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Abstract. The elastic strain field plays a crucial role during the self-organized growth of semiconductor quantum dot 
structures in the Stranski-Krastanov growth mode. Several theoretical methods have been developed for calculating the strain 
field of these lattice-mismatched systems. In this report we present a study exemplarily comparing an atomistic approach and 
calculations using elasticity theory. Features, limitations and selected possible applications of both approaches are discussed. 
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The concepts of self-assembly and self-organization 
are essential to understand the growth of quantum dots 
(QDs) in the Stranski-Krastanov mode [1, 2, 3]. The de­
tailed knowledge of the strain fields that arise from the 
lattice mismatch between substrate and deposited mate­
rial is needed for a thorough understanding of the exper­
imentally observed growth properties of QDs. Atomistic 
approaches of calculating the strain fields, such as clas­
sical many-body potentials (MBP) or ab-initio methods, 
provide atomic resolution but are often limited by the nu­
merical effort. Approaches based on continuum elasticity 
theory (CET), however, are hardly limited by the system 
size and can describe elastic properties on a mesoscopic 
length scale. In this work, we compare the strain tensor of 
characteristic structures as obtained with MBP and CET 
calculations. 

In the first approach we use an MBP of the Abell-
Tersoff type that was carefully parameterized re­
cently [4]. It reproduces many properties of Ga, As, 
In, GaAs, and InAs bulk structures, and of GaAs and 
InAs surfaces with good overall accuracy. A detailed 
investigation of the elastic response of InAs and GaAs 
upon biaxial strain in different planes confirms its appli­
cability to InAs/GaAs nanostructures. The strain tensor 
in this atomistic approach is determined by a structural 
relaxation that minimizes the total energy with respect 
to the atomic coordinates, followed by a comparison 
with a topologically equivalent, but undistorted config­
uration [5]. The resulting strain tensor for overgrown 
QDs is shown in Fig. 1. The atomistic strain tensor is 
interpolated to a cubic grid and compared with the CET 
approach for spatial positions that are 1 monolayer (ML) 
below the surface layer. This avoids potential inconsis­
tencies due to the different treatment of the surface in 
the MBP and the CET approach. 

The second approach developed in the framework of 

FIGURE 1. Trace of the strain tensor as obtained with the 
MBP approach for an InAs QD overgrown by 10 ML (left) and 
15 ML GaAs (right). (Only values up to 1 % are shown.) In the 
comparison with the CET approach we refer to values of 1 ML 
below the surface. 

CET enables us to calculate the full three-dimensional 
strain field of arbitrarily shaped QDs taking into account 
the anisotropic elastic properties of the material. In our 
approach we model the multi-sheet array of QDs by in­
clusions of material A in a matrix of a host material 
B by solving the equilibrium equation of elasticity the­
ory [6, 7, 9] under stress-free boundary conditions on the 
surface and using the homogeneous moduli approxima­
tion [6]. Further we express the elastic energy of inter­
acting inclusions in terms of the Fourier transform of the 
static Green's tensor of elasticity theory [8]. 

A previous comparison of a (numerical) CET ap­
proach and a less accurate MBP [5] found good agree­
ment for relatively small strain, but discrepancies for 
large strain, namely inside QDs and around its interfaces. 
In the following, we contrast the results of our (semiana-
lytic) CET approach with those of a more reliable MBP: 
In Fig. 2 the trace of the strain tensor [Tr(e)] of a plate­
like circular QD with a radius of 10 l.s. is shown. Both 
methods yield a tensile strain of the central GaAs region 
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FIGURE 2. Trace of the strain tensor computed with elas­
ticity theory (solid lines) and the atomistic approach (dashed 
lines): Strain at the relaxed surface of a circular monolayer 
QD with a radius of 10 lattice sites (l.s.). Distance between the 
surface and the buried sample structure is d = 9 l.s. (black) and 
d = 17 l.s. (grey). System size: L x L = 100 x 100 l.s. Host 
material: GaAs. Lattice constant QQUAS = 0.565 nm= 1 l.s. 

FIGURE 3. Elastic strain field of a periodic array of QDs 
and of a single QD (inset) calculated from elasticity theory. 
Minima (E < 0, black) and Maxima (E > 0, grey) of the elastic 
interaction energy E in the relaxed surface at d are shown. 
Arrows: QDs (lateral spacing 25 l.s.). 

tensile (compressive) strain and give rise to an attractive 
(repulsive) potential. Minima form preferred sites for nu-
cleation [11]. For a single QD the inclination angle of the 
strain field minima against the vertical agrees with pre­
vious theoretical findings [12], but seriously contradicts 
the experimental observation [13]. However, if a whole 
array of QDs is considered, with increasing d the incli­
nation angle increases more and more until at d = 17 ML 
the strain fields of two QDs meet and form a double mini­
mum exactly in the middle between these QDs. The tran­
sition from vertically correlated to anticorrelated growth 
occurs at an inclination angle of 45° for GaAs (Fig. 3), in 
close agreement with experiment, where a value of 50° 
was found [13]. The small remaining discrepancy might 
result from modulations in chemical composition or mor­
phological changes in the spacer layer. 

In conclusion, we have presented two complemen­
tary approaches to self-assembled QDs: Classical many-
body potentials can give detailed microscopic insight 
into their shape and structure, while continuum elasticity 
theory can explain correlation and anticorrelation effects 
in large arrays of QDs. 
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that is directly above the InAs QD, and a similar range 
of values of 7>(e) for both investigated heights. The lat­
eral extension of the region with Trie) > 0 obtained by 
the two methods is in good agreement at a height of 
d = 9 ML and still reasonable for the weakly strained 
layers at a height of 17 ML. At the GaAs border regions 
surrounding this tensile central area, both methods yield 
vanishing strain at small height, but show some discrep­
ancy in the description of the weakly strained GaAs re­
gions at larger height, namely an opposite sign of Trie) 
in the border regions. This effect is due to the periodic 
boundary conditions that were used in the MBP calcu­
lations, in contrast to the semi-infinite treatment of the 
same structure in the CET calculations. The Green's ten­
sor approach furthermore yields a weaker compression 
of the intermediate GaAs region above the corner of the 
InAs inset as compared to the many-body potential that 
exhibits two distinct minima of Trie). 

Using CET it is possible to calculate strain fields for 
large arrays of QDs. In Fig. 3 the vertical propagation of 
the minima and maxima of the elastic interaction energy 
in the relaxed surface at spacer thickness d are shown for 
a single point-like QD (inset) and for a periodic array of 
point-like QDs with GaAs as host material [9] The inter­
action energy minima (maxima) correspond to maximum 

REFERENCES 

1. D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum 
Dot Heterostructures, Wiley, New York, 1999. 

2. V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, 
Epitaxy ofNanostructures, Springer, Berlin, 2004. 

3. J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 
(2004). 

4. T. Hammerschmidt, P. Kratzer, and M. Scheffler (2006), 
in preparation. 

5. C. Pry or, J. Kim, L. W Wang, A. J. Williamson, and 
A. Zunger, /. Appl. Phys. 83, 2548 (1998). 

6. A. G. Khachaturyan, Theory of Structural Transforma­
tions in Solids, Wiley, New York, 1983. 

7. V. A. Shchukin, D. Bimberg, V. G. Malyshkin, and N. N. 
Ledentsov, Phys. Rev. B 57, 12262 (1998). 

8. K. Portz, and A. A. Maradudin, Phys. Rev. B 16, 3535 
(1977). 

9. R. Kunert and E. Scholl (2006), submitted (cond-
mat/0607016). 

10. C. Ratsch, A. P. Seitsonen, and M. Scheffler, Phys. Rev B 
55, 6750 (1997). 

11. E. Penev, P. Kratzer, and M. Scheffler, Phys. Rev B 64, 
085401 (2001). 

12. V. Holy, G. Springholz, M. Pinczolits, and G. Bauer, 
Phys. Rev. Lett. 83, 356 (1999). 

13. X.-D. Wang, N. Liu, C. K. Shih, S. Govindaraju, and A. L. 
Holmes, Jr., Appl. Phys. Lett. 85, 1356-1358 (2004). 

74 

Downloaded 02 Aug 2007 to 141.14.130.202. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp


