_{2z} & a_{3z} \end{bmatrix} \rightarrow \begin{array}{c} \mathbf{R}' = & \mathbf{A} \cdot \boldsymbol{\theta}' \\ \mathbf{p}' = & \mathbf{B} \cdot \boldsymbol{\omega}' \end{array}$$

with $\mathbf{B} = \left(\mathbf{A}^{-1}
ight)^t$

References: J. Phys. Chem. Solids Vol. 56, No. 3/4. pp. 501-505. 1995

Equations of motion

From the Hamilton equations of motion of $\mathcal{H}_n^{\mathsf{E}}$ we obtain:

$$\frac{d\mathbf{R}'}{dt} = \frac{\mathbf{p}'}{M'} + \boxed{\frac{d\mathbf{A}}{dt} \cdot \theta'}$$
$$\frac{d\mathbf{p}'}{dt} = \mathbf{F}^{\mathbf{0}'} + \mathbf{F}^{\mathbf{E}'} - \boxed{\mathbf{B} \cdot \frac{d\mathbf{A}}{dt} \cdot \mathbf{p}'}$$

with

$$\mathbf{F}^{0\prime} = -\frac{\partial \mathcal{H}_n^0}{\partial \mathbf{R}^{\prime}}$$
 and $\mathbf{F}^{\mathbf{E}\prime} = -\Omega \mathbf{E} \cdot \frac{\partial \mathbf{P}}{\partial \mathbf{R}^{\prime}}$

Attention! We need to know the following term:

$$\frac{d\kappa_i}{dt} = -\frac{\partial \mathcal{H}_n^{\mathsf{E}}}{\partial \mathsf{a}_i} = -\frac{\partial \mathcal{H}_n^{\mathsf{0}}}{\partial \mathsf{a}_i} - \left[\frac{\partial}{\partial \mathsf{a}_i} (\Omega \mathsf{P} \cdot \mathsf{E}) \right]$$

Conserved quantity in time-dependent systems

Time-dependent Hamiltonian:

$$\mathcal{H}\left(p,q,t
ight)\stackrel{\mathrm{\tiny def}}{=}\mathcal{H}_{0}\left(p,q
ight)+V\left(q,t
ight)$$

Extended phase-space Hamiltonian:

$$\begin{split} & \tilde{\mathcal{H}}\left(p,q,\tilde{q},\tilde{p}
ight) \stackrel{\text{def}}{=} \mathcal{H}\left(p,q,\tilde{q}
ight) + \tilde{p} \ & \dot{\tilde{p}} = -rac{\partial \tilde{\mathcal{H}}}{\partial \tilde{q}} = -rac{\partial \mathcal{H}}{\partial t} & \dot{\tilde{q}} = rac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} = 1 &
ightarrow \tilde{q} = t \end{split}$$

Solving the equations of motion for \tilde{p} we get the following conserved quantity:

$$A_{cons}\left(p,q,t
ight)\stackrel{\mathrm{def}}{=}\mathcal{H}\left(p,q,t
ight)-\int_{0}^{t}rac{\partial\mathcal{H}}{\partial au}d au=\mathcal{H}\left(p,q,t
ight)-\int_{0}^{t}rac{\partial V\left(q\left(au
ight), au
ight)}{\partial au}d au$$

Let's explicitly show that this is a conserved quantity:

$$\frac{dA_{cons}}{dt} = \frac{\partial A_{cons}}{\partial t} + \frac{\partial A_{cons}}{\partial q} \frac{dq}{dt} + \frac{\partial A_{cons}}{\partial p} \frac{dp}{dt}$$
$$= \frac{\partial V(q,t)}{\partial t} - \frac{\partial V(q,t)}{\partial t} + \frac{\partial A_{cons}}{\partial q} \frac{\partial H}{\partial p} - \frac{\partial A_{cons}}{\partial p} \frac{\partial H}{\partial q}$$
$$= \frac{\partial H}{\partial q} \frac{\partial H_0}{\partial p} - \frac{\partial H_0}{\partial p} \frac{\partial H}{\partial q} = 0$$

<ロ> < 母> < 臣> < 臣> < 臣) 三日 - 의식() 8/9

LiNbO₃

Conserved quantity in time-dependent systems

▲口> ▲圖> ▲圖> ▲圖> 三国目 ののの