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We present a renormalized second-order perturbation theory (rPT2), based on a Kohn-Sham (KS) reference
state, for the electron correlation energy that includes the random-phase approximation (RPA), second-order
screened exchange (SOSEX), and renormalized single excitations (rSE). These three terms all involve a
summation of certain types of diagrams to infinite order, and can be viewed as “renormalization” of the
second-order direct, exchange, and single-excitation (SE) terms of Rayleigh-Schrodinger perturbation theory
based on a KS reference. In this work, we establish the concept of rPT2 and present the numerical details of
our SOSEX and rSE implementations. A preliminary version of rPT2, in which the renormalized SE (rSE)
contribution was treated approximately, has already been benchmarked for molecular atomization energies and
chemical reaction barrier heights and shows a well-balanced performance [J. Paier et al., New J. Phys. 14, 043002
(2012)]. In this work, we present a refined version of rPT2, in which we evaluate the rSE series of diagrams
rigorously. We then extend the benchmark studies to noncovalent interactions, including the rare-gas dimers,
and the S22 and S66 test sets, as well as the cohesive energy of small copper clusters, and the equilibrium
geometry of 10 diatomic molecules. Despite some remaining shortcomings, we conclude that rPT2 gives an
overall satisfactory performance across different electronic situations, and is a promising step towards a generally

applicable electronic-structure approach.
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I. INTRODUCTION

Density-functional theory'-? (DFT) has played a significant
role in first-principles electronic-structure calculations in
physics, chemistry, materials science, and biophysics over the
past decades. DFT offers an in principle exact formalism for
computing ground-state energies of electronic systems, but
in practice the exchange-correlation (XC) energy functional
has to be approximated. Existing approximations to the XC
functional can be classified into different rungs according
to a hierarchical scheme known as “Jacob’s ladder.”® The
random-phase approximation (RPA),*> which in the context
of DFT (Refs. 6 and 7) amounts to treating the exchange
energy exactly and the correlation energy at the level of RPA,
is on the fifth and highest rung of this ladder. RPA has received
considerable attention (for recent reviews, see Refs. 8-10)
since its first application to realistic systems.!! This is largely
due to the fact that RPA has shown great promise in resolving
difficulties encountered by the local-density and generalized
gradient approximations (LDA/GGAs) to DFT. The resolution
of the “CO adsorption puzzle,”'>"'* the encouraging behavior
for the “strongly correlated” f-electron metal cerium,'® and
the excellent performance of RPA (and its variants) across a
wide range of systems including solids,'*!%!” van der Waals
(vdW) bonded molecules, 22 and thermochemistry>* are just
a few examples.

Quantitatively, however, RPA itself does not always provide
the desired accuracy. It was found empirically that the common
practice of evaluating both the exact-exchange and the RPA
correlation energy in a post-processing way using Kohn-Sham
(KS) or generalized KS orbitals leads to a systematic underesti-
mation of bond strengths in both molecules and solids.! 42124
Iterating RPA to self-consistency does not alleviate this
problem.” Various attempts have been made in the past to
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improve the standard RPA scheme,!820-21:2426-32 ith varying

degrees of success. Here, we will focus on two flavors of
beyond-RPA schemes that both alleviate the underbinding
problem of RPA: the second-order screened exchange®*?733
(SOSEX) and the single-excitation (SE) correction.?! SOSEX
was originally formulated in the context of coupled-cluster
theory,”’-** and accounts for the antisymmetric nature of the
many-electron wave function. Like RPA, it can be interpreted
as an infinite summation of a set of topologically similar
diagrams.'%?73% Adding SOSEX to RPA makes the theory one-
electron “self-correlation” free. The SE correction, on the other
hand, accounts for the fact that the KS orbitals are not optimal
for a post-processing perturbation treatment at the exact-
exchange level.?! Inspired by the diagrammatic representation
of RPA and SOSEX, one can also identify a sequence of topo-
logically similar diagrams of single-excitation character. Sum-
ming these to infinite order yields what we called the renor-
malized single-excitation (rSE) contribution?' to the electron
correlation energy. Combining all three contributions, RPA,
SOSEX, and rSE, leads to the “RPA + SOSEX + rSE” scheme
or, as we shall refer to it in this work, renormalized second-
order perturbation theory, in short rPT2 (note that in Ref. 10
we used the acronym r2PT). The name is inspired by second-
order Rayleigh-Schrodinger perturbation theory (RSPT) that
becomes renormalized through the infinite summations. This
can be compared to the commonly used second-order Mgller-
Plesset (MP2) method, which is the straight (bare) second-
order RSPT based on the Hartree-Fock reference.

A preliminary version of rPT2, in which an approximate
treatment of rSE was invoked, had been benchmarked for
atomization energies of molecules and chemical reaction
barrier heights in Ref. 35. We found that rPT2 gives the
“most balanced” performance compared to other RPA-based
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schemes. However, this approximate treatment of rSE turns
out to be problematic for weak interactions and exhibits an
unphysical behavior in, e.g., the binding-energy curve of
rare-gas dimers. In this work, we will show how a rigorous
evaluation of rSE can be carried out. From here on, rPT2
will refer to this revised scheme and not the approximate
version presented in Ref. 35. We will, in particular, examine the
performance of rPT2 for weakly bonded molecules, including
rare-gas dimers, and the widely used S22 and S66 test sets
of Hobza and coauthors. Additionally, we will present the
cohesive energies of selected small copper clusters as well
as the the equilibrium bond lengths of a set of diatomic
molecules.’*® For completeness, we will also revisit the
benchmark sets for the G2 atomization energies of Curtiss
et al.*® and the chemical reaction barrier heights of Truhlar and
coauthors*>*! for which the performance of the preliminary
rPT2 version was first tested in Ref. 35. In addition to
the concept of rPT2 and benchmark studies, we will also
present a different way of formulating the SOSEX term, which
corresponds to the adiabatic connection formulation of SO-
SEX (AC-SOSEX) by Jansen, Liu, and Anygan,*?> and which
reflects our actual implementation. Our benchmark studies
show that rPT2 represents an overall improvement over RPA,
and gives a gratifying performance across different electronic
and chemical environments. We also identify remaining short-
comings that will guide further developments of the theory.

The remainder of the paper is organized as follows: In
Sec. II, the basic theory and implementation of rPT2 are
presented. This is followed by a systematic benchmark test
for rPT2 for a range of systems in Sec. III. Conclusions are
drawn in Sec. IV. Further details of our implementation and
derivations will be given in Appendixes.

II. THEORY

In this section, the theoretical foundation of rPT2
will be presented. We first recapitulate the basics of the
RPA + SOSEX method in Sec. II A, and formulate the method
in a way that reflects its implementation in the Fritz Haber
Institute ab initio molecular simulations (FHI-AIMS) code
package.*>** This is followed by the derivation of an algebraic
expression for the rSE term, the third ingredient in rPT2. A
discussion of the underlying physics behind the rPT2 method is
then presented from a diagrammatic point of view in Sec. I C.
From the diagrammatic representation it will become clear
that the three terms in rPT2 appear at the same level of
approximation and hence should be treated at an equal footing.

A. RPA 4+ SOSEX method

The RPA method can be formulated in different ways (for
areview, see Refs. 9 and 10). In the DFT context, RPA can be
derived from the adiabatic-connection fluctuation-dissipation
(ACFD) theorem,%’” whereby the RPA correlation energy is
expressed as

1 1 00
ERPA — ——/ dk/ da)//drdr’v(r,r’)
2 0 0

x A i) = xo(r i) . (0
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xo(iw) is the KS independent-particle density-response
function

XO(,’r,,l.w):Z[w;‘mwa(r)wi(r Wa(r) +C.C_] o

€ — €, —iw

ta
where ¥; ,(r) and ¢; , are the KS single-particle orbitals and
orbital energies, and c.c. the “complex conjugate.” Here and
in the following, we adopt the following convention: i,j
correspond to occupied and a,b to unoccupied (or virtual)
spin orbitals, whereas p,q apply to general cases. x ™ (iw)
in Eq. (1) is the RPA response function of a fictitious system
with a scaled Coulomb interaction —— (withO < A < 1),and

[r—r'|
satisfies the Dyson equation

A = xo0 + xohvxh. A3)

Representing o and v in the “particle-hole basis”
(Y (O)Pa(r), Y (r)Yi(r)}, one can obtain the RPA cor-
relation energy by solving the following -eigenvalue

problem!':
A B>k Xn _ Xﬂ
(_B_A*><Yn)_<yn>wn’ @

where A, jp = (€q — €)8;ij0ap + (iblaj), and B, jp =
(ijlab). The two-electron Coulomb integrals are

o) // NGOG G LA

Iry — raf

where x = (r,0) is a combined space-spin variable. As
demonstrated by Furche,* after solving Eq. (4), the RPA
correlation energy can be written as

1 A
ERPA — ETr(a) —A)= 5 |:Xn: Wy = Z Aia.iaj| )

where ) implies that the summation over n is restricted to
positive eigenvalues w,, .

Scuseria et al. demonstrated that an equivalent formulation
of the RPA correlation energy of Eq. (6) can be obtained from
an approximate coupled-cluster doubles (CCD) theory* in
which only the “ring diagrams” are kept (see the first row of
Fig. 1). In the CCD theory, only double excitation contributions
are included in the “cluster operator” which generates the
interacting many-body ground-state wave function through
the exponential ansatz. By contrast, in the more often used
coupled-cluster singles-doubles (CCSD) approach, both single
and double excitations are included. Within the CCD formu-
lation of RPA, the key quantities are the (direct) ring-CCD
amplitudes T, jp, which (in the case of real canonical spin
orbitals) are determined by the following Riccati equation:

B+ AT +TA+TBT =0. @)

Due to the quadratic nature of this equation, one should take
care to ensure that the physical solution is taken.*’” The RPA
correlation energy in this ring-CCD formulation is then given
by

1 1 ..
P = STH(BT) = 5 %(l}lab)ij,w- ®)
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FIG. 1. Goldstone diagrams for RPA (first row) and SOSEX
(second row) contributions. Dashed lines represent bare Coulomb
interactions, and full lines correspond to KS electrons (arrow up)
and holes (arrow down). Third row: RPA 4 SOSEX energy in the
coupled-cluster context. The wiggly together with the arrowed solid
lines represent the direct ring-CCD amplitudes T;, ;, [see Eq. (9)].
The contraction between the direct ring-CCD amplitudes and the
bare Coulomb interactions (dashed lines) yields the RPA + SOSEX
correlation energy.

We note that this is often called direct RPA in the quantum
chemistry literature to emphasize the fact that higher-order
exchange-type contributions are not included.

Now, the RPA 4+ SOSEX correlation energy can be con-
veniently introduced?*?”-3? by antisymmetrizing the Coulomb

integral in Eq. (8),”’
1 . 1
E(I:{PA-&-SOSEX = 5Tr(BT) = 3 ijzab(z]Hab) ib.ia> )
where E,-a,j,, = (ij|lab) = (ij|ab) — (ij|ba). The SOSEX
correction term itself is
1
B3O = =2 ) {ij1ba) Ty ja- (10)
ij,ab

Physically, the SOSEX correction introduces higher-order
exchange processes that can also be represented by an
infinite summation of Goldstone diagrams (see the second
row of Fig. 1). This infinite summation is condensed into
the ring-CCD amplitudes whose contraction with the bare
Coulomb interaction (after antisymmetrization) yields the
RPA + SOSEX correlation energy as illustrated by the third-
row diagrams in Fig. 1.

ool [Cwy

(ajlib)(ib|W(iw)|aj)
ia,jb (El

_ea

iw)(e; — e, —iw)
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In a coupled-cluster code, the SOSEX energy can be
readily computed once the direct ring-CCD amplitudes T;, ;5
are available. A slightly different variant of SOSEX can be
obtained in the ACFD framework, as shown in Ref. 42. We
will show later that, although not identical, these two SOSEX
formulations produce very similar results. Our implementation
in the FHI-AIMS code**** follows the ACFD route. To illustrate
our approach, let us first present an alternative way to Eq. (1) of
expressing the RPA correlation energy within ACFD before we
introduce the corresponding SOSEX extension. Equation (3)
yields

X iw) = xolio) + xoliw)rvy; (o)
= Xo(iw) + Axo(i®)v xo(iw)
+ 2% xo @ xoli@)xoliw) + -+ (11)
The RPA correlation energy in Eq. (1) can then be rewritten as

1 00
ERPA — —i/ d,\/ do Tr[xo(iw)vxo(iw) - Av
T Jo 0
+ xo(i@)vxo(io) - Mvxoliw)v + - -] (12)
1 00
= —L/ dk/ do Tr [xo(iw)vxo(iw) W, (iw)]
21 Jo 0
= —L /ooda)Tr[XO(ia))vXO(ia))W(ia))], (13)
2 0
where
Wi(iw) = 2v/[1 — Axo(iw)v] (14)

is the coupling-constant-dependent screened Coulomb inter-
action and
1
W(iw) =/ dr W, (iw) 15)
0
the coupling-constant-averaged screened Coulomb interac-
tion. In this context, we would like to point out that the
first diagram in the third row of Fig. 1 can alternatively be
interpreted as the pictorial representation of Eq. (13). Now, the
bubbles correspond to x, dashed lines to the bare Coulomb
interaction, and wiggly lines to the corresponding screened
interaction W (iw).
Expressing y( again in terms of the “particle-hole basis”
[defined below Eq. (3)] and using Eq. (2), Eq. (13) can be
recast into

screened (and frequency-dependent) one W (iw).
For real canonical spin orbitals,

(iblaj) = {ablij) =

{ablij){ijIW (iw)|ab) (ijlab){ab|W(iw)lij) (iblaj){aj|W(iw)lib) (16)
(6 —€s —iw)(e; — € +iw) (6 — €, +iw)e; —€ —iw) (6 — € +iw)e; — € +iw)
[
where (pq|W(iw)|rs) is defined in analogy to (pgq||rs) in  then simplifies to
Eq. (5), by replacing the bare Coulomb interaction v by the
L[> . e
one has (ajlib) = ERPA — E/ dw Y (ijlab)(ij|W(iw)|ab)

(ijlab). The same relations hold for the 0 ia,jb

screened Coulomb repulsion integrals. The above equation X Fiaiw)Fjp(iw) a7
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with the factors
Fralio) = 2(e; — €,)/[(€; — €,)* + 1. (18)

Now, in analogy to the (direct) ring-CCD formulation
of SOSEX in Eq. (10), one can obtain a corresponding
SOSEX term (the so-called “AC-SOSEX”) from Eq. (17), by
exchanging the “a,b” indices in (ij|ba) (with an additional
minus sign)

1 [ -
ESOSX = —— | dw Y (ijlba)(ij|W(iw)|ab)
27 Jo ia,jb
x Fig(io)Fjp(iw). (19)
Then, using the resolution-of-identity —technique,***8-°

Eq. (19) can be implemented with relative ease. The imple-
mentation details of Eq. (19) in FHI-AIMS are presented in
Appendix A.

To make closer contact with the expression given in Ref. 42,
we note that Eq. (17) can be further rewritten as

1 B _
EQCSOSN = —= ) (ijlba) P, (20)
ia,jb
where

Py jp = %/ da(ij|W(iw)lab) Fia(iw)Fjpiow) (21)
0

is the coupling-strength-averaged (two-particle) density
matrix.

As shown by Jansen, Liu, and Anygin,*> Eq. (20) is
usually not identical to the original ring-CCD based SOSEX
in Eq. (10) (except for one- and two-electron cases). However,
the difference between them is very small (relative difference
in RPA 4+ SOSEX correlation energy less that 0.15% for atoms
and small molecules), as first noted in Ref. 31 and also
confirmed here. In Appendix B, the RPA and (AC-)SOSEX
correlation energies, as well as the corresponding atomization
energies, are presented for five small molecules.

Our benchmark results presented in Sec. III are based on the
AC-SOSEX scheme. However, since the numerical difference
between the two SOSEX flavors is insignificant, at least for
small molecules, we expect that our conclusion should also
apply to the original ring-CCD based SOSEX as well.

B. rSE correction and the semicanonicalization method

In Ref. 21, we showed that the correlation energy arising
from single excitations is an important term, and adding this
to the RPA correlation energy improves the molecular binding
energies considerably. The single-excitation correction de-
rives directly from Rayleigh-Schrodinger perturbation theory
(RSPT) and adopts a simple form in terms of the single-particle
orbitals

O F 2 12
E§E=Z|<tﬁ;|{|ij>| zzetfflea' )

Here, |vi)) and €;(, refer to occupied (unoccupied) Kohn-
Sham (KS) orbitals and the corresponding orbital energies.
f is the single-particle Hartree-Fock (HF) Hamiltonian, or
the so-called Fock operator. A detailed derivation of Eq. (22)
has been given in the Supplemental Material of Ref. 21.
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Denoting the single-particle KS Hamiltonian h°, we obtain
(Wil f1Va) = (Wilh® + Adlya) = (Wil Adlyp) when ¥,
are eigenfunctions of 7. Ad is the difference between the
HF exact-exchange potential and the KS exchange-correlation
potential. A similar SE contribution is encountered in the
context of KS many-body perturbation theory.’'3 However,
we emphasize that here we followed the procedure of RSPT
to derive Eq. (22), instead of the ACFD formalism, which
requires the electron-density to be fixed along the adiabatic-
connection path. Whether the two procedures will yield
significantly different results is a subject of further studies.

From the viewpoint of RSPT, Eq. (22) represents one of the
three contributions to second-order correlation energy. This
term suffers from the same divergence problem as second-
order Mgller-Plesset perturbation theory for metallic systems
when the single-particle KS gap closes. A remedy suggested
in Ref. 21 was to follow the RPA spirit and to sum a sequence
of higher-order SE terms to infinite order. Such higher-order
SE terms can be represented in terms of Goldstone diagrams,
as illustrated in Fig. 2. We refer to this infinite summation of
SE terms as renormalized single excitations (rSE) as alluded
to in the Introduction.

The influence of the rSE correction was first examined
in Ref. 35, albeit in an approximate way. There a so-called
“diagonal” approximation to rSE (denoted here as “rSE-
diag”) was used, in which only terms with “i = j =k =

.. and “a =b =c=...” were included. The remaining
“off-diagonal” terms were omitted. A similar approximation
has been used in summing up the Epstein-Nesbet ladder-type
diagrams in Ref. 53. In this way, the sequence of diagrams
falls into a geometrical series. Summing them up yields the
following simple expression:

i | fial?
ErSE diag _ , 23
¢ 2 € — €4+ Avij — Avyg @)

ia

where Av,, = (¥,|AD|,). The additional term Av;; — Avg,
that appears in the denominator is negative definite and
removes the divergence problem even for vanishing KS gaps.
The addition of rSE-diag to RPA and RPA + SOSEX has been
benchmarked for atomization energies and reaction barriers in
Ref. 35. We found that the renormalization (i.e., going from
SE to rSE-diag) has a tendency to slightly reduce atomization
energies, but the overall effect is not significant. For chemical
reaction barrier heights, on the other hand, the renormalization
is crucial for the transition states, that typically have a rather
small energy gap.

The diagonal approximation in Eq. (23) is not invariant
under unitary transformations in the space of occupied and
unoccupied orbitals. More importantly, however, it can lead
to an unphysical behavior in the potential-energy surface of
weakly interacting systems, as will be shown in Sec. IIT Al.
Recently, we discovered that it is straightforward to include
the “off-diagonal” elements as well, and to treat the rSE
term rigorously. In Appendix C, we illustrate in detail how
the infinite summation of the diagrams depicted in Fig. 2
can be carried out. Here, we only present the key steps that
lead to the final expression, and that are needed in practical
calculations.
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FIG. 2. Goldstone diagrams for a sequence of correlation-energy terms arising from single excitations. Summing these up to infinite order
yields the renormalized single-excitation (rSE) contribution. Here, Av,, = (Y| f — hOWq), and note Av;, = fi,.

First, the occupied and unoccupied blocks of the Fock
matrix (evaluated with KS orbitals) need to be constructed:

fii = Wil fly;) = &8 + Avyj,
fab = Wal FIV3) = €abap + Avap.

The second step is to diagonalize the f;; and the f,; blocks sep-
arately. Denoting the eigenvector matrices as O and U/, one has

Z fikOkj = Ojj€;,
‘ 24)
Z facucb - uahgha

where €; and €, are the eigenvalues of the occupied and unoc-
cupied blocks of the Fock matrix, respectively. This procedure
is known as semicanonicalization in quantum chemistry (see,
e.g., Refs. 54 and 55). The final rSE expression, equivalent to
the infinite-order diagrammatic summation, is given by

ErSE — Z |fia|2 (25)
¢ ia gi - ga ’

where f;, correspond to the “transformed” off-diagonal block
of the Fock matrix

fa = O"U" s fip- (26)
jb

This is a surprisingly simple result: The final rSE expression
is formally identical to the second-order SE one, only that
the meaning of the energy eigenvalues and the transition
amplitudes has to be modified. The equivalence of Eq. (25)
to the algebraical expression from a direct evaluation of the
diagrams in Fig. 2 is demonstrated in Appendix C.

C. Concept of rPT2 viewed from its
diagrammatic representation
Initially, the RPA + SOSEX and RPA + (r)SE schemes
were investigated separately’’?’ in an effort to improve the

accuracy of the RPA method. In Ref. 35 it was found that
adding both terms to RPA leads to even better accuracy in

general, and that the combined RPA 4+ SOSEX + rSE (=rPT2)
scheme represents the most balanced approach for describing
both atomization energies and reaction barrier heights. In
fact, this approach is theoretically well justified since, as
will be shown in the following, all three terms appear at
the same level of approximation. To elucidate the nature of
rPT2, the Goldstone diagrams for the three ingredients of
this theory are shown together in Fig. 3. All three pieces
are characterized by an infinite summation of diagrams
with the same topological structure. The leading terms in
the three series are the second-order direct (Coulomb), the
second-order exchange, and the SE term, respectively. In other
words, these three leading terms represent exactly second-
order Rayleigh-Schrodinger perturbation theory, based on an
(approximate) KS reference Hamiltonian. If the perturbation
series were to be built on the HF reference, the SE term
would vanish (Brillouin’s theorem).’® In essence, the theory
is exact at second order, and for higher-order contributions
we follow the strategy of “selective summation to infinite
order,” following the spirit of the RPA. This “infinite-order

(= RPA)

( = SOSEX)

2nd-order

3rd—order

FIG. 3. (Color online) rPT2 represented in terms of Goldstone
diagrams. The three rows of (infinitely summed) diagrams represent
the three components of rPT2: RPA, SOSEX, and rSE. The first
column shows the (only) three terms in normal (bare) second-order
Rayleigh-Schrodinger perturbation theory based on a KS reference.
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summation” effectively renormalizes the three terms of the
(bare) second-order perturbation theory (PT2), represented
by the blue diagrams in Fig. 3. We expect the renormalized
method, i.e., rPT2, to be more generally applicable than the
bare PT2. The latter works very well for wide-gap molecules,
but suffers from notorious divergence problems for systems
with zero direct gap.>’->

As a perturbation theory, rPT2 will necessarily depend on
the reference Hamiltonian or, equivalently, a set of input single-
particle orbitals. In practice, rPT2 works best when based on
KS Hamiltonian (i.e., with a local, multiplicative potential)
that yield a smaller gap than generalized KS or HF ones. This
is directly related to the fact that the underbinding error of RPA
will be even more pronounced for HF or generalized KS refer-
ence Hamiltonians, as evidenced by the significant RPA @HF
error for the G2 atomization energies,** and the severely
underestimated RPA@HF (40%) Cg coefficients®® (here and
in the following, we use “method@reference” to denote which
method is based on which reference state). For a variety of KS
Hamiltonians, RPA results were found to be insensitive to the
actual choice of the reference Hamiltonian.2>% In this work,
we will therefore choose the most popular nonempirical GGA
functional PBE as the reference, also to be consistent with our
previous work.!%2135 The insensitivity of RPA to reference KS
Hamiltonians carries over to rPT2.

III. RESULTS

In this section, we will benchmark the performance of
rPT2 for weak interaction energies (rare-gas dimers, S22
and S66 test sets by Hobza and co-workers*®-3%), atomization
energies (from the G2-I test set by Curtiss et al.**°!), and
chemical reaction barrier heights (38 hydrogen-transfer and 38
non-hydrogen-transfer chemical reactions of Truhlar and co-
workers*%#1). All calculations were performed with the local-
orbital-based all-electron FHI-AIMS code.**** As mentioned
in Sec. IT A, the SOSEX term in this work corresponds to
“AC-SOSEX” based on Eq. (19). For brevity, we will simply
refer to it as SOSEX in the following. For the frequency
integration in our RPA and SOSEX calculations, we use a
modified Gauss-Legendre grid** with 40 points. For the A
integration in Eq. (15), we use a normal Gauss-Legendre grid
with 5 points. These settings guarantee sufficient accuracy
for the benchmark studies presented in this work. The basis
sets employed in the calculations will be specified later
when discussing the results. Convergence tests are shown in
Appendix D.

A. Weak interactions

One prominent feature of RPA-based approaches is that
the ubiquitous vdW interactions are captured in a seamless
manner.®>3 The long-range behavior of the RPA interaction
energy between two closed-shell molecular systems decays as
Cs/ R® where the Cg value is dictated by the RPA polarizability
of the monomer.5%% Many-body terms that go beyond the
pair-wise summation are also automatically contained in this
approach.®

Benchmarking the performance of RPA and related meth-
ods for vdW bonded systems has been a very active
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enterprise.'018:20-2342.66-69 1 hag been demonstrated that the
standard RPA approach exhibits a systematic underbinding
behavior for molecules, in particular, vdW bonded ones.>' We
have previously shown that SE-type corrections ameliorate
this problem,! but the influence of the SOSEX correction has
not been systematically benchmarked for vdW systems yet,
with the exception of He, and Ne,.?* It is therefore interesting
and timely to examine how rPT2, which combines both types
of corrections, performs for noncovalent interactions. Some
rPT2 results for Ar, and S22 have been featured in our
recent review on RPA.!® Here, we extend the benchmark
study to other rare-gas dimers and also the larger S66
test set.

1. Rare-gas dimers

First, we demonstrate the pathological behavior of rSE-diag
(our previous, approximate version) for weak interactions,
highlighting the importance of including the “off-diagonal”
terms in the rSE summation to make the theory invariant with
respect to orbital rotations. In Fig. 4, the binding energy of
Ar; is plotted for PBE, RPA, and RPA plus different versions
of single-excitation corrections (RPA + SE, RPA + rSE-diag,
RPA +rSE). While PBE, RPA, and RPA + SE all show
their characteristic behaviors, the behavior of RPA + rSE-
diag is weird. The binding-energy curve develops unphysical
undulations away from equilibrium. Moreover, the asymptotic
limit does not follow the correct 1/ RS behavior, and the curve
even reaches above the energy zero at large bonding distances
(see the inset of Fig. 4). It is reassuring, however, to observe
that this pathological behavior disappears in the upgraded
RPA + rSE scheme, which yields a binding energy curve in
close agreement with the Tang-Toennies reference curve,””
obtained from a simple analytical model with experimental
equilibrium bond distance and binding energy as input param-

15

10

Binding energy (meV)
o

-15 L =" ! ! !
3.0 3.5 4.0 4.5 5.0 55 6.0

Bond length (A)

FIG. 4. (Color online) Binding-energy curves for Ar, computed
with PBE and RPA-based approaches (standard RPA, RPA + SE,
RPA 4-1SE, and RPA +rSE-diag based on PBE), in comparison
with the accurate Tang-Toennies (experimentally derived) curve. The
results are obtained using the Gaussian “aug-cc-pV6Z” (Ref. 73)
basis set. The basis set superposition error (BSSE) is corrected here
and in all following calculations using the counterpoise correction
scheme (Ref. 74).
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FIG. 5. (Color online) Binding-energy curves for rare-gas dimers
computed with RPA-based approaches, in comparison with PBE,
MP2, and the accurate Tang-Toennies reference curves. He,, Ne,,
and Ar, results are obtained using the aug-cc-pV6Z basis set, and
Kr, using the aug-cc-pV5Z basis set. All RPA-type calculations are
based on the PBE reference.

eters. This model can accurately reproduce empirical data’
and agrees excellently with high-level quantum-chemical,
e.g., CCSD(T) calculations.”’”> Coming back to the rSE
discussion, the pathological behavior is thus caused by the
diagonal approximation, and not inherent to the rSE scheme
itself. In the remainder of our discussion on weakly interacting
systems, we therefore only present results for the upgraded
RPA +rSE and rPT2 schemes.

The full set of binding energy curves for He,, Ne,, Ary,
and Kr, obtained with PBE, MP2, RPA, rPT2, as well as
the “intermediate” schemes RPA +rSE and RPA + SOSEX
are then shown in Fig. 5. PBE does not contain long-range
dispersion interactions by construction, and therefore decays
too fast at large separations. Around the equilibrium region,
PBE vastly overbinds He, and Ne,, and underbinds Ar, and
Kr,. MP2 shows the opposite trend, although it performs
better at a quantitative level. RPA systematically underbinds all
dimers. This underbinding is most significant for He, and Ne;.
Adding the rSE correction leads to a substantial improvement
for all dimers. With the largest available Dunning Gaussian
basis sets’? (aug-cc-pV6Z for He, Ne, Ar and aug-cc-pV5Z
for Kr), RPA 4 rSE shows nearly perfect agreement with the
reference curve for He,, overshoots a little bit for Ne,, and
slightly underbinds Ar, and Kr,. The SOSEX correction, on
the other hand, has very little effect on the binding energies
of these purely dispersion-bonded systems. As a result, rPT2
lies almost on top of RPA +rSE. The overall accuracy of
RPA + rSE and rPT?2 for rare-gas dimers is very satisfactory,
in particular since no adjustable parameters are used in these
schemes.

2. S22 and S66 test sets

A widely used benchmark set for weak interactions are
the S22 molecular complexes designed by Jurecka et al.,’
for which accurate reference interaction energies obtained
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FIG. 6. (Color online) The percentage errors for the S22 test set
for RPA-derived computational schemes (based on PBE reference
orbitals), in comparison to PBE and MP2. The CCSD(T)/CBS results
of Takatani et al. (Ref. 75) are used as reference. Lines are guides to
the eye.

using the CCSD(T) method are available.”” This molecular
test set includes the most common types of noncovalent in-
teractions: hydrogen bonding, dispersion-dominated bonding,
and mixed character. The performance of RPA and some of
the RPA-related methods have been benchmarked for this test
set.21:23:68.76 Similar to correlated quantum chemical methods,
the quality of basis sets for RPA calculations is a significant
issue.!’7%77 Using our numerical atomic orbital (NAO) tier-4
basis plus additional diffuse Gaussian functions from the
aug-cc-pV5Z set [denoted as “fier 44 aSZ-d” (Ref. 44);
see also Appendix D], we obtained a mean absolute error
(MAE) of 0.90 kcal/mol in RPA@PBE for S22, fairly close
to the 0.79 kcal/mol reported by Eshuis and Furche’® using
Dunning’s Gaussian basis sets extrapolated to the complete
basis set (CBS) limit. In Appendix D, the convergence behavior
of these two types of basis sets is shown for the methane dimer.
In this work, we will continue to use the “tier 4 + a5Z-d” basis
set, bearing in mind that the absolute numbers could carry an
uncertainty of 0.1 kcal/mol (4 meV), which will however not
affect our discussion here.

In Fig. 6, the relative errors from RPA +rSE,
RPA 4+ SOSEX, and rPT2 are presented for each individual
molecule of the S22 set. Results from RPA and RPA + SE, as
well as from PBE and MP2, are also included for comparison.
PBE and MP2 are both performing well for hydrogen-bonded
molecules where the electrostatic interactions dominate, but
PBE underbinds the dispersion-dominated and those of mixed-
character significantly, while the opposite is true for MP2.
RPA-based methods are performing much better than PBE
and MP2 for these two types of interactions. RPA + rSE
falls between RPA and RPA + SE, although it lies closer
to RPA + SE. For hydrogen-bonded molecules, RPA +rSE
improves over RPA + SE, with the latter overbinding these
molecules noticeably. Moreover, it is interesting to note that
RPA + SOSEX improves over RPA appreciably for hydrogen
and mixed bonding, but much less so for dispersion-bonded
molecules. This is consistent with its performance for rare-gas
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FIG. 7. (Color online) MAEs (in both meV and kcal/mol) for
the S66 test set given by RPA, rPT2, and related schemes (based on
PBE reference orbitals), in addition to PBE and MP2. The CCSD(T)
results of Rezac et al. (Ref. 38) at the CBS limit are used here as
reference.

dimers. Now, considering both rSE and SOSEX, together with
RPA, 1PT2 performs equally well or better for dispersion-
dominated and mixed bonding, but overshoots significantly for
hydrogen bonding. So far, this is the only case we have found
for which combining rSE and SOSEX worsens the description.
Empirically, this is because both SOSEX and rSE improve
the underbinding of RPA for hydrogen bonds. In particular,
RPA +rSE itself is already almost perfect, and adding further
SOSEX correction overshoots. It is not entirely clear why this
is so only from theoretical considerations. We hence document
the problem here and hope to have more insights in future
work. Finally, we note that for -stacked systems such as the
benzene dimer (No. 11 in Fig. 6), RPA gives a substantial error,
but neither rfSE nor SOSEX noticeably improves upon RPA.
This warrants further attention in future studies.

Recently, the S22 test set has been extended to an even
larger, more comprehensive, and balanced test set called S66.
This overcomes several shortcomings of S22, e.g., the strong
bias towards nucleic-acid-like structures. We also performed
benchmark calculations with RPA, rPT2, and related schemes
for this test set, and the results are presented in Fig. 7. The
overall performance for S66 is very similar to that observed
for S22. In brief, RPA 4 rSE performs better (or slightly better)
than RPA + SE, which itself is a significant improvement over
the standard RPA method. With the addition of the SOSEX
term, the rPT2 approach performs even (slightly) better than
RPA + rSE for dispersion and mixed interactions. However,
this is not the case for hydrogen bonds, where rPT2 clearly
overshoots and the strength of hydrogen bonds becomes
overestimated. Overall, for weak interactions, RPA +rSE
outperforms other computational schemes benchmarked here,
and yields a MAE of 10.1 meV (or 0.23 kcal/mol).

The molecular complexes of the S22 and S66 test sets are at
their equilibrium geometries. Consequently, any conclusions
drawn from these test sets (concerning the performance of
RPA-based approaches) in principle only holds for these
equilibrium geometries. However, this does not tell us anything
about the performance of the RPA-based approaches for
nonequilibrium geometries, which has important implications
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FIG. 8. (Color online) Interaction energies of four molecular
dimers with distorted geometries. The data points correspond to
shortening or elongating of the dimer along the main noncovalent
interaction coordinate (at 0.9, 1.0, 1.2, 1.5, and 2.0 of the equilibrium
distance). Geometries and reference CCSD(T) data are taken from
the S22 x 5 test set (Ref. 78).

for employing these approaches in molecular dynamics and/or
applying them to big molecules whose building fragments
are usually in a nonequilibrium situation. Therefore, here
we check the performance of RPA and its variants for four
molecular dimers from the S22 set as a function of the
monomer separation. Reference CCSD(T) data are taken from
the S22 x 5 test set.”® In Fig. 8, we present the interaction
energies of the four dimers at five different separations: the
equilibrium distance, and four others stretched along the main
interaction coordinate while keeping the monomer geometry
unchanged. Figure 8 illustrates that there is no significant
difference in the performance of the RPA-based methods at
the different distances. Thus, the conclusions drawn from the
S22 and S66 benchmark studies carry over to large molecules
and/or molecules with distorted geometries.

B. Atomization energies

The atomization energy of molecules is a key quantity in
thermochemistry. RPA has been tested for this quantity in early
works,'>* where a pronounced underbinding behavior was
observed. In a recent work, Paier et al.> reported a detailed
study of the atomization energies of the G2-I set® using RPA
and its variants, including the rPT2-diag scheme as discussed
before. To test the influence of the off-diagonal elements of rSE
in the rPT2 scheme, we present in Fig. 9 the MAEs for RPA,
rPT2-diag, rPT2, and related methods. Some of these results
were already included in our recent review paper on RPA.!°
In brief, both the (r)SE and SOSEX corrections reduce the
underbinding trend of RPA significantly. Combining the rSE
and SOSEX corrections, the two terms work collaboratively
and the resultant rPT2 method reduces the MAE further by a
factor of 2. In contrast to the nonbonded interactions discussed
in the previous section, the difference between rPT2 and
rPT2-diag is small (0.18 kcal/mol or 8 meV difference in
MAE), validating our previous conclusions regarding the at-
omization energies in Ref. 35 that were based on the rPT2-diag
scheme.
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FIG. 9. (Color online) The MAEs (in both meV and kcal/mol)
of the G2-I atomization energies (Ref. 39) obtained with PBE, MP2,
RPA, rPT2, and related methods. The Gaussian cc-pV6Z basis set
(Ref. 73) was used in all calculations. Reference data are from Ref. 79.

In this context we would like to warn that, despite
the success of RPA + SOSEX and, in particular, rPT2 for
describing the atomization energies on average, for certain
molecules (in particular O, and N,), the SOSEX term worsens
the results, leading to more pronounced underestimation of
binding energies. A detailed investigation of this issue is
beyond the scope of this paper, and will be carried out in
future work.

One of the motivations for developing the rSE scheme
over the intial SE term was to describe systems with metallic
character, for which a simple second-order SE cannot be
applied. It is thus interesting to see how RPA 4 rSE and rPT2
perform for metallic clusters (and eventually bulk metals).
While a systematic investigation of this issue is still ongoing,
we can present here some preliminary results for small copper
clusters for illustrative purposes. In Fig. 10, we plot the
effective cohesive energy as a function of the cluster size.
The effective cohesive energy (E.on) is defined as Eag/ Cesr
where Eap is the atomization energy of the cluster, and
Cet =), A/(C;/12) is the effective coordination number of
the cluster, with C; being the number of nearest neighbors
of atom i.8% The copper clusters chosen in this study are
somewhat artificial in the sense that they were cut from bulk
copper at the PBE lattice constant of 3.633 A. E., approaches
the bulk cohesive energy of copper in the limit of sufficiently
large cluster sizes. Although the clusters considered in this
work are still too small to extract this bulk limit reliably, they
suffice to establish a first idea of the functional quality. For
comparison, the experimental reference cohesive energy for
bulk copper is 3.49 eV.3! From Fig. 10 we can see that RPA
itself yields cohesive energies that are too small and close to the
PBEQO values. This is consistent with the general underbinding
trend of RPA. Adding the SOSEX correction has very little
effect, increasing the cohesive energy only by about 50 meV.
In contrast, the rSE term significantly increases the cohesive
energy by about 1 eV. Now, the resultant RPA +rSE and
rPT2 cohesive energies are approximately halfway between
LDA and PBE. This is in general a good sign since for most
solids the experimental cohesive energy lies between the LDA
and PBE ones. For Cu, on the other hand, this indicates
an overbinding in rPT2 since in this case the PBE value is
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FIG. 10. (Color online) Upper panel: structure of the Cu clusters
cut from the Cu bulk. The number in parentheses corresponds to
the effective coordination number Ce of that cluster. Lower panel:
effective cohesive energy for the Cu clusters obtained using different
approaches. The dashed line marks the experimental cohesive energy
for copper bulk (Ref. 81). The FHI-AIMS fier-4 basis set was used. All
RPA-based calculations were done with a PBE reference.

very close to the experimental one. To draw more general
conclusions for metallic systems, more comprehensive and
systematic benchmark studies are needed.

C. Equilibrium geometry of diatomic molecules

Another important criterion for assessing the quality of
electronic-structure methods are the equilibrium geometries
they predict. In Table I we present the calculated equilibrium
bond lengths of 10 diatomic molecules (denoted as EBL10
set in the following). The EBL10 set contains prototypical
molecules of covalent, ionic, and vdW bonding type, and hence
can be regarded as a test set with some representative character.
From Table I we can conclude that the conventional functionals
PBE and PBEQ perform well for covalent and ionic bonds,
but significantly overestimate the bond lengths of rare-gas
dimers. This is not surprising since they do not properly
account for dispersion forces. For alkali-metal dimers, these
two functionals describe Na, very well but not Li,. As for
MP2, its performance is similar to PBE and PBEO, except
for the rare-gas dimers for which MP2 gives a significant
improvement, although the bond-length underestimation of
NeAr and the overestimation of Ar, are still sizable.

The behavior of RPA closely resembles PBE for covalent
and ionic bonds, but differs for the metal dimers. Here,
RPA does surprisingly well for Li, (in contrast to all other
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TABLE I Equilibrium bond lengths (in A) for 10 diatomic molecules. Errors with respect to experimental numbers are given in parentheses.
The reference values for Ar, and NeAr are taken from Ref. 70, and the rest from Ref. 82.

PBE PBEO MP2 RPA RPA+1SE  RPA + SOSEX PT2 Expt
CO  1.13500.007) 1.122(=0.006) 1.131(0.003)  1.135(0.007)  1.143(0.015)  1.117(=0.011)  1.123(=0.005) 1.128
0, 1.218(0.010)  1.191(=0.017)  1.213(0.005)  1.222(0.014)  1.232(0.024)  1.175(—=0.033)  1.183(=0.025) 1.208
N, 1.102(0.004)  1.089(—0.009)  1.108(0.010)  1.103(0.005)  1.107(0.009)  1.083(—0.015)  1.087(—0.011)  1.098
HE  0.930(0.013) 0.920(0.003)  0.918(0.001)  0.922(0.005)  0.927(0.010)  0.909(—0.008)  0.912(—0.005) 0.917
LiH  1.6050.010) 1.597(0.002)  1.592(—0.003) 1.594(—0.001) 1.598(0.003)  1.592(—0.003)  1.596(0.001)  1.595
NaCl  2.379(0.018) 2.368(0.007)  2.373(0.012)  2.379(0.018)  2.384(0.023)  2.373(0.012) 2.377(0.016)  2.361
Li, 2.729(0.056)  2.726(0.053)  2.724(0.051)  2.680(0.007)  2.695(0.022)  2.716(0.043) 2.727(0.054)  2.673
Na,  3.087(0.008) 3.092(0.013)  3.095(0.016)  3.105(0.026)  3.127(0.048)  3.098(0.019) 3.118(0.039)  3.079
Ar,  4.009(0.252) 4.070(0.313)  3.729(—0.028) 3.866(0.109)  3.771(0.014)  3.871(0.114) 3.776(0.019)  3.757
NeAr 3.538(0.062) 3.608(0.132)  3.542(0.066)  3.606(0.130)  3.461(—0.015)  3.602(0.126) 3.457(—0.019)  3.476
ME  0.044 0.049 0.013 0.032 0.015 0.024 0.006
MAE  0.044 0.056 0.020 0.032 0.018 0.038 0.019

methods), but not so well for Na,. For rare-gas dimers, the
general underbinding trend shifts the binding-energy curves
towards larger distances, resulting in significantly overesti-
mated bond lengths. Adding the rSE correction to RPA shifts
the equilibrium distances to larger values for all strong bonds,
and the resultant bond lengths are slightly overestimated.
For vdW bonds, on the other hand, RPA 4 rSE performs
exceptionally well, bringing the equilibrium bond lengths into
close agreement with the reference values. RPA + SOSEX, on
the other hand, shows roughly the opposite trend for covalent
and ionic bonds, but over-stretches the bond lengths of metal
and vdW dimers. Finally, putting SOSEX and rSE corrections
together, the rPT2 method shows an overall satisfactory
description for covalent, ionic, and vdW bonds. Only for metal
dimers the errors are noticeably larger. In terms of MAE:s,
MP2, RPA + rSE, and rPT2 are on a par with each other. For
covalent and ionic bonds, MP2 is noticeably better. This is
probably because for these molecules (with a wide gap) the
HF reference represents a better starting point than PBE for
perturbation theory. However, RPA 4 rSE and rPT?2 are clearly
better for vdW bonds. Thus, at this point no single approach
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FIG. 11. (Color online) The MAEs (in both meV and kcal /mol)
of the HTBH38 and NHTBH3S test sets for barrier heights, obtained
with PBE, MP2, RPA, rPT2, and related methods (based on PBE).
Reference data are from Refs. 40 and 41. Gaussian cc-pV6Z basis
sets were used in the calculations.

stands out as the best one for all bonding situations, although
rPT2 gives the smallest ME and a good MAE.

D. Barrier heights

To complete our discussion, we address here chemical re-
action barrier heights. For this purpose, we chose the HTBH38
and NHTBH3S test set of Truhlar and co-workers.***! RPA-
based methods were benchmarked in previous studies®'*3>
and we here revisit this set with the upgraded version of rPT2.
The MAEs for our different schemes are shown in Fig. 11.
Standard RPA performs remarkably well for reaction barrier
heights compared to all alternatives. This has been rationalized
by Henderson and Scuseria?’ to be due to the inherent
self-correlation error in RPA that mimics “static correlation”
[i.e., the (near) degeneracy of two (or more) determinants],
leading to an excellent description of the transition states
due to partial error cancellation. Unfortunately, any attempt
to correct RPA deteriorates its performance in this case. In
particular, the RPA + SE method provides a bad description
of the transition states, resulting in errors that are even larger
than in PBE. The RPA + SE error reduces when the SE term
is renormalized in RPA + rSE. Now, in contrast to the G2-1
case, the errors in RPA 4+ rSE and RPA + SOSEX point in
opposite directions and tend to cancel each other. Again, by
combining the two schemes, rPT2 shows a better performance
than separate RPA 4 rSE and RPA 4+ SOSEX schemes, and
gives a much more satisfactory description of the barrier
heights. Similar to the G2-I test set, the difference between
rPT2 and rPT2-diag is small (0.33 kcal/mol for HTBH38
and 0.25 kcal/mol for NHTBH38 in MAE) compared to the
variation among other schemes.

IV. CONCLUSIONS

In summary, the rPT2 method comprises a systematic
renormalization of all three terms that appear in second-order
perturbation theory, through an infinite summation of three
distinct series of diagrams. The resulting three terms in rPT2
are RPA, SOSEX, and rSE. In this work, we formulated an
alternative way to express the SOSEX correlation energy,
discussed in detail how to sum up the “off-diagonal” elements
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TABLE II. Error statistics of rPT2 and related approaches for the
S22, G2, EBL10, and NHTBH38/HTBH38 test sets. Listed are the
MAPE for S22, and the MAE for the other sets.

S22 G2 EBL10 HTBH38 NHTBH38
Method (%) (kcal/mol) (A) (kcal/mol) (kcal/mol)
PBE 57.8 8.2 0.044 9.7 8.9
PBEO 55.2 3.0 0.056 4.4 3.6
MP2 18.7 6.5 0.020 3.9 5.2
RPA 16.1 10.5 0.032 1.5 1.9
RPA +rSE 7.7 7.1 0.018 4.3 5.8
RPA + SOSEX 10.5 5.7 0.038 5.6 4.3
rPT2 7.1 3.1 0.019 1.9 3.0

inrSE, which were neglected in previous works, and illustrated
the concept of rPT2 from a diagrammatic point of view. We
benchmarked the performance of rPT2 and related approaches
(RPA +1SE, RPA 4 SOSEX), focusing on weakly interacting
molecules. We found that rPT2 works well for dispersion and
mixed-type interactions, but for hydrogen bonds it overcorrects
the underbinding behavior of RPA. We also examined the
influence of the previously neglected “off-diagonal” elements
in the rSE correction and found that, for weak interactions,
it is crucial to include them, whereas for atomization energy
and reaction barrier heights, the off-diagonal elements only
have a minor effect. We also found that the SOSEX correction
improves the description of electrostatic interactions substan-
tially, but has very little effect on dispersion interactions.
rSE, on the other hand, leads to a better description of both
electrostatic and dispersion interactions.

Overall, rPT2 provides a conceptually appealing, and
diagrammatically systematic way for going beyond RPA. In
Table II, we summarized the error statistics for the represen-
tative test sets considered in this work. It can be seen that,
although rPT2 does not always deliver the best accuracy in
every single case compared to other approaches, it provides
“the most balanced” description across the various different
electronic and chemical environments. We thus consider the
rPT2 scheme as a natural step for extending and improving
the RPA method. We trust that the successes and shortcomings
of rPT2 documented in this work provide a useful basis for
developing more accurate, robust, and generally applicable
electronic-structure methods in the coming years.
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APPENDIX A: IMPLEMENTATION OF AC-SOSEX
IN FHI-AIMS

The RPA implementation in the FHI-AIMS code* has been
described in detail in Ref. 44. Here, we will give a brief
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account of the SOSEX implementation in our code. The energy
expression that we like to evaluate is

AC-SOSEX _ _ L
2

x Fialiw)Fjp(iw),

where (ij|ba) are the two-electron Coulomb integrals de-
fined in Eq. (5), and (ij|W(iw)|ab) are the corresponding
(coupling-constant-averaged) screened Coulomb integrals.
The frequency-dependent factor F;, (i w) is defined in Eq. (18).

In analogy to the RPA case, the basic technique to evaluate
the two-electron integrals in our code is the resolution of
identity. We chose the Coulomb metric, denoted “RI-V” in
the following. Here, we would like to emphasize that “RI-V”
is a highly accurate method, and the error incurred thereby
is vanishingly small for practical purposes (see Ref. 44 for
detailed benchmarks). In RI-V, the bare two-electron integrals
are computed as

/ dw Y (ijlba)(ij|W (iw)lab)
0 ia,jb
(A1)

(ijlab) = Z(zaw o (Vlib), (A2)
where
Galp) = // e dr ,I/fl(r)tlfa(r),P (1) (A3)
r—r'|
and
Viw = / / drdr’—P“(r) P”(r/). (A4)
Ir—r'|

Here, v, are canonical single-particle spin orbitals, and P, (r)
are a set of suitably constructed auxiliary basis functions.**
For notational simplicity, all orbitals are assumed to be real.
In practice, we decompose the V~! matrix in Eq. (A2) into
the product of its square roots, and combine each three-index
integral with a square root. This gives
Z o0l.0%,

(ijlab) = (A5)

with
Z(zah}) v,

As discussed in the context of the GW implementation
in FHI-AIMS,* the “RI-V” technique can be used to treat the
screened two-electron Coulomb integrals as well. In this case,
we have

(A6)

(ij|W(iw)ab) = Zom & iw)0Y,, (A7)

where € is the coupling-constant-averaged dielectric func-
tions, formally linked to the screened Coulomb matrix by

ENiw) =V ?W(iw)V V2. (A8)

InEq. (A8), W (i ) is the screened Coulomb interaction matrix
represented in terms of the auxiliary basis set,

W(io) = / / drdr' P,(r)W,,(r,r iw)P,(r).  (A9)

For convenience, we introduce a quantity [l(iw) =
v x0(iw)v'/?, where yxo(iw) is the independent density
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response function defined in Eq. (2). Using Egs. (2), (A3),
and (A6), one can easily obtain the matrix representation of
[M(iw) in the auxiliary basis

. 2(e; — €4) A
(i) =) moia Oias

ra

(A10)

where €; and ¢, are occupied and unoccupied single-particle
orbital energies, respectively. Using Eq. (14), the matrix form
of £~! becomes

1
E iw) =/ dr[1l — AT(Giw)] " A (A11)
0

The A integration in Eq. (A11) can be accurately computed
using a Gauss-Legendre quadrature with 5-6 grid points.

Combining Egs (A1), (AS5), and (A7), the final expression
for the RI-SOSEX energy is

1 00
SOSEX __ "o
E; =5 /o dw E |:<E Oianb)

ij,ab "

X (Z Oizg@l(iw)0;b>:| Fiaiw)Fjp(iw).
vy
(A12)

The computational effort for evaluating Eq. (A12) formally
scales as O(N?), where N is the system size.

APPENDIX B: COMPARISON OF SOSEX AND AC-SOSEX

In Table III, we present the RPA and SOSEX correla-
tion energies (ERPA and ESOSEX) as well as the RPA and
RPA 4 SOSEX atomization energies for five molecules. The
vanishingly small differences in the RPA energies are due to

PHYSICAL REVIEW B 88, 035120 (2013)

the different implementations in FHI-AIMS and the development
version of the GAUSSIAN (Ref. 83) code (e.g., FHI-AIMS
employs the RI approximation and treats the Gaussian orbitals
numerically). The difference in the SOSEX and AC-SOSEX
correlation energies reflects the intrinsic differences of the two
SOSEX formulations. Nevertheless, the differences are very
small and have little practical importance, in particular for
atomization energies.

APPENDIX C: DERIVATION OF THE RENORMALIZED
SINGLE-EXCITATION (rSE) CONTRIBUTION

We start with the expression for the second-order single-
excitation (SE) contribution

EF=3%"

i,a

(Dol H'| )¢ | H'|Wo)
E — Ej

) (ChH

where H' = H — H,, with Hy being a sum of single-particle
(Kohn-Sham) Hamiltonian operators: 1{70 =y, fzo(i ). E(()O) and
El(g) are eigenenergies of the ground state |W() and singly
excited states |\W;,) of I:Io, respectively.

The form of this equation actually already implies that the
singly excited states |®{) are Slater determinants composed of
canonical orbitals, namely, |\W{) = Det{v,} where ﬁ0|wq) =
€,1¥,), and Hoy|®9) = EV (@) with EQ = E” 4+ ¢, — €.
Equation (C1) can be reduced to an expression in terms of
(canonical) single-particle orbitals®

o F 2 -2
EEEZZHZ@:H zzeliffLa’ @

i,a i,a

TABLE III. RPA and SOSEX (total) correlation energies, as well as RPA and RPA 4+ SOSEX atomization energies for five molecules. The
“AC-SOSEX” numbers are computed using FHI-AIMS based on Eq. (19), whereas the original ring-CCD based SOSEX numbers are computed
using a development version of the GAUSSIAN (Ref. 83) suite of programs. All calculations were done with Gaussian cc-pVQZ basis set and
frozen-core (1s) approximation. The reference orbitals are obtained using the GGA-PBE functional. Note that in the upper part of the table
only the RPA or (AC-)SOSEX correlation contribution is included, whereas in the lower part the numbers are obtained from the total energy

(including also the Hartree-Fock part) differences.

Correlation energy (eV)

RPA

AC-SOSEX/SOSEX

FHI-AIMS GAUSSIAN
FHI-AIMS GAUSSIAN Difference (AC-SOSEX) (SOSEX) Difference
N, —16.5001 —16.5007 0.0006 6.0972 6.0669 0.0303
0, —19.8738 —19.8742 0.0004 7.7113 7.6484 0.0629
CH,4 —10.3875 —10.3874 —0.0001 4.2243 4.2159 0.0084
C,H, —14.6788 —14.6789 0.0002 5.6422 5.6195 0.0227
Atomization energy (eV)
RPA + AC-SOSEX/RPA + SOSEX
RPA FHI-AIMS GAUSSIAN
FHI-AIMS GAUSSIAN Difference (AC-SOSEX) (SOSEX) Difference
CO 10.3712 10.3721 —0.0009 10.7060 10.7051 0.0009
N, 9.4354 9.4358 —0.0004 9.0737 9.0676 0.0061
0, 4.6843 4.6847 —0.0004 4.2546 4.2806 —0.0260
CH, 17.3526 17.3517 0.0009 18.0108 18.0091 0.0017
C,H, 16.1938 16.1947 —0.0009 16.9831 16.9866 —0.0035
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where f is the single-particle Hartree-Fock operator. Here
we have adhered the common convention that i,j,k, ...
denote occupied single-particle orbitals, a,b,c, . . . unoccupied
orbitals, and p,q,r, ... for general cases.

ESE = ) (ol |@f) o | (Eg”
ij,ab
where [ is the identity matrix /;,, j» = J;;Sap, and

[E(()O)I — H ]za ,Jjb

o)~ |@2)(@4| A’ o)

<q)a |E(0)
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To set the stage for later discussions, we can also more
generally express the SE energy in Eq. (Cl) in terms of
noncanonical orbitals {y,}, where hol)(,,) = Zq hgg'X(]) and

h([))q = (Xp|fl°|)(q), In this case, ESE is given by

=3 Gl Fx) [(ES'T = Ho) ™' 1,0 ., ol F1), (3

ij,ab

") = h8ap — hOy5i;. (C4

Now, the question arises how to sum up all the higher-order SE diagrams shown in Fig. 2? For canonical orbitals, the

corresponding algebraic expression can be easily obtained by applying the rules of evaluating Goldstone diagrams>":

faiﬁbAvbu
* %,; (€

ia - éa)(ej - Ga)

. 'AU"f'
ErSE — fulfla _ fuz ijJja
¢ Zei—éa ;(Ei

- 6a)(éi - Eb)

Jai Av;j fipAvp,

56.
Jai Avik Avy; fia
- Ea)(ek - Ga)(ej - Ga)

Sai Av;j fipAvp,

+
Uzk:a (e

+ Z faifibAvbcAvca
i,abc (Gi

— )€ — €p)(€; — €)

(@ ele) —€)e) — &)

+..., (C5)

@ ea —a)e — &)

where Av,, = (V] f — ﬁolwq), and Av;, = fia = (¥l f |¥,). To see how the infinite-order summation in Eq. (C6) is carried
out, we rearrange the expression as follows:
ErSE Z f;llal]gubfjb Z fal(AvabSU AUijfsab)f/'b
€ — € (€ — €a)(€; — €p)

ij,ab ij,ab

AV Avey8ikSpe) fi
kj ©Obe) fin n

n Z Jai (A AvgjSacSpe + AVpc A48k 8kj — AVix AVpedjibac —

(€i —€a)(ex — €c)(€j — €)

ijk,abc
Z fal
ij,ab €~ ¢

where we have introduced the 2 matrix, defined as
Avhaéij — Avij&,;,

Qig,jb = (ChH
€j —€p
Further denoting A;, j, = (€; — €4)3;j84p, ONE Observes
1
—— [0 =) iajp =AU =) iajp
=[(A—QA) liujp (CY)
and
(A — QA)iq jb = (i — €4)8ij0ap + AV;j8ap — AVpadij
= fij0ab — fabdij, (C9)

where fi; = €;6;; + Avij, fapr = €adap + Av,, have been
used. It follows that

ESE =" ful(A — QA v fi1-

ij,ab

(C10)

We observe that the rSE energy expressed in terms of canonical
orbitals via Eqs. (C9) and (C10) has the same mathematical
structure as the second-order SE energy expressed in terms
of noncanonical orbitals given by Egs. (C3) and (C4). The
difference is that now the corresponding matrix elements in the
denominator are evaluated using the Fock operator f instead
of the KS Hamiltonian operator /°.

[818as + Qiajp + (@iajp 0 Uip = ) —— Ji_ i — gy

. lia,jo fins (C6)
ij,ab €i a

To simplify the evaluation of Eq. (C10), one can rotate the
occupied orbitals and unoccupied orbitals separately, such that
the Fock matrix becomes diagonal in the occupied and unoccu-
pied subspaces. This procedure is called semicanonicalization.
To be more precise, suppose there are transformation matrices
O and U which diagonalize the f;; and f,; blocks separately:

Y Oy = 0ij&j, Y faks =Uunéy.  (C11)
k c
We then have
> 05U (A — QA1 OrilUay = 81j8ap(E; — &) (C12)
kl,cd
or, equivalently,
(A= QA iajp = Y Oulhac(& — &) OjUs,. (C13)
k,c
Inserting Eq. (C13) into (C10), one arrives at
ESE = Joi fo Cl4
Z P— (C14)
where
fa=)_ O U" s fip- (C15)

jb
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Thus, the final expression for rSE has the same form as
that for SE, only the eigenvalues ¢;,6, and the “transi-
tion amplitude” f;, have to be reinterpreted. The actual
implementation following Egs. (C11), (C14), and (C15) is
straightforward.

APPENDIX D: BASIS CONVERGENCE

Figure 12 shows the convergence behavior of the rPT2
binding energy of the methane dimer (in its equilibrium
geometry) with respect to the FHI-AIMS NAO “tier-N” basis
as well as Dunning’s “cc-pVXZ” and “aug-cc-pVXZ” basis.
The methane dimer is dominated by the dispersion interaction,
and the so-called “diffuse functions” are needed to accurately
describe this interaction. The difference between the ‘“cc-
pVXZ” and “aug-cc-pVXZ” results highlight the importance
of including “diffuse functions.” For the methane dimer, the
“tier-N” series exhibits a faster convergence than “cc-pVXZ”
but a slower convergence than “aug-cc-pVXZ” for BSSE-
corrected binding energies. When adding diffuse functions
from aug-cc-pV5Z to “tier 3/4” (called “t3/4 +a5Z-d” in
Fig. 12), results of similar quality as the full aug-cc-pV5Z
basis are obtained.

PHYSICAL REVIEW B 88, 035120 (2013)

—_ —
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FIG. 12. (Color online) The rPT2@PBE binding energy of the
methane dimer in its equilibrium geometry as a function of the
basis set size. “XZ” and “aXZ” (X = D,T,Q,5) denote the Dunning
“cc-pVXZ” and “‘aug-cc-pVXZ” basis respectively, whereas “tN”
denotes the FHI-aims “fier N” basis. “t3/4” here means tier 4 basis
for C and tier 3 basis for H (note that a tier 4 basis for H is not
available). “t3/4 4+ a5Z-d” corresponds to the NAO “tier 3/4” plus
diffuse functions from aug-cc-pV5Z. The BSSE is corrected.
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