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Abstract

We present results of two-component density-functional calculations for electron systems with a localized positron. The
theory is implemented into several electronic-structure calculation methods. For example, positron states at vacancies in
semiconductors have been calculated in the pseudopotential plane-wave framework. The ionic relaxations, including the
positron induced relaxation, have been determined in this scheme by first-principles molecular-dynamics methods. Positron
states localized at vacancies in metals have been calculated using the tight-binding linear muffin—tin-orbital method within
the atomic-spheres approximation as well as using the full-potential linear muffin-tin-orbital method. Calculations have been
performed for positron lifetimes, core annihilation lineshapes and two-dimensional angular correlation maps. The results are

compared with experiment.
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1. Introduction

A positron interacting with electrons of a solid
constitutes a many-body problem in which one has
to go beyond the independent particle approximation
(IPM) in order to describe positron annihilation char-
acteristics. Using the two-component density-func-
tional theory (TCDFT) [1] this can be done in prac-
tice. The theory introduces (average) electron and
positron densities, by the help of which the total
energy of the system can be expressed. Moreover, it

* Corresponding author. Tel.: +358-9-451-3101; fax: +358-9-
451-3116; e-mail: martti.puska@hut.f1.

leads to the generalized Kohn—Sham equations for
calculating these densities. Finally, it shows how the
positron annihilation characteristics can be calcu-
lated.

There has been thus far, however, only a few
calculations employing the TCDFT so that the elec-
tron and positron densities are calculated self-con-
sistently and simultaneously {1-4]. This is because
this kind of self-consistent calculations are computa-
tionally demanding, and because the knowledge about
the electron—positron correlation functionals needed
in the theory has been quite scarce. Moreover, when
calculating positron states delocalized in perfect peri-
odic lattices, the positron does not influence the
average electron density, and self-consistency itera-
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tions with respect to the positron density are not
needed. Only a localized positron affects, due to the
finite positron density, the average electron density.
It may also affect the positions of the ions around the
defect.

In this paper we will review the results of TCDFT
calculations [3,5] for positrons trapped by vacancies
in metals and in semiconductors. The results are
compared with those obtained with the so-called
conventional method (CONV). In the CONV method
the localized positron does not affect the average
electron density and its potential and annihilation
characteristics are calculated as for a delocalized
positron. In order to attain conclusive results about
the properties of different schemes, the annihilation
characteristics calculated should be numerically sta-
ble against approximations within a given computa-
tional method. Moreover, a convergence between
different numerical methods should be reached. It
turns out that the calculation of the localized positron
state has to be done very carefully. For instance, the
relatively large extent of the positron wave function
makes its proper normalization and the finding of the
correct positron density at the defect to non-trivial
tasks.

2. Two-component density-functional theory

In the TCDFT the (average) electron (n,(r)) and
positron (n,(r)) densities are calculated from
single-particle wave functions obtained from the
Kohn-Sham single-particle Schrodinger equations.
One has to sum up electron states up to the Fermi
level but there is only one positron in the system.
The effective potential for the electrons reads as

Veeff(r) = -‘(b[{zl’ RI}’ A, np] + ch(ne(r))

8
+E;Ecorr[ne7np]’ ’ (1)

where ¢[{Z;, R}, n,, np] is the Coulomb potential
due to nuclei (charges Z; and positions R;) and due
to the electron and positron densities. v, is the
exchange-correlation potential for the electron sub-
system. We use the local density approximation
(LDA) for vy.. E.oln,, n,]is the electron-positron
correlation energy and the functional derivative with
respect to the electron density gives a contribution to
the electron potential. Based on Lantto’s hypernet-

ted-chain calculations [6] we have introduced for
E.oln,, n,] a new (two-dimensional) interpolation
formula [3] within the LDA.

The effective positron potential is written as

V() = +9[{Z, R}, n,]

o
+WEcorr[nc’ np]v (2)

Compared to the electron potential the sign of the
Coulomb part is reversed and the correlation poten-
tial is obtained as a functional derivative with respect
to the positron density. Note also that, in comparison
with Eq. (1), a self-interaction correction has been
made: The Coulomb potential does not depend on
the positron density and there is no exchange-corre-
lation potential depending on the positron density.

In the TCDFT calculations within the LDA the
positron annihilation rate as a function of the mo-
mentum p of the annihilating positron—electron pair
is obtained as

p(p) = w1

2

feip"%(r) lwbe(r)‘/g(ne(r)’ np(r)> dri
(3)

where r, is the classical electron radius and c¢ is the
speed of light. The summation is over all occupied
electron states. The enhancement factor g(n®, nP)
takes into account the difference between the ‘real’
contact density and the product of average densities.
We use for g(n®, nP) the interpolation form [3]
based on Lantto’s data [1]. The enhancement factor
decreases with increasing electron or positron den-
sity. The positron lifetime 7 is calculated as the
inverse of the total annihilation rate A which is
obtained from Eq. (3) by integrating over the mo-
mentum,

/\=Wrezc/drnp(r)nc(r)g(ne(r), np(r)). (4)

X

3. Delocalized positron states and the conven-
tional scheme

In the case of a delocalized positron in a perfect
lattice, the positron density is everywhere vanish-
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ingly small. Then the positron density does not affect
the average bulk electronic structure. The electron
potential is obtained from Eq. (1) by canceling the
positron density in the Coulomb potential and the
contribution due to the electron—positron correlation.
In the positron potential (Eq. (2)) the electron—
positron correlation part depends only on the elec-
tron density. These simplifications mean that the
electronic structure is first calculated self-con-
sistently without the effect of the positron. Then the
positron state is determined without any self-con-
sistency iterations. The annihilation characteristics
are obtained from Egs. (3) and (4) by using the
enhancement factor on the limit of the vanishing
positron density, i.e. the enhancement factor does not
depend on the positron density.

The simplicity of the calculations of delocalized
positron states is adopted in the CONV scheme also
to the calculation of localized positron states at
defects in solids. This means that the formalism for a
delocalized positron state is used in spite of the finite
positron density. The scheme can be justified by
thinking that the positron with its electron screening
cloud form a neutral quasiparticle which can enter
the system without affecting the average electron
density.

4, Numerical methods

We have used in the calculation of positron states
and annihilation characteristics several numerical
methods. For the defects in semiconductors we have
used a method [3] in which the valence electron
density is constructed within the pseudo-potential
plane-wave framework and the positron wave func-
tion is solved on a real-space mesh [7]. The real-space
techniques enables an easy and accurate construction
of the positron potential from the valence electron
density and from the core charge distribution of a
free atom. The Hellman—Feynman forces (including
the influence of the localized positron) acting on ions
are calculated and the ensuing ionic relaxations are
solved. TCDFT as well as CONV scheme calcula-
tions have been performed.

For defects in metals we have used all-electron
methods. In the tight-binding version [8] of the linear
muffin—tin-orbital method within the atomic-spheres

approximation (LMTO-ASA) (for a recent review,
see [9]) the crystal volume is divided into overlap-
ping atom-centered spheres and the potential and the
charge densities are assumed to be spherically sym-
metric inside each sphere. A vacancy defect, for
instance, means in the LMTO-ASA an ‘empty’ va-
cancy sphere in the crystal. The electron and positron
wave functions are constructed by using partial
spherical waves. We have used for defects in metals
also the full-potential linear muffin—tin-orbital (FP-
LMTO) method [10]. Also this method employs
partial waves for the construction of wave functions
but it makes no shape approximation to the poten-
tials or to the charge densities. With the FP-LMTO
method we have performed only CONV scheme
calculations whereas the LMTO-ASA method has
been used also for TCDFT calculations.

Paralle] to the above described calculations with
electronic structures self-consistent within the CONV
or TCDFT schemes we have also employed the
atomic superposition (ATSUP) method [11]. In this
method the electronic structure is obtained simply by
overlapping free-atom charge densifies. The method
does not imply any further geometrical shape ap-
proximations. For a system with given ionic posi-
tions, the electron density and the positron potential
are constructed on the points of a real-space mesh
using the CONV scheme. The resulting three-dimen-
sional Schrodinger equation for the positron state is
solved in a real-space point mesh [7] which is used
also to calculate the positron annihilation rate. The
ATSUP method is very effective compared to the
methods using self-consistent electron densities.

In all the above numerical methods we have used
the supercell approximation to describe the defect in
question. This means that, for instance, an isolated
vacancy is replaced by a periodic vacancy structure,
and the electronic as well as the positron structure is
solved using periodic boundary conditions for the
wave functions. For too small supercell sizes there
are interactions between the vacancies of the super-
lattice and the approximation does not describe well
an isolated vacancy. The effects have been discussed
in the context of the electronic-structure calculations
for defect total energies [12,13]. It has been shown
that by a careful sampling of the superlattice Bril-
louin-zone one can reduce the effects of the defect-
defect interactions. We have shown that this is true
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Fig. 1. Positron density at the Cu vacancy. The density is given
along a line in the [100] direction and passing through the center
of the vacancy. The ATSUP method has been used. The solid line
corresponds to a Itpoint calculation with a supercell size of
N =256 lattice sites, the dashed line to a I-point and the dotted
line to a k-point on the BZ-surface with a supercell size of
N = 32. The markers are the average of results corresponding the
two k-points and N = 32,

also for the positron states, and for the ensuing
annihilation characteristics [5]. Briefly, for the I-
point the positron wave function has the same sign in
the whole superlattice and a finite value on the cell
boundaries. When using other k-points the positron
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Fig. 2. Calculated positron lifetimes for the Cu vacancy as a
function of the supercell size N. The ATSUP method has been
used. The dashed line corresponds to the I-point calculations, the
dotted line to a k-point on the BZ-surface calculations, and the
solid line to the BZ-integration calculations, i.e. the average of the
I'point and a k-point on the BZ-surface densities is used.

density at the cell boundaries is reduced. In the case
of a simple cubic supercell the positron wave func-
tion at the cell boundaries vanishes for the L-point
(on the zone boundary in a {111) direction). In order
to find the positron density close to that for an
isolated vacancy one has to take the proper average
from the densities for different k-points. Fig. 1
shows that for a Cu vacancy treated by a simple
cubic superlattice the sampling using the I’ and
L-points gives with a small supercell size a density
which is very close to that for a much larger super-
cell, i.e. for that representing an isolated vacancy.
The sampling leads then to a fast convergence of the
positron lifetime as show in Fig. 2. We have found
that also other k-point samplings may be quite effec-
tive. For example, according to our experience the
use of the k-point between the I" and L-points gives
quite well converged results for positron states at
vacancies in metals and in semiconductors.

5. Results ’

Fig. 3 compares the positron and electron densi-
ties obtained in the CONV and TCDFT schemes [5].
The distributions are calculated for a positron trapped
by a vacancy in Cu using the LMTO-ASA method.
The difference between electron densities of the
TCDFT and the CONV schemes gives how much the
localized positron can raise the average electron
density in the TCDFT description. The positron dis-
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Fig. 3. Positron ( ) and electron (-~ ~) densities at the
Cu vacancy. The densities are given along a line in the [110]
direction and passing through the center of the Cu vacancy.
Shown are the results of the TCDFT and CONV scheme calcula-
tions by the LMTO-ASA method.
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tributions are very similar between the two schemes.
This is because, relative to the CONV scheme, the
correlation potential in the TCDFT scheme decreases
when the positron density increases and this opposes
the lowering of the Hartree part due to the increase
in the electron density at the defect. Therefore the
effective positron potentials are similar resulting in
quite identical positron densities.

Positron lifetimes calculated [5] for vacancies in
several fcc and bee metals are shown in Fig. 4. The
positron bulk lifetimes are given for comparison. The
results obtained in the TCDFT and CONV schemes
using the LMTO-ASA method are very similar. Rel-
ative to the CONV scheme the larger electron—
positron overlap in the TCDFT scheme tries to in-
crease the annihilation rate but this increase is op-
posed by the decrease of the enhancement factor as
the positron density increases. The different compu-
tational methods give in the CONV scheme positron
lifetimes within a few picoseconds from each other.
The LMTO-ASA and the FP-LMTO results are on
the average closer to each other than to the ATSUP
results. This shows the role of the self-consistent
electronic structure. All the theoretical estimates for
the positron lifetimes are in a fair agreement with the
experimental results. The ratios 7,/7, between the
vacancy and the corresponding bulk lifetimes are
given in Fig. 5. The ratios are useful for comparing
theoretical and experimental results. This is because
these ratios are not very sensitive to the models for
the positron—electron correlation or for the enhance-
ment used [14]. Also systematic experimental errors
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Fig. 4. Calculated and experimental positron lifetimes for metal’
vacancies. The experimental lifetimes for Cu, Ag, Au, Al, Fe and
Nb are from Refs. [20], [21], [22], [23], [24] and [25], respectively.
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Fig. 5. Ratios of the positron lifetimes between metal vacancies
and perfect bulk lattices. For the experimental references, see the
caption of Fig. 4.

are expected partly to cancel in the ratios. According
to Fig. 5 the methods using self-consistent electron
densities give systematically larger ratios than the
ATSUP method or the measurements. The difference
between the experiment and the calculations employ-
ing self-consistent electron densities suggest that the
ions neighboring the vacancy should relax inwards.
As a matter of fact, this is the result of first-princi-
ples electronic-structure calculations {13,151

We have performed TCDFT calculations for the
positron state trapped by the Ga vacancy in the
1II-V semiconductor GaAs [3]. The vacancy is in the
triply-negative charge state, which corresponds to the
situation in semi-insulating or n-doped samples. The
calculation is done by using the pseudo-potential
plane-wave scheme for the valence electron states
whereas the positron wave function is obtained on a
real-space mesh using free-atom core densities in
describing the positron—ion interactions. The ions
are allowed to relax as a response to the Hellmann-
Feynman forces due to the electronic structure as
well as the localized positron state. Without the
positron the ions neighboring the Ga vacancy relax
symmetrically inwards about 11% of the ideal lattice
bond length. The trapped positron pushes the nearest
ions outwards so that the inward relaxation is about
7% of the bond length. This calculation is made by
using a 63 atom supercell and only the I-point in the
Brillouin-zone sampling. Therefore the positron wave
function may be slightly too delocalized and its
effects to the ionic relaxation underestimated. This is
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Fig. 6. Angular correlations of annihilation photons corresponding
to the (a) bulk GaAs and (b) the triply-negative Ga vacancy in
GaAs. The momentum distributions are integrated along the [110]
direction. The results are based on the self-consistent solution for
the electronic structure, positron state and the ionic positions at
the vacancy within TCDFT scheme [3]. The contour spacing is
one tenth of the maximum value.

reflected in the ratio between the positron lifetimes
for the vacancy and for the perfect bulk. According
to our TCDFT calculation the ratio is 1.04, which is
clearly smaller than the experimental ratio of 1.12
[16]. However, already rather small changes in the
ionic relaxation can bring the theory and experiment
into agreement [3].

We have calculated the maps of the two-dimen-
sional angular correlation of annihilation radiation
(2D-ACAR) for the positron delocalized in bulk
GaAs and trapped by a triply-negative Ga vacancy in
GaAs [3]. The results are shown in Fig. 6. The
trapping increases the isotropy of the distribution.
According to experiments [16] the isotropy is some-
what larger which again calls for a better positron
localization at the vacancy.

The relative core annihilation parameter W de-
scribes the changes in the percentage of core anni-
hilation contribution between a positron trapped by a
defect and a free positron [17]. It can be calculated
from the momentum distributions of the annihilating
electron—positron pairs [18]. However, a rather good
estimate may be obtained from the total annihilation
rates with the core and valence electrons [18]. Our
TCDFT calculations [3] for the triply-negative Ga
vacancy in GaAs give a W parameter estimate of
0.88. This is somewhat larger than the experimental
value of 0,74 [18] indicating again that the positron
localization at the vacancy is too weak. For the
vacancy in Al we predict a W parameter of the order
of 0.3. This is clearly smaller than those for vacan-
cies in semiconductors. In all cases the TCDFT and

the CONV schemes give quite similar positron life-
times, momentum distributions of annihilating elec-
tron—positron pairs as well as W parameters.

6. Conclusions

First-principles calculations of annihilation char-
acteristics for positrons trapped by defects in solids
have reached the level of a high quantitative predic-
tive power. This is true especially for relative mea-
sures such as the ratios of the quantities for defects
and perfect bulk lattices. The prediction of the abso-
lute values may still be a subtle question [18,19]. In
the calculations the self-consistent determination of
the ionic relaxation is an important ingredient espe-
cially for defects in semiconductors. The full two-
component calculation of the electron and positron
densities may be largely avoided and the positron
characteristics calculated within the conventional
scheme. The computational methods show conver-
gence with respect to the internal approximations
such as the supercell size and the results of different
methods are in good agreement.
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