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From the periodic table of the elements to a chart (a map) of mate-
rials: Organize materials according to their properties and functions.

Dmitri Mendeleev
(1834-1907)
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Big-Data Analytics for Materials Science:

Concepts, Challenges, and Hype

Matthias Scheffler (")
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin; http://th.fhi-berlin.mpg.de/

From the periodic table of the elements to a chart (a map) of mate-
rials: Organize materials according to their properties and functions.

o figure of merit of thermoelectrics (as function of T) Dmitri Mendeleev
(1834-1907)

o turn-over frequency of catalytic - PERIODIC TABLE OF THE ELEMENTS
materials (as function of T and p) '

o efficiency of photovoltaic systems

o etc.

I\

(*) Work performed in collaboration with Luca Ghiringhelli,
Jan Vybiral, Claudia Draxl, et al.
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Materials Genome Initiative for Global Competiveness

Materials Genome
for Global Compe!

To help business discover, develop, and
deploy new materials twice as fast, we’re
launching what we call the Materials
Genome Initiative. The invention of silicon
circuits and lithium ion batteries made
computers and iPods and iPads possible, but
it took years to get those technologies from
the drawing boards to the market place. We
can do it faster.

President Obama

Carnegie Mellon University, June 2011

@)r measure the basic
properties (,,genes”) of many
(ten thousand) materials and

o= , disseminate that information to

To help business discover, develop, and the materials community to

deploy new materials twice as fast, we're enable rapid searches and

launching what we call the Materials design.

Genome Initiative. The invention of silicon

circuits and lithium ion batteries made

computers and iPods and iPads possible, but
it took years to get those technologies from

the drawing boards to the market place. We
can do it faster.

President Obama

Carnegie Mellon University, June 2011

“twice as fast,
at a fraction of the cost”
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What is “Computational Materials Science”

what is meant by
“first-principles (ab initio) calculations”

* accuracy of materials-science codes:
o basis sets,

o relativity,

o pseudopotentials,

o other numerical approximations (verification)
* accuracy of the exchange-correlation functional (validation)
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Code

WIENZ2k

FHI-aims

Exciting

FHI-aims

CASTEP

ABINIT

Version

131

081213

development

version

081213

8.0

7.7.3

Basis

LAPW/APW+lo

tier2 numerical orbitals

LAPW+xlo

tier2 numerical orbitals

plane waves

plane waves

Electron treatment

all-electron

all-electron (relativistic atomic_zora
scalar)

all-electron

all-electron (relativistic zora scalar

1e-12)

OTFG CASTEP 8.0

PAW JTH v0.2

A-value

0 meV/atom S. Cottenier

0.2
meV/atom

02
meV/atom

04
meV/atom

0.5
meV/atom

06
meV/atom

K. Lejaeghere, V. Van Speybroeck, G. Van Oost, and S. Cottenier, Crit. Rev. Solid State Mater. Sci. 39, 1-24 (2014);

https://molmod.ugent.be/deltacodesdft. Reference code: WIEN2k

Authors

ASE [2]

Exciting [10]

ASE [2]

CASTEP [7]

F. Jollet and M.
Torrent

The Kohn-Sham Ansatz of Density-Functional Theory

/.

Walter Kohn
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The Kohn-Sham Ansatz of Density-Functional Theory

Kohn-Sham (1965): Replace the original many-body problem
by an independent electron problem that can be solved!

E,[n] = Tn] + IV(F) n(r) d°r + EMmee[n] + EX[n]

*  With T, [n] the kinetic energy functional of independent electrons,
and E*°[n] the unknown functional.

* The challenge is to find useful, approximate xc functionals.

The Kohn-Sham Ansatz of Density-Functional Theory

*  Kohn-Sham (1965): Replace the original many-body problem
by an independent electron problem that can be solved!

E,n] = Tn] + IV(F) n(r) dr + E™tee[n] + EX[n]
Approximate xc functionals have been very successful

but there are problems
« for certain bonding situations (vdW, hydrogen bonding,

certain covalent bonds)
e for highly correlated situations, and
* for excited states.
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Perdew’s Dream: Jacob’s Ladder in

Density-Functional Theory
The exchange-correlation functional

t our favorite
> 5 |/unoccupied y;(r), EX + cRPA, as given by ACFD
© 4 | occupied y;(r), hybrids (B3LYP, PBEO, HSE, ...)
3 3] (), meta-GGA (e.g., TPSS)
© 2 | vn(n), Generalized Gradient Approximation
1| n(r), Local-Density Approximation

t(r):  Kohn-Sham kinetic-energy density (o (EH (o)
S () (2)0F (2 )10y, (7

EX:  exactexchange: L. =-3)_ f dr dr rp

cRPA : random-phase approximation for correlation

ACFD : adiabatic connection fluctuation dissipation theorem

Bohm, Pines (1953); Gell-Mann, Brueckner (1957);
Gunnarsson, Lundqvist (1975, 1976); Langreth, Perdew (1977);
X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)

Perdew’s Dream: Jacob’s Ladder in

Density-Functional Theory

The exchange-correlation functional e((O(S'
1 our favorite O Ao
X . o X\
= 5 |/unoccupied ;(r), EX + cRPA, as '_(\,@(’6 N
© 4 | occupied y;(r), hybrids /~ se,\y"\
§ 3 | t(n), m- 'Se\\e‘e
© 2 | vn(n), r‘(o«\
1 n(r)! S\)&& <

or): Kohn-Sham '
\o ©
EX: exar* .\003
C
CRPA: 0 o0

C)
ACFD: aa (f\)(\., conned gtion dissipation theorem

Bohm, Pines (1953); Gell-Mann\Pleckner (1957);
Gunnarsson, Lundqvist (1975, 1976); Langreth, Perdew (1977);
X. Ren, P. Rinke, C. Joas, and M. S., Invited Review, Mater. Sci. 47, 21 (2012)
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Test Sets for Materials Science and Engineering?

Chemists have shown the way. For small and light molecules they developed test
sets: G2, NHTBH38, HTBH38, S22, S66 ...

We need a materials test set! We can now do renormalized second-order
perturbation theory (similar to CCSD) and even full CI *) - for certain systems.

Comparison with experiment is very important as well (adsorption energies of

molecules, e.g. by microcalometry). However, theory-theory comparison is better
defined.

(*) G. H.Booth, A.J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009).
G. H. Booth, A. Griineis, G. Kresse, and A. Alavi, Nature 493, 365 (2013).

Test set for materials science and engineering

11 | Be B C N (8] F Ne

TEST SET Na | Mg Al S1 P S Cl | Ar

7 elements and 12 binaries K | Ca Ga | Ge | As | Se | Br | Kr

with cubic structure Rb | Sr In | Sn | Sb | Te I | Xe
(for the start) Cs | Ba

Ne, Ar, Al (fce); Li, Na (bec); C, Si (diamond);
LiH, LiF, LiCl, NaF, NaCl, MgO, MgS (rocksalt);
BeS, BP, AIP, SiC, BN (zincblende)

* MSE properties: cohesive, electronic, elastic and vibrational
* Representative for cubic metals, semiconductors, and insulators
* Numerically accurate reference values from theory,

incl. MP2, RPA, CCSD(T)
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\(_-/ @ mse.fhi-berlin.mpg.de/indexhtml @  Q Search *EaE 9 3 A
Most Visited ||

[ Theory FHI =~ MPG

m \Search \
TEST SET FOR MATERIALS SCIENCE AND ENGINEERING

TEST SET
Group Material Structure Method Ecoh (e... ap (R) B (GPa) Evoung (GP-.. Vpoiss-- YGriinei---
1 Li bec LDA 1.802 3.365 15.1 X
ABOUT 1 Li bce PBE 1.608 3.437 14.0
1 Li bce PBEsol 1.682 3.435 13.8
SEARCH 1 Li bee HSEQ6 1.556  3.471 13.2
1 Na bce LDA 1.248 4.055 8.8
LINKS 1 Na bee PBE 1.084 4.204 7.7
1 Na bce PBEsol 1.161 4.176 7.8
CITE 1 Na bee HSEO6 y
< >
VISUALIZATION
Use the buttons in the table to look at the crystal structure (CS), band structure (BS), phonon
band structure (VIB), or computational details and convergence tests (CONV).

\(_-/ @  mse.fhi-berlinmpg.de/index html ¢ Q Search wEe 9 3 A =
8} Most Visited [ FHI ! Theory FHI MPG
~
TEST SET FOR MATERIALS SCIENCE AND ENGINEERING
TEST SET
Group Material Structure Method Ecoh (e.. ag (R) B (GPa) Eyoung (GP... Vpoiss..- YGriinei.~ CS BS VIB CONV
14 Si diamond LDA 5.325 5.402 86.1 N
ABOUT 14 Si diamond  PBE 4585 5471 89.1 =
14 Si diamond PBE+vdW(TS) 4.868 5.448 91.4
SEARCH 14 Si diamond  PBE+vdW(MBD) 4.844 5434 93.4
14 Si diamond  PBEsol 4.972 5.434 94.2
LINKS 14 si diamond ~ HSE06 4,557 5.444 96.7
14 Si diamond CCSD(T) 4.5 (5.470)
CITE 14-14 Sic zincblende LDA 14.844 4.330 229.3
14-14 SiC zincblende PBE 12.860 4.381 212.3 v
VISUALIZATION

Band structure and density of states of Si in diamond structure, lattice parameters optimized with PBE, band structure
calculated with PBE.

10 I 10

ergy (eV)
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calculated with PBE.
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Move the mouse over the bands to see their energies

14 si diamond  HSE06 4557 5.444 96.7 =]
14 si diamond  CCSD(T) 4.5 (5.470)
14-14 SiC  zincblende LDA 14.844 4.330 229.3
14-14 SiC  zincblende PBE 12.860 4.381 212.3
VISUALIZATION

Band structure and density of states of Si in diamond structure, lattice parameters optimized with PBE, band structure

The band gap is 0.63 eV. The valence band maximum (VBM) is at k-point (0.0, 0.0, 0.0) AL, The conduction band
minimum (CBM) is at k-point (1.0, 0.0, 0.0) A-1.

Download data in json format ( bands.json, dos.json ) or download images in png format (_bands.png , dos.png )

https://www.youtube.com/watch?v=L-nmRSH4NQM

http://v.youku.com/v_show/id_XMTMONDAONDIxMg

NoMaD

The Novel Materials
Discovery Repasitory

=.html
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NoMaD Team Why sharing? Upload Download DOls Terms

The NoMaD (Novel Materials Discovery)
Repository was established to host,
organize, and share materials data.

NoMaD copes with the increasing demand
and requirement of storing scientific data
and making them available for longer
periods. Rules of good scientific practice set
by many funding agencies, worldwide,
require keeping scientific data for 10 years.
NoMaD offers this for free. NoMaD also

ouns to share and

FAQ NoMaD repository

11/7/2015

Other repositories

News

Currently, the NoMaD

Repository contains
348,704 entries.

NoMaD recommended by
Nature Scientific Data ...
more

Open positions

Check for related
conferences and
workshops.

SO

NoMaD Team Why sharing? Upload Download DOls Terms

Welcome to the NoMaD Repository

The NoMaD (Novel Materials Discovery)
Repository was established to host,
organize, and share materials data.

NoMaD s
RepoSitory «» | b

d [ % /ai- e | I
The NoMaD (Novel Materials Discovery)
4 Repository was established to host, organize,

and share materials data.

NoMaD offers this for free. NoMaD also

aunc o share and

FAQ NoMaD repository

Et

Other repositories

News

Currently, the NoMaD
Repository contains
348,704 entries.

NoMaD recommended by
Nature Scientific Data ...
more

Open positions

Check for related
conferences and
workshops.

10
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by manv funding agencies, worldwide,
reyuire Keeping scientific data for 10 years.
NoMaD offers this for free. NoMaD also conferences and
facilitates research groups to share and workshops.
exchange their results, inside a single group or between two or more, and to recall what was actually done

Check for related

We are making NoMaD
some years ago. more powerful and
apologize for any possible

instability during this time.

The NoMaD Repository enables the confirmatory analysis of materials data, their reuse, and repurposing.

Upload of data is possible without any barrier. Results are accepted in their raw format as produced by the
underlying code. The only condition is that the list of authors is provided, and code and code version can
be retrieved from the uploaded files. These data can be restricted to the owner or made available to other
people (selected by the owner). They can be updated and downloaded at any time.

The NoMaD Repository is
about joining eudat.

Financial Support

Read more details concerning the upload. Please, register or login
to participate.

At present, the repository contains ab initio electronic-structure data
from density-functional theory and methods beyond. At a later stage,
it will be extended by force-field studies and by experimental data.
We also give an outlook on the NoMaD Laboratory that will be
dedicated to a Materials Encyclopaedia, as the basis for complex
queries and the development of various data-analytics tools.

by manv funding agencies, worldwide,
1eyuire Keeping scientific data for 10 years.
NoMaD offers this for free. NoMaD also conferences and
facilitates research groups to share and workshops.
exchange their results, inside a single group or between two or more, and to recall what was actually done

Check for related

We are making NoMaD
some years ago. more powerful and
apologize for any possible

instability during this time.

The NoMaD Repository enables the confirmatory analysis pmaoreposicoryis
ining eudat.
of materials data, their reuse, and repurposing. )

The NoMaD Repository enables the confirmatory analysis of materials data, their reuse, and repurposing.

al Support

Read more details concerning the upload. Please, register or login
to participate.

At present, the repository contains ab initio electronic-structure data
from density-functional theory and methods beyond. At a later stage,
it will be extended by force-field studies and by experimental data.
We also give an outlook on the NoMaD Laboratory that will be
dedicated to a Materials Encyclopaedia, as the basis for complex
queries and the development of various data-analytics tools.

11
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Currently, the NoMaD
- Repository contains
631,432 entries

The Four V of Big Data and an A

Data — data — data
(analog to Moore’s law)
: most data are not used and even thrown away)

12



The Four V of Big Data and an A

11/7/2015

Data — data — data
(analog to Moore’s law)
(so far: most data are not used and even thrown away)

A

A2% 50 G
AOS o0
= OSSN

A e oo g

a9
a3

Big-Data Challenge: “four V":
Volume (amount of data),

Variety (heterogeneity of form and
meaning of data),

Velocity at which data may change
or new data arrive,

@(uncertainty of quality).

The Four V of Big Data and an A

Data — data — data Query and read out what was

(analog to Moore’s law) stored; high-throughput screening.
(so far: most data are not used and even thrown away)

The four V should be complemented
by an “A”, Big-Data Analytics:
* identify (so far) hidden trends,

Volume (amount of data),
Variety (heterogeneity of form and

meaning of data), * What is the next most promising
Velocity at which data may change candidate that should be studied?
or new data arrive, * identify anomalies,
@(uncertainty of quality). * identify the mechanisms behind a
certain material property/function.

13
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Big-Data Analytics: How to Arrange the Data

Finding a Set of Descriptive Parameters

raining Set
Calculate properties
and functions, P, for
many materials, i.

Fast Predictions % Descriptor
Calculate properties
and functions for new descriptor d;_
d values, i.e. new build a “table”:

materials. 1 d P

“Learning”
Find the function
PSL(d) for the “table”;
do cross validation.

Find the appropriate ‘

{Zi,N\}, T, {p} de-
termine the many-
body hamiltonian and
statistical mechanics

Statistical mechanics does not
tell us what the relevant
variables are. This is our
choice. If we choose well, the
results may be useful, if we
chose badly, the results
(while formally correct) will
probably be useless. (Robert
Zwanzig)

Big-Data Analytics: How to Arrange the Data
Finding a Set of Descriptive Parameters

raining Se
Calculate properties
and functions, P, for
many materials, i.

Fast Predictions

. Descriptor
Calculate properties

Find the appropriate
descriptor d;_
build a “table”:

and functions for new
d values, i.e. new
materials. i d P

“Learning”
Find the function
PSL(d) for the “table”;
do cross validation.

{Z, N}, T, {p} de-
termine the many-
body hamiltonian and
statistical mechanics

14
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Big-Data Analytics: How to Arrange the Data

Finding a Set of Descriptive Parameters

P Fast Predictions - Descriptor
Calculate properties Find the appropriate {Zl’ I\_Il}’ T, {p} de-
and functions for new descriptor d; termine the many-

d values, i.e. new build a ”table"’: body hamlltonlan and
materials. i d P S .
statistical mechanics
> H
Find the function

PSL(d) for the “table”;
do cross validation.

d characterizes the relevant mechanisms that govern the observed
property/function P. Identifying the descriptor d from known data P;, is an
ill-posed problem (statistical-learning theory): A little error in the data P,
may suggest a different descriptor d. Thus, knowledge of the accuracy of
data P; is crucial (veracity). The choice of d is not unique.

Big-Data Analytics: How to Arrange the Data
Finding a Set of Descriptive Parameters

FastPedlctln§ - srt - {ZI’ NI}’ T, {p} de-
d characterizes the relevant mechanisms that govern the observed
property/function P. Identifying the descriptor d from known data P;, is an
ill-posed problem (statistical-learning theory): A little error in the data P,
may suggest a different descriptor d. Thus, knowledge of the accuracy of

data P; is crucial (veracity). The choice of d is not unique.

A) Veracity: Accuracy of state-of-the-art density-functional theory
(validation and verification)

B) Descriptor: How to find it, how to understand the causality between d
and PSL?

15



Data Fitting, Statistical Learning, and Machine Learning

11/7/2015

PO A

More data means better representation.
Think about what may be the best (meaningful) coordinate!

R

Kernel Regression

P L PSL(x;) = 2::':1 ¢ K(X;, Xy)

Linear regression: K(X;, X)) = Xi - X, PSL(x;) = x;.c*
Polynomial kernel K(x;, X)) = (X;. X, +c)d
Gaussian kernel K(x;, X,) = exp ( — Zj (X;— % )? /26j2)

More data means better representation.
Do we “learn” anything?

For successful learning, we need a “good” descriptor: {x;} = {d}

We have data {P;} at “coordinates” {X;} X; = set of descriptive parameters (descriptor)

16
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Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

Can we predict not yet calculated structures from Z, and Zz? Can we create a
map: “The ZB/W community lives here and the RS community there?”

Energy differences
between different
structures are very
small.

For Si: 0.01% of the
energy of a Si atom,
or 0.1% of the 4
valence electrons.
Complexity: T,[n]
and E,..

Toy Model: Descriptor for the Classification
“Zincblende/Wurtzite or Rocksalt?”

Can we predict not yet calculated structures from Z, and Zg? Can we create a
map: “The ZB/W community lives here and the RS community there?”

SRR Energy differences
A L A L between different
- ] structures are very
40F - small.
(N K T G & ] A =E(RS) - E(ZB) i 0
it N\ L Tl B L For Si: 0.01% of the
[ 1 e ZB,0.1eV<A<02eV energy of a Si atom,
sk 1 © ZB,005eV<A<0leV or0.1% of the 4
N B W QW] e pieveasooosey  Vvalence electrons.
C ] B RS, -02eV<A<-0.1eV P
Ofq, & % Q% % B L Rs Ac-02ev Complexity: T,[n]
:llIllAllllllkllltlllklllllllk: andEXC'

17
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Toy Model: Descriptor for the Classification

“Zincblende/Wurtzite or Rocksalt?”

We need to arrange the data such that statistical learning is
efficient. We need a good set of descriptive parameters.

How to find d;, d,?

—— In reality the representation will be higher than 2-dimensional.

L= - G ( G J. A. van Vechten, Phys.
s % % S ® " Rev. 182, 891 (1969).
B i J. C. Phillips, Rev. Mod.

40F ] Phys. 42, 317 (1970).
r - - - A. Zunger, Phys. Rev. B
N2 30F * N > 22, 5839 (1980).
E D. G. Pettifor, Solid
20:_ _ State Commun. 51, 31

(1984).

Y. Saad, D. Gao, T. Ngo,
S. Bobbitt, J. R.
Chelikowsky, and

W. Andreoni, Phys. Rev.
B 85, 104104 (2012).

Statistical Learning (Machine Learning)

fit and/or interpolation of known data points { P; } and building a function P(d)

the key scientific challenge: find a reliable, low dimensional descriptor d.

kernel ridge regression | linear

P(d) = N ciexp (—|\d; — d||3/20?) l P(d) = de

18
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Statistical Learning (Machine Learning)

fit and/or interpolation of known data points { P; } and building a function P(d)

the key scientific challenge: find a reliable, low dimensional descriptor d.

kernel ridge regression linear
N ) 5 R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)
P(d) = >._, ciexp (—Hd,- —d||5/20 ) P(d) = de
minimize

SiL(P(d) = P+ N (P(d) — P)* +

S i exp (~lldi - d;3/20%)

ij=1

M
el = >_a=y lcal

least absolute shrinkage and selection
operator (LASSO) for feature selection

Idi—d;l = S0 (dia = djia)?

a=]

Statistical Learning (Machine Learning)

I, norm: | x| +|y,| Manhattan (taxi

cab) distance
Y1 I, norm: sqrt(x,? + y,?)
X

1

kernel ridge regression linear
N ) . R. Tibshirani, J. Royal Statist. Soc. B 58, 267 (1996)
P(d) = Y.L, ciexp (—Hd,- — dHé/Qoz) P(d) = de
N ) minimize o )
S (P(di) — P)* o+ i (P(d;) — P)* +

N.N
AY 2y cicjexp (| di — dj[3/207)

M
el = >_a=y lcal

least absolute shrinkage and selection
operator (LASSO) for feature selection

Idi—d;l = S0 (dia = djia)?

a=]

19
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1) Primary Features, 2) Feature Space, 3) Descriptors

1D | Deseription free atoms Symbols #
Al | Tonization Potential (IP) and Electron Affinity (EA) | IP(A) EA(A) IP(B) EA(B) [1] | 4

A2 | Highest oceupied (H) and lowest unoccupied (L) H{A) L(A) H(B) L(B)
Kohn-Sham levels

1) A3 | Radius at the max. value of s, p, and d re(A) rplA) ra(A) [§]
valence radial radial probability density re(B) ry(B) ra(B)
1D | Description free dimers Symbols #
A4 | Binding energy Eu(AA) E,(BB) EL(AB) 3
A5 | HOMO-LUMO KS gap HL{AA) HL(BB) HL(AB) | 3
A6 | Equilibrium distance d(AA) d(BB) d(AB) 3
5 We start with 23 primary features
) and build > 10,000 non linear combinations
_ _ IP(B) — EA(B) [ro(A) —r,(B)| Iry(B) —ry(B)]
3) LASSO finds the descriptors: ra(A)2 7 exp(ro(A)) T exp(ra(A) + r.(B))

“The Map”
Statistical Learning (Machine Learning): LASSO, 2-Dim. Descriptor

= E(RS) — E(ZB)
ZB,A>02eV
7ZB,0.1eV<A<02eV
ZB,0.05eV<A<0.1eV
—0.05eV<A<0.05eVv

RS, —0.1eV<A<-0.05eV
RS,-02eV<A<L-0.1eV
RS, A <—02eV

O o e D

B0

0.15F

0.1 [
The complexity and science is
in the descriptor (identified
from >10,000 features).

I74(A) — 1 (B)| exp(—r4(A)) [A]

0.05

L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko,
C. Draxl, and M. Scheffler,
Phys. Rev. Lett. 114, 105503 (2015).

20
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Statistical Learning (Machine Learning): Descriptor

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random
selections of the training set (last two lines). For (Z,*, Zg*), each atom is identified by
a string of three random numbers.

Descriptor Zn Zg Zp*, Zg* 1D 2D 3D &D

MAE 1*104 3*103 0.12 0.08 0.07 0.05
MaxAE 8*104 0.03 032 032 024 0.20
MAE, CV 0.13 0.14 0.12 0.09 0.07 0.05
MaxAE, CV 0.43 0.42 0.27 0.18 0.16 0.12

Statistical Learning (Machine Learning): Descriptor

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random
selections of the training set (last two lines). For (Z,*, Zz*), each atom is identified by
a string of three random numbers.

Descriptor Zn Ly 2%, Zg* 1D 2D 3D 5D

MAE 1*10+4 3*103 0.12 0.08 0.07 0.05
MaxAE 8*10+ 0.03 032 032 024 0.20
MAE, CV 0.13 0.14 0.12 0.09 0.07 0.05
MaxAE, CV 0.43 0.42 0.27 0.18 0.16 0.2

21



Statistical Learning (Machine Learning): Descriptor
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Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two
lines) and for a leave-10%-out cross validation (CV), averaged over 150 random

selections of the training set (last two lines). For (Z,*, Zg*), each atom is identified by
a string of three random numbers.

Descriptor Zn Zg Zp*, Zg* 1D 2D 3D &D

MAE 1*104 3*103 0.12 0.08 0.07 0.05
MaxAE 8*104 0.03 032 032 024 0.20
MAE, CV 0.13 0.14 012 009 0.07 0.05
MaxAE, CV 0.43 0.42 0.27 0.18 0.16 0.12

Statistical Learning (Machine Learning): LASSO, 2-Dim. Descriptor

RS  */ a}

s i A = E(RS)— E(ZB)
= % ar BeO + 7ZB,A>02eV
= [lellel. ° o ZB.0.1eV<A<02eV
= Py o ZB,0.05eV<A<0.1leV
- B - ¢ BSb —-005eV<A<0.05eV
& N , O RS,-01eV<A<-005eV
= 0.15F '. A=1.0eV B RS, -02eVc<A<-0.1eV
T B RS, A<-02eV
< | @ ‘ B
= L & Do [o#SIC BN
S 01F/" B s & GC ¢ Using our approach and no
~ 8 o 8 o ¢ information on BN and C we would
=~ y ; *Bp have predicted the existence and

0.05¢ Yo unusual stability of these materials.

L 04V

C " C

G 1 L l‘ l L 1 1 L l 1 1 1 1 l L L 1 1 l 1 1 1 1 p

0 5 10 15 20 25

IP(B) — EA(B)|/r,(A)? eV A
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Big-Data-Driven Science vs. Model-Driven Science

Traditional approach in the empirical sciences (e.g. physics, chemistry):
e Study a few systems
* Build a model,
* Improve the model when needed
(e.g. strength of transition metals Ti, ... Fe, ... Cu: d-band occupation, etc.).

The new option offered by Big-Data Analytics (and big-data-driven science):
* Find structure in big data that is probably invisible for humans.
» Offer many (thousands) of optional models, and

* employ applied math/information theory to find out which model is
best (e.g. compressed sensing, statistical learning).

Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --
Correlation between d and P, i.e. P is a function of d, P(d),
reflects causal inference
if it is based on sufficient information(*)

L

There are four possibilities (types of causality) behind P(d): §=
1. d > P : P “listens” to d Judea Parl

2. A->d and A - P :Thereis no direct connection between d and P, but
d and P both “listen” to a third “actuator”

3. P>d :d “listens” toP

4. There is no direct connection between d and P, but they have a
common effect that listens to both and screams: “l occurred” (Berkson
bias; Judea Pearl)

) Construct d with scientific knowledge (prejudice?), or use “big data” for {P; }.
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Drawing Causal Inference from Big Data (Scientific Insight)

11/7/2015

-- can we trust a prediction? --

LASSO has provided us with an equation for the quantitative energy

difference: AE - 108EA(B) — IP(B) . 790‘,‘5(A) — r,(B)]
' rp(A)? ' exp(rs(A))
. \ “I.p(B) - ’s(B)| +
+ 3.766 — 0.0267
exp(ra(A))
This is an equation, but not a scientific law:
Case #2:

Nuclear numbers Z,, Zg < our descriptor

Nuclear numbers Z,, Zg — total-energy differences

a mapping exists, even a physical intuition exist, but AE

does not listen directly to the descriptor (intricate causality)

Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --
Correlation between d and P, i.e. P is a function of d, P(d),
reflects causal inference
if it is based on sufficient information(*)

There are four possibilities (types of causality) behind P(d): §

1. d=>P : P “listens” tod

2. A->d and A - P :Thereis no direct connection between d and P, but
d and P both “listen” to a third “actuator”

3. P>d :d “listens” to P

4. There is no direct connection between d and P, but they have a

common effect that listens to both and screams: “l occurred” (Berkson
bias; Judea Pearl)

) Construct d with scientific knowledge (prejudice?), or use “big data” for {P; }.

Judea Pearl
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ROMEO: “It was the lark, the bird that sings at dawn, not case # 3 é
the nightingale. Look, my love, what are those streaks of 2\ -
light in the clouds parting in the east? Night is over, and day
is coming. ...”

11/7/2015

Drawing Causal Inference from Big Data (Scientific Insight)

-- can we trust a prediction? --

The singing of the lark is a good descriptor for
“the sun will rise soon”.
The singing of the lark is not the actuator of
(the mechanism behind) the sunrise.

Conclusion / Suggestion: Accept “larks” (not just
scientific laws) to predict materials properties.

Summary and Outlook

Machine learning may find structure in “big data” that is invisible to
humans.
Correlation reflects causal inference (if based on sufficient information).
The causality may be 4 big-data analytics in I
intricate and complex. © § materials science
. |53
Causal mode.ls, i.e. employing é_g Perception
causal descriptors, are able T §
to provide scientific insight Sz i
and understanding. o & LDy
|
Time
we are probably here
\ J
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The NOMAD Laboratory

A European Center of Excellence

http://NOMAD-CoE.eu

Materials science
& engineering
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devices phenomena

The NOMAD Laboratory

A European Center of Excellence

http://NOMAD-CoE.eu

Materials science
& engineering

\ : Scientific
devices phenomena

The NOMAD CoE develops a Materials Encyclopedia and Big-Data Analytics tools
for materials science and engineering. Eight complementary research groups of
highest scientific standing in computational materials science along with four
high-performance computer centers form the synergetic core of this CoE.
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The NOMAD Laboratory

A European Center of Excellence
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