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ABSTRACT
Explicit description of atomic polarizability is critical for the accurate treatment of inter-molecular interactions by force fields (FFs) in molec-
ular dynamics (MD) simulations aiming to investigate complex electrostatic environments such as metal-binding sites of metalloproteins.
Several models exist to describe key monovalent and divalent cations interacting with proteins. Many of these models have been devel-
oped from ion–amino-acid interactions and/or aqueous-phase data on cation solvation. The transferability of these models to cation–protein
interactions remains uncertain. Herein, we assess the accuracy of existing FFs by their abilities to reproduce hierarchies of thousands of
Ca2+–dipeptide interaction energies based on density-functional theory calculations. We find that the Drude polarizable FF, prior to any
parameterization, better approximates the QM interaction energies than any of the non-polarizable FFs. Nevertheless, it required improve-
ment in order to address polarization catastrophes where, at short Ca2+–carboxylate distances, the Drude particle of oxygen overlaps with the
divalent cation. To ameliorate this, we identified those conformational properties that produced the poorest prediction of interaction energies
to reduce the parameter space for optimization. We then optimized the selected cation–peptide parameters using Boltzmann-weighted fitting
and evaluated the resulting parameters in MD simulations of the N-lobe of calmodulin. We also parameterized and evaluated the CTPOL
FF, which incorporates charge-transfer and polarization effects in additive FFs. This work shows how QM-driven parameter development,
followed by testing in condensed-phase simulations, may yield FFs that can accurately capture the structure and dynamics of ion–protein
interactions.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0020768., s

I. INTRODUCTION

Molecular dynamics (MD) simulations are making great strides
in research on biomolecular phenomena. This is largely due to
increased computational power and superior numerical techniques,

which allow researchers to model and simulate a variety of large
biomolecular systems on experimentally accessible time scales of
milli-seconds.1–4 We can now exploit higher computational effi-
ciency to incorporate much needed theoretical improvements,
broadening the applicability of MD models for the next generation
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of biomolecular research.3,5,6 The majority of current MD simula-
tion studies rely on classical force fields (FFs) such as CHARMM,4

AMBER,7 GROMOS,8 and OPLS-AA.9 However, these additive FF
models fail to provide sufficient accuracy for several important bio-
logical systems, particularly those involving crucial metal–protein
interactions.3,6,10–16 One of the major limitations in the otherwise
successful additive FF approximation is the lack of explicit treatment
of an atom’s electronic degrees of freedom, a crucial determinant
of realistic molecular behavior in metalloprotein systems, especially
those with divalent cations. Although additive FF refinements such
as ECCR,17–19 adaptive force-matching algorithms utilizing ab initio
energies for the refinement of additive force fields,20,21 or the 12-6-4
form of the Lennard-Jones (LJ) potential have been successful to a
degree in this regard,16,22,23 they are still limited in their scope due to
the diversity of electrostatic environments found in proteins.

An alternative approach is to account for the polarization of
each atom explicitly in the general molecular mechanics (MM)
framework.3,6,24–26 There is strong and rapidly growing evidence
that in many cases, polarizable FFs reproduce experimental ther-
modynamics data as well as high-level quantum mechanical (QM)
results more accurately than fixed-charge models. For instance,
compared with fixed-charge models, they predict better ion solva-
tion enthalpies and free energies,3,27–30 protein–ligand recognition
and binding,3,6 and the pKa of amino-acid residues in water and pro-
tein environments.31 The explored approaches vary from the imple-
mentation of fluctuating charge schemes to models relying on the
induced-dipole approximation, each with apparent advantages but
also with caveats. Fluctuating charge (FQ) models simulate charge
transfer dynamically by redistributing the atomic charges to equal-
ize electronegativity, while keeping the total charge conserved.25,26

Notable FQ models are CHARMM-FQ and ABEEMsp (atom-bond
electronegativity equalization model with s- and p-bonds).32,33 One
of the major drawbacks of FQ models is that they fail to capture
out-of-plane polarization effects, which are critical for describing
many common functional groups such as aromatic rings. Attempts
to include out-of-plane effects using virtual charge sites can also
prove to be inefficient due to challenges in scaling to simulation
systems containing thousands of atoms.33

Induced-dipole models explicitly account for polarizability by
implementing a dynamic electric dipole that responds to changes
in the surrounding electrostatic environment. Notable FFs that use
this approximation are the CHARMM Drude oscillator model,3

AMOEBA (atomic multipole optimized energetics for biomolecular
simulation),28,29 and SIBFA (sum of interactions between fragments
ab initio) FFs.24,34 Some of these methods can be expanded beyond
dipolar approximations by including higher order multipole terms
and also by accounting for charge transfer.6,26

One area that remains as a frontier for the development of
polarizable FFs is the chemically accurate description of cation–
protein interactions, particularly divalent ions such as Ca2+ and
Mg2+. Efforts in the last decade show that polarizable FFs model
divalent ion–protein interactions more accurately than their non-
polarizable counterparts. For instance, the AMOEBA polarizable FF
has recently been used to predict more accurate relative binding
free-energies and Ca2+ or Mg2+ selectivity of model soluble protein
systems, where non-polarizable FFs fail even after extensive param-
eterization efforts.35 Roux and colleagues36 performed an exhaus-
tive optimization of Drude parameters and showed the superior

performance of Drude polarizable FFs in studies of aqueous salt
solutions of monovalent and divalent cations. Li et al.10 investigated
the parameter space required to accurately describe gas-phase inter-
action energies between physiological cations and a set of protein
binding sites. The gas-phase QM energies were used as a refer-
ence dataset to guide Drude FF development with ion–carboxylate
interactions noted as a potential focus of parameter optimization.
While the parameters were shown to provide excellent performance
in various reduced models of binding sites,11,37 their extension to
MD simulations of ion–protein interactions and transport in porin
proteins elucidated remarkable issues leading to a hindered ion dif-
fusion in the protein interior as well as apparent over-binding to the
protein.38,39

Recently, Villa et al. showed, using the Drude FF, that it is
possible to capture the complex interaction surface of Mg2+ with
methyl phosphate in the condensed phase, illustrating the feasibility
of developing accurate and transferable polarizable potential func-
tions for metal–ligand interactions.40 However, success in the final
deployment of next-generation polarizable FFs depends critically
on assessing (i) the vast chemical space presented by the variety
of side chains found in proteins and (ii) the strategies for explic-
itly including charge transfer terms in the case of strongly inter-
acting cations. In metalloproteins containing strong charge donors
such as negatively charged carboxylate or thiolate groups lining the
metal-binding site, ligand → cation charge transfer is significant.15

However, ligand → cation charge transfer reduces the magnitude
of partial charges on the metal-ligating atoms and cation in con-
ventional additive FFs, thus attenuating their charge/dipole–charge
interactions. This can be compensated by including the local polar-
ization energies of the cation and its ligands. Based on these physical
principles, Sakharov and Lim41,42 developed the CTPOL FF, which
incorporates charge transfer and local polarization effects directly
into the additive potential functions, for metalloprotein simulations.

In this paper, we used data from a large set of structures
and energies based on density-functional theory (DFT) calcula-
tions that was created by an exhaustive structure search by Ropo
et al.43,44 The dataset comprises the proteinogenic amino acids in
various protonation states and their amino-methylated and acety-
lated (capped) dipeptides bound to Ca2+ and other divalent cations.
Using such data, we follow a complementary alternative to the estab-
lished molecular-fragment approach. Based on the ion–dipeptide
geometries and interaction energies in the dataset, we compare the
performance of the polarizable Drude FF with three fixed-charge
FFs, namely, CHARMM (C36), AMBER, and OPLS-AA. The goal
of this comparative study is to (i) assess the ability of modern FFs to
accurately describe peptide–divalent cation interactions in a com-
plex chemical space, (ii) reduce the chemical space for future FF
development by locating atom-types of interest to provide insight
into how we may reduce the parameter space for optimization, and
(iii) assess the impact of the explicit account of charge-transfer (CT)
and local polarization effects between the protein host and the bound
cation using the CTPOL approach. First, we identified the chemi-
cal space where the Drude FF fails. We then show how this can be
amended by parameterization of a few selected parameters using two
different objective functions. By relating parameter space to confor-
mational space, we illustrate the utility of first-principles methods
such as DFT as a reference and the choice of objective function for
the future optimization of polarizable FFs.
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II. THEORY AND METHODS
A. Cation–dipeptide reference structures

The DFT-based references were built from a large dataset of
dipeptide structures, as depicted in Fig. 1, where R represents an
amino-acid side chain. The dataset includes various cations and bare
amino acids and dipeptides, with over 45 000 stationary points on
the respective potential-energy surfaces.43,44 In this paper, we stud-
ied only the Ca2+-bound dipeptides with a total of 2583 confor-
mations. The conformations and total energies of each molecular
system were calculated using the Perdew–Burke–Ernzerhof (PBE)
generalized-gradient exchange-correlation functional, chosen after
testing several other functionals.45,46 Energies were corrected for van
der Waals interactions using the Tkatchenko–Scheffler formalism.47

PBE with a pairwise dispersion correction represents a good com-
promise between accuracy and computational cost. This choice of
the functional was validated in the original dataset article.43,44,46 Fur-
thermore, the generalized gradient approximation (GGA) functional
PBE has been shown to produce acceptable mean-absolute errors in
comparison to coupled cluster calculations for related systems.46 The
focus of the cited work is to check whether one can represent the
complexity of an all-electron approach with an extended force field;
thus, “any” DFT method would suffice.

All the electronic structure calculations were carried out using
the numeric atom-centered basis set all-electron code FHI-aims.48

The standard tight settings of FHI-aims for all species were used. The
initial global conformational search was performed by a basin hop-
ping search strategy using the OPLS-AA FF,9 and the energy minima
identified were subsequently relaxed using PBE+vdW with light set-
tings.49 The identified set of structures was then subjected to a fur-
ther first-principles refinement step by ab initio molecular dynamics
with replica-exchange to enhance sampling.50 The obtained con-
formers were further relaxed using PBE+vdW (tight settings) and
clustered using a k-means clustering algorithm with a cluster radius
of 0.3 Å to obtain the final conformation hierarchies.51 The dataset
shows good agreement with available experimental data for gas-
phase ion affinities.43,44 A two-stage restrained electrostatic poten-
tial (RESP) fitting procedure was employed to obtain partial atomic
charges for various ion–peptide conformations based on electro-
static potentials calculated with FHI-aims48 at the level of theory
described above. RESP calculations were performed on a radial grid
of point charges fixed in a cubic space around the ion–peptide com-
plex. The 5 radial shells of point charges were generated in a region
between 1.4 and 2.0 multiples of the atomic vdW radius. The cubic
grid for RESP calculations contained 35 point charges along x, y,

FIG. 1. Structure of a dipeptide, with a variable side chain (R) that extends from
the alpha-carbon (Cα), which can be any one of the 20 proteinogenic side chains,
plus a few variations of His, namely, HSD (with hydrogen on Nδ), HSE (with hydro-
gen on Nε), and HSP (with hydrogens on both nitrogens), which are the standard
protonation states found in C36 and Drude FFs.

and z directions, respectively, to assess the electrostatic potential
(ESP) around the ion–peptide complex. The Antechamber suite of
the AmberTools package7 was used for RESP charge fitting.52

B. Additive force fields for peptide–ion interactions
All the additive FFs used in this study rely on the fixed-charge

representation illustrated in Fig. 2. In additive FFs, atoms are rep-
resented as hard spheres with point charges (“balls” in the figure)
and bonds as springs (“sticks” in the figure) with a number of
intra-molecular terms to account for bond, angular and dihedral-
improper degrees of freedom.

The intra- and inter-molecular interactions in a polyatomic
system can be described by a potential-energy function given by

UFF = ∑
bonds

Kb(b − b0)
2 + ∑

1−3bonds
KUB(S − S0)

2 + ∑
angles

Kθ(θ − θ0)
2

+ ∑

dihedrals,n
Kψ,n[1 + cos(nψ − δn)] + ∑

improper
Kχ(χ − χ0)

2

+∑
i<j
εij
⎡
⎢
⎢
⎢
⎢
⎣

(

σij
rij
)

12

− 2(
σij
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

+∑
i<j

qiqj
4πϵrij

. (1)

In Eq. (1), K, b0, θ0, S0, χ0, n, δn, εij, σij, and q are empirically deter-
mined parameters. The force constants [K and parameters of the
harmonic terms (b0, S0, θ0, χo, n, and δn)] are usually obtained using
analysis of QM vibrational modes. The partial charges qi are gener-
ally obtained by fitting to electrostatic potential surfaces obtained via
QM. After determining the bonded parameters and partial charges,
the Lennard-Jones (LJ) terms (εij, σij) are finally fitted to reproduce
both gas-phase QM energies and condensed-phase thermodynamics
such as experimental hydration free energies.

FIG. 2. Ball and stick model of classical
FFs. Left: configuration of a proper dihe-
dral. Right: configuration of an improper
dihedral.
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In the present study, we examine the accuracies of the following
popular additive FFs: OPLS-AA,9 AMBER,7 CHARMM36m,4 and
CHARMM Drude FF with latest protein parameters3,53 (see Sec. II
C). OPLS-AA and AMBER employ a functional form similar to that
used by CHARMM, except that (i) OPLS-AA and AMBER do not
use the Urey–Bradley (UB) form for the intra-molecular angular
potential, and (ii) in AMBER and OPLS-AA, the standard dihedral-
angle torsion term is used for the out-of-plane distortions, which
corresponds to the improper term in Eq. (1). The AMBER FF used
in this work is AMBER10.54 OPLS-AA and AMBER data in this
paper were calculated using openMM7, a high performance toolkit
for molecular simulations.55 The CHARMM36m FF4 used to model
dipeptide–cation interactions was used with a set of non-bonded
fix (NBFIX) terms directly from the CHARMM-GUI portal without
any modifications.56

C. The Drude polarizable force field
In the Drude polarizable FF, an additional particle is attached

to every polarizable (heavy) atom, as depicted in Fig. 3. This particle
is assigned to a point partial charge and a constant mass of 0.4 amu
or 0.8 amu. The spring constant may also be a non-diagonal tensor,
which can capture anisotropic polarizability. The lone-pair parti-
cles are used to better represent the charge distribution in diverse
chemical groups found in proteins. The auxiliary Drude particles are
included in the extended Lagrangian framework57 and added to the
set of particles that contribute to the Coulomb electrostatic energy in
Eq. (1). They also contribute energy due to displacement from their
host nuclei, given by Eq. (2),

ED =
1
2∑p

KD,pd2
p. (2)

D. Electrostatic interactions and polarization
catastrophe

The transfer of the developed parameters for metalloproteins
to condensed-phase simulations is complicated by several issues
including polarization catastrophes as well as the limited set of
protein sites used by Li et al.10 The polarization catastrophe or
over-polarization phenomenon is due to fundamental differences
between QM and polarizable FFs, which neglect electron–electron
overlap and charge-transfer effects. When a polarizable atom is

close to a charged atom or another highly polarizable atom, one
or both of them may over-polarize, and the mutual inductance of
dipoles can cause a chain reaction that induces over-polarization
of other atoms, thus amplifying the effect. The phenomenon has
been observed in systems with high charge density4 and has been
documented previously with the Drude polarizable FF, especially
when divalent ions and charged moieties are involved.3 A popu-
lar method for handling over-polarization in the Drude polarizable
model relies on the implementation of a Thole damping function
that screens the Coulomb potential at short distances.58 The Thole
function, Eq. (3), effectively screens the electrostatic interaction
at short distances, leaving the long-range interactions untouched,
using a distance-dependent function,59

Sij(r) = 1 −
⎛

⎝

1 +
tijr

2(αiαj)
1
6

⎞

⎠

exp
⎡
⎢
⎢
⎢
⎢
⎣

−tijr

(αiαj)
1
6

⎤
⎥
⎥
⎥
⎥
⎦

. (3)

In Eq. (3), tij is a pair-specific Thole factor between atoms i and j,
α are the atomic polarizabilities, and r is the interatomic distance.
The damping effect applies not only to the atomic nuclei but also
to the Drude particles. This prevents a polarization catastrophe at
short distances, while maintaining the electrostatic interactions at
longer distances. The effective distance and strength of damping are
controlled by the Thole factor, tij.

The effect of such a function on the Coulomb potential is
depicted in Fig. 4. Essentially, it corrects the Coulomb potential to
treat the atom as if it were a smeared charge distribution, removing
the singularity of a point charge. Though Thole damping is effec-
tive against over-polarization, it contains some inadequacies because
it does not account for many-body polarization effects.60 However,
optimizing the exponent of the Thole function (tij) may improve
the accuracy61 and aid the description of cation–peptide interaction
energies.

E. Assessment of the cation–dipeptide interaction
energies

The ion–dipeptide interaction energies for all additive models
obtained on the basis of QM geometries from the dipeptide dataset
use infinite cutoffs. The ion–dipeptide interaction energies for polar-
izable models were obtained by relaxing the Drude particles via

FIG. 3. Schematic of a Drude polarizable atom and resulting FF. Left: conceptual depiction of electron density around an atom polarized by an external electric field, E⃗. Middle:
Drude model of the same atom, with Drude particles in blue. The Drude particles have a mass of mD and charge of qD, whereas the parent nucleus has a mass of mN and a
charge of qN . The distance d is controlled by a spring with the force constant KD. Right: a physical dipole with field lines representing potential gradients.
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FIG. 4. Effect of Thole damping function for various tij . Each curve represents a
particular screening factor (tij ) where the color represents its value. The top panel
shows Sij as a function of distance r, and the bottom panel shows the correspond-
ing screened Coulomb potential energy (kcal/mol). The dashed line represents the
infinite Thole limit, where there is no screening [Sij (r) = 1 ∀ r ].

steepest-descent for 500 steps followed by adopted-basis Newton–
Raphson minimization for 100 steps to a final gradient of 10−5 kcal
mol−1 Å−1, with the atomic positions restrained by a force constant
of 107 kcal mol−1 Å−2 to the reference QM geometry from the dipep-
tide dataset. To evaluate the accuracy of the different FFs, we calcu-
lated the root-mean-squared deviation (RMSD) for each ion-bound
dipeptide as follows:

RMSD = [
1
N ∑i

(Ei
QM − E

i
MM)

2
]

1
2

, (4)

where N is the total number of conformations and Ei is the interac-
tion energy of the ith conformation.

F. Charge transfer modeling with the CTPOL FF
The CTPOL model41,42 incorporates charge transfer and local

polarization effects into additive force fields by modifying the con-
ventional Coulombic term to account for ligand → cation charge
transfer and including an additional term in the potential func-
tion (see below) to account for the induced polarization due to
the bound cation. It enables incorporation of partial-charge transfer
and induced polarization effects into an existing additive potential
function as follows:

UCTPOL
Nonbonded = EvdW + ECT

stat + Epol. (5)

The electrostatic interactions in CTPOL include dynamic charge
transfer between the bound cation and atoms comprising its coor-
dination shell (O,S, and N). The amount of charge transferred by a

metal-ligating atom (L) to a metal cation (Me) is assumed to depend
linearly on the interatomic distance, rMe–L, and is given by

ΔqMe–L = aLrMe–L + bL. (6)

The aL and bL coefficients in Eq. (6) were obtained using Parti-
cle Swarm Optimization (PSO) and reproducing the relative QM
interaction energies as the objective function. PSO relies on a pop-
ulation of solutions, called particles, which move through the high-
dimensional parameter space with directed velocity vectors to find
optimal solutions.62,63 PSO was performed via the python package
pyswarm.64 The amount of charge transferred, ΔqMe−L, is added to
the partial charge on atom L from a given classical FF to yield the net
partial charge on atom L at any given simulation time step, t,

qL = q0
L + ΔqMe−L. (7)

The polarization energy Epol can be computed according to

Epol
= −

1
2∑i

μi ⋅ E0
i , (8)

where the summation is over the cation and the metal-ligating
amino-acid heavy atoms, μi is the dipole induced on atom i, and E0

i is
the electrostatic field produced by the current charges in the system
at a polarizable site i. Polarizabilities of each atom type are taken as
the average value of all corresponding effective atomic polarizabili-
ties from the DFT data. Following previous work,41,42 we employ a
cutoff distance rijcutoff equal to the sum of the vdW radii of atoms i
and j scaled by a parameter γ = 0.92 so that interatomic distances rij
≤ rijcutoff are set equal to rijcutoff to avoid unphysically high induced
dipoles at close distances to each other and to the permanent electric
charges. The additive AMBER10 FF54 was used to describe dipep-
tides and long-range interactions between Ca2+ and dipeptides. The
atom-type definitions for CTPOL developed in our work are shown
in Fig. SI 1. The implementation and calculations of the CTPOL
model were performed with openMM7.55

G. MD simulation protocol
To evaluate the performance of the various Drude polarizable

FF parameters used in this paper, we ran MD simulations on the
truncated structure of the N-lobe of the human calmodulin (CaM)
protein (PDB 1CLL),65 containing Ca2+-bound EF-hand loops I and
II. We used the CHARMM-GUI platform56 to build a truncated
CaM with Ca2+ bound to two characterized sites solvated in a neu-
tralizing 150 mM CaCl2 aqueous solution. The original crystal struc-
ture (1CLL) was solved in the acidic solution (pH = 5.0), containing
50 mM MgCl2, 5 mM CaCl2, and 50 mM NaOAc.65 We chose a
higher than physiological concentration of CaCl2 to test ion inter-
actions with the highly charged protein surface. The cubic simula-
tion box (63.9 × 63.9 × 63.9 Å3) contained 1 protein molecule, 28
Ca2+, 43 Cl−, and 8133 TIP3P water molecules.66 The solvated sys-
tem was first minimized using a staged-protocol of CHARMM-GUI
for 60 ns (10 ns for each stage) using NAMD2.14b1,67 with posi-
tional constraints applied to heavy protein atoms. The system was
then simulated for 250 ns in a constant-pressure ensemble (NPT) at
T = 298.15 K without any positional constraints using a time step of
2 fs. The electrostatic interactions were treated using the Parti-
cle Mesh Ewald (PME) method68 with a grid spacing of 1 Å and
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sixth-order interpolation with a real space cutoff of 12 Å. The LJ
interactions were smoothly switched off from 10 Å–12 Å. The atom-
pair list was updated every 20 steps. The LJ and electrostatic interac-
tions were computed every time step. The SHAKE algorithm (RAT-
TLE)69 was used to maintain the geometry of all bonds involving
hydrogen. The polarizable simulation system was built using a pre-
equilibrated box described above with the CHARMM-GUI/Drude-
Prepper option.70 The latest Drude FF for proteins53 was used with
different Thole parameters for Ca2+–O(carboxylate) interactions (as
described in Sec. III).

Langevin dynamics with a dual-thermostat scheme was used to
propagate the atoms and auxiliary Drude particles with the extended
Lagrangian formalism implemented in the NAMD package.67,71 The
thermostat acting on heavy (non-Drude) particles was set to Tatom
= 298.15 K. The Langevin damping coefficient was set to 5.0 ps−1.
Production runs of 250 ns were performed with TDrude = 0.5 K and
a spring constant for the atom–Drude bond of 1000 (kcal/mol)/Å
for the different parameter sets considered in our work. The first
50 ns were discarded for all analyses shown in the text. A damping
constant of 20.0 ps−1 was applied to Drude particles.57 A “hard-
wall” constraint was used to prevent large displacements of Drude
particles in the case of strong electrostatic interactions expected in
the simulation of divalent cation–protein interactions.72,73 The hard-
wall constraint distance was set to 0.2 Å, and a time step of 0.8 fs was
used in all MD simulations performed with Drude FFs.

III. RESULTS AND DISCUSSION
A. Force-field performance in modeling
ion–dipeptide interactions

The values of RMSD in cation–dipeptide interaction energies
relative to the QM dataset and prior to any parameter optimization
are plotted in Fig. 5. It is evident that the Drude polarizable FF is
more accurate than the non-polarizable FFs for almost all the stud-
ied dipeptide structures, with average RMSDs significantly lower
than 100 kcal/mol. When Ca2+ is in close proximity to charged car-
boxylate moieties, the auxiliary Drude particle of the oxygen atom is
pulled onto the cation by undamped electrostatic forces [Fig. 6(a)],
which causes the magnitude of the electrostatic energy to escalate
above computational threshold values of 108 kcal/mol, resulting in
unusually large RMSDs. However, even though the overall RMSD
is better for Drude compared with C36, the lowest three confor-
mations are in fact better captured by C36 [Fig. 6(b)]. The clear
outliers for the Drude FF are the interactions of Ca2+ with neg-
atively charged Asp and Glu side chains. Analysis of the outliers
indicates that this discrepancy is caused by the over-polarization
catastrophe phenomenon (see Sec. II D). Interestingly, although the
polarization catastrophe in both Glu and Asp is due to the Drude–
cation overlap, it occurs more frequently in Glu-dipeptide than in
Asp-dipeptide, where it only occurs in one conformation. This is
probably because the longer side chain of Glu allows a greater num-
ber of stable conformations, in which Ca2+ is close to the back-
bone oxygens and the carboxylate group. This appears to be a pre-
ferred coordination state for the ion when interacting with these
dipeptides.

Figure 7 provides further details on the chemical space where
the polarization catastrophe occurs. The Squared Difference (SD)

FIG. 5. Number of conformations and RMSD relative to the QM-interaction ener-
gies for each dipeptide residue. RMSDs are plotted for each of the four FFs prior
to any optimization or correction. For Asp and Glu, the Drude RMSDs are on the
order of 107 due to polarization catastrophe. wRMSD is the Boltzmann-weighted
RMSD defined in Eqs. (9) and (10) (see below).

of the interaction energy is on the order of 1016 kcal/mol due to
the polarization catastrophe in regions close to the two carboxy-
late oxygens. In Glu-dipeptide, the Drude FF evidently fails in the
region where there is a significant electronic overlap (<2.2 Å) due
to the polarization catastrophe discussed above. Although the aver-
age distance from ligating oxygen atoms to Ca2+ ranges from 2.37 Å
to 2.41 Å,74 a survey of high-resolution (<2.0 Å) PDB structures
containing nonredundant Ca2+ sites reveals several structures with
Ca–O distances <2.2 Å. Li et al.10 used chemical structures of Ca2+-
containing peptides with average coordination distances of 2.39 Å
in determining non-bonded parameters for Ca–O interactions and,
therefore, have not considered conformations with a significant
electronic overlap in their parameter determination. In particular,
Figs. 6 and 7 highlight the significance of possible electron over-
lap between Ca2+ ions and the OE1, OE2, OD1, and OD2 atom
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FIG. 6. (a) Polarization catastrophe in ASP dipeptide when Ca2+ is in close prox-
imity to the OD2 atom. The Drude particle of OD2 (atom-type DOD2) is abnormally
pulled away from its parent nucleus by the electrostatic force of Ca2+, which also
has its Drude particle (DCAL) abnormally far from its host nucleus. (b) Comparative
analysis of conformation-specific dipeptide: Ca2+ interaction energies between var-
ious FFs and QM. For Drude, conformations 69–94 and 96 experience polarization
catastrophe.

types. In the Drude FF, all four of these atoms are described by a
single atom type, namely, OD2C2A, and, thus, have the same set
of parameters. Note that Thole screening between this atom type
and Ca2+ has not been implemented in the original FF, and Thole
screening parameters were introduced only for ion–water oxygen
interactions.36 In Sec. III B, we show that its inclusion is vital to avoid
over-polarization.

B. Reduction of parameter space and avoiding
polarization catastrophe

The parameters that most significantly determine the interac-
tion energies between a metal cation and an Asp-/Glu-dipeptide
are the non-bonded LJ parameters ϵ, σ, between the carboxyl oxy-
gen and the ion as well as the electrostatic forces between them.
The partial charges had been carefully parameterized and are dif-
ficult to change due to their large degree of interdependency. The

FIG. 7. (a) Drude FF squared energy deviations of Glu represented as functions of
two collective variables—the distances in Å of Ca2+ to OE1 and OE2 carboxylate
oxygen atoms of Glu. Red dots represent each of the Glu conformations as a
function of these two collective variables. Colors represent the SD between the QM
and MM energy. The region where polarization catastrophe occurs is circled and
has SD values of ∼1016. (b) QM interaction energies for Ca2+–dipeptide fragments
as functions of the two collective variables described above for (a). Both surfaces
are obtained by triangle-based linear interpolation of the data.

same is true for the polarizabilities and the Drude particle spring
constants. However, the NBFIX option in CHARMM invokes pair-
specific Thole screening factors tij and pair-specific LJ parameters
σij, which would ideally be driven and optimized against a panel of
condensed matter simulations. It is important to note that the LJ
parameters apply only to the nuclei, which are constrained to posi-
tions derived from QM reference structures; hence, optimization of
LJ parameters will affect the total energy of the system but not the
geometries of the Drude particles,53,75 which do not experience any
LJ potentials. Since the nuclei are constrained to the QM-optimized
geometry, the only degrees of freedom during energy minimization
are those of the Drude particle positions. Thus, including a pair-
specific Thole screening factor will affect not only the energy of the
system but also the locations of the Drude particles, although their
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impact is relatively small except when there is a significant electron
overlap.

To illustrate the effect of the pair-specific Thole parameter (tij)
between the carboxylate oxygen and Ca2+, we calculated the Drude-
FF interaction energies between Ca2+ and Asp-/Glu-dipeptide for
three different values of tij and compared them with QM interac-
tion energies in Fig. 8. By default, if a pair-specific Thole is not
specified for non-bonded pairs, tij = ∞ for that pair, i.e., Sij = 1,
and there is no electrostatic screening of the Coulomb potential.
This is represented by the dashed line in Fig. 8. We also computed
the interaction energies at tij = 3.0 and tij = 2.6, where tij = 2.6
results in a stronger electrostatic damping. Figure 8 illustrates the
utility of the pair-specific damping factor in controlling polariza-
tion catastrophes in problematic conformations, without substan-
tially altering the energy surface in the rest of the conformational
space. For Glu [Fig. 8(a)], the catastrophe occurs in a large num-
ber of conformations, increasing the chances of it occurring in real
simulations. For Asp [Fig. 8(b)], the catastrophe occurs in a much
lower energy region; thus, it could be problematic even though
only one conformation suffers from this phenomenon. Further-
more, even when the Thole parameter is introduced, if it is not
strong enough (tij = 3.0), then some conformations can still have
unrealistically low energies due to the tendency to overpolarize, but
they are still of the same order of magnitude as the QM minimum
energies. This may result in hard-to-detect over-polarization phe-
nomena in simulations and hampers the development of balanced
polarizable FFs.

C. Local environmental effects in backbone
carbonyl–Ca2+ interactions

The dipeptide–cation dataset allows one to explicitly assess
subtle, but important, effects of local changes in the electrostatic

FIG. 8. Interaction energies of the Drude FF compared with QM for three val-
ues of the pair-specific Thole parameter for interaction between Ca2+ (CALD) and
Glu/Asp carboxylate oxygen (OD2C2A). The values of the Thole parameter are
tij =∞ (dashed line), 2.6 (green), and 3.0 (red), which are illustrated for modeling
interaction energy between Ca2+ and Glu (a)- and Asp-dipeptide (b), respectively.

environment on the peptide–ion interactions. The chemical space
mapped out in the current QM dataset is a good representative
of the Ca2+-binding sites found in the PDB surveys,76,77 which
show Asp/Glu carboxylates to be the most frequent first-shell lig-
ands followed by the backbone carbonyl and water ligands. In
accord with the trends found in the PDB surveys, the most com-
mon atoms that coordinate Ca2+ are the carboxylate oxygens for
the Asp-/Glu-dipeptide (OE1, OE2, OD1, and OD2) and the acety-
lated terminal carbonyl oxygen (OY) or backbone carbonyl oxygen
(O) for the other dipeptides, as shown in Table SI 1. Therefore,
the dataset enables the exploration of the potential impact of the
local changes in the chemical environment on the peptide–Ca2+

interactions.
In the Drude protein FF, OY and O are represented by the

same atom type (OD2C1A), which, while making the parameter
exploration easier, may reduce the accuracy in the description of
ion–ligand interactions. Indeed, the SD between the MM and QM
interaction energies as a function of Ca2+–OY and Ca2+–O distances
in FigG. SI 2 indicates a slight asymmetry in interaction energies
resulting from the acetylation and an increase in polarity of the coor-
dinating carbonyl oxygen, which is not captured in the FF if the same

FIG. 9. Boltzmann weights applied to Glu-dipeptide–Ca2+ interactions. (a) Boltz-
mann weight vs conformation ID at various RTs (0.593–32). The blue curve is the
corresponding reference QM interaction energy. (b) Boltzmann-weighted squared
deviations with RT = 8 (wSD) and unweighted squared deviations (SDs) plotted for
the Drude FF interaction energies.
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TABLE I. Parameter change summary for the pair-specific Ca-OD2C2A Thole parameter (tij ) and LJ parameter (σ ij ).a

Parameter DRUDE DRUDE_T2.6 DRUDE-wRMSD

tij (NBTHOLE) N/A 2.600 00 1.400 00
σij(NBFIX) (Å) 3.515 00 3.515 00 2.891 43
RMSD (Asp) (kcal/mol) 2.28 × 107 28.93 8.43
RMSD (Glu) (kcal/mol) 8.17 × 107 24.00 12.99

aThe last column lists the parameters of DRUDE_OPTIMUM also illustrated by Fig. SI 3.

atom type is used for both OY and O. The deviations from QM cal-
culated interaction energies generally occur when the Ca2+–OY and
Ca2+–O distances are between 2.10 Å and 2.25 Å, where a significant
electronic overlap (repulsion) exists.

D. Optimizing parameters against DFT energies
using a Boltzmann-weighted RMSD

It is crucial to consider carefully how to evaluate the relation-
ships between energy surfaces represented in MM models and the
DFT-based energy surfaces. Since it is not possible to fit all parts
of the two surfaces to arbitrary precision, which parts of the sur-
faces are most important? A common and very successful approach
is to focus on a set of selected interaction directions and meticu-
lously scan them using resulting QM data to fit the function. One
fitting criterion often used is the RMSD between the two surfaces
defined in Eq. (4). This method puts more weight on parts of the
energy surface whose absolute values are larger. However, the weight
on the minima may not be enough. The true weight of each ion posi-
tion should closely represent the Boltzmann weight of the system
at those positions. One way to account for this is to have a higher
density of reference structures near the minima, with the number
of grid points for sampling being proportional to the Boltzmann
weight. This could be more expensive, depending on the number
of points. Another approach is to take a grid of points, calculate the
Boltzmann weights a posteriori, and apply them to the fitting func-
tion. Taking this approach yields an adjusted scoring function, the
Boltzmann-weighted RMSD (wRMSD),

wRMSD = [∑
i
wi(Ei

QM − E
i
MM)

2
]

1
2

, (9)

where we have modified the RMSD in Eq. (4) by including a
Boltzmann factor,

wi = A exp[
−Ei

QM

RT
], (10)

where A is the normalization constant (so that ∑i wi = 1) And RT
is the “temperature factor” that does not has any physical meaning,
but affects the flatness of the distribution.

Figure 9 shows an example of applying Boltzmann weights to
the Glu-dipeptide–Ca2+ system. Figure 9(a) shows how the Boltz-
mann weights (wi) vary with increasing RT. The higher the QM
interaction energy, the less the weight, but the temperature fac-
tor (RT) determines the degree of relative importance of the lower
energy conformations. RT = ∞ is the same as using the RMSD
since all weights would be identical, whereas low values of RT will

put more relative weight on the minima. Figure 9(b) shows how
the weighted squared deviation differs from the unweighted one
for RT = 8. While the weighted squared deviations generally put
more emphasis on low-energy conformations near the QM minima,
it does blow up for conformations where polarization catastrophes
occur. Thus, with an appropriate choice of RT, one can get a scor-
ing function for the parameter optimization that puts more weight
on the low-energy minima, but can still detect large outliers at other
energies.

Supplementary material, Table S1, shows that in the majority
of Glu- and Asp-dipeptide conformations, the nearest atoms to Ca2+

are OE1, OE2, OD1, and OD2, which are given as a single atom type:
OD2C2A. This means that they are identical in their non-bonded
interaction with ions. Thus, to optimize the interactions of Ca2+

with carboxylate-containing dipeptides, we targeted the pair-specific

FIG. 10. RMSD estimated with Eq. (4) for the ensemble of conformations of
Glu:Ca2+ (top panel) and Asp:Ca2+ (bottom panel) for various FFs used in our
study. Drude data are shown for the Thole parameter set to 2.6 (D-T2.6) and opti-
mized LJ and Thole parameters using Boltzmann-weighted RMSD (wRMSD-D).
CTPOL parameters were fitted for the AMBER10 FF with (i) only a local polariza-
tion response term (POL), (ii) unrestricted charge-transfer contribution (CTPOL),
and (iii) with restricted charge-transfer contribution (CTPOL-R).
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FIG. 11. Partial charge of ligand atoms in
Ca2+–Glu-dipeptide vs distance between
an atom and Ca2+. (a) and (b) show
charges for the carboxylate oxygens
(atom-types 127 and 128, as shown in
Fig. SI 1). (c) and (d) show charge vs
distance dependence for backbone nitro-
gen (atom-type 118) and backbone oxy-
gen (atom-type 726), respectively. All
charges are shown in electron units. The
red line represents the atom’s partial
charge in the standard AMBER10 FF.
The calculated RESP partial charges are
shown for comparison as green dots.

interaction between the Ca2+ (i) and OD2C2A (j) and optimized the
Thole parameter tij (NBTHOLE) and the LJ σij parameter (NBFIX).
This was done by running Drude interaction energy calculations for
eight different NBTHOLE values, each with eight different NBFIX
values, resulting in 64 different parameter combinations. The NBT-
HOLE values ranged from 1.2 to 2.6, whereas the NBFIX values
ranged from 2.72 to 3.92. For each of these parameter combina-
tions, the wRMSD given by Eq. (9) was calculated for Glu- and
Asp-dipeptide interaction energies, and the global minimum with
respect to the wRMSD was chosen as the optimum parameter set.
The changes in parameters are summarized in Table I.

Figure SI 3 shows the improvement in accuracy due to the
new parameter set over the original one. The optimized Drude FF

(referred to as Drude-wRMSD) no longer displays any polarization
catastrophe and gives a much closer fit to the QM interaction ener-
gies, particularly near the minima. It is apparent from Fig. SI 3, Fig. 8,
and Table I that electrostatic optimization via the Thole parame-
ter alone cannot reproduce QM energies. The LJ σij-parameter also
has to be changed in order to match QM energy across a broader
range of conformations. Optimization of Thole and LJ parameters
has not only produced better RMSDs between QM and MM ener-
gies but also reduced the fluctuations in the energy trend. This
implies that the ranking of conformations by energy more closely
resembles the ranking of QM energies for most of the conforma-
tional space. However, the plateau region of the QM energy of Glu-
dipeptide, which is present in other FFs (see Fig. 6) as well as in

FIG. 12. (a) The N-lobe of the CaM pro-
tein with Loop I and II with two bound
Ca2+ ions (gold spheres). The positions
of the aspartate residues are shown in
red sticks, while glutamates are shown
in green sticks. The Ca2+ ions from the
bulk solution are shown as magenta
spheres. Water molecules and Cl− ions
are not shown for clarity. (b) Time traces
of the RMSD for protein heavy atom
coordinates relative to the x-ray structure
(PDBID:1CLL) for the C36 and Drude
FFs. First 50 ns of all MD runs were dis-
carded, and only production runs of 200
ns were used.
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Drude_T2.6, is absent for this parameter set. The weighted RMSD
function puts a very low weight on this part of the conformational
space due to the high energies. However, this is an important part
of the conformational space as it comprises the conformations with
the shortest distances between Ca2+ and the carboxylate oxygens. A
larger exploration of the parameter space may be required to rem-
edy the discrepancy in this region, and the scoring function may also
need to be revisited in order to treat these regions on a more equal
footing.

E. The extent of charge transfer in cation
interactions with carboxylate groups

Although future development of a balanced Drude FF for
cation–protein interactions is under way, it may still be limited when
charge-transfer effects between a cation and coordinating ligands
are significant. We have previously performed a PDB survey to elu-
cidate the effect of the secondary shell ligands on cation-binding
to metalloproteins using DFT and DFT-tight binding (TB) meth-
ods.11,76 We found that perturbation of the charges on coordinating
ligands due to Ca2+-binding is significant, amounting up to 15%–
20% of partial-charge change on the coordinating oxygen atoms.
This effect is not limited to ligands in the first coordination shell,
but impacts ligands in the second shell, albeit to a lesser extent.
Since the CTPOL formalism41,42 incorporates both local polariza-
tion (POL) and charge-transfer (CT) effects into the interaction
energy (see Sec. II F), we employed this FF model to study partial-
charge transfer for the two challenging Asp–Ca2+ and Glu–Ca2+

systems to potentially present a strategy for FF re-calibration of
cation–peptide interactions. Importantly, it allows one to investigate
a model containing just a local polarization response term (POL) or
a model that additionally includes the charge-transfer contribution
(CTPOL).

Table SI 2 summarizes the parameters in the CTPOL FF used,
namely, atomic polarizabilities and charge transfer aL and bL coef-
ficients in Eq. (6) fitted for the AMBER10 FF (see Sec. II). The
coefficients in Eq. (6) used QM interaction energies as the input.
It is important to note that the choice of QM level of theory
for the reference dataset affects the absolute values of the total
energies. However, Ngo et al.11 studied different all-electron DFT
functionals and showed that the absolute binding energies com-
puted using different functionals and basis sets can vary by up
to 10% depending on the method, but the corresponding relative
binding energies vary by only 4%–5% relative to calculations per-
formed with higher basis sets. Hence, our study will focus on the
trends and elucidate areas to pay attention to in metalloprotein FF
development.

The RMSD values in Fig. 10 demonstrate the apparent usabil-
ity of Drude FFs with a control for polarization catastrophes via a
carefully developed set of NBFIX/Thole parameters for simulating
larger systems. It also shows that a standard force field (in this case
Amber10) extended by a local polarization term [Eq. (8), POL] can
be optimized against available higher-level data. This POL FF sig-
nificantly improves the performance of the original FF. Adding a
charge transfer term (CTPOL) without any constraints on the charge
transfer extent led to further improvement in the RMSD, as evident
in Fig. 10(b). However, the charge transfer parameters in Eq. (6)
yield unphysical partial charges such as a negative charge on Ca2+,

probably because they were determined to reproduce the relative
QM interaction energies as the objective function without any con-
straints on the amount of charge transfer. Hence, they compensate
for the inherent errors of the standard AMBER10 FF, which yields a
RMSD from QM energies that is generally greater than that of C36
(Fig. 5). One way to address this issue is to restrict the amount of
charge transfer in the model denoted as CTPOL-R. Figure 11 shows
how this improves the charges on a few selected atoms, particularly
the carboxylate oxygens of Glu-dipeptide [Figs. 11(a), 11(b), and
11(d)].

However, implementing this fix alone leads to an RMSD of
35.7 kcal/mol, which is clearly not satisfactory. If, however, we
re-optimize the original AMBER10 FF vdW parameters of atoms
involved in direct interactions with Ca2+, we obtain a reasonable
RMSD of 15.4 kcal/mol for CTPOL-R (CTPOL with restricted
charge transfer), which is comparable to the RMSD of CTPOL with-
out any restriction (16.4 kcal/mol). The list of adjusted vdW param-
eters is provided in supplementary material, Table SI 3. Although,
the resulting charge transfer term is only about 2 kcal/mol, tweaking
the original parameters of the AMBER10 FF was crucial for simulta-
neously correcting the signs of the charge transfer and reducing the
RMSD.

F. Evaluation of Drude-FF parameters
in metalloprotein simulations

The Drude, Drude_T2.6, and Drude-wRMSD polarizable FF
parameters were assessed and compared with the C36 parameters by
using them in MD simulations of the N-lobe of the human calmod-
ulin (CaM) protein shown in Fig. 12(a). The RMSD values for all
FFs collected in Fig. 12(b) are comparable, with significant flexibil-
ity observed for loops I and II (RMSD ∼ 2.4 Å–2.7 Å). The highest
RMSD values are observed for the truncated portion of the central
helix and are related to partial bending and unwinding (region-
specific RMSD > 3.5 Å). While similar dynamics has been reported
for the central helix in nuclear magnetic resonance (NMR), spec-
troscopic and modeling studies,18,78–80 it may still be driven by the
choice of the reduced model.

Table II compares the coordination numbers of Ca2+ in Loop
I and Loop II binding sites obtained with different FFs and the

TABLE II. Calcium coordination numbers for EF-hand Loop I and Loop II sites.a

Excluding water (including water)

Loop I Loop II

C36 6.45 (7.31) 6.71 (7.64)
Drude 5.95 (7.31) 5.55 (6.45)
Drude-T2.6 5.84 (7.01) 5.81 (6.91)
Drude-wRMSD 5.99 (5.99) 5.95 (5.97)
ECCR74 5.94 (7.00) 7.03 (7.04)
1CLL60 6.00 (7.00) 6.00 (7.00)

aCa2+ coordination numbers were determined by integration over the first peak of the
ion-oxygen RDF, which included oxygen atoms of water and amino-acid residues in the
RDF calculations; numbers with parentheses include both protein and water ligands,
whereas those without exclude the water ligand.
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scaled-charge approach referred to as ECCR17,18 with those found
in the x-ray structure. The high-resolution (1.7 Å) crystal struc-
ture (PDBID:1CLL) with the positions of the crystallographic waters
resolved shows six protein ligands and a water molecule directly hep-
tacoordinated to the divalent cation in each site. An important and
unique feature of the binding sites reported in 1CLL is the presence
of bidentate (Glu) and monodentate coordination (Asp) modes.65

The reproduction of the monodentate coordination by aspartates
present in the x-ray structure represents a significant challenge for
the additive FFs, where partial charge is distributed equally between
two coordinating oxygens.18,81 Indeed, the C36 FF exhibits a shift
from monodentate to predominantly bidentate coordination for the
binding site in loop II (Asp 56) and to a lesser extent in loop I (Asp
22), resulting in an average of more than six calmodulin oxygens in
the calcium coordination shell.

Interestingly, the scaling approach used in the ECCR study
with the charge on Ca2+ scaled down to +1.5e still led to bidentate

coordination in Loop II. The authors suggested that the coordina-
tion number of 7 observed in the charge-scaling approach is due to
the recruitment of an additional aspartate (Asp 64) into the ion coor-
dination.18 In contrast, we did not observe stable coordination by
Asp 64 in any of our simulations. All of the Drude models resulted
in protein coordination numbers between 5.55 (Drude) and 5.98
(Drude-wRMSD), showing predominantly monodentate coordina-
tion for both aspartates (Asp 22 and Asp 56) in accord with the
coordination mode reported in the x-ray structure.18 The Drude-
wRMSD model shows a near ideal coordination mode for the pro-
tein ligands, but fails to reproduce the retention of a Ca2+-bound
water molecule in Loop I and Loop II.

Analysis of minimal distances between Ca2+ and protein lig-
ands reveals a potential issue that may explain why the Drude-
wRMSD model resulted in the release of a water molecule from
the first coordination sphere. The Drude-wRMSD model rou-
tinely shows unphysical distances <1.5 Å between the cation and

FIG. 13. (Top) Characteristic snapshots of a single EF-hand CaM in the solution with 150 mM CaCl2 with contact numbers 9 and 4 observed in simulations with C36 (left)
and Drude-wRMSD (right) FFs, respectively. In both snapshots, the two Ca2+ ions bound to sites in Loop I and II are shown as green spheres, while Ca2+ ions recruited from
the bulk solutions are shown as gold spheres. Asp and Glu residues of CaM are shown as red sticks. Bottom left: The distribution of the contacts between Ca2+ and COO−

reported for all FFs considered in this work. Bottom right): Time traces for CN calculated with different FFs.
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negatively charged lone pairs located on the carbonyl or carboxy-
late oxygens, both for ions bound to sites in Loop I and Loop
II and those recruited from the bulk phase to coordinate solvent-
exposed residues. This issue has also been noted in all the simula-
tions performed with the original Drude parameters for Ca2+ with
ion–oxygen lone-pair distances as short as 1.55 Å, the correspond-
ing Ca2+–O(carboxylate) coordinating distances between 1.9 Å and
2.2 Å, and the first peak of the radial distribution function (RDF)
located at 2.05 Å, which is significantly shorter than 2.30 Å–2.45 Å
observed in other proteins.74 The first peak in the RDF between Ca2+

present in the bulk solution and carboxylate oxygens is located at
2.10 Å for Drude-wRMSD and at 2.35 Å for Drude. The introduc-
tion of the Thole parameter equal to 2.6 combined with adjusted
NBFIX values appears to correct this issue. Using the Drude-T2.6 FF,
the shortest ion–lone-pair distance is 1.83 Å, the average distance is
1.96 Å, and the first peak in the RDF between Ca2+ and the carboxy-
late oxygens is located at 2.40 Å, in accord with the results of the
PDB surveys.74,76 The unphysically short ion coordination distances
observed in Drude-wRMSD lead to an “over-stabilization” phe-
nomenon and presumably an over-binding on the protein surface,
as suggested by studies of ion transport in ryanodine receptors37 and
porins.39

Recent comparative analysis of MD simulations and capil-
lary electrophoresis experiments for dications binding to insulin17,19

indicates that specific and very tight binding of cations in the phys-
iological pH range leads to over-accumulation of mobile charges on
the protein surface modeled with non-polarizable FFs.17 For exam-
ple, up to 20 Ca2+ were reported to bind stably to the full CaM struc-
ture, in stark contrast with the anticipated four ions bound to sites
present in the EF hands.17 By introducing ECCR corrections with
CHARMM36 parameters, the overall number of Ca2+ ions reduced
drastically to ∼6, or 3 cations per lobe. To compare the performance
of the polarizable FFs considered in our study to results reported
by Duboué-Dijon et al.,17 we computed probability distributions for
the Ca2+–carboxylate contact number (CN). The contact distance
R between a cation and an Asp/Glu carboxylate group was defined
based on the position of the first minimum in the RDF between Ca2+

and the carboxylate carbon atom. It was set to R = 4.1 Å in accord
with R = 4.0 Å used by Duboué-Dijon et al.19 While our simulation
results obtained for a single CaM lobe containing two sites in Loop I
and II cannot be directly compared with those obtained by Duboué-
Dijon et al.17,19 for the full CaM structure, the overall trend appears
to be similar. In simulations using the C36 FF, the average CN is 8.5
with a single carboxylate group coordinating up to two cations for
up to hundreds of nanoseconds (see Fig. 13). Compared to C36, the
average CN of 4 for all the Drude models studied is much smaller.
However, the Drude-wRMSD features a very broad distribution with
CN up to 6 routinely present.

The charge scaling used by Duboué-Dijon et al.17,19 led to the
destabilization of the cation-binding sites present in the EF hands
(Loop I and Loop II sites) in under 60 ns of production MD runs.
In our simulations, however, no cation unbinding from Loop I and
Loop II was observed in 200 ns. We used 150 mM CaCl2, which
is expected to increase the cation concentration at the protein sur-
face. In simulations performed with Drude parameters, no cation
exchanges were observed; e.g., once Ca2+ is recruited from the bulk
solution to the binding pocket, it remained bound for the whole
duration of the simulation. This is especially apparent with the

original Drude force field, where CN gradually rose from 2 to 3 and
then to four cations stably bound to the carboxylate residues fac-
ing the solution (Fig. 13). For the Drude-wRMSD simulations, the
cations bound to Loop I and Loop II remain coordinated by pro-
tein atoms only, and no water molecule was recruited to the first
coordination shell.

IV. CONCLUSIONS AND OUTLOOK
In summary, we have performed a comprehensive benchmark-

ing of the existing FFs for Ca2+–dipeptide interaction energies
against a comprehensive QM dataset. Several areas for the potential
improvement of metalloprotein models in the context of the polar-
izable FFs were identified, notably, undamped electrostatic forces
causing the Drude oxygen to overlap with Ca2+ [Fig. 6(b)] when it is
near the Asp/Glu carboxylate. We show how this may be ameliorated
by an illustrative parameterization of Ca2+ interaction energies with
Glu/Asp-dipeptides using RMSD and weighted RMSD approaches.
This leads to a better performance for the reproduction of the gas-
phase energetics with some notable exceptions present in the broad
conformational space sampled in the QM dataset. With the CTPOL
method, problems related mainly to unphysical charges on Ca2+

arose in parameterizing the same Glu/Asp-dipeptide in a similar
region of the conformational space. This was substantially reme-
died by imposing restrictions on the amount of charge transfer and
reparameterizing some of the original parameters of the additive FF.
However, none of the parameter sets tested in our study are at a
stage where they can be recommended for large-scale metalloprotein
simulations in the condensed phase.

We have taken a first step toward relating the parameter space
to the conformational space with the current analysis. By express-
ing the conformational space in terms of distances between the
cation and coordinating atoms, we may determine better parame-
ter subspaces using RMSD and wRMSD of interaction energies for
fitting. The next logical goal would be to test other scoring func-
tions such as binding energies rather than interaction energies, or
relative interaction energies instead of absolute interaction ener-
gies. Each set of optimized parameters obtained for a subset of the
dataset and parameter space should be tested by performing con-
densed matter simulations. This would allow us to identify the strat-
egy that produces the best relative improvement, which can then
be applied to the whole dataset with a larger parameter space. The
combination of QM-led initial parameter development and com-
prehensive testing in the condensed phase would help us to capture
more accurate dynamical and structural properties of ion binding to
biomolecules.

While a comprehensive QM dataset complements sparse exper-
imental data and helps us to elucidate the key problems in parame-
terization, certain gas-phase QM conformations may not be perti-
nent in a solvated protein environment where the effective dielec-
tric constant is generally >1. In the future, we advocate the use of
micro-solvated QM systems such as metal-bound dipeptides sur-
rounded by nearby water molecules or larger solvated QM/MM
systems with potential applications of force-matching algorithms.20

Another avenue for future work would be to derive CTPOL parame-
ters and systematically optimize the original FF parameters to repro-
duce micro-solvated QM or solvated QM/MM data as well as avail-
able experimental hydration structures and relative hydration free
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energies of all cations of the same charge.82 Such a parameteriza-
tion approach would lead to force fields that can better reproduce
the complex environments of biologically important metalloproteins
containing more than one type of cation.

SUPPLEMENTARY MATERIAL

See the supplementary material for atom-type definitions in
various FFs, parameters for the CTPOL-R/AMBER10 model, and
figures for additional energy scans.
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Salahub, A. M. Kolker, M. G. Kiselev, and S. Y. Noskov, Phys. Chem. Chem. Phys.
18(5), 4191–4200 (2016).
31A. V. Aleksandrov, B. Roux, and A. D. MacKerell, J. Chem. Theory Comput. 16,
4655 (2020).
32S. Patel and C. L. Brooks III, J. Comput. Chem. 25(1), 1–16 (2004).
33Z.-Z. Yang, J.-J. Wang, and D.-X. Zhao, J. Comput. Chem. 35(23), 1690–1706
(2014).
34T. Dudev, M. Devereux, M. Meuwly, C. Lim, J.-P. Piquemal, and N. Gresh,
J. Comput. Chem. 36(5), 285–302 (2015).
35Z. Jing, C. Liu, R. Qi, and P. Ren, Proc. Natl. Acad. Sci. U. S. A. 115(32), E7495–
E7501 (2018).
36H. B. Yu, T. W. Whitfield, E. Harder, G. Lamoureux, I. Vorobyov, V. M.
Anisimov, A. D. MacKerell, and B. Roux, J. Chem. Theory Comput. 6(3), 774–786
(2010).
37A. Zhang, H. Yu, C. Liu, and C. Song, Nat. Commun. 11(1), 922 (2020).
38V. Ngo, J. K. Fanning, and S. Y. Noskov, Adv. Theory Simul. 2(2), 1800106
(2019).
39J. D. Prajapati, C. Mele, M. A. Aksoyoglu, M. Winterhalter, and U. Kleinekathöfer,
J. Chem. Inf. Model. 60(6), 3188–3203 (2020).
40F. Villa, A. D. MacKerell, B. Roux, and T. Simonson, J. Phys. Chem. A 122(29),
6147–6155 (2018).
41D. V. Sakharov and C. Lim, J. Comput. Chem. 30(2), 191–202 (2009).
42D. V. Sakharov and C. Lim, J. Am. Chem. Soc. 127(13), 4921–4929 (2005).
43M. Ropo, M. Schneider, C. Baldauf, and V. Blum, Sci. Data 3(1), 160009 (2016).
44M. Ropo, V. Blum, and C. Baldauf, Sci. Rep. 6(1), 35772 (2016).
45J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865–3868
(1996).

J. Chem. Phys. 153, 144102 (2020); doi: 10.1063/5.0020768 153, 144102-14

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0020768#suppl
http://www.glados.ucalgary.ca
https://doi.org/10.1002/wcms.1393
https://doi.org/10.1002/wcms.1393
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1146/annurev-biophys-042910-155245
https://doi.org/10.1021/acs.chemrev.5b00505
https://doi.org/10.1038/nmeth.4067
https://doi.org/10.1021/acs.chemrev.8b00630
https://doi.org/10.1146/annurev-biophys-070317-033349
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1021/ct300156h
https://doi.org/10.1021/jp003919d
https://doi.org/10.1021/jp003919d
https://doi.org/10.1021/jp510560k
https://doi.org/10.1021/acs.jctc.5b00524
https://doi.org/10.1021/acs.jctc.6b00128
https://doi.org/10.1021/acs.jctc.9b01180
https://doi.org/10.1021/acs.jctc.9b01180
https://doi.org/10.1039/c7cp08185e
https://doi.org/10.1021/cr4004665
https://doi.org/10.1021/acs.chemrev.6b00440
https://doi.org/10.1063/5.0017775
https://doi.org/10.1021/jz502099g
https://doi.org/10.1021/acs.jpcb.7b12097
https://doi.org/10.1063/1.2965882
https://doi.org/10.1063/1.4928760
https://doi.org/10.1021/ct500918t
https://doi.org/10.1021/jp505875v
https://doi.org/10.1021/ct7000182
https://doi.org/10.1063/1.468398
https://doi.org/10.1021/jp984498r
https://doi.org/10.1039/c2fd20068f
https://doi.org/10.1063/1.2234774
https://doi.org/10.1021/jp910674d
https://doi.org/10.1039/c5cp04847h
https://doi.org/10.1021/acs.jctc.0c00111
https://doi.org/10.1002/jcc.10355
https://doi.org/10.1002/jcc.23676
https://doi.org/10.1002/jcc.23801
https://doi.org/10.1073/pnas.1805049115
https://doi.org/10.1021/ct900576a
https://doi.org/10.1038/s41467-020-14573-w
https://doi.org/10.1002/adts.201800106
https://doi.org/10.1021/acs.jcim.0c00389
https://doi.org/10.1021/acs.jpca.8b04418
https://doi.org/10.1002/jcc.21048
https://doi.org/10.1021/ja0429115
https://doi.org/10.1038/sdata.2016.9
https://doi.org/10.1038/srep35772
https://doi.org/10.1103/physrevlett.77.3865


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

46M. Schneider and C. Baldauf, arXiv:1810.10596 (2018).
47A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102(7), 073005 (2009).
48V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and
M. Scheffler, Comput. Phys. Commun. 180(11), 2175–2196 (2009).
49X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter,
and M. Scheffler, New J. Phys. 14(5), 053020 (2012).
50Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314(1), 141–151 (1999).
51J. A. Hartigan and M. A. Wong, J. R. Stat. Soc., Ser. C 28(1), 100–108 (1979).
52C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97(40),
10269–10280 (1993).
53F.-Y. Lin, J. Huang, P. Pandey, C. Rupakheti, J. Li, B. T. Roux, and A. D.
MacKerell, Jr., J. Chem. Theory Comput. 16(5), 3221–3239 (2020).
54V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling,
Proteins 65(3), 712–725 (2006).
55P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp,
L.-P. Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R.
Brooks, and V. S. Pande, PLoS Comput. Biol. 13(7), e1005659 (2017).
56S. Jo, T. Kim, V. G. Iyer, and W. Im, J. Comput. Chem. 29(11), 1859–1865
(2008).
57G. Lamoureux and B. Roux, J. Chem. Phys. 119(6), 3025–3039 (2003).
58B. T. Thole, Chem. Phys. 59(3), 341–350 (1981).
59E. Harder, V. M. Anisimov, T. W. Whitfield, A. D. MacKerell, and B. Roux,
J. Phys. Chem. B 112(11), 3509–3521 (2008).
60T. J. Giese and D. M. York, J. Chem. Phys. 120(21), 9903–9906 (2004).
61C. W. Liu, R. Qi, Q. T. Wang, J. P. Piquemal, and P. Y. Ren, J. Chem. Theory
Comput. 13(6), 2751–2761 (2017).
62J. Kennedy and R. Eberhart, paper presented at the Proceedings of ICNN’95 -
International Conference on Neural Networks, 1995.
63R. Poli, J. Kennedy, and T. Blackwell, Swarm Intell. 1(1), 33–57 (2007).
64A. Lee, https://pythonhosted.org/pyswarm/, 2014.
65R. Chattopadhyaya, W. E. Meador, A. R. Means, and F. A. Quiocho, J. Mol. Biol.
228(4), 1177–1192 (1992).
66W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein,
J. Chem. Phys. 79(2), 926–935 (1983).

67J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi,
R. Buch, G. Fiorin, J. Hénin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak,
R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten,
L. V. Kalé, K. Schulten, C. Chipot, and E. Tajkhorshid, J. Chem. Phys. 153(4),
044130 (2020).
68T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98(12), 10089–10092
(1993).
69J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. 23(3), 327–
341 (1977).
70S. Jo, X. Cheng, J. Lee, S. Kim, S.-J. Park, D. S. Patel, A. H. Beaven, K. I. Lee,
H. Rui, S. Park, H. S. Lee, B. Roux, A. D. MacKerell, Jr., J. B. Klauda, Y. Qi, and
W. Im, J. Comput. Chem. 38(15), 1114–1124 (2017).
71P. E. M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, and A. D. MacKerell,
J. Chem. Theory Comput. 9(12), 5430–5449 (2013).
72A. A. Kognole, A. H. Aytenfisu, and A. D. MacKerell, J. Mol. Model. 26(6), 152
(2020).
73H. Goel, W. B. Yu, V. D. Ustach, A. H. Aytenfisu, D. L. Sun, and A. D. MacKerell,
Phys. Chem. Chem. Phys. 22(13), 6848–6860 (2020).
74H. Zheng, M. Chruszcz, P. Lasota, L. Lebioda, and W. Minor, J. Inorg. Biochem.
102(9), 1765–1776 (2008).
75J. A. Lemkul, in Progress in Molecular Biology and Translational Science, edited
by B. Strodel and B. Barz (Academic Press, 2020), Vol. 170, pp. 1–71.
76T. Dudev, Y. L. Lin, M. Dudev, and C. Lim, J. Am. Chem. Soc. 125(10), 3168–
3180 (2003).
77E. Pidcock and G. R. Moore, J. Biol. Inorg Chem. 6(5-6), 479–489 (2001).
78J. Gsponer, J. Christodoulou, A. Cavalli, J. M. Bui, B. Richter, C. M. Dobson, and
M. Vendruscolo, Structure 16(5), 736–746 (2008).
79C. M. Shepherd and H. J. Vogel, Biophys. J. 87(2), 780–791 (2004).
80O. Y. Hui and H. J. Vogel, Biometals 11(3), 213–222 (1998).
81R. W. Wheatley, D. H. Juers, B. B. Lev, R. E. Huber, and S. Y. Noskov, Phys.
Chem. Chem. Phys. 17(16), 10899–10909 (2015).
82C. S. Babu and C. Lim, J. Phys. Chem. A 110(2), 691–699 (2006).
83H. Nguyen, D. A. Case, and A. S. Rose, Bioinformatics 34(7), 1241–1242
(2018).

J. Chem. Phys. 153, 144102 (2020); doi: 10.1063/5.0020768 153, 144102-15

Published under license by AIP Publishing

https://scitation.org/journal/jcp
http://arxiv.org/abs/1810.10596
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1088/1367-2630/14/5/053020
https://doi.org/10.1016/s0009-2614(99)01123-9
https://doi.org/10.2307/2346830
https://doi.org/10.1021/j100142a004
https://doi.org/10.1021/acs.jctc.0c00057
https://doi.org/10.1002/prot.21123
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1002/jcc.20945
https://doi.org/10.1063/1.1589749
https://doi.org/10.1016/0301-0104(81)85176-2
https://doi.org/10.1021/jp709729d
https://doi.org/10.1063/1.1756583
https://doi.org/10.1021/acs.jctc.7b00225
https://doi.org/10.1021/acs.jctc.7b00225
https://doi.org/10.1007/s11721-007-0002-0
https://pythonhosted.org/pyswarm/
https://doi.org/10.1016/0022-2836(92)90324-d
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/5.0014475
https://doi.org/10.1063/1.464397
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1002/jcc.24660
https://doi.org/10.1021/ct400781b
https://doi.org/10.1007/s00894-020-04399-0
https://doi.org/10.1039/d0cp00088d
https://doi.org/10.1016/j.jinorgbio.2008.05.006
https://doi.org/10.1021/ja0209722
https://doi.org/10.1007/s007750100214
https://doi.org/10.1016/j.str.2008.02.017
https://doi.org/10.1529/biophysj.103.033266
https://doi.org/10.1023/a:1009226215543
https://doi.org/10.1039/c4cp04952g
https://doi.org/10.1039/c4cp04952g
https://doi.org/10.1021/jp054177x
https://doi.org/10.1093/bioinformatics/btx789

