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Excited states in coupled-cluster theory
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ĤHF Φ0 = E0Φ0

ΨCC
0 = eT̂ Φ0

T̂ =
∑
i ,a

ta
i a†

aai +
∑

i ,j,a,b
tab
ij a†

aa†
bajai + ...

ΨCC
n = R̂EA/IP

n ΨCC
0

R̂EA
n =

∑
a

raa†
a +

∑
i ,a,b

rab
i a†

aa†
bai + ...

R̂ IP
n =

∑
i

riai +
∑
i ,j,a

ra
ij a†

aajai + ...



Problem of the finite-size error of charged excitations
The naive approach

Perform calculations of increasing supercell/ k-grid size
Extrapolate using some law
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Experimental band gap : 7.77 eV
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Problem of the finite-size error of charged excitations

The naive approach
Perform calculations of increasing supercell/ k-grid size
Extrapolate using some law

McClain et al. JCTC 13,3 (2017): 1209-1218



Problem of the finite-size error of charged excitations

Problems with this approach:
It is generally not obvious which extrapolation law must be
applied ( 1

Nk
, 1

N1/3
k

, ...)

Exceedingly expensive calculations need to be performed (≥
4x4x4 k-grids)
The extrapolation laws don’t apply for too
small/under-converged calculations.



Structure factor-based finite-size correction

For the ground-state CC correlation energy Ecorr , the (transition)
structure factor S(G) is introduced via

Ecorr =
∑

i ,j,a,b
(tab

ij + ta
i tb

j )(2V ab
ij − V ba

ij ) =
∑
G

V (G)S(G)

G being a grid in reciprocal space
V (G) being the Coulomb potential 4π

G2 in reciprocal space



Structure factor-based finite-size correction

Liao and Grüneis JCP 145,14 (2016): 141102



How to estimate the finite-size error using the transition
structure factor

Perform some relatively cheap (2x2x2-3x3x3) ground-state CC
calculation
Calculate the (incomplete) transition structure factor
Perform quadratic interpolation to obtain missing S(G) values
near G = 0
Re-calculate Ecorr =

∑
G S(G)V (G) to obtain finite-size

corrected correlation energy



Can we do the same for excited states?

Similarly, let’s define the EOM structure factor S IP/EA
n (G):

E IP/EA
n =

∑
G

S IP/EA
n (G)V (G)

for the n-th ionization or electron capture.

How does the structure factor for an excited state looks like?



S IP
1 (G) of a He-atom in a 8Åx8Åx8Å box
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S IP
1 (G) of LiH (4x4x4 k-grid)
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S IP
1 (G) of LiH (5x5x5 k-grid)
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Initial findings

S IP/EA
n (G) ∝ |G| for small |G| (in CCSD S(G) ∝ |G|2)

The finite-size error of IP/EA-EOM is proportional to 1
N2/3

The correlation effects of a charged excitation have
significantly longer range than ground-state correlation effects

Interpolation of S IP/EA
n (G) to G = 0 is not practical



Modeling the EOM structure factor explicitly
Can we find a model to fit the EOM structure factor?

Basic requirements of model m(G):
For small |G| (long-range) : m(|G|) ∝ −|G|
For large |G| (short-range) : m(|G|) → 0
A minimum between both regions

In addition: By calculating
(

∂S
∂G

)
G=0

for the linear part, we can
estimate the missing long-range contribution of S(G).

(
∂S
∂G

)
G=0

can be approximated using the dipole matrix

dp,q = ⟨ϕp|r̂ |ϕq⟩

(comparable to "head" and "wing" of the macroscopic dielec-
tric tensor routinely used in GW).



The modified Drude-Lorentz model

m(x) := − |x | − a
(|x | − a)2 + b
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The modified Drude-Lorentz model
Simply perform constrained least-square fit of S(G) using m(G)
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Initial results with a small basis (Nv/No = 3)
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Basis set convergence
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Final result with converged basis
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Final result with converged basis
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The final chapter:
Coupled-cluster finite-size correction in FHI-aims

The current finite-size correction scheme (for CC and EOM-CC) is
formulated in plane waves (PW), as

structure factor S(G) and Coulomb potential V (G) are
diagonal.
PWs naturally provide a space (G-space) in which
interpolation of S(G) is possible.

Problem: A localized, atom-centered basis does none of that.
Solution: Perform basis transformation before finite-size correction.



Example: Transforming the Coulomb potential

The real-space Coulomb potential 1
|r−r ′| in FHI-aims is represented

using an auxiliary basis Pµ(r):

Vµ,ν =
∫

dr dr ′ Pµ(r)Pν(r ′)
|r − r ′|

In PWs, however, one can show that the Coulomb potential is

VG,G′ =
∫

dr dr ′ e−iGr eiG′r ′

|r − r ′|
= 4π

G2 δG,G′

We want to obtain an approximation of VG,G′ from our Vµ,ν :

VG,G′ =
∫

dr dr ′ e−iGr eiG′r ′

|r − r ′|
=

∫
dr dr ′

∑
µ C∗

µ,GPµ(r)
∑

ν Cν,G′Pν(r ′)
|r − r ′|

=
∑
µ,ν

C∗
µ,GVµ,νCν,G′ = C † V C



Obtaining the transformation coefficients Cµ,G

As our atom-centered basis is not orthogonal, we need to take the
overlap Sµν =

∫
drPµ(r)Pν(r) into account.

One can show that

Cµ,G =
∑

ν

(S−1)µ,νOν,G = S−1 O

,where

Oµ,G =
∫

dr Pµ(r)eiGr = ⟨µ|G⟩



So...how well does it work?

As a measure of quality let’s look at the PW overlap SPW
G,G′ in the

auxiliary basis representation:

SPW
G,G′ = C∗

µ,GSµ,νCν,G′
?= δG,G′ =⇒ SPW = C †S C

(a) ℜ(SPW
G,G′ ) (b) ℑ(SPW

G,G′ )



So...how well does it work?

As a measure of quality let’s look at the PW overlap SPW
G,G′ in the

auxiliary basis representation:

SPW
G,G′ = C∗

µ,GSµ,νCν,G′
?= δG,G′ =⇒ SPW = C †S C

(c) ℜ(SPW
G,G′ ) (d) ℑ(SPW

G,G′ )

It’s not quite working yet:
SPW

G,G′ is complex-valued
SPW

G,G′ is not diagonally dominant for short G-vectors



What could it be?

There is a bug in the code
Artifact of small auxiliary basis
There’s nothing wrong, AOs are just very unfit for
representing PWs



Summary and outlook

What has been done:
The EOM-CCSD algorithm has been implemented in Cc4s

The structure factor S(G) and its derivative
(

∂S(G)
∂G

)
G=0

has
been implemented in Cc4s

A new, affordable and accurate finite-size correction scheme
for EOM-CC has been developed

What remains to be done:
Benchmark the correction scheme for a variety of materials
Apply correction scheme to band structures
Resolve the issues with FHI-aims (Is it a bug or a feature?)





Derivative-based finite-size extrapolation

Basic idea: By calculating the first derivative
(

∂S
∂G

)
G=0

, we can
estimate the missing long-range contribution of S(G).

⇒ It is not necessary to reach the minimum of S(G).

⇒ Smaller calculations can be sufficient to get a good estimate of
the finite-size error.

(
∂S
∂G

)
G=0

can be approximated using the dipole matrix

dp,q = ⟨ϕp|r̂ |ϕq⟩

(comparable to "head" and "wing" of the macroscopic dielectric
tensor routinely used in GW).



Derivative-based finite-size extrapolation for LiH
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Derivative-based finite-size extrapolation for LiH

Decent first attempt
But still far away from the reference band gap of ≈ 5 eV

A more refined treatment of the EOM structure factor is necessary


