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ABSTRACT: Computational screening for new and improved catalyst
materials relies on accurate and low-cost predictions of key parameters
such as adsorption energies. Here, we use recently developed compressed
sensing methods to identify descriptors whose predictive power extends
over a wide range of adsorbates, multimetallic transition metal surfaces,
and facets. The descriptors are expressed as nonlinear functions of intrinsic
properties of the clean catalyst surface, e.g. coordination numbers, d-band
moments, and density of states at the Fermi level. From a single density
functional theory calculation of these properties, we predict adsorption
energies at all potential surface sites, and thereby also the most stable
geometry. Compared to previous approaches such as scaling relations, we find our approach to be both more general and more
accurate for the prediction of adsorption energies on alloys with mixed-metal surfaces, already when based on training data
including only pure metals. This accuracy can be systematically improved by also adding alloy adsorption energies to the
training data.
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■ INTRODUCTION

Surface catalysis has an enormous impact on the environment
and our society’s health and prosperity.1 However, the reliable
description of catalytic properties and the prediction of what
materials may be even better catalysts than what we know
today is still weak. This is due to the highly nonlinear and
intricate relationship between the “catalyst material” (the static
material that is introduced before the catalytic process is
running) and the strongly kinetically controlled surface
reactions at realistic conditions.2,3 Simply speaking, the basic
understanding of heterogeneous catalysis is given by the
Sabatier principle and the Brønsted-Evans−Polanyi (BEP)
relation.4 The first states that there is an optimum adsorption
strength for which the reactants bind strong enough to allow
for adsorption and dissociation into reaction intermediates, but
weak enough to allow for consecutive desorption of products.
In turn, the BEP concept tells that the energy barriers of the
chemical reactions scale approximately linearly with the
adsorption energies of the molecules.
In consequence, the reliable prediction of adsorption

energies is a key element of any theoretical description and
search for new catalyst materials. For this, we here present a
data-driven approach that does not start from a specific
physical model, e.g. the tight-binding description of chemical
bonding, but accepts that the intricacy of processes that
cooperate or compete in materials properties may not
necessarily be describable by a closed physical equation. This
has been described as the fourth paradigm of materials
science.5 Previous data-driven approaches to the prediction of

adsorption energies6−12 have exploited an approximately linear
correlation between the adsorption energies of certain
adsorbates on pure transition metal (TM) surfaces (scaling
relations13) to extend the data-driven predictions of one or two
species to other adsorbates involved in the reaction. We
instead directly learn the adsorption energies of a whole range
of atoms and molecules at all potential adsorption sites
(thereby also the most stable site) only from properties of the
clean surface. That is, our approach allows us to learn the
adsorption energies of all species involved in a given reaction
network with no assumptions of linearity. We thereby go
beyond scaling relations and the often unfulfilled assumptions
tied to this particular physical model. This furthermore opens
the perspective of directly searching for outliers to scaling
relations, which can be highly interesting catalyst materials
missed by the standard approach.14−16

The method for identifying the key descriptive parameters is
the recently developed compressed sensing method SISSO17

(sure independence screening and sparsifying operator), which
enables us to identify the best multidimensional descriptor out
of an immensity of candidates (billions). The simultaneous
learning of the adsorption energies of a whole range of atoms
and molecules is made possible by a multitask learning
approach,18 wherein one single descriptor that works for all
considered atoms and molecules is identified. Our descriptors
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are more general and less costly to use than previous
approaches and allow for making predictions for a huge
number of surfaces, including both multimetallics and various
facets. Through BEP relations, our approach can also describe
chemical reactions as well as the diffusion of atoms and
molecules at the surface visiting metastable adsorption sites.

■ COMPUTATIONAL DETAILS
Density Functional Theory. The data sets employed in

the present work were obtained from plane-wave density
functional theory (DFT) calculations (Quantum ESPRESSO
code19) using the van der Waals-corrected BEEF-vdW
exchange-correlation functional.20 The larger data set consists
of adsorption energies of atomic and molecular adsorbates (C,
CH, CO, H, O, OH) on the stepped fcc(211) facets of nine
TMs (Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) and selected
single-atom (SA) and AB bimetallic alloys. The metals were
modeled in fcc stacking using a (1 × 3) ((1 × 2) for AB alloys)
supercell with 15 metal layers, which corresponds to five layers
along the (111) direction. The considered adsorption sites are
illustrated in Figure 1(a) and cover both high-symmetry

terrace and step sites. For each adsorbate, all adsorption sites
that correspond to local minima on the potential energy
surface were included. The SA alloys15,16,21 were constructed
by replacing one metal atom at the step with a different metal
(see Figure 1(b)). Specifically, we considered Ag@Cu (Ag
atom in Cu surface), Pt@Rh, Pd@Ir, and Au@Ni. For the AB
L10 alloys22 (AgPd, IrRu, PtRh, and AgAu), the considered
surface termination is depicted in Figure 1(c). The total
numbers of adsorption energies in the data set are 344
(metals), 281 (SA alloys), and 259 (AB alloys). The smaller
facets data set consists of one adsorption site for each
adsorbate on the fcc(111), (110), and (100) facets of the 9
TMs, leading to a total of 54 adsorption energies on each facet.
All data sets are compiled in Supplementary Section S1
together with further computational details.23

Compressed Sensing. The SISSO method17 employed
for descriptor identification makes the ansatz that the
properties of interest P1

j , ..., PN
j ∈ , (in this case a vector of

N adsorption energies of adsorbate j) can be expressed as
linear functions of candidate features d1, ..., dM ∈ N , where
the features are constructed as nonlinear functions of user-
defined primary features (see below). SISSO identifies the few
best features (the number of which corresponds to the
dimensionality of the descriptor) out of immense feature
spaces by use of the sparsifying 0 constraint. This is carried out
in a smaller feature subspace selected by a screening procedure
(sure independence screening (SIS)). The size of the subspace

is equal to a user-defined SIS value times the dimension of the
descriptor.
In this work, we make use of multitask learning18 to identify

common descriptors for the adsorption energies of several
different adsorbates simultaneously. That is, the identified
features are constrained to be identical for every adsorbate,
while the fitting coefficients are allowed to vary between the
adsorbates. We find that multitask learning gives a better
predictive performance compared to the identification of
separate descriptors for each adsorbate (see Supplementary
Figure S2). We consider two hyperparameters in the SISSO
method: the dimension of the descriptor and the feature space
rung (see below) as well as the SIS value (see Supplementary
Section S2), that we fix for the current application through a
validation data set (see below).

Primary Features. The decision of which primary features
to use as input for the feature construction is crucial for the
predictive performance of the resulting descriptors. Inspired by
previous studies,6,7,24−31 we consider four classes of primary
features (see Table 1) related to the metal atom, metal bulk,

metal surface, and metal adsorption site. For pure metals, the
primary features of the site class were calculated as averages
over the metal atoms making up the site ensemble, while for
alloys, this was the case for the primary features of all classes.
We note that the consideration of fixed adsorption sites as well
as the averaging over the site ensemble is an approximation. It
may break down in case of surface reconstruction or any other
appearance of new adsorption motifs that were not accounted
for in the calculation of the primary features. Further details
regarding the primary features and all data are given in
Supplementary Section S1.

Feature Construction. As discussed above, candidate
features are constructed as nonlinear functions of the primary
features. In the SISSO method, this is achieved in practice by
applying algebraic/functional operators such as addition,
multiplication, exponentials, powers, roots, etc. to the
features.17 A full list of the used operators can be found in
Supplementary Section S2. Arbitrarily large feature spaces can
be constructed by iteratively applying these operators to the

Figure 1. Top view of the structure of (a) the fcc(211) facet along
with the considered terrace and step adsorption sites, which cover one
fourfold-coordinated site (purple dot), four threefold-coordinated (fcc
and hcp) sites (red dots), five bridge sites (yellow dots), and two top
sites (white dots). Perspective views of the structures of (b) a single-
atom (SA) alloy and (c) an AB alloy.

Table 1. Primary Features Used for the Feature
Construction

class name abbreviation

atomic Pauling electronegativity PE
ionization potential IP
electron affinity EA

bulk fcc nearest neighbor distance bulknnd
radius of d-orbitals rd
coupling matrix element squared Vad

2

surface work function W
site number of atoms in ensemble siteno

coordination number CN
nearest neighbor distance sitennd
d-band center εd
d-bandwidth Wd

d-band skewness Sd
d-band kurtosis Kd

d-band filling fd
sp-band filling fsp
density of d-states at Fermi level DOSd
density of sp-states at Fermi level DOSsp
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already generated features. The starting point Φ0 corresponds
to the 18 primary features listed in Table 1. We consider up to
three iterations, generating thereby the feature spaces Φ1, Φ2,
and Φ3. Note that a given feature space Φn also contains all of
the lower rung feature spaces. The Φ1 and Φ2 feature spaces
are still comparatively small. They consist of 783 and about 106

features, respectively. For the third iteration generating Φ3, the
approach we chose consisted of carrying out two rounds of
feature construction and descriptor identification, each for a
subset of only 16 out of the 18 primary features, to limit the Φ3
feature space of each round to a tractable value of about 1011.
In the first round, the skewness and kurtosis of the d-band
were excluded because the higher order d-band moments are
expected to be less important than the lower order moments.
Among the identified best descriptors (i.e., with lowest
validation errors, see below) of the first round, two primary
features of the site class never appeared, namely the nearest
neighbor distance and the density of d-states at the Fermi level.
In the second round, these two primary features were then
excluded, while the skewness and kurtosis of the d-band were
reincluded. At every dimension, the best performing Φ3
descriptor originated from the first round, and therefore,
only the results of the first round are presented below.

■ RESULTS AND DISCUSSION

Scaling Relations. We begin by evaluating the perform-
ance of prevalent scaling relations for predicting adsorption
energies on SA and AB alloys. In Figures 2(a) and (b) we show
two examples of scaling relations constructed by linear fits to
the DFT-calculated adsorption energies on the pure TMs
(black stars). Corresponding explicitly calculated adsorption
energies on SA and AB alloys are also indicated by colored
stars. While many bimetallics are well-described by the linear
scaling relations, there are also a number of serious outliers.
Some systems with particularly large prediction errors of the
order of 1 eV are highlighted. They typically contain mixed-
metal sites made up of metals with very different reactivity
toward O (e.g., Cu and Ag) or C (e.g., Ag and Pd). This poor
performance of scaling relations derives from their calculation
of the descriptors at one specific site on the alloy surface.

While scaling relations derived from the pure metals generally
do take into account the effect of the different geometries of
the various sites on the fcc(211) facet (see Supplementary
Figure S3), they fail to account for the variation in metal
composition of these sites on alloy surfaces. This issue likely
occurs most severely for the considered thermochemical
scaling relations. BEP relations for activation energies, in
contrast, are more local in the sense that often both the
transition state and the initial and final reaction intermediates
coordinate (or can be chosen to coordinate) to the same metal
atoms at the considered site ensemble. Correspondingly, BEP
relations are typically found to exhibit errors significantly lower
than those for thermochemical scaling relations even for the
pure metals.32

We note that an alternative scaling-relation-based approach
for alloy screening is to consider only the most stable
adsorption sites.33 Because in general the most stable
adsorption sites of the descriptor atoms (e.g., O and C) are
not known in advance for an unknown alloy, this entails
calculating all potential adsorption sites on the alloy surface.
However, at concomitantly increased screening costs, this still
does not alleviate the problem because different adsorbates
(e.g., O and OH) generally adsorb to different site types (e.g.,
O typically prefers higher coordinated sites than OH). As a
consequence, the metal composition of the preferred sites
could be different. We will come back to this point in the
discussion of the compressed sensing results. In addition, not
only the most stable sites but also metastable sites missed by
this approach can get populated at higher coverages and then
play an important role in the catalytic pathway.32,34,35

Descriptor Identification. The demonstrated failure of
scaling relations to predict accurate adsorption energies on
alloys with mixed-metal surfaces, as well as the high cost
associated with the calculation of two or more adsorption
energies on each alloy to be screened, emphasizes the need for
new, accurate, and low-cost descriptors for computational
screening. In Figure 3(a), we compare the performance of
scaling relations to new descriptors identified by SISSO in
terms of the root-mean-square error (RMSE) on training and
validation data sets. We define the best descriptor as the

Figure 2. Scaling relations for adsorption energies of (a) OH at the top-s site and (b) CH at the hcp-s site. The black lines show the linear scaling
relations fitted to the DFT data on the pure metals (shown as colored stars). Explicitly calculated DFT adsorption energies for (a) SA alloys and
(b) AB alloys are shown with colored stars. Some particularly large deviations between predictions from scaling relations and actual adsorption
energies for the alloys are highlighted. SISSO predictions (8D, Φ3 descriptor trained on the pooled metals and alloys data set, see text) for the
calculated alloys (32 additional AB alloys) are shown with colored (gray) circles. For the prediction of the DFT-calculated alloys, these predicted
data points were excluded from the training set. All scaling relations can be found in Supplementary Figure S3. Histograms of SISSO-predicted
adsorption energies on all potential adsorption sites of all 36 AB alloys for (c) O and OH and (d) C and CH. The black shaded regions highlight
literature “volcano optimal” adsorption energies for the oxygen reduction reaction (ORR) on (111) facets36 and for selective ethanol synthesis on
(211) facets.37 The colored circles mark those materials for which the predicted most stable (c) O adsorption energy among the (111)-like
(terrace) sites and (d) C adsorption energy among all (211) sites falls within the desired range. The corresponding most stable OH and CH
adsorption energies for these materials are also marked in the histograms above. A predicted near-optimal ORR material (AgPt) that breaks the O−
OH scaling relation due to different metal compositions of the preferred O and OH adsorption sites is highlighted. The black arrow points from the
SISSO-predicted to the scaling-relation-predicted OH adsorption energy.
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descriptor that achieves the lowest RMSE on the validation
data set. In the calculation of the RMSE, the same weight is
given to every adsorbate considered in the multitask learning
irrespective of how many data points exist for the adsorbate
(see Supplementary Table S1). The training data consist
exclusively of the adsorption energies on the pure metals, and
the validation data consist of 50% of each of the SA and AB
alloy data. SISSO data are shown for 1D−8D descriptors
identified from each considered feature space Φn. For each
case, a number of SIS values have also been tested (see
Supplementary Figure S4) and the best descriptor (i.e., the
descriptor with the lowest RMSE on the validation data set) is
shown. As expected, the SISSO training errors systematically
decrease when increasing either the complexity and size of the
feature space (larger n) or the dimensionality of the descriptor.
The validation errors show the same trend, but the errors level
out around the 5D to 8D descriptor depending on the rung of
the used feature space. We would expect the validation errors
to increase again at even higher dimensions due to overfitting.
However, such higher dimensions are outside of the scope of
the present study because already the leveling out of the
validation errors suggests that going beyond 8D is unlikely to
result in descriptors with lower validation errors.
The 5D to 8D descriptors of Φ3 all have very low validation

errors, differing from each other by only about 10 meV. Likely,

there is no statistically significant difference in their perform-
ance. A detailed statistical analysis to derive error bars is
outside of the scope of this work, which aims at a first
comparison to scaling relations. The latter are usually derived
based on only one fixed training data set considering only the
pure metals, and we therefore follow the same approach here.
In the absence of error bars, we choose the descriptor with the
lowest observed validation RMSE (of 0.15 eV) as our best
descriptor, i.e. the 8D, Φ3 descriptor. This descriptor (and any
other optimized 5D to 8D descriptor) is significantly better
than scaling relations, for which the validation RMSE is 0.28
eV (horizontal dashed line). In fact, already the 2D descriptor
of Φ3 (with a validation RMSE of 0.22 eV) performs better
than scaling relations. The best descriptor among the primary
features (the SISSO 1D, Φ0 descriptor) is found to be the d-
band center, i.e. SISSO also identifies the physics that has
already been discovered in form of the d-band model more
than 20 years ago.26

A comparison of the performance of the d-band center,
scaling relations, and the best (8D, Φ3) SISSO descriptor on
the test data set (the remaining 50% of the SA and AB alloys
data) is shown in Figure 3(b). The RMSEs are d-band center:
0.37 eV, scaling relations: 0.28 eV, SISSO: 0.15 eV, and the
maximum absolute errors (maxAEs) are d-band center: 1.31
eV, scaling relations: 1.43 eV, SISSO: 0.61 eV. Here, the
maxAE is the maximal error observed for any of the adsorbates
considered in the multitask learning. As already observed for
the validation data, the test results thus demonstrate the great
improvement of the new SISSO descriptor compared to
previous approaches.
We mention here also the performance of scaling relations

when considering only the most stable adsorption site of each
adsorbate at each metal or alloy as this is often perceived to be
most relevant for catalysis (see Supplementary Figure S5). The
RMSE on the pure metals (alloys) is 0.16 eV (0.17 eV). As
already mentioned, this scaling-relation-based approach is very
expensive because, to screen an unknown alloy, all potential
adsorption sites must be tested to find the most stable
adsorption sites of the descriptors. For comparison, the
predictions from the best (8D, Φ3) SISSO descriptor on the
pure metals in the training data set (alloys in the test data set)
is 0.09 eV (0.15 eV), i.e. even for this restricted case the SISSO
approach is more accurate in addition to being much less
costly.
In Supplementary Table S7, we provide additional

information about the largest deviations between calculated
and SISSO-predicted adsorption energies for the alloys. In
general, the C adsorption energies are the most difficult to
predict because they vary much more over the TM series than,
e.g., the H adsorption energies. In addition, the most difficult
alloys to predict adsorption energies for are those that combine
a more noble and a more reactive metal such as Au@Ni or
Ag@Cu. The maximum absolute error of 0.61 eV is found for
the OH adsorption energy on top of the Au atom in the Au@
Ni alloy. The embedding of the larger and more noble Au
atom in the smaller lattice constant and more reactive Ni
surface (see Figure 1(b)) probably provides an adsorption site
that is both geometrically and electronically very different from
everything else in the data set and thus harder to predict.

Transferability of Descriptors. To further test the
predictive performance of the best (8D, Φ3) SISSO descriptor,
we show in Figure 3(c) the error distribution for the prediction
of adsorption energies on three new facets, the (111), (110),

Figure 3. (a) RMSE for the descriptors identified using exclusively the
pure metals data set for training and 50% of the alloys data for
validation as well as corresponding results for scaling relations. (b)
Box plots of the absolute errors on the test set consisting of the
remaining 50% of the SA and AB alloys data for the d-band center, for
scaling relations, for the best SISSO descriptor identified using the
alloys validation data set (8D, Φ3), and for the best SISSO descriptor
identified when including 50% of the (111), (110), and (100) facets
data set in the validation data (8D, Φ1, see Supplementary Figure S6).
The upper and lower limits of the rectangles mark the 75 and 25%
percentiles; the internal horizontal line marks the median, and the
“error bars” mark the 99th and 1st percentiles. The crosses mark the
maximum absolute errors. (c) Corresponding box plots for the two
SISSO descriptors on the facets data sets, where for the (8D, Φ1)
descriptor, only the remaining 50% of the facets data set not used for
validation are included.
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and (100) facets. Some sites, in particular those found on the
(111) facet, are very similar to sites found on the (211) facet in
the training data. However, the (110) and (100) facets contain
sites that are very different, albeit of similar coordination
numbers (7−9.5), compared to the (211) facet sites. It is seen
that the descriptor with the best performance for (211) facets
performs very well for the (111) facet (RMSE of 0.17 eV) but
significantly worse for the (110) and (100) facets (RMSEs of
0.29 and 0.30 eV, respectively). This shows a well-known
limitation of compressed sensing (and machine learning)
methodologies, namely that a good transferability cannot be
expected a priori for cases not previously encountered in the
training or validation data. However, to put this in perspective,
we note that this “poor” RMSE for the other facets is
essentially of the same level as the RMSEs obtained for the
widely used scaling relations in the first place.
To identify a descriptor that has a good compromise

between accuracy for alloys and facets, we now include 50% of
the facets data in the validation data (see Supplementary
Figure S6). The new best descriptor is found for the hyper
parameters 8D, Φ1. It is interesting to note that because this is
a Φ1 descriptor, the functional form of the features is much less
complex than for the Φ3 descriptor optimized for the alloys
alone. This suggests that a less complex mathematical form is
required for a descriptor that is transferable across both alloys
and active site motifs.
The RMSEs (maxAEs) of the (8D, Φ1) descriptor for the

test set (the remaining 50% of the facets data) are found to be
(111): 0.17 eV (0.44 eV), (110): 0.21 eV (0.59 eV), (100):
0.24 eV (0.48 eV). These very moderate errors show that it is
possible to identify a descriptor with a good predictive
performance for a wide range of structural motifs as
exemplified by the low-index fcc facets. The improved
performance on the facets data sets comes at the very
moderate expense of increasing the RMSEs for the alloys to
0.18 eV compared to 0.15 eV before. We therefore suggest the
(8D, Φ1) SISSO descriptor for cases where simultaneous
screening of alloys and a wide range of active site motifs is
desired. It should be emphasized though that in general a good
performance can only be expected for active site types that
resemble to some extent those types for which the descriptor
was optimized. Likely, more varied training and validation data
will be required to identify a descriptor that would work for
very different active site motifs such as kinks, vacancies, and
adatoms.
Composition of Descriptors. Having confirmed the

predictive performance of the identified descriptors, we now
move on to discuss their composition. As an example of a
descriptor identified by SISSO, we give in eq 1 the best 4D
descriptor of Φ3 from Figure 3(a) (alloy validation data set):

where Pj is an adsorption energy of adsorbate j and the primary
features entering the descriptor are evaluated for the material/
site combination relevant for Pj. The d-band center and sp-
band properties such as the Pauling electronegativity are
identified as highly important primary features. This was also
found in previous studies employing artificial neural net-
works,6,7 but it is here expressed in an explicit nonlinear
functional form owing to the compressed sensing method-
ology. Among the remaining primary features entering the
descriptor, we especially highlight the DOS at the Fermi level
(here of the sp-band), which is a feature not considered in
these previous studies, even though its importance for the
reactivity of TM surfaces was discussed already more than 30
years ago by Yang and Parr.25 In Figure 4, we provide an
example adsorption energy prediction using eq 1.

An overview of the identified descriptors of each dimension
and rung for both the alloy validation data set and the
combined alloy and facets validation data set together with the
fitting coefficients ci

j is given in Supplementary Tables S8 and
S9.

Enlarging the Training Data Set. The predictive
performance of the identified descriptors for alloy screening
is already impressive, given that no explicit information on
alloys was given in the training data. However, a further
advantage of data-driven approaches is that the learning can be
systematically improved by enlarging the training data set. In
contrast, the rigid format of linear scaling relations does not
allow for significant improvements, even if fitting also to the
alloys data, as evidenced by the scattering of the alloy data
points around the fitted line in Figure 2(a) and (b).
To provide a simple estimate of the learning improvement

possible when also including alloys in the training data, we
identify a new SISSO descriptor (see Supplementary Table
S10) using as training data, specifically the pooled metal and

Figure 4. Example of SISSO adsorption energy prediction for C at an
hcp-s site of the IrRu alloy using the 4D descriptor of Φ3 given in eq
1. The tabulated primary features are calculated as averages over the
three metal atoms (two Ir atoms and one Ru atom) making up the
IrRu hcp-s site (marked with black lines). The shown fitting
coefficients ci

C are specific for C. For ease of reading, their units are
not shown; these depend on the units of the primary features entering
each feature to ensure that the adsorption energy comes out in eV.
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alloys data sets, but excluding the 23 DFT-calculated alloy data
points (colored stars) shown in Figures 2(a) and (b). For this,
we use the hyperparameters that were found to be best for
alloys (8D, Φ3). The colored dots in Figures 2(a) and (b)
show the SISSO predictions for the test set (the data points left
out in the training). Already a visual inspection reveals that the
agreement is very good. The maxAE (of 0.52 eV) is found for
the OH adsorption energy of the dark green point in Figure
2(a), which corresponds to OH adsorption on top of the Au
atom in the Au@Ni alloy. Note that exactly this data point is
also the maxAE (with the slightly larger value of 0.61 eV) for
the descriptor trained only on the pure metals. The RMSE over
the 23 predicted alloy data points in Figures 2(a) and (b)
decreases from 0.23 eV (training on pure metals only) to 0.18
eV (training on pooled data set).
Overall, the good agreement between the DFT-calculated

values and the SISSO predictions shows that our models have
the required accuracy to systematically search for outliers to
scaling relations. In addition, our approach is computationally
cheap enough to allow for the screening of immense alloy
spaces. For this, we will next present a simple example.
A First Screening Example. In the following, we make

use of a SISSO descriptor (see Supplementary Table S11)
identified using the hyperparameters (8D, Φ3) and the entire
pooled metals and alloys data sets for training. We predict the
adsorption energies for the adsorbates and sites considered in
Figures 2(a) and (b) on the additional 32 possible AB alloys
(those that were not explicitly calculated by DFT) as shown
with the gray dots. Similar to the explicitly DFT-calculated
alloy data points, there is a considerable scatter around the
scaling relation lines. This shows that there indeed exist many
materials with potentially interesting catalytic properties which
would be missed by a scaling-relation-based screening
approach.
A particularly interesting perspective for catalyst screening is

to be able to search directly for candidate materials that break
scaling relations. For many reactions, the incentive would be to
break scaling relations in a desired way because it has been
suggested that scaling relations impose an upper limit to the
possible catalyst activity. For example, it is known that for the
oxygen evolution reaction, it would be desirable to find a
material where O is destabilized relative to OOH,38 and for
electrochemical CO2 reduction, it is desirable to destabilize
CO relative to CHO.39 For other reactions, where optimum
catalytic activity has hitherto been exclusively formulated in
terms of singular descriptors, the interest would be to evaluate
the effect of scatter in the binding of other important
intermediates that hitherto has been assumed as fixed through
scaling relations. For the oxygen reduction reaction (ORR),
optimum catalytic activity has for instance been associated with
an optimum oxygen adsorption energy,40 while for selective
ethanol synthesis, both the carbon and the oxygen adsorption
energy must be simultaneously optimized.37 The activity at the
top of this theoretical volcano curve is then independent of e.g.
the OH (ORR) or CH (ethanol) adsorption energy, as the
latter are connected to the optimum O or C adsorption energy
through a scaling relation, respectively.
In Figures 2(c) and (d) we specifically check on the scatter

by showing histograms of the predicted adsorption energies for
(c) O and OH and (d) C and CH at all potential adsorption
sites of all 36 AB alloys. There are more predicted points for
OH (around 1000) than for the other adsorbates (around 400)
because OH adsorption can take place at more site types, i.e.

also at top and bridge sites. The black shaded areas highlighted
in Figure 2(c) the ORR “volcano optimal” O adsorption
energy on (111) facets36 and in Figure 2(d) the optimal C
adsorption energy on (211) facets for selective ethanol
synthesis.37 For this simple screening example, we assume
that only the most stable adsorption site of a given adsorbate
plays a catalytic role, keeping in mind that in reality, less stable
(metastable) sites also could get populated at higher coverages.
The SISSO approach directly gives us the energetics for the
most stable and all metastable sites, so in general, we are not
limited to considering only most stable sites. Because the ORR
volcano was developed for (111) facets, we search for materials
for which the most stable O adsorption energy among the
(111)-like (terrace) sites of the (211) facet falls within the
desired range. This results in three candidate materials: PdPt,
AgPd, and AgPt. The latter material is highlighted in Figure
2(c) because it has an OH adsorption energy on its most stable
bridge1-t site that is 0.23 eV lower than the value that would
be predicted for this site from scaling relations (indicated by
the black arrow) based on the O adsorption energy on its most
stable hcp-t site. The opposite behavior (a lower O adsorption
energy relative to OH) is seen for the material shown with the
green dot (PdPt). The cause of this breaking of scaling
relations is thereby the slightly different oxygenate adsorption
energy for Pt and Ag, and the fact that the preferred adsorption
sites for OH and O have a different composition of Pt and Ag.
It is important to note that our approach does not assume that
either O or OH adsorption are appropriate descriptors;
instead, we include both of them as independent options. A
similar breaking of scaling relations is observed for the ethanol
synthesis example. Here, SISSO recovers the scatter in the
most stable CH adsorption energies for materials (RuAg,
RhAu, RuAu, IrAu, and CuIr) that all have about the same
most stable “optimum” C adsorption energy. This scatter
shows the extent to which it is possible to tune the CH
adsorption energy independently of the C adsorption energy
and thereby further tailor the catalytic activity.

A high-throughput screening perspective. It should be
noted that the moderate breaking of scaling relations observed
in the simple examples from the previous section is related to
the consideration of only a handful of “near-optimal” materials
(out of a total of only 36 considered materials) and in
particular the consideration of only most stable adsorption
sites. A full assessment of the extent to which scaling relations
can be broken on alloys with mixed-metal surfaces would be
revealed only by a full high-throughput screening of hundreds
of thousands of materials that is beyond the scope of the
present study. Such a high-throughput screening could also
involve the evaluation of a microkinetic model for each catalyst
material that takes into account all possible adsorption sites of
every adsorbate as well as kinetic barriers for reaction and
diffusion steps through BEP relations. If such a microkinetic
model was initially carried out within the simplifying mean-
field approximation,41 the cost of its evaluation would still only
be a negligible fraction of the (already small) cost of carrying
out a DFT calculation of the primary features of the clean
catalyst surface for the descriptor evaluation. Once a selection
of promising catalyst materials had been identified, a next step
could then be the evaluation of a more thorough microkinetic
model from, e.g., a kinetic Monte Carlo simulation,32 possibly
also taking into account lateral interactions between the
adsorbates through cluster expansion methods.42 A full
assessment of identified promising catalyst materials would
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ultimately also need to take into account other aspects such as
bulk and surface segregation stability under realistic surface
coverages for the chemical reaction and reaction conditions of
interest as well as for instance stability against metal stripping
in electrocatalysis applications.

■ CONCLUSIONS
In summary, we used compressed sensing to identify new and
better descriptors that allow prediction of adsorption energies
for a whole range of atoms and molecules at all potential
surface sites of TMs and bimetallics formed of TMs. The
descriptors can be obtained from a single DFT calculation of
the clean surface, and their predictive power extends over both
multimetallics and various surface facets. Importantly, this
enables low-cost catalyst screening in not only materials but
also active site space43 with unprecedented accuracy. With
respect to materials, the thereby enabled systematic identi-
fication and analysis of outliers to traditional scaling relation
energetics seems particularly promising. With respect to active
sites, the availability of energetic data for a wide range of site
types paves the way to actively embrace the uncertainty in
surface structure and composition of working catalysts.3
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