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In the present work different orthogonal tight-binding molecular dynamics methods have been employed for
describing small silicon clusters. The cohesive energies calculated using these methods have been compared
with those found from the first principles Car-Parrinello method. The comparison shows that the orthogonal
tight binding matrix elements and repulsive potentials need to include the radial cutoff up to fourth neighbor
distance in diamond structure in order to reproduce ab initio results. The environmental correction is not
needed in this orthogonal tight-binding method.
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1. INTRODUCTION

At present there exists a fairly good understanding of the properties of single atoms and
molecules, as well as those of at least one class of solids namely the crystalline solids.
The latter category of matter in the bulk form consists of aggregates of a large
number of atoms (� 1023 atoms per unit volume). It is also well known that solids
exhibit many properties like conductivity, elasticity, susceptibility etc. which are
simply not present in their elementary constituents namely the atoms. So the question
that naturally comes to one’s mind is at what aggregates of atoms do the bulk proper-
ties arise? The answer to this fundamental question, it is believed, will emerge from the
study of atomic clusters. Besides this motivation, production and deposition of atomic
clusters on suitable substrates provides another route for the generation of nanomater-
ials, which are of tremendous technological importance. Silicon is the material of elec-
tronic industry. One of the major thrust in this area is miniaturization and with its
progress it might reach the small silicon clusters pretty soon. Hence there is a need
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for studying and understanding the electronic properties of Si clusters, which is the
present motivation behind this work.
First principles quantum mechanical calculations such as the Car-Parrinello method

within the generalized gradient approximation (CP-GGA) is successful in predicting
the structures of Si clusters up to twenty atoms (Shvartsburg et al. (2000)). While the
CP-GGA method is very accurate in yielding valuable informations about the structure
and electronic properties of these clusters, the demand on computational time to opti-
mize medium sized clusters for longer time scales is enormously high. On the other hand
the empirical tight binding methods are very popular due to rather low computational
time requirements since the potentials in these methods are based on the interparticle
separations of the atomic positions without involving the electron coordinates as is
the case in the first principles methods. Since these methods require only the atomic
positions in a cluster, a large time step can be safely taken in the molecular dynamics
simulation. The other computational advantage of this method is that the Hamiltonian
can be parameterized containing the effect of angular forces in a natural way by the
Slater–Koster method (Slater and Koster, 1954). While the orthogonal tight-binding
schemes assume that the orbitals of each atom remain orthogonal at all times, the
non-orthogonal schemes treat their overlap explicitly. The disadvantage of the non-
orthogonal method is that the overlap matrix makes the calculation slower.
In the orthogonal tight binding methods the potentials for the diamond structure

are determined by fitting the parameters so as to reproduce all the physical quantities
accurately. The potentials are then made transferable to include the position dependence
by introducing some scaling function such that the bulk structural phases, properties
of point defects, surfaces and clusters of Si can be computed by molecular dynamics
simulations. Generating the accurate transferability of the tight-binding potentials
from the bulk diamond structure with tetrahedral bonding to non-tetrahedral and
multi-coordinated Si clusters where the major bonding is metallic, is a very challenging
task. During past several years, a lot of efforts has been devoted to the development of
a suitable transferable tight-binding method to optimize small Si clusters. Since very
accurate geometries and cohesive energies of Si clusters up to Si20 have been optimized
in the CP-GGA method, it is worth comparing different orthogonal tight-binding
methods to find the most efficient one in understanding the small Si clusters.

2. METHOD OF CALCULATIONS

The potentials in the orthogonal tight-binding scheme within the Slater–Koster method
are based on the two-center hopping integrals. In the minimal ðs, pÞ representation only
four hopping integrals hss� , hsp�, hpp� and hpp� are necessary to calculate all the matrix
elements of the Hamiltonian. The repulsive potential which arises when two atoms are
brought together is dependent on the position vector separating the atomic coordinates.
Summarizing all the tight binding methods which study Si clusters containing N

atoms, we find the following expression for the binding energy

E ¼
XN
i¼1

p2i
2M

þ Ebs þ Erep þ C
XN
i¼1

ðqi � q0i Þ
2: ð1Þ
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The first term is the kinetic energy of the atoms with mass M. The second term is the
electronic energy obtained from the orthogonal tight-binding methods. The third term
Erep represents the repulsive energy. In the fourth term qi and q0i are the Mulliken
charges of the ith atom in a cluster and ith neutral atom, respectively. This is a
Hubbard-like on-site energy term which corrects the charge transfer from one atom
to the another in a cluster, thus making it sure that the charge neutrality is preserved
while performing molecular dynamics simulations in a cluster. However, this energy
term is very small in a neutral cluster. The band energy Ebs is given by

Ebs ¼ 2
Xocc:
k

f ð�k,TÞ�k � 2nð�s þ �pÞ, ð2Þ

where f ð�k,TÞ is the Fermi–Dirac distribution function obtained for the single particle
energy �k and temperature T . The single particle energies are obtained by diagonalizing
the Hamiltonian real space constructed using the Slater–Koster (1954) method. The
second term in Eq. (2) is the energy of n isolated atoms with �s and �p being the
on-site energies of the s and p electrons, respectively.
The repulsive energy Erep is given by

Erep ¼
X
i

X
j 6¼i

�ðrijÞ � Ebc, ð3Þ

where �ðrijÞ is the pair repulsive potential, rij being the distance between the ith and jth
atoms with position vectors ri and and rj, respectively. Ebc is the energy due to the bond
correction,

Ebc ¼ n½c1ðnb=nÞ
2
þ c2ðnb=nÞ þ c3	: ð4Þ

Here nb is the number of bonds and c1, c2 and c3 are adjustable parameters. Since the
number of bonds are different in different clusters, this term represents the environmen-
tal correction to the binding energy of a cluster.
The molecular dynamics simulations method is based on the solution of the Newton’s

equation where the updated positions are calculated as

riðtþ �tÞ ¼ riðtÞ þ viðtÞ �tþ 12aiðtÞð�tÞ
2, ð5Þ

where vi and ai are the velocity and acceleration of the ith atom which are calculated
from the total force exerted on the atom. The total force is the combination of the
attractive electronic force and repulsive force. While the electrostatic repulsive force
is calculated directly, the electronic force is calculated using the Hellman–Feynman
method. The velocity-Verlet scheme is applied to move atoms in a cluster until the
forces are small. The quenching method has been employed to search the minimum
energy of a cluster. All tight binding methods are spin-unpolarized.

3. COMPARISON OF DIFFERENT METHODS

In this section a comparative study will be made of several orthogonal tight-binding
methods existing in the literature. All the methods studied here are spin-unpolarized.
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The merit of a method is judged by comparing its cohesive energy with those obtained
using CP-GGA method. We have taken the optimized geometries of CP-GGA method
to calculate cohesive energies. The geometries of Si clusters up to n ¼ 19 are shown in
Fig. 1. The cohesive energies obtained from different methods are shown in Fig. 2.

3.1. Harrison Scaling Method

The early attempt by Tománek and Schlüter (1987) to optimize small Si clusters up to
fourteen atoms using the empirical orthogonal tight binding scheme is based on the
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FIGURE 1 Optimized geometries of Si clusters up to n ¼ 19. For Si19 cluster, both cage-like (19a) and
prolate (19b) structures are presented.
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Harrison scaling method (Harrison, 1980) where the hopping integrals are repre-
sented as

h�ðrÞ ¼ h�ðr0Þ
r0
r

� �2
, ð6Þ

r0 is the nearest neighbor distance in the diamond lattice structure and the hopping
matrix elements in the diamond structure, h�ðr0Þ are taken from the work of
Harrison (1980). Later this method has been used by Rantala et al. (1990) to study
linear and non-linear properties of small Si clusters. In this method the cohesive
energy of the clusters are calculated taking all the terms described in Eqs. (1)–(4).
The repulsive potential is obtained as a difference between the ab initio binding
energy of Si2 and the corresponding tight-binding energy defined in Eq. (2). In Fig. 2
we have not shown the cohesive energies obtained using this method as they do not
compare well with the CP-GGA results. The reason behind the poor reproducibility
of the cohesive energies in this method is that the Harrison scaling method makes
the potential long-ranged for which the matrix elements are non-negligible at higher
order neighbors. As a result of this the method fails to find structural phases of Si.
The equilibrium volume of the FCC lattice is overestimated by almost a factor of
two. The method gives approximate cohesive energies by including the bond correction
energy term where the number of bonds are counted case-by-case basis for each

FIGURE 2 Lowest energy structures of small Si clusters calculated using different orthogonal tight-binding
models. The solid, long-dashed, dashed, dotted and dot-dashed lines correspond to methods of CP-GGA,
Lenosky et al. (1997), IGPS, Sawada and GPS (Goodwin et al., 1989) models, respectively.
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structure. As shown in Table I the cohesive energy, bond length and the vibrational fre-
quency of the dimer is well reproduced due to fitting procedure only to the dimer.

3.2. Screened Harrison Scaling Method

The Harrison scaling method has been improved by Khan and Broughton (1989) fol-
lowed by Laasonen and Nieminen (1990). In this method the Harrison scaling is
used, but the potentials are terminated between the first and second neighbors. Since
the potentials have non-zero values at the cutoff, a short ranged scaling function has
been used to make the potential smoothly falling to zero at the cutoff. The hopping
matrix elements are given as

h�ðrÞ ¼ h�ðr0Þ
r0
r

� �2 1

expf�ðr� rcÞg þ 1
, ð7Þ

where rc controls the range of interactions and � is an adjustable parameter. The repul-
sive potential is calculated in a similar manner as proposed by Tománek and Schlüter
(1987). Laasonen and Nieminen (1990) have optimized Si clusters up to ten atoms using
this method and found reasonable agreement with the ab initio Hartree-Fock results
by Raghavachari (1986). The advantage of this method over the model of Tománek
and Schlüter is that the number of bonds are calculated from the cutoff function to
allow the binding energy calculation suitable for the molecular dynamics simulation.
The drawback of this method is that it does not reproduce the ab initio structural
phases of Si. We have not compared the results obtained in this method with those
in the CP-GGA method.

3.3. Method of Sawada

In the empirical scheme of Sawada (1990), the screened Harrison scaling method has
been improved. This method has been employed by Kohyama (1991) to study bulk
structural phases of Si. In this method the hopping integrals are given by

h�ðrÞ ¼ 	�ðr0Þ
1

r

1

expf�ðr� rcÞg þ 1
: ð8Þ

TABLE I Physical properties of Si2 clusters in different orthogonal tight-binding models are compared with
the experiment. The notations for models are Tománek-Schlüter model (TS) (Tománek and Schlüter, 1987)
Kohyama model (Kohyama, 1991), GPS model (Goodwin et al., 1989), Improved GPS model (1994) and
cubic spline model (CS) by Lenosky et al. (1997). The experimental cohesive energy Uexp, bond length ‘ and
vibrational frequency !v are taken from Huber and Herzberg (1979), respectively

Property Experiment TS Kohyama GPS IGPS CS

Uexp (eV) 1.50 1.52 1.51 0.25 1.60 1.70

‘ (Å) 2.22 2.27 2.40 2.24 2.45 2.28
!v (cm

�1) 517 519 375 570 523 414
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The bulk parameters for h�ðr0Þ in Eq. (5) are replaced by some fitting quantities
	�ðr0Þ. The scaling laws are different for different hopping integrals. For example, for
hss�ðrÞ, hsp�ðrÞ, hpp�ðrÞ and hpp�ðrÞ, the 
 values are 4, 3, 2 and 2, respectively.
The repulsive potential takes the same form as the hopping integrals,

�ðrijÞ ¼ a0 � a1ðZi þ ZjÞ
� � 1

r5ij

1

expf�ðr� rcÞg þ 1
, ð9Þ

where a0 and a1 are two fitting parameters and Zi is the effective coordination number
of the atom i and is given by

Zi ¼
X
i 6¼j

expf�1ðrij � RiÞ
2
g, ð10Þ

where Ri is given by

Ri ¼

P
j 6¼i rij expf�2rijgP
j 6¼i expf�2rijg

: ð11Þ

Here 1, 2 are two fitting parameters. This shows that the repulsive potential takes the
environmental correction into account. Therefore the bond correction energy term is
not necessary in this case.
The cohesive energies obtained in this way are shown in Fig. 2. From Fig. 2 it is quite

clear that cohesive energies in this method are very small compared to the CP-GGA
method. We also find that bond lengths are very large for all clusters. In Table I we
find that the dimer bond length is very large and the vibrational frequency is very
small compared to the experiment.

3.4. Goodwin, Pettifor and Skinner (GPS) Scaling

In the method of Goodwin et al. (1989) the discontinuity of the hopping integrals at the
cutoff between the first and second neighbors is smoothed by exponential type func-
tions,

h�ðrÞ ¼ h�ðr0Þ
r0
r

� �2
exp 2 �

r

rc

� �nc
þ

r0
rc

� �nc	 
� �
: ð12Þ

The repulsive potential also takes the same form as the hopping integrals,

�ðrÞ ¼ �ðr0Þ
r0
r

� �4:54
exp 4:54 �

r

rc

� �nc
þ

r0
rc

� �nc	 
� �
: ð13Þ

The environmental correction is not considered in this method. The drawback of this
method is that the binding energy of the FCC structure is lower than the BCC structure
which contradicts the ab initio results.
This method has been applied by Lee et al. (1994) to study Si clusters up to 18 atoms.

We find that the geometries of the medium sized clusters do not agree with the
ab inito results. Therefore we have calculated the cohesive energies with our optimized
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geometries using this method. In Fig. 2 we find that the cohesive energies obtained
using this method are too small compared to the CP-GGA method. The energy due
to bond correction Ebc is not included in this calculation. We therefore do not agree
with the results of Lee et al. (1994) and emphasize that without the Ebc term, it is
not possible to obtain reasonable cohesive energies. The energies due to the charge
transfer between atoms is too small to account for the large discrepancy of the cohesive
energies from the CP-GGA method.

3.5. Improved GPS Model

Kwon et al. (1994) have taken the GPS form for the hopping integrals described in Eq.
(12) with different rc and nc for different Slater–Koster matrix elements. The repulsive
energy in this method is represented as

Erep ¼
X
i

f
X
j

�ðrijÞ

 !
: ð14Þ

The form of �ðrijÞ is the same as in Eq. (13) and f ðxÞ ¼ d1x þ d2x
2 þ d3x

3 þ d4x
4

with d1, d2, d3 and d4 being adjustable constants. The environmental correction is
taken in the embedded-atom approach to reproduce cohesive energies. This method
reproduces the bulk properties, defects and clusters up to 5 atoms reasonably well.
However, there are two drawbacks in this method. The clathrate structure has lower
energy than the diamond structure. The cohesive energies calculated using this
method without the energy of the isolated atom are shown in Fig. 2. We find that
this model overestimates the cohesive energies compared to the CP-GGA method. In
Table I we find that the bond length and vibrational frequency of the dimer are over-
estimated in this method.

3.6. Fractional Bond Model

Luo et al. (1999) have presented the fractional bond model for obtaining hopping
integrals in an orthogonal tight binding description. The hopping integrals depends
on several parameters related to bonding in a given system such as the number of bond-
ing electrons, number of bonds and bonding strength per atom. The repulsive potential
is assumed to depend on the position in an exponential manner. Unlike all other tight
binding methods described before where the environmental correction is taken in the
repulsive potential, this method takes this correction in the hopping matrix elements
only.
We have tested this method for optimizing Si clusters and to our surprise we could

not reproduce results reported by Luo et al. (1999). We suspect that the values of some
parameters reported in this paper are misprinted.

3.7. Semi-Empirical Method of Mercer and Chou

The method of Mercer and Chou (1993) is the first semi-empirical method where the
two-center hopping integrals and the repulsive potential are obtained by fitting to the
valence electronic eigenvalues of the ab initio pseudopotential methods. The hopping
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integrals have the same form as in Sawada method given in Eq. (8). The parameter 
 is
taken between 2.5 and 3.1 which are different than those taken by Kohyama (1991).
The parameters 	� are smaller compared to those taken by Kohyama. These parameters
do not make the potentials strongly position dependent as in the method of Kohyama
(1991). The repulsive potential considers the environmental correction in a very compli-
cated manner. The ab initio structural phases are reproduced in this method. Mercer
and Chou (1993) have found the cohesive energies of Si2 and Si3 as 1.85 and 3.6 eV,
respectively. We have not considered this method in the present work as the binding
energies are somewhat overestimated.

3.8. Model of Lenosky

The complex form of the hopping integrals obtained from ab initio methods do not
work well when they are fitted to some functional form (Bernstein et al. 1993).
Lenosky et al. (1997) have represented the hopping integrals and the repulsive potential
in the cubic splines, thus allowing only numerical procedures to perform molecular
dynamics simulation. The potentials are obtained by carefully fitting to a data set
consisting of ab initio energy and force as well as experimental data. Unlike other
tight binding methods, the interaction cutoff is chosen up to fourth order distance
in diamond structure. Also, the repulsive interaction included corrections due to
many-body interactions not present in a pair potential model. This is supposed to be
the only model to reproduce ab initio bulk phases, bulk physical parameters, defects
and clusters up to five atoms better than any other tight binding method. The environ-
mental correction is not necessary in this method.
The cohesive energies calculated using this method shown in 2 are found to be in

excellent agreement with the CP-GGA method. Using this method Panda et al. (2001)
have calculated bond lengths, fragmentation spectra, gap energies, Mulliken charges,
dipole moments and static polarizabilities in Si clusters up to n ¼ 19. In Table I we
find that the cohesive energy and bond length of the dimer are in good agreement
with the CP-GGA method. The vibrational frequency of the dimer is in good agreement
with the non-orthogonal tight-binding method by Menon and Subbaswamy (2001).

4. CONCLUSIONS

In the present work we have compared cohesive energies of small Si clusters up to nine-
teen atoms using different orthogonal tight-binding schemes with the first principles
CP-GGA method. The methods based on the short-range radial form of the matrix
elements and repulsive potential overestimate the cohesive energies and bond lengths.
The inclusion of the environmental correction in the repulsive part is essential for
getting reasonable cohesive energies. On the other hand the matrix elements and repul-
sive potential calculated with radial cutoff up to fourth neighbor distance in diamond
structure have correctly described cohesive energies and bond lengths without any
environmental correction. In spite of the significant success of this model, the matrix
elements hss� and hpp� are seen to change sign which is not physically understood.
This raises doubts about the transferability of the potentials in the orthogonal tight-
binding schemes which paves way for the non-orthogonal tight-binding methods to

ORTHOGONAL TIGHT-BINDING METHODS 49



be more meaningful for Si cluster studies (Menon and Subbaswamy (1997); Bernstein
et al. (1993)).
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Tománek, D. and Schlüter, M.A. (1987). Structure and bonding of small semiconductor clusters. Phys. Rev. B,

36, 1208.

50 S.N. BEHERA et al.


