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ABSTRACT A theory for the description of optical excita-
tion and the subsequent phonon-induced relaxation dynamics
of nonequilibrium electrons at semiconductor surfaces is pre-
sented. In the first part, the fundamental dynamical equations for
electronic occupations and polarisations are derived using dens-
ity matrix formalism (DMT) for a surface-bulk system including
the interaction of electrons with the optical field and electron–
phonon interactions. The matrix elements entering these equa-
tions are either determined empirically or by density functional
theory (DFT) calculations. In the subsequent parts of the pa-
per, the dynamics at two specific semiconductor surfaces are
discussed in detail. The electron relaxation dynamics underly-
ing a time-resolved two photon photoemission experiment at an
InP surface is investigated in the limit of a parabolic four band
model. Moreover, the electron relaxation dynamics at a Si(100)
surface is analysed. Here, the coupling parameters and the band
structure are obtained from an DFT calculations.

PACS 71.15.Mb; 73.20.At; 73.43.Cd; 78.20.Bh

1 Introduction

In this work, we present a theory describing optical
excitation and electron relaxation dynamics at semiconductor
surfaces. It is shown how density matrix theory (DMT) can
be used to derive equations of motion that include the interac-
tion of the electrons with a radiation field and with phonons,
here, within the Markov approximation. The semiconductor
surface is considered as a two dimensional multi-band system
containing both bulk-like and surface-like bands. To test the
method, in a first approach, we restrict ourselves to four bands,
and use a simple empirical ansatz for the wave functions
needed to calculate matrix elements. In a second approach,
we show how density functional theory (DFT) can be linked
with DMT. In this context, DFT Kohn–Sham wave functions
are used to calculate the electron–phonon interaction matrix
elements in the dynamical equations.

The results suggest that our description is fairly realistic
and that a combined approach of DMT [1–4] and DFT [5]
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can be successfully used to gain insight in the dynamical ex-
citation [6] and, as shown here, relaxation processes at such
surfaces.

A possible field of application for our theory are time-
resolved two-photon photo-emission experiments (TR-2PPE),
which have been used in numerous subfields of surface sci-
ence, including image potential states [7, 8], molecules on
metal surfaces [9, 10], bulk states of metals and semicon-
ductors [11, 12] and dynamical processes combining semi-
conductor bulk states, surface states [13–15] and adsorbate
states [16, 17]. Other theoretical descriptions are based upon
optical Bloch equations [18], dynamical calculations based on
Fourier grid models [19], as well as dynamical calculations
for coherent pulse excitation [20, 21] and incoherent initial
conditions [22, 23].

This article is organized as follows. Section 2 presents the
basics of the underlying theories (DMT, DFT) as well as the
calculation of the matrix elements. In Sect. 4, the application
of the dynamical equations to a simple empirical model for
a InP semiconductor surface is discussed. Finally, in Sect. 5,
the full theory using both DFT and DMT is presented together
with an application to the silicon(100) surface.

2 General approach

By performing experiments with ultrashort laser
pulses, one can probe the dynamics of electrons in a solid or
near its surface on the time scale of some tens of femtosec-
onds. On such short time-scales, coherent evolution of excited
states of the systems can be observed in some cases, as long as
only few distinct channels for energy dissipation are available.
After the coherent time scale, relaxation processes destroy
phase coherence and yield to a formation of quasi-equilibrium
electron distribution functions. On the other hand, the pho-
tons in a laser pulse of 15 fs half-width are associated with
an energy uncertainty of 0.1 eV. This energy scale is suffi-
ciently small such that specific features of the electronic struc-
ture of the surface investigated are still noticeable. While the
coherent and subsequent relaxation dynamics of the system
calls for a description in terms of DMT, the still rather well-
defined excitation energies allow for a description in terms
of a quasi-particle band structure. Determination of the latter
first requires a self-consistent electronic structure calculation



506 Applied Physics A – Materials Science & Processing

FIGURE 1 The principal structure of this approach

as starting point for calculations of the quasi-particle band
structure by more elaborate methods.

While it is in principle conceivable to describe the dynam-
ics of excited states by a single-step theory in the spirit of ab
initio theories, e.g., by time-dependent DFT, such an approach
is computationally cumbersome and presently still has to rely
on a number of uncontrolled approximations. As an alterna-
tive, we propose a two-step approach (Fig. 1), where the rele-
vant degrees of freedom of the dynamics are described within
DMT, while the information about the microscopic processes
(entering as parameters into the DMT equations) are provided
by DFT. The dynamical equations for the ultra-fast response
of the solid derived from density matrix theory are valid for
a general multi-band system with arbitrary phonon modes.
The specific system under study and its materials properties
are then introduced by specifying the open parameters (matrix
elements and single particle energies). This rather general set-
ting allows us to be flexible in the modelling of the dynamics,
either by retaining only a small number of bands and fixing
the few remaining parameters empirically, or by working with
a rather elaborate description of the electronic quasi-particle
band structure and the phonon modes as delivered by ab initio
methods.

DFT is capable of providing a realistic description of the
surface atomic structure. However, for the excited states, the
methods of many-particle perturbation theory (i.e., the GW
approximation for single quasi-particle states and solutions
of the Bethe–Salpeter equation for two-particle states [24])
are widely used. These methods can also be incorporated
in the DMT equations via the electron–electron interac-
tion of optically excited states [6]. Nevertheless, in this pa-
per, we restrict ourselves to DFT calculations for the wave
functions and matrix elements for electron–phonon inter-
action. This is acceptable as a lowest-order approximation
to the actual quasi-particle wave functions and commonly
used. It yields a much more detailed description and im-
proved understanding compared to hitherto used empirical
models.

2.1 Geometry

Compared to the bulk, a semiconductor surface
system induces a symmetry reduction in the direction per-
pendicular to the surface. Parallel to the surface, a lattice
periodicity can obviously be assumed, whereas in perpen-
dicular direction, the bulk lattice periodicity is broken by the

surface. The missing periodicity makes it inevitable to in-
troduce a reference depth of the system, which refers to the
number of layers of bulk material that are considered below
surface. This configuration is called slab geometry [25–29],
the slab is the reference volume of the semiconductor con-
sidered (cmp. Fig. 2). The symmetry group of the surface is
determined by the reconstruction symmetry. It can be said that
the slab unit cell in reciprocal space is always contained in the
irreducible bulk cell [25, 26, 30].

Similarly to the restricted periodicity in real space, the
first Brillouin zone of the slab is reduced to two dimensions.
This means that the dispersion of the Bloch-wave functions
appears only in direction parallel to the surface. The compon-
ent of the bulk Bloch vector perpendicular to the surface is
projected onto the two-dimensional surface Brillouin zone.
Hence the number of bands per atom in the unit cell is in-
creased in a slab calculation such that the total number of
Bloch states remains the same as one would have in a bulk
calculation.

2.1.1 Single particle electronic wave functions. As spin–
orbit coupling is neglected and the different spin states are not
treated separately in these calculations (this is well justified
for silicon and a first approach for InP), the electronic states of
the system are determined by two quantum numbers: a band
index n and a (two dimensional) vector in reciprocal space
k = (kx, ky)

T (In general, in this paper, the underlined vector
v will refer to a two dimensional vector in a plane parallel to
surface, while the bold vector v refers to a three dimensional

FIGURE 2 Illustration of the periodic slab model. In x and y direction, the
normal lattice periodicity applies. In z-direction, periodicity is also imposed,
but the vacuum layer between the slabs separates the electronic states in the
different layers
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vector, thus v refers to the first two components of v). The re-
sult is a general form for the wave functions that is similar to
the three dimensional case [25]

ψnk(r) = 1√
Ωslab

eikrunk(r) , (1)

where k = (kx, ky, 0)T and Ωslab is the volume of the slab. The
Bloch waves unk(r) are the lattice periodic part of the wave
functions with the property

unk(r+ R) = unk(r) , (2)

for a lattice vector R = (Rx, Ry, 0)T. The Bloch waves can be
calculated by DFT or determined by a heuristic ansatz [23]. It
is convenient to describe these Bloch wave functions within
their Fourier representation in reciprocal space:

unk(r) = 1√
2π

∑

G

unk(G, rz)eiGr . (3)

Here {G} is the set of all reciprocal lattice vectors. If we fur-
thermore assume that the slab is repeated periodically (Fig. 2)
in the perpendicular direction with a certain amount of vac-
uum space between the different slabs to assure that the over-
lap between wave functions of neighboring slabs is negligi-
ble (which also assures that the Brillouin zone remains two-
dimensional), also the third dimension of the Bloch wave can
be described as a Fourier series:

unk(r) = 1√
2π

∑

G

unk(G)eiGr , (4)

with a now three dimensional set of lattice vectors {G}.
This frequently allows a simpler evaluation of matrix elem-
ents such as momentum matrix elements for electron–light
coupling.

2.1.2 Phonon modes. As for the electronic wave functions in
Sect. 2.1.1, similar considerations apply to the phonon modes
of a slab. While parallel to surface, the movement of the atoms
at the coordinates Xj = (X j , zj)

T = (xj, yj , zj)
T can be de-

scribed by an exponential

sq(Xj , t) =
∑

i

siq(zj)ei(q Xj −ωiq t)
, (5)

where i counts the normal modes. The dependence of siq on
(zj) reflects the change of the bulk modes due to the surface
and the surface reconstruction. In this work, a simpler ap-
proach is used. We approximate siq(zj) by the corresponding
bulk modes, such that:

sq(Xj , t) =
∑

l

slq ei(qXj −ωlq t)
, (6)

By this ansatz, the surface modes are neglected. Note that in
this case, qz appears as a new parameter in the overall mode
count index. The bulk modes in slab geometry can be de-
rived from the modes in a typical irreducible bulk structure
(e.g., diamond structure), so the phonon dispersion (and also
the deformation potentials in Sect. 3.1) can be obtained either
from bulk calculations or from experimental bulk data without
using surface properties.

2.2 Density matrix formalism

In second quantization, all observables, like the
total electron density �(r) = ∑

nk,n′k′ ψ∗
nk(r)ψn′k′(r)〈a†nkan′k′ 〉

and macroscopic polarization density P (t) = ∑
nk,n′k′ dnk,n′k′

〈a†nkan′k′ 〉, are expressed in terms of creation (a†nk) and anni-
hilation operators (an′k′ ) [2, 31]. In a system containing elec-
trons and phonons, we define the electronic operators a†nk and
ank with the fermionic commutation relation
[
a†nk, an′k′

]

+
= δn,n′δk,k′ (7a)

and the phonon operators b†i,q and bi,q with the bosonic com-
mutation relation
[
b†iq, bi′q′

]

−
= δi,i′δq,q′ . (7b)

The introduced quantum numbers of the operators correspond
to the quantum numbers of the electron wave functions and
phonon modes (Sect. 2.1). The preparation of a quantum sys-
tem can be expressed in terms of the density operator. The
expectation value of an arbitrary operator O is then given by

〈O(t)〉 = tr(�O(t)) . (8)

For the investigation of the ultrafast population dynamics, the
observables to be looked at dynamically are the expectation
values of number operators

fnk =
〈
a†nkank

〉
, (9a)

for electrons (describing the probability to find an electron in
state ψnk(r)),

niq =
〈
b†iqbi,q

〉
, (9b)

for phonons (describing to the probability to find a phonon in
the mode i at wavevector q) and the electronic polarizations
(transition probability amplitudes)

p nk
n′k′

=
〈
a†nkan′k′

〉
, (9c)

which describe the transitions (or coherence) between the
states. The considered system Hamiltonian in second quanti-
zation consists of four parts:

H =
∑

nk

Enka†nkank

︸ ︷︷ ︸
I

+
∑

iq

hωiqb†iqbiq

︸ ︷︷ ︸
II

+
∑

nk
n′k′

A(t)p nk
n′k′

a†nkan′k′

︸ ︷︷ ︸
III

+
∑

nk
n′k′
iq

D nk
n′k′
iq

a†nkan′k′(b†i−q +biq)

︸ ︷︷ ︸
IV

. (10)
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FIGURE 3 Illustration of the processes treated by our theory. After op-
tical excitation, electrons are redistributed within the conduction bands
am′l′ → a†

m′l′ by emission b†iq or absorption biq of phonons

Part I contains the kinetic energy of the electrons with the
energy of the single particle electron states Enk, part II the
phonon energy with the phonon dispersion relation ωiq .
Part III describes coupling to the electromagnetic vector po-
tential A(t) with the momentum matrix element pnk,n′k′ within
dipole approximation [32]. Part IV contains the electron–
phonon coupling with the coupling element Dnk,n′k′,iq, cmp.
Fig. 3. Enk and ωiq represent the equilibrium properties of
the system before the optical excitation where electrons and
phonons are decoupled. The calculation of the momentum
matrix element and the electron–phonon coupling elements
will be discussed in Sect. 3.

2.3 Equations of motion

2.3.1 General form. To derive equations for the dynam-
ics of operators, Heisenberg’s equation of motion can be
used [2, 33]

ih
d

dt
O = [O,H]. (11)

Inserting the electronic polarization operators a†mlam′l′ into
(11) [4, 34], we obtain a non-closed hierarchy of equations, as
illustrated in the following:

ih
d

dt
(a†mlam′l′) =

[
a†mlam′l′ ,H

]

= (
Eml − Em′l′

)
a†mlam′l′

+ A(t)
∑

nk

(
pml

nk
a†nkam′l′ − p nk

m′l′
a†mlank

)

+
∑

nk

⎛

⎜⎝Dml
nk
iq

a†nkam′l′
(

b†i,−q +bi,q

)

− D nk
m′l′

a†mlank

(
b†i,−q +bi,q

)
⎞

⎟⎠ . (12a)

A close look on these equations shows that these equations
for the polarization operators a†mlam′l′ depend on the dynam-

ics of three operator products like a†mlankb†iq . The equations of
motion for those quantities that can be derived using (11):

ih
d

dt
(a†mlam′l′b

†
i,−q) =

(
Eml − Em′l′ +hωiq

)
a†mlam′l′b

†
i,−q

+ A(t)
∑

nk

(
pml

nk
a†nkam′l′b

†
i,−q − p nk

m′l′
a†mlankb†i,−q

)

+
∑

nk
i′q′

D ml
nk
i′q′

a†nk′am′l′
(

b†i′,−q′b
†
i,−q +bi′q′b†i,−q

)

−
∑

nk
i′q′

D nk
m′l′
i′q′

a†mlank

(
b†i′,−q′b

†
i,−q +bi′q′b†i,−q

)

+
∑

nk
n′k′

D nk
n′k′
iq

a†mlam′l′a
†
nkan′k′ (12b)

and similarly for the adjoint operator products.
From (12) it can be recognized that the resulting equa-

tions couple now to products of four operators. The cor-
responding dynamical equations for the four operator terms
depend on even higher order contributions. Consequently,
at this point, there is no alternative to approximations that
truncate or close the hierarchy of terms in these differen-
tial equations. Sections 2.3.2 – 2.3.4 summarize a set of
approximations to close the hierarchy of the equations of
motion.

2.3.2 Correlation expansion. The method of choice to break
this hierarchy is a generalized mean field approach for higher
order correlations called correlation expansion [35–37]. This
method has been used for several applications [4, 34, 36,
38, 39]. The principal idea is to approximate the expecta-
tion value of an arbitrary N-order operator 〈a†n1k1

. . . a†nr kr

am1k1
. . . amsks

b†i1q
1
. . . b†it qt

bj1w1
. . . bjuwu

〉 where N = r +
s + t + u by a combination of the expectation values up
to an arbitrary order M ≤ N of all possible correlations
of the operators from the original expectation value. The
sign of the correlation terms of order M is determined by
the commutation relations supplied for the single opera-
tors. With the generation scheme for the dynamical equa-
tions introduced above (the order of the operators is in-
creased by one with every new step), the maximum order
of the expectation values that figure inside the equations
is M + 1 for an order of M considered. Due to the fact
that electron conservation is assumed for the whole sys-
tem, only those expectation values don’t vanish that con-
tain an equal number of electronic creation and annihilation
operators r = s.

2.3.3 Bath hypothesis. For typical excitation conditions in
surface experiments, it is reasonable to assume that the
phonon distribution remains always close to thermal equilib-
rium, as the temperature is fairly elevated and weak coup-
ling is assumed [35]. Consequently, the phonons will be
assumed to stay in an equilibrium state and the expecta-
tion value of phononic operators can only be non-vanishing
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if creation and annihilation operators combine to thermal
equilibrium distribution for a bosonic system, given by the
Bose-distribution:
〈
b†iqbiq

〉
= niq(T )

1

e
hωiq
kB T −1

, (13)

where T is the temperature of the system, kB the Boltzmann
constant and hωiq the phonon energy dispersion. On this level
of approximation, the equations of motion (12) can be simpli-
fied and the hierarchy of equations can be closed. The result-
ing equations are given by

ih
d

dt
p ml

m′l′
= (

Eml − Em′l′
)

p ml
m′l′

+ A(t)
∑

nk

(
pml

nk
p nk

m′l′
− p nk

m′l′
pml

nk

)

+
∑

nk
iq

⎛

⎜⎝Dml
nk
iq

〈
a†nkam′l′b

†
i,−q

〉
+ Dml

nk
iq

〈
a†nkam′l′biq

〉

−D nk
m′l′
iq

〈
a†mlankb†i,−q

〉
− D nk

m′l′
iq

〈
a†mlankbiq

〉
⎞
⎟⎠

(14a)

and

ih
d

dt

〈
a†mlam′l′b

†
i,−q

〉
=

(
Eml − Em′l′ +hωiq

) 〈
a†mlam′l′b

†
i,−q

〉

+ A(t)
∑

nk

(
pml

nk

〈
a†nkam′l′b

†
i,−q

〉
− p nk

m′l′

〈
a†mlankb†i,−q

〉)

+
∑

nk

⎛

⎜⎝Dml
nk
iq

p nk
m′l′

niq(T )− D nk
m′l′
iq

pml
nk

(
niq(T )+1

)
⎞

⎟⎠

+
∑

nk
n′k′

D nk
n′k′
iq

p ml
n′k′

p nk
m′l′

. (14b)

This system of differential equations can in principle be
solved to obtain the electron distribution dynamics (9a), by an
adequate solving algorithm like a Runge–Kutta method. Nev-
ertheless the numerical effort is considerable, as it represents
a set of approximately N2 × K3 coupled equations, where N
is the number of bands and K the number of k-points. On
the other hand, a further approximation can reduce the nu-
merical effort considerably. It is well known that in weakly
coupled systems with a set of dense electronic states within
the energy range of interest, where scattering partners are eas-
ily available, does not depend strongly on the dynamics of
the phonon assisted density matrices. This is a converse be-
haviour as found in quantum dots where only discrete energy
levels with a level separation well above the phonon energy
are involved [1, 4, 40]. Thus, a major simplification of the
equations can be achieved by applying a Markovian approxi-
mation to the dynamics.

2.3.4 Markov approximation. The Markov approximation
is an adiabatic elimination of the dynamics of the phonon-
assisted density matrices (14b) from that of ordinary density
matrices (14a) [34]. Neglecting the optical interaction in per-
turbation theory (A(t) = 0), (14b) can be integrated formally:

〈
a†mlam′l′b

†
i,−q

〉
= i

h

∞∫

0

e
i
h (Eml−Em′l′−hωiq )t′ dt ′

×
⎛
⎜⎝

∑

nk

Dml
nk
iq

niq(T )p nk
m′l′

(t − t ′)

−
∑

nk

D nk
m′l′
iq

(
niq(T )+1

)
pml

nk
(t − t ′)

+
∑

nk
n′k′

D nk
n′k′
iq

p ml
n′k′

(t − t ′)p nk
m′l′

(t − t ′)

⎞

⎟⎟⎠ .

(15)

If the dynamics of the electron polarizations pml,m′l′ inside the
integral of the formal solution of (15) is assumed to be domi-
nated by the free propagation:

pfree
ml

m′l′
(t − t ′) = e− i

h (Eml−Em′l′ )t′ p ml
m′l′

(t) , (16)

the integral in (15) can be solved and the phonon-assisted
density matrices can be eliminated in (14a). Consequently,
a new set of equations is found, which depends now only
on the equal-time terms of the polarizations. If this is finally
reinserted into (14a), the third order operator terms are to-
tally disposed of and we find the following equations for the
polarizations:

ih
d

dt
p ml

m′l′
= (

Eml − Em′l′
)

p ml
m′l′

+ A(t)
∑

nk

(
pml

nk
p nk

m′l′
− p nk

m′l′
pml

nk

)

− i

h

∑

nk
n′k′
n′′k′′

iq

D nk
m′l′
iq

D n′k′
n′′k′′

iq

(
∆

(
En′k′ − Enk −hωiq

)

×
(

(niq +1)p ml
n′k′

(
δn,n′′δk,k′′ − p nk

n′′k′′

)

−niq

(
δm,n′δl,k′ − p ml

n′k′

)
p nk

n′′k′′

)

+∆
(

En′k′ − Enk +hωiq

)

×
(

niq p ml
n′k′

(
δn,n′′δk,k′′ − p nk

n′′k′′

)

−(niq +1)

(
δm,n′δl,k′ − p ml

n′k′

)
p nk

n′′k′′

))
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− i

h

∑

nk
n′k′
n′′k′′

iq

Dml
nk
iq

Dn′′k′′
n′k′
iq

(
∆∗

(
En′k′ − Enk −hωiq

)

×
(

(niq +1)pm′l′
n′k′

(
δn′′,nδk′′,k − pn′′k′′

nk

)

−niq

(
δm′,n′δl′,k′ − pm′l′

n′k′

)
pn′′k′′

nk

)

+∆∗
(

En′k′ − Enk +hωiq

)

×
(

niq pn′k′
m′l′

(
δn′′,nδk′′,k − pn′′k′′

nk

)

−(niq +1)

(
δn′,m′δk′,l′ − pn′k′

m′l′

)
pn′′k′′

nk

))
,

(17)

where the “half space delta” ∆(ω) is defined as ∆(ω) =∫ ∞
0 eiωt dt . Two further simplifications are applied to this

system of equations. First, the polaron shift is neglected by
setting ∆(ω) = πδ(ω). Second, the phonon scattering is re-
stricted to diagonal terms by imposing m = n′, n = n′′, l = k′
and k = k′′. This is justified, as the dependence on the polar-
izations pnk,n′k′ is typically a higher order effect. The resulting
equations for the electron coherences and the occupations are
of a much simpler general form:

ih
d

dt
p ml

m′l′
= (

Eml − Em′l′
)

p ml
m′l′

+ A(t)
∑

nk

(
pml

nk
p nk

m′l′
− p nk

m′l′
pml

nk

)

−
(
Γ in

ml +Γ out
ml +Γ in

m′l′ +Γ out
m′l′

)
p ml

m′l′
(18a)

ih
d

dt
fml = A(t)

∑

n

(
pml

nk
pnk

ml
− pnk

ml
pml

nk

)

+2Γ in
ml

(
1 − fml

)−2Γ out
ml fml . (18b)

The scattering rates are then given by

Γ in
ml = i

h

∑

nk
iq

∣∣∣Dml
nk
iq

∣∣∣
(
δ
(

Eml − Enk −hωiq

)

×
((

niq +1
)

fml −niq
(
1 − fml

))

+ δ
(

Eml − Enk +hωiq

)

×
(

niq fml −
(

niq +1
) (

1 − fml
)))

(19a)

and

Γ out
ml = i

h

∑

nk
iq

∣∣∣Dml
nk
iq

∣∣∣δ
((

Eml − Enk −hωiq

)

×
(
(niq +1) fml −niq

(
1 − fml

))

+ δ
(

En′k′ − Enk +hωiq

)

×
(

niq fml − (niq +1)
(
1 − fml

)))
. (19b)

The physical meaning of these equations is obvious. For in-
stance, the rhs of (18) consists of two contributions. The first
counts the scattering processes into the state ml (which de-
pends on the probability, that this state is not occupied, e.g.,
1 − fml, the other one counts the scattering processes out
of this state, this depends on the probability that the state
is occupied fml . Inside the scattering rates (19), it can be
seen that only energy conserving scattering events are pos-
sible with these assumptions and scattering is highly influ-
enced by the phonon distribution and thus depends highly on
temperature.

If no optical excitation is considered, only the electron dis-
tribution and not the polarization of these equations have to
be taken, leading to a numerically much simpler set of equa-
tions [1, 2, 4, 41]:

ih
d

dt
fml = 2Γ in

ml

(
1 − fml

)−2Γ out
ml fml . (20)

3 Matrix elements and interaction parameters

Within the second quantization procedure, the
coupling contributions beyond the equilibrium state are given
by two contributions: First, there is the electron light coup-
ling (term III in (10)), its strength given by the momentum
matrix (25). Second, there is electron–phonon coupling where
the corresponding matrix elements involve single-particle
electronic and phononic states.

3.1 Electron–phonon coupling and matrix elements

The electron–phonon interaction Hamiltonian in-
corporates part IV of the Hamiltonian (10). Generally, the
coupling parameters Dnk,n′k′,iq are composed of a q-depend-
ent factor that has to be specified according to the mate-
rial system, and a matrix element overlap from the elec-
tron states involved in the corresponding scattering process.
Dnk,n′k′,iq is given by the Fourier transform of the electron–
phonon interaction potential [31, 42, 43]. In the deformation
potential approximation, only the first term in the Fourier
series is taken into account (the potential is assumed to be
slowly varying within the semiconductor). Taking as further
assumption the bulk-projected phonon modes from (6), one
can derive a simplified general form for the matrix elements:

D nk
n′k′
iq

= Diq

∫

R3

dr3ψnk(r)∗ eiqrψn′k′(r) . (21)

Within these assumptions, the general form of the coupling
parameters is given by

Diq eiqr

√
h

2�Vωiq
V

∂E

∂V︸ ︷︷ ︸
I

∆V

V︸︷︷︸
II

∣∣∣∣
iq

, (22)
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where part I refers to the energy variation ∂E by a rela-
tive volume change ∂V and part II describes the relative
change of the volume induced by the dynamical evolution
of the of the phonon modes, for example for LA-phonons
we have ∆V/V = ∇ s(r, t), where s(r, t) is the longitudinal
elongation field, � the material density and ωiq the phonon
dispersion [43]. In general, also coupling to transversial
modes can be described in this manner. This is called the
deformation potential approach. Furthermore, the alterna-
tive form for the Bloch waves (4) produces the following
result:

D nk
n′k′
iq

= Diq
1

2π

∑

G,G ′
u∗

nk(G)un′k′(G ′)

×
∫

R3

dr3 e−i(k+G)r eiqr ei(k′+G ′)r

= Diq
1

2π

∑

G,G ′
u∗

nk(G)un′k′(G ′)δG ′+k′+q,G+k . (23)

The δ-condition in (23) allows two conclusions. First, there
exists an elementary symmetry (hermiticity) relation for the
coupling constants where

D nk
n′k′
iq

= D∗
n′k′
nk

i,−q

. (24)

This identity can help to reduce the computational effort. Sec-
ond, there is the possibility of scattering processes over the
boundaries of the Brillouin zone, if k′ +q > G. In the simu-
lations, this cannot be neglected. In the limiting case that k, k′
and q are small with respect to the lattice vectors, the known
property of momentum conservation for scattering processes
is fulfilled with k = k′ + q, e.g., scattering is only possible,
if the k-vector of the initial electron state and the q-vector
of the phonon mode match the k-vector of the final electron
state.

The coupling mechanism Diq of electrons and phonons
depends strongly on the material system considered [43].
While for a polar semiconductor, Fröhlich coupling dom-
inates the interaction, for non-polar materials no prevail-
ing coupling mechanism can be identified. The deformation
potential approximation (22) can be employed either with
parameters Diq from experiment or from ab initio calcula-
tions [44, 45] or by applying other coupling mechanisms like
Fröhlich coupling.

3.2 Optical matrix elements

The electron–light coupling (term III in the Hamil-
tonian (10)) can be derived from A(t)pnk,n′k′ coupling, where
A(t) denotes the electromagnetic vector potential within
Coulomb gauge and pnk,n′k′ is the single particle momentum
matrix element [46]

p nk
n′k′

=
∫

R3

dr3ψnk(r)∗
h

i
∇ψn′k′(r) . (25)

As for the electron–phonon coupling, we use (4) to examine
the symmetries of these matrix elements:

p nk
n′k′

= 1

2π

∑

G,G ′
u∗

nk(G)un′k′(G ′)
∫

R3

dr3 e−i(k+G)r h

i
∇ ei(k′+G ′)r

(26)

= 1

2π

∑

G

u∗
nk(G)

(
G +k

)
un′k(G) . (27)

Obviously, these matrix elements are diagonal in k. This re-
sults from the dipole approximation and spatially homoge-
neous excitation of the surface [47]. Furthermore, the relation
pnk,n′k = p∗

n′k,nk is exploited to reduce the numerical effort.

3.3 Calculation of matrix elements with density
functional theory (DFT)

In the dynamics described within the DMT formal-
ism, the quantities specifying the material enter as (so far
undetermined) parameters. These parameters contain the in-
formation about the two-dimensional surface band structure
and the momentum- and phonon–electron interaction matrix
elements ((27) and (23)), which are derived from the unper-
turbed (in the sense of a Hamiltonian without electromagnetic
and electron–phonon interaction) single particle states.

In the literature, various methods are in use to obtain the
required information about the electronic structure. For ex-
ample, a k · p expansion around the extrema of the conduc-
tion and valence bands is useful for describing the electronic
structure of semiconductor nanostructures [48]. However, this
method is inappropriate for surfaces [23], where scattering
processes extend on the whole Brillouin zone and an accurate
description of surface states is required. It appears, therefore,
inevitable to use a method that can provide both an accurate
description of the atomic structure, the wave functions and
the band structure over a wide range on the Brillouin zone.
We chose density functional theory with the LDA approxi-
mation for investigating the silicon(100) surface. Though the
bandgap of the Kohn–Sham band structure differs from the
experimental (optical) bandgap, the difference between the
DFT-LDA exchange-correlation energy and the many-body
self energy is practically independent of the k-vector. We will
therefore use the DFT-LDA Kohn–Sham wave functions for
the evaluations of the matrix elements. A similar approach has
been investigated in [6] to study coherent optical effects. In
contrast, in this paper, we focus on the relaxation dynamics of
non-equilibrium distributions.

Similar to the discussion of DMT, we briefly review the
basic concepts of DFT. DFT is widely used to calculate the
total energy of poly-atomic systems (atoms, molecules or
solids). It is a first-principles approach, meaning that it only
uses the chemical identity of the atoms (their nuclear charge)
as input. By relaxing the atomic structures using forces that
are also calculated from the first-principles electronic struc-
ture, it is possible to obtain accurate geometries of structures
that are difficult to determine experimentally, in particular the
atomic structure of surfaces.

DFT is an in principle exact theory built on the
Hohenberg–Kohn theorem [49]. In the proof of this theorem,
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it is shown that a one-to-one mapping exists between the po-
tential entering the many-body Hamiltonian due to the atoms
or ions (in this technical context called the external potential,
V(r)) and the electron density of the system,

n(r) =
N∑

i=1

∫
dr1 . . . drN |Ψi(r1, . . . , rN )|2δ(r − ri) . (28)

Here, Ψ is the many-particle wavefunction. Consequently, all
other quantities, in particular the many-particle wavefunction,
are functionals of the electron density. Moreover, it is shown
that the total energy of the system in the electronic ground
state, as a functional of the density, is stationary around the
true ground state density. Hence the ground state energy E0

can be found by minimizing the energy functional

E[n] = 〈Ψ [n]|H |Ψ [n]〉 (29)

under the constraint that
∫

dr n(r) is preserved.
In most practical applications, DFT is employed in the

special form devised by Kohn and Sham [50]. They introduce
a fictitious non-interacting electron system with the same
density as the physical (interacting) system of interest. In this
approach, the total energy E[n] is decomposed into the ki-
netic energy of the non-interacting system, Ts[n], the Hartree
energy, the energy due to the external potential V(r), and the
exchange-correlation energy EXC[n],

E[n] =Ts[n]+ e2

8πε0

∫ ∫
n(r)n(r′)
|r− r′| d3r d3r ′

+
∫

n(r)V(r)d3r + EXC[n] . (30)

The last term, EXC, incorporates all the quantum mechani-
cal many-particle effects beyond the Hartree approximation.
By performing the variation δE[n]/δn(r), a set of equations
for single-particle wave functions ϕi (describing the fictitious
non-interacting electron system), the Kohn–Sham equations,
are obtained:

εiϕi(r) = − h2

2m
∆ϕi(r)+ Veff(r)ϕi(r) . (31)

These equations are formally similar to the single-particle
Schrödinger equation with an effective potential

Veff(r) = V(r)+ VH + VXC[n](r) , (32)

where the second term is the Hartree potential,

VH(r) = e2

4πε0

∫
n(r′)

|r− r′| d3r ′ , (33)

and last term, the exchange-correlation potential, stands
for δEXC[n]/δn(r). Since n(r) enters in the expression for
Veff, the Kohn–Sham equations (31) must be solved self-
consistently with the density determined from the single-
particle wave functions.

Since the exchange-correlation functional EXC[n(r)] is
not known analytically for the general case of a spatially vary-
ing electron density, approximative functionals must be em-
ployed. In our case, the local density approximation (LDA) is
used.

While the solutions of the Kohn–Sham equations refer to
a fictitious non-interacting system of electrons in an effect-
ive potential, the quantities entering the DMT formalism, as
long as electron–electron interaction is not considered in the
DMT Hamiltonian (10), are the quasi-particle band structure
and wave functions of the elementary excitations of the sys-
tem. Therefore, in general, further improvements on top of the
Kohn–Sham LDA results are required. While some success in
improving excitation energies has been made by using time-
dependent density functional theory with suitable functionals,
the established methods to account for the difference between
the interacting and the Kohn–Sham system use many-particle
perturbation theory (for a comparison of both approaches,
see e.g. [24]). Formally, a self-energy operator Σ is intro-
duced as the solution of Dyson’s equation, and the differ-
ence between the interacting and the non-interaction system,
described by ∆Σ(r, r′, z) = Σ(r, r′, z)− VXC(r))δ(r− r′), is
expanded into a perturbation series in the basis defined by the
solutions of the Kohn–Sham equations:

Ei = εi +
∑

j

〈ϕj |∆Σ|ϕi〉
εi − εj + iη

+ . . . (34a)

ψi = ϕi +
∑

j

∆Σ|ϕi〉
εi − εj + iη

+ . . . . (34b)

For the quasi-particle band structure describing single exci-
tations, typically the GW approximation for Σ is used, and
Dyson’s equation is solved approximately with Fourier-space
methods. In cases where Σ(k, k′, z) depends only weakly on
k and k′, (34b) describes just a rigid shift of bands. For many
semiconductors, as for silicon, this is a reasonable approxi-
mation (scissors shift). In this work, we are mostly interested
in matrix elements. If the use the scissors shift is justified for
the band structure calculations, it is also justified to use Kohn–
Sham wave functions directly to calculate the required matrix
elements, as they can be considered as a first-order approxi-
mation of the quasi-particle wave functions.

We note that the combined DMT+DFT approach leaves
room to add the electronic many-particle effects contained
in Σ also at a later stage, in the form of Coulomb terms in
the DMT-Hamiltonian. If one follows this option, double-
counting should be avoided, i.e., one would prefer to work in
a basis of uncorrected Kohn–Sham states (as we in fact do
here). As our DFT software provides the wave functions for
Bloch states in reciprocal space, the form of (23) for the ma-
trix elements is very useful.

4 Electron relaxation and TR-2PPE dynamics
at indium phosphide surfaces

In this section we illustrate the intrinsic possibili-
ties of the proposed approach by showing how the theory can
be applied to study actual experiments. The first simulations
have been carried out on a highly simplified surface model
with a schematic form of both the band structure and the wave
functions and the resulting matrix elements1. This first simu-
lation intends to describe experiments on a clean indium phos-
phide (100) surface [13, 22, 23]. The band structure is known

1 The following material parameters are used: valence band min. 0 eV,
conduction band min. 1.339 eV, surface band min. 1.589 eV, vacuum
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FIGURE 4 Model band structure and wave functions perpendicular to the surface used to model the InP(001) surface. The constants A, B, C, D, k(i)
⊥ and

k(o)
⊥ are either chosen in order to assure continuity at the surface (A,B,C) or to fulfill a normalization condition of the wave function (D) (cmp. [23]). v

(c)
k⊥=0(r)

and v
(v)
k⊥=0(r) are Bloch wave function at k = Γ̄ taken from Bulk theory. All parameters used are given in footnote 1. The arrows indicate the possible optical

excitation processes between these bands

to feature a surface conduction band which energetically over-
laps with the bulk conduction bands [51–55] (Fig. 4). A spe-
cial feature of this band system is a bulk conduction band
minimum energetically below the surface conduction band
minimum (cp. Fig. 4). Corresponding time resolved two pho-
ton photoemission experiments have been realised [13, 56] to
study the electron transfer between bulk and surface bands.
These aspects will be discussed in Sect. 4.2.

4.1 Band structure and wave functions

The simplified band structure (Fig. 4) is described
by approximated parabolic bands [22, 23]. Four different
types of bands are covered within this model: 1. A three-
dimensional isotropic valence band (v). The third dimension
perpendicular to surface is treated by a band-pseudo index
mapping the three-dimensional k-space with N sample points
to our two dimensional model of Sect. 2.1 with N bands.
This band populated with electrons before the optical ex-
citation processes. 2. A three-dimensional bulk conduction
band (c). The mapping to two dimensions is done simi-
larly to the valence band case. This band, however, plays
a major role in the electron–phonon dynamics, as it cou-
ples strongly to the surface band via electron–phonon scat-
tering. 3. A two-dimensional surface conduction band (s).
This band and c can be populated via electrons lifted from
v. 4. The evanescent electron states (in three dimensions)
for the emitted electrons in vacuum ( f ). These states only

band min. 7.7 eV, effective masses: mv
eff = −0.45me, mc

eff = 0.078me,
ms

eff = 0.2me, mf
eff = 1.0me, surface band damping Λs = 0.5 nm−1, vac-

uum band penetration depth Λf = 2.4 nm−1, ε0 = 9.52, ε∞ = 12.35,
T = 300 K, Phonon energy 43 meV, dipole matrix elements: val./cond.
0.3 e nm, val./surf. 1.2/0.0 e nm, cond./vac. = 0.3 e nm, surf./vac. =
0.09 e nm. See [23].

exist outside the semiconductor and within a small region
below the surface. The parameters for this band structure
are derived from experimental data1. To filter out the ir-
relevant physical processes, only a subset of the possible
interaction channels are treated: optical excitation is pos-
sible from the valence band to the bulk and surface con-
duction bands, and from the bulk and surface conduction
bands to the vacuum band. Phonon interaction is only taken
into account between and inside bulk and surface conduction
bands.

For each of the bands, a corresponding simplified wave
function is given in [23] (Fig. 4). Within the parabolic band
approximation, the Bloch wave functions of (2) are normally
taken independent from the k-vector throughout the whole
Brillouin zone. For simplicity, we suppose an abrupt decay of
the valence and conduction bulk bands at surface. Inside the
semiconductor, the wave functions of bulk material at k = 0
are taken.

For the surface band, an exponential decay Λs in the in-
side of the semiconductor is assumed. The reference depth
1/Λs remains as open parameter in the simulation which has
to be reasonably adjusted by a corresponding DFT calcula-
tion [22] to be Λs = 0.5 nm−1. Outside the semiconductor, the
surface band states are also set to zero. The vacuum states,
finally, are harmonic waves on the outside of the semiconduc-
tor an show up a decay Λf in the inside of the semiconductor.
This decay rate also remains as a parameter in the calcu-
lations which is adjusted to Λf = 2.4 nm−1. The number of
open parameters is one of the disadvantages of this empirical
approach.

The main contribution to phonon–electron interaction for
this InP material system is Fröhlich-coupling due to the polar-
ity [43]. Consequently, it is a good assumption to use only one
single longitudinal optical phonon mode. Its coupling strength
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is well described by the dielectric properties of the material.
Furthermore, as the dispersion of this optical mode is rather
constant, it is no great loss to assume a constant energy for
all phonons. With this choice of the wave functions the ma-
trix elements for the desired processes can be calculated. Due
to the simplified form of the expressions, the matrix elements
can be derived analytically. The bulk–surface coupling elem-
ent is given by

D c,kz ,k
sk′

LO,qz,q

=
√

e2hωLO

2Vε0εphon
δk′,k+q

iΛ
1
2
s

qz − kz + iΛs
2

Dc,s (35)

where

Dc,s =
∫

d3ru∗
c(r)us(r) (36)

is the matrix element between the bulk electron states at Γ for
the s and the c band. Dc,s must be smaller than 1 due to the
normalization of the wave functions [22].

4.2 Results

In time resolved two photon photoemission (TR-
2PPE) experiments a material is exposed to two short light
pulses with a distinct temporal delay. The first pulse (pump
pulse) is used to populate conduction band states from the
valence band, the second pulse (probe pulse) performs an
electron ionization and emission from the excited conduction
band states, allowing a temporally resolved picture of the de-
excitation processes of the excited states by varying the delay
between the pulses.

In order to investigate the relaxation processes in the
InP material, the optical excitation through the pump pulse
and subsequent relaxation process in the conduction bands is
simulated. As a realistic initial condition, a pulse of a tempo-
ral length of 40 fs located around t = 0 is chosen. In Fig. 5,
the population of the bulk and surface conduction bands is
plotted over the energy axis for variable temporal delays be-
tween the pulses ranging from 0 fs to 1000 fs. At t = 100 fs,
when the pump pulse has finished, both surface and bulk con-
duction bands are populated, in the subsequent time steps, it
is clearly visible that the population relaxes to the bulk band
minimum.

The model calculation within the this 4 band model system
shows qualitatively a very good agreement with the experi-
mental results. In [23], theoretical results for the TR-2PPE
are given. It appears probable that the proposed dynami-
cal processes (electron relaxation through phonons) are in-
deed responsible for the observed processes in recent experi-
ments [13]. Nevertheless, the simulations cannot be consid-
ered as quantitatively correct, as the phonon–electron matrix
elements Dc,s (36), limited by to a maximum size of 1.0 by
the normalization condition of the wave functions, had to be
increased up to a value of 4.0 to obtain the experimentally
observed order of magnitude for the scattering time, and the
approximate solution of the evolution equation is no longer
unique in this limit. It is likely that a more accurate descrip-
tion for the band structure and the phonon coupling is needed,

FIGURE 5 Relaxation of InP after optical excitation. The dashed line
indicates the surface band minimum. At t = 0, the conduction states are un-
occupied. After excitation, both states relax from an initial occupation to
towards the bulk band minimum

in particular for k-points distant from the Γ -point in the Bril-
louin zone which appear to be of a certain importance for the
scattering in this material. Additionally, there is evidence that
the overall size of the bulk-surface phonon–electron coupling
elements are overestimated by the choice of the simple surface
wave functions (Fig. 4).

5 Electron relaxation at silicon(100) surfaces

The somewhat unsatisfactory approach in Sect. 4
(basically the use of model wave functions instead of ab ini-
tio wave functions) can be made considerably more realistic
by using atomic structures and the corresponding electronic
wave functions from density functional theory calculations.
In a first approach, we focus on the electron relaxation dy-
namics in an already well characterized materials system, the
silicon(100) surface. In this system, a number of excitation
and relaxation processes [14] have been observed on differ-
ent timescales involving the Ddown surface state. In particular,
the interplay of bulk–bulk, bulk–surface and surface–surface
scattering governs the dynamics of the electrons. The aim of
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this work is to find a first theoretical and parameter-free de-
scription for these observations.

5.1 Ab initio calculation of material parameters

The calculation for this materials system should
accomplish mainly two tasks: Firstly, an accurate descrip-
tion of the surface relaxation should be reached, as atomic
displacements are known to have a high influence on the local-
ization and nature of surface states. Secondly, the band struc-
ture and associated single electron states have to be found,
which are the starting point for the calculation of matrix elem-
ents ((23) and (27)) The latter has been implemented into the
fhimd code [57]. The main feature of the Si(100) surface re-
construction is the Si surface dimer. At low temperature, the
most likely structure is the c(4 ×2) or p(2 ×2) reconstruc-
tion [5, 58]. As the numerical effort grows considerably with
the size of the unit cell, we decided to use the simplest possible
(2 ×1) surface unit cell for this preliminary study.

The calculation of the surface atomic structure is carried
out using a regular 4 ×4 mesh to sample the Brillouin zone.
The calculations are performed on an 8-layer slab. The sur-
face geometry known from the literature [5, 58] (in particular
the dimer tilt angle) are well reproduced. The calculation is
performed using a plane-wave cutoff energy of 10 Ry, which
corresponds to a total number of approximately 2300 plane
waves (different G-vectors in (4)) per k-point.

In the next step, the band structure is calculated using the
obtained optimized atomic structure. As the relaxation pro-
cesses occur on excited states, a number conduction band
states has to be included in the band structure calculation. In
Fig. 6, the resulting band structure on a path of Γ̄ − X̄ − M̄ −
X̄ ′ − Γ̄ is given. The main difference to a bulk Silicon struc-

FIGURE 6 DFT-LDA band structure of Si(100). The energy range of the
bulk bands is plotted in grey

FIGURE 7 Ball-and-stick model of the Si(100) (2×1) 8-layer slab. On top,
the buckled dimers can be observed. At the bottom, the structure is satu-
rated by one layer of hydrogen atoms. For this picture, the elementary cell
is repeated 2 times in kx and 4 times in ky direction

ture are the Dup and Ddown surface states inside the bandgap.
While the Dup band is mainly due to dangling bond orbitals
at the upper Si atom, and is occupied by two-electrons, the
Ddown band stemming from the dangling orbitals of the lower
Si atoms is unoccupied. Band structures for the more complex
reconstructions can be found in the literature [59, 60].

In Fig. 7, The (2x1) elementary cell after surface recon-
struction is shown. On the top, one observes the buckled dimer
at the surface. The optics and electron relaxation dynamics of
these surface states (coupled to bulk states) are the main goal
of the unified approach presented here.

5.2 Matrix elements

The calculation of matrix elements from the Kohn–
Sham wave functions is straightforward; however, this step
involves considerable computational effort: The dynamical
evolution equations require the wave functions to be known
on a finely discretized regular mesh of the Brillouin zone.
Hence it is recommendable to parallelize the band structure
calculation. The test calculations we performed so far indicate
a discretization of 17 × 17 or higher is required for a con-
verged dynamical evolution. The fhimd software being a plane
wave code, the results of the Bloch wave functions are given in
a form similar to (4), with the constraint that the number of re-
ciprocal lattice vectors {G} is limited by the cutoff energy. The
use of (23) for the phonon matrix elements and (27) for the
optical dipole matrix elements is therefore a straightforward
application.

At present, we work with bulk-projected phonon modes,
as described in Sect. 2.1.2, without taking into account surface
modes explicitly. Although this is a rather drastic assumption
for the surface–surface scattering (there one would expect,
due to the surface localization of the electron states, a strong
coupling to surface modes), it is reasonable for the bulk–
bulk an bulk–surface scattering, because the electronic bulk
states are not likely to couple strongly to surface modes.
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FIGURE 8 The effective phonon modes used in this work for Si(100). For
a full set of phonon modes, see [62]

FIGURE 9 Linear spectra of an 8 layer slab (with surface reconstruction)
and of a bulk system (without surface reconstruction)

So far, the phonon coupling strengths Diq (see Sect. 3.1)
are taken as constant experimental deformation potentials
from bulk theory [43]. It is obvious that the surface–surface
processes [61] have to be treated separately, and so far, the
surface–surface matrix elements are taken to be a factor of
three higher than the surface–bulk matrix elements to ac-
count for the strong coupling of the surface states to the dimer
buckling mode. The phonon dispersion relations ωiq can be
obtained by projecting the reciprocal bulk cell to the recipro-
cal slab cell (see Sect. 2.1.2). For this simulation, the phonon
spectrum is treated schematically by the choice of two “ef-
fective” modes (Fig. 8): one optical mode approximately at
the mean value of the whole phonon energy range and one
acoustical mode with a linear dispersion at the bottom of the
dispersion modes.

So far, real optical excitations have not been imple-
mented in this simulation, but the calculation of optical matrix
elements is numerically much less time-consuming than the
phonon–electron matrix elements. In a separate investigation,
we have done preliminary calculations of linear spectra (lin-
ear response to an external electrical field) from optical matrix
elements (Fig. 9). There it is well observable that inside the
band gap (E < 2.5 eV), new spectral lines appear which are
due to the surface states of the Si(100) surface. It is clear that
in this approach, exciton formation is neither considered in the
DFT-LDA nor in the interactions treated in DMT. Hence it is
not surprising that the bandgap width is so far incorrect and
that excitonic peaks are absent from the spectrum.

5.3 Numerical simulation – self-consistent solution
of density matrix equations including ab-initio
material constants

The complete numerical simulation procedure in-
volves four subsequent computational steps: first, the struc-
ture relaxation run to calculate the surface reconstruction and
the electron density, second, the band structure run to cal-
culate the energy dispersion and electron wave functions on
a highly discretized regular mesh, third the calculation of the
electron–phonon matrix elements and forth and last the dy-
namical simulation of the population evolution on the relevant
bands. Most CPU time for the full simulation is required by
the first step (40%) and the second step (40%). The band struc-
ture calculation (second step) is solved in parallel computing.
The calculation of matrix elements (third step, 15%) and the
dynamical evaluation up to a time step of 190 ps (forth step,
5%) are relatively fast. The requirement of system memory
is limited mainly by the structure relaxation run (first step),
while the code parallelization of the band structure calculation
(second step) and the calculation of matrix elements (third
step) allow a drastic reduction of memory consumption and
the dynamical simulation (forth step) has only a minor need of
computer memory. With the parameters of our simulation, the
memory requirement is about 400 MB.

The consumption of disk space, however, is considerable.
With the chosen run time parameters and discretization, about
1.5 GB for saving the wave function data in the first two steps
are needed, the matrix elements (third step) require another
100 MB, while the space for saving of the dynamical popula-
tion (forth step) is below 1 MB. These values are very sensi-
tive to slab thickness and discretization in k-space.

As the investigated relaxation processes are restricted to
a well defined energy range in the lower-lying conduction
band region, it is reasonable to restrict the electron–phonon
dynamics to a low number of bands. In the current implemen-
tation, as the main interest are the relaxation processes to and
inside the surface state, we take the five lowest conduction
bands besides the Ddown state into account.

To focus on the relaxation phenomena, optical excitation
is not treated explicitly so far, but by a reasonably chosen
initial non-equilibrium electron distribution. Thus only the
simplified set of dynamical equations (20) has to be used. The
right-hand side of this systems of coupled differential equa-
tions can be evaluated efficiently by making use of matrix-
vector and vector-vector operations, provided that the whole
set of rates (labelled Γ in (20)) is calculated a priori by evalu-
ating the δ-conditions inside these equations. This involves an
inversion of the corresponding band structure

En(kx, ky) → ky(En, kx) (37)

and phonon dispersion functions

ωi(qx, qy) → qy(ωi , qx) . (38)

The ordinary differential equations can solved using a Runge–
Kutta algorithm. The calculation is carried out on the k-point
mesh provided by the matrix element calculation on a pi-
cosecond timescale. We find that Runge–Kutta of order four is
sufficient for most applications.
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5.4 Results for the electron cooling dynamics

The focus in this section lies on the explanation
of the equilibration of a non-equilibrium electron distribution
due to its coupling to the bath of phonons at a fixed tem-
perature T = 300 K. The phonons provide a large reservoir
to cool the electrons to an equilibrium distribution via the
electron–phonon interaction. To study the relaxation dynam-
ics in realtime, an initial non-thermal population distribution
is provided by hand in order to mimic the optical excitation of
the system. It is reasonable to choose a set of initial conditions
that approximates an optical excitation process. This is done
by setting a Gaussian shaped distribution function around the
energy corresponding to the supposed frequency of the exci-
tation pulse. By this, the narrow range of an optical excitation
is well modelled, while the dipole selection rules that could
modulate the interband excitation probabilities within the en-
ergy range accessible by the excitation, are ignored. Their
influence is left to future work. Due to this initial condition
which shows no spatial inhomogeneity, all off diagonal elem-
ents of the density matrix are equal to zero (20).

For this primary simulation, we choose a rather high exci-
tation energy of 2 eV above the surface band minimum at the
Γ̄ point with a width of 0.3 eV to get an overview of all the
processes in this surface material system. In Fig. 10, the pop-
ulation of all electron states is plotted over the energy scale.
Consequently, three types of relaxation are in the course of
time: First only relaxation inside the bulk bands occurs, re-
flecting local features (band minima) of the band structure.
After a certain time (ca. 40 ps), the bulk relaxation has reached
states that are energetically sufficiently low (≈ 0.5 eV) to
couple to the surface band. From this point on, electron scat-
tering from the bulk to the surface band is more pronounced.
Obviously, this is much slower than scattering inside the bulk,
so an isolated peak at the local bulk band minimum (dashed
line at 0.3 eV) is clearly visible (time = 50–120 ps). Once
some population has entered the surface band, the scattering
inside this band occurs on a rather fast time scale, and a Fermi-
like distribution builds up on the low edge of the energy scale
(time > 50 ps). Although some relaxation channels are obvi-
ously very fast, an equilibrium distribution is not achieved
after a relaxation time of 190 ps. In particular, there are some
electron states around the initial excitation point that appear
to be very weakly coupled to any other state. One reason for
this may be the restriction to only five bulk bands. Although
the initial condition does not allow a clear extraction of the
involved timescales for the relaxation, we find an scattering
rate of approximately 150 ps for the bulk–surface scattering
and of below 10 ps for the surface–surface scattering. This is
a good agreement with the experimental data [14]. It should be
mentioned that exciton formation is supposed to appear at the
surface band minimum. This is, of course, not treated by our
current calculation, since no Coulomb interaction has been
taken into account in the dynamical equations [63].

On the rhs of Fig. 10, the population throughout the Bril-
louin zone is plotted. It can be seen that the population un-
dergoes a shift through the zone. Initially, the populated states
are found in the band structure between the X̄ and M̄ points,
which is well reflected by the energy dispersion in the band
structure. During relaxation, several local minima are popu-

FIGURE 10 Relaxation simulation of the lower conduction band area of
Si(100). On the lhs, at top, the band structure is depicted. The lowest band
(broad line) on the left in the band structure is the Ddown-surface band. An
initial Gaussian distribution at 2 eV above the valence band maximum with
a width of 0.3 eV is provided. The bulk conduction band minimum is indi-
cated by the dashed line in the temporal evolution of the electron distribution
(bottom of lhs). On the rhs, a top view of the Brillouin zone during relaxation
is shown

lated, and finally, the surface band minimum at Γ̄ gains impor-
tance. In thermal equilibrium, the whole population is located
around Γ̄ .

6 Conclusion

In this paper, the feasibility of self-consistently
combining density functional theory within LDA-approxi-
mation and density matrix theory to describe dynamical pro-
cesses at semiconductor surfaces is demonstrated. In particu-
lar, the use of density functional theory to calculate interaction
matrix elements produced very promising results in an de-
tailed description of relaxation processes, for example the
time-scales so far observed are in a good agreement with the
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experimental data [14]. Nevertheless, some improvements of
the method should be applied in order to address more realistic
situations:

First, an explicit calculation of the phonon modes is re-
quired. Even though the use of two effective modes did not
present an obvious failure of the model system, the local be-
haviour of relaxation could strongly depend on the phonon
dispersion. Second, a higher number of layers should be used
in the slab model. Although the surface properties start to
converge at the slab thickness used here, a thicker slab leads
to a higher number of bands and thus to a finer discretiza-
tion of the energy scale. Finally, optical excitation as well as
Coulomb interaction of the excited electron and holes [59, 63]
should be included into the dynamical equations in order to
allow a closer comparison to experimental data.
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