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Chapter 1

Introduction and Motivation

This thesis investigates the capability of the Variational Monte Carlo (VMC) and
Diffusion Monte Carlo (DMC) methods in calculating electronic structures for a set
of small molecules. Thereby, we examine some of their physical properties with a
particular focus on many-particle correlation effects in quantum mechanics.

The Many-Particle Problem (Chapter 2)

For many-particle problems, it is generally impossible to find exact solutions due to
their high dimensionality. For illustration, let us consider a malonaldehyde molecule
(C302H,) with 28 valence electrons. An exact solution would require the knowledge of
the electron probability distribution given by the wavefunction, ¥, which depends on
3 x 28 spatial electron coordinates. Supposing that 10 grid points in each dimension are
enough for an adequate numerical representation of ¥ , one still needs 103*% spatial
grid points to fully describe W. Yet, this number is one million times larger than
the amount of all atoms in our universe'. Such complexity reflects the difficulty in
numerical handling and thus in finding exact solutions to the many-particle problem.

The complexity illustrated in that example is a result of many-particle effects in quan-
tum mechanics (i.e. Fermi and Coulomb correlation). However, these effects are
important for a quantitative prediction of all material properties. Such importance
calls for accurate and efficient methods when calculating electronic structures by solv-
ing the many-electron Schrodinger equation. To do so, different methods have been
developed such as Hartree-Fock (HF), Configuration Interaction (CI), Coupled Cluster
(CC) or Density Functional Theory (DFT). Each method has its own advantages and
disadvantages. HF, by definition, includes the exchange energy exactly but completely
omits correlations beyond the Pauli principle. CI and CC methods [POPLE 1987| can
be very accurate and allow for systematic improvement. Nevertheless, they are nu-

I This estimate assumes that all matter is hydrogen, which is true for more than 99%, and a mass
of the universe of 5.98 105°%kg [HOLLEMANN 1995.
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CHAPTER 1. INTRODUCTION AND MOTIVATION

merically very costly and are currently not suitable for systems with more than 20
first row atoms |[TSUZUKI 2001]. DFT is in principle an exact method to describe
many-electron systems and is much less numerically demanding as compared to the
CC and CI post-HF methods. Yet, in practice it requires approximations for the
exchange-correlation functional such as BLYP [LEE 1988|. Also, it is very difficult
within DF'T to judge its accuracy or to systematically improve when necessary. Al-
though DFT with approximative density functionals has proven to be very successful
in describing electronic structure properties, like elastic properties, vibrational fre-
quencies and molecular geometries [PERDEW 2003], it often overestimates binding
energies’. Hence, these accuracy and efficiency problems within the listed methods
indicate a further need for an accurate yet efficient many-body approach as found in
Quantum Monte Carlo.

Variational and Diffusion Monte Carlo (Chapter 3)

Quantum Monte Carlo (QMC) methods allow for solutions to the many-electron
Schrédinger equation with a statistical approach. The simplest form of these methods,
Variational Monte Carlo (VMC), is based on evaluating a high-dimensional integral,
< \IJ|I:I |¥ >, with the Monte Carlo Integration (MCI) technique. For problems in-
volving more than a few dimensions, the convergence of the integral using MCI is
much faster than for conventional integration techniques. This stems from the impor-
tant fact that the statistical error in the estimated integral, < \Ii|ﬁ | >, decreases as
square root of the number of points sampled, irrespective of the dimensionality of the
problem.

The second and more advanced QMC method used in this thesis is Diffusion Monte
Carlo (DMC). It solves the time-dependent many-electron Schrédinger equation by
mapping it to the classical diffusion and rate equations and by transforming the time
into imaginary units. The evolution of an initial arbitrary wavefunction, ¥, is then
simulated through a diffusion and rate process. The DMC method finally projects out
the unknown N-electron ground state, Wy, and thereby yields in principle the true
ground state energy.

QMC methods, in particular DMC, have already proven to be very useful in a number
of applications. A landmark achievement for DMC applications was the calculation
of the exchange-correlation energy of the uniform electron gas [CEPERLEY 1980].
This exchange-correlation energy then allowed to find an accurate expression of the
correlation functional, 89 (n), in the local-density approximation (LDA), used in DF'T

[PERDEW 1981]. “Without these early DMC results, DFT might have never grown
into the leviathan we know today.”[FOULKES 2001]

2When looking at a standard (G2) test set of 148 molecules, the mean absolute deviation of the
binding energy for B3LYP is 0.14 eV, for BLYP 0.32 eV or for PBE 0.73 eV. For comparison, HF yields
6.43 €V and CC in the complete basis set limit yields 0.06 eV [PERDEW 2003, FELLER 1998|.
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CHAPTER 1. INTRODUCTION AND MOTIVATION

A further successful DMC application was demonstrated for carbon Cyy clusters. As
found by Raghavachari® et al. in 1993, DFT LDA predicted the Cyy cage structure to
be about 4 eV lower in energy than the ring, while the BLYP functional essentially
predicted the opposite. However, Grossman* et al. disproved in 1995 both predictions
with DMC calculations and showed that the graphitic bowl was the lowest energy
isomer. This was confirmed by Murphy® et al. in 1998 using a high-level perturbation
theory approach. Another critical study of DFT LDA and GGA results investigated
the dissociative adsorption of Hy on the Si(001) surface and found a significant un-
derestimation of the reaction energies and barriers when compared to DMC results
|[FILIPPI 2002 |.

Despite these rather young successful applications in electronic structure calculations,
there are several reasons why QMC methods are still not widely used. The first and
paramount reason is the large numerical effort that is necessary for statistical signif-
icant predictions. Secondly, efficient QMC methods still show open methodological
questions, which need to be better understood such as the use of pseudopotentials
or dealing with anti-symmetric wavefunctions. A last major drawback for a wider
application of QMC methods appears to be the scarcity of experience. Only a very
limited amount of critical studies have been published to demonstrate the accuracy and
reliability of QMC results [FOULKES 2001]. Other methods, like DFT with an ex-
ponentially increasing number of several thousand annual publications [KOCH 2001],
have gotten much more attention in the last years. It will be rather speculative if
QMC methods ever become as widely used as other methods today. However, QMC
methods are likely to become a supplement for the others, since they have already
taken a place in setting benchmarks in electronic structure calculations and in helping
to understand shortcomings of other methods.

The QMC methods have a common link with the well established classical Monte Carlo
methods: the use of randomly sampled numbers. Monte Carlo methods comprise a
whole range of statistical techniques [NEWMAN 1999| and have already been suc-
cessfully applied to a variety of problems, involving stochastic behavior ranging from
science (e.g. kinetic Monte Carlo), engineering (e.g. treatment of real-world industrial
problems) to economics (e.g. modeling financial markets)|[ DUBI 1999).

Physics of Molecular Bonds - Results (Chapter 4)

The focus of this thesis is to investigate the accuracy and capability of the VMC and
DMC methods in the CHAMP® implementation when describing various physical prop-

3K. Raghavachari, D. Strout, G. Odom, G. Scuseria, J. Pople, B. Johnson, P. Gill, Chem. Phys.
Lett. Vol. 214 357 (1993)

4J. Grossman, L. Mitas and K. Raghavachari, Phys. Rev. Lett, Vol. 75 3870 (1995)

5R. Murphy, R. Friesner, Chem. Phys. Lett. Vol. 288 403 (1998)

6Cornell-Holland Ab-initio Materials Package by Claudia Filippi and Cyrus Umrigar,
www.lorentz.leidenuniv.nl/~ filippi/champ.html



CHAPTER 1. INTRODUCTION AND MOTIVATION

erties of small molecules. In particular, we investigate binding energies, equilibrium
geometries and vibrational frequencies. As of this writing, binding energies calculated
with QMC methods have been investigated only in few studies. To date, the largest
systematic study, 55 molecules by Grossman [GROSSMAN 2002], found an average
absolute deviation of 0.1 eV (2.9 kcal/mol) in the molecular binding energy compared
to experimental data. This study used fixed-node DMC with a single determinant
trial wavefunction and pseudopotentials. Another QMC study by Filippi and Umrigar
|[FILIPPT 1996| investigated total energies for seven first-row homo-nuclear diatomic
molecules. For these molecules, the average absolute deviation is 0.73 eV (17 kcal /mol)
from the exact, non-relativistic energy. Thereby, an all-electron DMC calculation with
a trial wavefunction of 17 determinants was chosen. Further studies about total and
binding energies with QMC have been undertaken on specific molecules, some of which
will be mentioned later on.

Inter-atomic forces (i.e. equilibrium geometries and molecular vibrational frequencies)
have been less studied with QMC. The reason for that is the difficulty for QMC meth-
ods when calculating small energy differences (in the order of several peV) between
points on the potential energy surface. And these differences require a very high statis-
tical accuracy. To my knowledge, there are only two papers that calculate vibrational
frequencies with DMC. Ref. [SCHAUTZ 1998| presents vibrational frequencies for Zn,
and Cd, that are obtained with pure DMC (a different method than the one used in
this work). They are determined with a statistical error bar of 5-10% and reproduce
the experimental value within that error. Yet, for a third molecule, Hgy, the best
estimate for the vibrational frequency underestimates the experimental value by 15%.
The second recently published Ref. [LU 2003] predicts already better results. For Ny,
the calculated vibrational frequency is in agreement with experimental data with a
statistical error of 1.6%. In this reference, a DMC method was used that is based on
floating spherical Gaussians (different than our DMC method).

In this thesis, we are interested in investigating these inter-atomic forces with a recently
developed correlated sampling method [FILIPPI 2000]. For both, VMC and DMC, this
method essentially samples differences in the total energy, i.e. between a reference
geometry and an adjacent geometry. With this method, the equilibrium geometries
as well as fundamental vibrational frequencies will be calculated for the diatomic
molecules Hy, O, Ny and CO and the tri-atomic molecule H5O.

These molecular ground-state properties are mostly determined by covalent bonds that
have typical binding energies of several eV. A different type of bond are hydrogen-bonds
which are one order of magnitude weaker than covalent bonds. In this thesis, we will
use the VMC and DMC method to examine two model systems for H-bonds: di-
ammonia and malonaldehyde. In particular, we will investigate the H-bond strength
and the proton transfer barrier for these two molecules. Both, H-bonding and the
proton transfer are important in the understanding of biochemical systems and in de-
termining the functionality of proteins [JEFFREY 1994|. Because of such importance,
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CHAPTER 1. INTRODUCTION AND MOTIVATION

much attention has been paid to these particular bonds by experimentalists as well as
theoreticians [SCHEINER 1997|.

So far, standard DF'T approaches with approximated exchange-correlation functionals,
like BLYP and B3LYP [BARONE 1996, TSUZUKI 2001] or PBE and PBE-LDA func-
tionals [ISMER 2002], yield energy barriers for the proton transfer that are too low.
In our model systems, they are more than 0.04 €V (or several tens of percent) lower
compared to very accurate CC or CI calculations. Whereas H-bonding strengths are
well described by DFT PBE within about 0.04 eV for our two systems [ISMER 2002],
which is also true for a larger set of molecules [TUMA et al. 1999].

In particular for di-ammonia, several equilibrium geometries have been suggested based
on different quantum chemical methods and basis sets [TSUZUKI 2001|. These sug-
gestions are energetically within 0.04 eV (1kcal/mol) and thus close to each other.
Here, we will investigate two different structures for di-ammonia which are previously
obtained by two DFT methods [[SMER 2002|. In this study, we compare our calcula-
tions with elaborate CC calculations where available.

Methodological Investigations of our QMC Calculations (Chapter 5)

The DMC method in principle provides exact solutions to the many-electron prob-
lem. However, in practice several approximations are typically used to increase the
efficiency of VMC and DMC. Three approximations are important: (1) the fixed-node
approximation (2) the use of pseudopotentials and (3) the approximation of short time
steps in the time evolution in DMC.

(1) The fixed node-approximation is a fundamental approximation specific to DMC.
It allows for a convenient approach to impose anti-symmetry conditions on the many-
particle wavefunction when treating fermion systems in DMC. It keeps the nodal sur-
face from an initially chosen trial wavefunction (such as given by a HF calculation) as
boundary condition in the calculated DMC ground state wavefunction. The fixed-node
approximation always introduces a positive error in the total energy. A typical value
of that error is estimated to be about 5% of the correlation energy when starting with
a HF trial wavefunction [FOULKES 2001].

(2) All-electron QMC calculations have been applied to first row molecules’ in few
studies. One example was the earlier cited Ref. [FILIPPI 1996] with an average ab-
solute deviation of 0.73 €V from the exact, non-relativistic total energy. Another Ref.
[MANTE 2001] shows total energies for 20 first row molecules for (single Slater deter-
minant) DMC calculations. For Ny and F,, which are also calculated in the previous
study, the results are not significantly different. These studies reflect the difficulty for
accurate all-electron calculations with DMC already for first row molecules. Further-
more, the computational cost increases severely with the nuclear charge, Z. For DMC,

"In physics, the first row elements are Li till Ne (while in chemistry, they are identified as second
row elements).
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CHAPTER 1. INTRODUCTION AND MOTIVATION

estimates range from Z°° to Z%° |[LESTER 1994] and all-electron calculations quickly
become intractable in reaching a fixed accuracy in the energy. Introduced to QMC
by [BACHELET 1989]), pseudopotentials drastically increase the efficiency of QMC
algorithms. An estimate of the scaling in DMC is given by N3, where N is the num-
ber of valence electrons [MITAS 1991]. Generally, the pseudopotential approximation
can be controlled for VMC calculations. Not so for DMC, there the non-locality of
the pseudopotential poses larger difficulties due to the introduced localization. An
estimate of that error is difficult due to its unknown sign.

(3) The short time approximation allows to use an efficient expression for the Greens
function when solving the Schréodinger equation in DMC. A state of the art implemen-
tation of this approximation will be used in our calculations [UMRIGAR et al. 1993].
But other than for the two previous approximations, the influence of this short time
approximation can be controlled and eliminated for DMC calculations.

As a consequence of these approximations, the VMC and DMC methods investigated
in this thesis yield results that rely on various factors. These are the used represen-
tation of the trial wavefunction (i.e. the chosen correlation factor that improves the
constructed trial wavefunction, the basis sets of the determinantal part of the trial
wavefunction, or the chosen number of determinants of the determinantal part), and
the type of pseudopotentials chosen.

Some studies have investigated and discussed such influences upon the QMC results
like Refs.[GROSSMAN 2002, MITAS 1991, FILIPPI 1996]. However, there is still a
need for further assessment of the accuracy and reliability when using these approxi-
mations. The last chapter of this thesis is devoted to examine these dependencies. We
discuss our findings through the various results obtained upon the use of different cor-
relation factors, basis sets, pseudopotentials, number of determinants and time steps.
Thereby, we discuss the influence on our QMC results.

12



Chapter 2

Many-Particle Problem

This chapter provides theoretical foundations about dealing with the many-particle
problem in quantum mechanics. First, we discuss the Born-Oppenheimer approxima-
tion which separates the electron and nuclear motion. This separation is important to
make later QMC calculations more efficient. Then two conventional methods Hartree
Fock and Configuration Interaction are briefly reviewed. Both methods yield solutions
to the many-particle problem and are starting points for later QMC calculations. This
chapter ends with a qualitative introduction of electron correlation.

2.1 The Schrodinger Equation

The many-particle time independent Schrédinger equation for IV electrons at positions!
r = (ry,...ry) and M nuclei at positions R = (R4, ...R,,) is given by the many-particle
Hamiltonian H,

A~

H(r,R)¥,(r,R) = E,U,(r, R). (2.1)

The many-particle wavefunction, W¥,, describes the probability distribution of the
N+ M particles and & indicates the eigenvectors and values. The many-particle Hamil-
tonian consists of five terms,

H(r,R) = T%(r) + T"*(R) 4+ V¢(r) + Ve (r, R) + V" (R), (2.2)

which are explicitly given by

L This notation will be strictly used throughout this thesis, where vectors with subscripts refer to
single particles and vectors without subscripts refer to a set of particles.

13



2.2. BORN-OPPENHEIMER APPRCEAMAFRFON MANY-PARTICLE PROBLEM

N M N,N'

1 ; 1 e _ 1 !
Te=2) (Vi) T=2) (-MuVg,), Ve=g > ——.
2 4 2 2, iy Iri—

i=1 a=1 2,0 1A
NM M,M’
. ) _Z ~ ]_ ! Z Z
Ve—IOIl — Z I and VIOH = — Z aiﬁ (23)

i:l,a:l ‘Ra - rz‘ 2 Oé,,B,a?éﬂ ‘Ra B RIB‘

T¢ is the kinetic and V*® the potential electronic energy, T'n is the kinetic and V¢ the
potential nuclear energy and Velon ig the electron-nuclear potential.? Z, is the nuclear
charge and M, is the nuclear mass with o = 1, ...M.> QMC methods in principle would
be already capable to solve eq.(2.1) via a statistical approach. Yet, the fundamental
Born-Oppenheimer approximation further allows to separate the electron and nuclear
motion and thereby to separate the Schrédinger equation accordingly.

2.2 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is based on the large difference between the
electron and the nuclear mass. To see that it separates the treatment of electrons and
nuclei, we first define the Hamiltonian H®(r,R) for a set of fixed nuclear parameters
R,

He(r,R)¢,(r,R) = E}(R)¢,(r, R) (2.4)
with  H°(r,R) = T%(r) + Ve(r) + Ve (r, R) + VI*(R). (2.5)

Here, ¢, is the wavefunction of the electrons in the limit m/M, — 0. veN labels the
different electronic eigenfunctions and values. Now, the many-particle wavefunction,
U,, can be expanded in the basis of these eigenfunctions ¢,

U (r,R) = ZXUN(R)QSV(I"R); (2.6)
with expansion coefficients x,,., where R are fixed nuclear parameters. Now, we apply
the many-particle Hamiltonian (2.1) to ¥, multiply with ¢, from the left and integrate
over all electron coordinates. Thereby, the many-particle Hamiltonian reduces to the
nuclear Schrédinger equation,

A = (B5(R) + T (R)) xs — (2.7)
M g2 AV

D a7 (0ul VR l80) Ve + (0ul 77 =180 Xk = EpeXpue-(2:8)

v a=l1 @ “

2Throughout the entire work, atomic units will be used with A = m = ¢ = e = 4weg = 1, unless
otherwise noted.

3In this and subsequent equations, Greek and Latin indices will be used for nuclei and electrons,
respectively.
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CHAPTER 2. MANY-PARTICLE PROBLEM 2.3. HARTREE-FOCK

The nuclear wavefunctions, x,, are dependent on Ef (indicated by p) and on k,
which labels the nuclear eigenfunctions and -values. The last two terms describe
the electron-phonon coupling that interlinks the electron wavefunctions with nuclear
motion. The first of the last two terms would give rise to the electronic transition
induced by the nuclear motion. The second term would give a contribution to the
electronic kinetic energy again caused by the nuclear motion. Both terms are set
to zero within the Born-Oppenheimer approximation. To argue for leaving out the
first term, we use the fact that all later systems are calculated at zero temperature.
Thereby, the system is limited to the electronic ground state ¢,—¢ and no electronic
transition will be neglected when leaving out that term. For leaving out the second
kinetic energy term, the general argument is the large difference in the electron and
nuclear mass such that Mﬂa <1073, When now approximating that second term as

i (%ol ;;V2 |¢o) (where Vg, is replaced by V., ), we see that this term is about
three orders of magnitude smaller than the one by the electronic kinetic energy. Hence,
the second term can be neglected. Another argument for disregarding this term is
found in referring to the nuclear motion at zero temperature. In this limit, only small
nuclear vibrations are allowed due to the zero point motion. Consequently, the coupling
between the nuclei and electrons is small and the Born-Oppenheimer approximation
acts as a good approximation [SCHERZ 1999]. This approximation now reduces the
nuclear Schrodinger equation to*

(7" + Eo" % (R)) xos(R) = Ef* xox(R), (2.9)

where we introduce the (ground state) Born-Oppenheimer surface (BOS),
E B .= E§. It describes the effective potential which governs the dynamics of the
nuclei. Within the Born-Oppenheimer approximation, eq.(2.4) is now justified to be
the electronic Schrédinger equation, parameterized by a set of fixed nuclear ge-
ometries, R. And E{* in eq.(2.9) is now the total ground state energy consisting of
the electronic energy from eq.(2.4) and the kinetic contributions from the nuclei.

2.3 Hartree-Fock

Now, we want an approximate solution of the many-electron wavefunction. The most
simple representation is a single Slater determinant. It goes beyond the treatment of
effectively independent electrons in accounting for the Pauli principle (i.e. an anti-
symmetry of the wavefunction). The Slater determinant can be written as

TSP, Ty, ry) = \/_Zs1gn Mk, 0y (T1) Ve (T2) +++ Py (Tw),  (2.10)

neP

“In this and subsequent equations, the nucleus-nucleus potential energy is included in E§©S, as
defined in eq.(2.4).
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2.3. HARTREE-FOCK CHAPTER 2. MANY-PARTICLE PROBLEM

with the electron orbitals ¥, = ¢ ® x,, where ¢, is the spatial and x, the spin part
of the orbital, and £ is the spatial and ¢ the spin quantum numbers. 7 is one out of
all possible permutations P of (1,...N). The Hartree Fock (HF) total energy EfF is
now given by the expectation value of He with respect to a Slater Determinant,

EN[{¢p}] = (USP|H|OSP)  with (USP|ESP) =1. (2.11)

In order to derive the Hartree Fock (HF) equations from eq.(2.11), one has to take
the functional derivative with respect to the ¢, [SCHERZ 1999|, and obtains®

[—%W + Dext (T) + D (T) + vffl] br(r) = epdr(r). (2.12)

Dexs 15 the external potential, 9f_ is the local Coulomb or Hartree potential, and 9.
the non-local exchange or Fock operator. The latter two operators are explicitly given
by

3./
ol (r Z/Ra |r_r,| " dr (2.13)

and (9% 41000k (1) :/@ffloc(r, ') (r')d3r’ (2.14)
s 00

with X . (r, 1) ;:_Z(s,m ,‘qu() (2.15)
j=1

The eigenvalues, €, and orbitals, ¢, are determined via a self-consistent solution of
eq.(2.12) to (2.15). Then, the ground state energy can be written as

N
Exr =Y e — (BT +EX),  where (2.16)
k

Z / o8 (r)|¢i(r)|?d’r and EX———Z / o)) (r) 9% (r)d3r  (2.17)

are the Hartree and exchange energy, respectively. There are three approaches to in-
clude the spin state when solving the HF eq.(2.12). The Restricted HF (RHF)
assigns two electrons with different spins to the same orbital, thus limiting this ap-
proach to an electronic system with a closed shell. This is different from Restricted

5Tt should be said that the spatial orbitals, ¢y, in the following eq.(2.12) are in general different
from the ones before and result from a unitary transformation required to uncouple the orbitals, ¢
[SCHERZ 1999].
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Open-shell HF (ROHF), that allows placement of unpaired, additional electrons
in outer orbitals. Unrestricted HF (UHF) has different orbitals for both spins
allowing for more variational freedom, but the UHF wavefunction thereby loses its
character of being a spin eigenstate.

2.4 Configuration Interaction

The many-electron wavefunction can now further be improved by including more de-
terminants. This is done in the Configuration Interaction (CI) method which replaces
USD in eq.(2.11) by U, where U is based on such an expansion of possible N-electron
determinants. The coefficients for all determinants are again determined variationally
so as to minimize the total energy. Thereby, the determinants may be constructed
from M molecular orbitals (MO) previously obtained from a HF calculation, where M
enumerates the included ground- and excited states. For a given set of M MOs, a full
CI wavefunction then requires
(2M)!

NI@2M — N (2.18)
determinants to describe an N-electron system [JENSEN 2002]. And ¥“! only corre-
sponds to the true many-electron wavefunction if M — oo which is beyond numerical
handling. But when considering the example of an Ny molecule (even when using a
pseudopotential to reduce the number of electrons to N = 10), a full CI description
still requires 30 million determinants when limiting the number of MOs to the first
10 excited MOs (or 850 million determinants, when considering the first 15 excited
MOs). From that requirement, it is obvious that the CI method becomes numerically
intractable when thoroughly studying molecules for an increasing numbers of electrons
(and MOs). For an elaborate CI study, Ref. |[TSUZUKI 2001| gives a current limit of
20 first row atoms.

2.5 Electron Correlation

We will see in the later discussion that the electron correlation has a substantial
contribution when determining molecular properties, like binding energies. There are
two reasons that account for electron correlations. Electrons as fermion particles
must obey the anti-symmetry requirement of the wavefunction (Pauli principle). The
associated correlation is called Fermi correlation. Electrons as charged particles are
subject to the Coulomb interaction. And this interaction gives rise to the Coulomb
correlation between electrons.

17
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Fermi Correlation

The anti-symmetry requirement of the wavefunction for fermions (Pauli principle)
prevents like spin electrons from being found at the same position in space. Within
the HF theory, such an anti-symmetric wavefunction is approximated by a single Slater
determinant. And the correlation described by this Slater determinant between like
spin electrons gives rise to the electronic exchange energy in eq.(2.17). This correlation
caused by a Slater determinant is often referred to as Fermi correlation. The Fermi
correlation neglects any interaction between electrons with opposite spin (e.g. the
exchange energy vanishes for electrons with opposite spin). Hence, electrons with
opposite spin are treated as effectively independent particles in HF.

Coulomb Correlation - Dynamic and Static Correlation

The treatment of electrons (with opposite spins) as independent particle in HF is
approximated by the interaction between one electron and an average field generated
by the remaining independent electrons (discussed in Ref. [KOCH 2001]). This field
is static and neglects the influence of the motion of one electron on the motion of the
other electrons and vice versa. This treatment results in an electron pair density that
is too large for small distances and too small for large distances. Consequently, the
electron-electron repulsion and thus the Hartree energy in eq.(2.17) gives an additional
positive contribution so that Egr overestimates the exact total energy. Therefore, a
correct “dynamic” electron description (such as approximated with a later DMC ground
state or full CI wavefunction) lowers the total energy. This correlation is also referred
to as dynamic correlation.

The static correlation is an expression commonly used in quantum chemistry. It
is defined as the missing contribution of the total non-relativistic energy that is not
described by Fermi and dynamic correlation. One possible way of understanding the
static correlation is when a single HF Slater determinant fails to properly describe
a physical system. In these cases, adding (one or two) determinants helps to reduce
that shortfall. An emblematic illustration of such cases can be already found by H,
when using RHF (discussed in Ref.[HAKEN 2000]). In this example, adding a second
determinant avoids the simultaneous placement of two electrons at the same nucleus.
This results for a substantial lowering of the total energy. Due to this interpretation,
the static correlation is also called left-right correlation [KUTZELNIGG 1992].

Following the standard practice in quantum chemistry, we define correlation energy,
Ecorr, as the difference between the Hartree-Fock energy, Egp, in eq.(2.16) and a more
accurate total energy (such as given by CI or QMC calculations)®

Ecorr = Ecrorquc — Enr- (2.19)

6This definition is taken from Ref. [NIST 2003] and goes back to E. Wigner, F. Seitz, Phys. Rev.
43, 804 (1933).
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Ecorr has its maximum (exact) value when Ecrorque approaches the true non-
relativistic total energy. Other definitions for E ., exist, mostly used by physicists,
which include the HF exchange energy.”

"For clarity, I like to mention that the treatment of the exchange interaction is generally different
between HF and the Kohn-Sham Density Functional Theory (KS-DFT). In KS-DFT, the one-particle
orbitals are derived from a multiplicative local potential (KS-potential including a local exchange
potential). In the HF theory, however, the exchange is represented by a non-local Fock operator.
Therefore, the DFT and HF one-particle orbitals are different in general. Correspondingly, the total
energy (and its components like the exchange and correlation energy) in DFT and post-HF or QMC
methods differs. According to Ref. [GRABO 1999], it holds for example the following inequality

Etot [{#1Yi=1,..n] < Egy ' [n].

In this inequality, EEF is the HF total energy from eq.(2.16) which depends on the single-particle
orbitals. EB)I;T_X[n] depends on the density n and is the total energy in DFT that only includes
exchange functionals, see also Ref. [KOCH 2001]. However, in this thesis we will use the exchange
energy always according to the HF theory.
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Chapter 3

Theory of QMC

The last section introduced the many-particle problem in quantum mechanics and
two standard quantum chemical approaches HF and CI that yield (approximate) so-
lutions to it. Alternative approaches are the two Monte Carlo methods, VMC and
DMC, which will be presented in this section. Both methods require the evaluation
of multi-dimensional integrals when solving the Schrédinger eq.(2.9). Since these in-
tegrals are high dimensional as illustrated in the introduction of this thesis, standard
quadrature rules become inappropriate. An alternative to these standard quadrature
rules is Monte Carlo Integration (MCI), that will be introduced at the beginning of
this chapter. MCI then provides the key concept for both VMC and DMC methods.
Both latter methods will then be introduced followed by a discussion of the use of
pseudopotentials. This chapter ends by presenting the correlated sampling VMC and
DMC method.

3.1 Monte Carlo Integration
The Monte Carlo Integration (MCI) method is based on a statistical approach to
evaluate high dimensional and/or non-analytic integrals. We will begin with relevant

statistical foundations that give rise to the concept of MCI, followed by its implemen-
tation as it is used in this thesis.

3.1.1 Statistical Foundations

The basic principle used by MCI is the simple mean value theorem. When applying
that theorem in one dimension, an integral

IZ/f(.T)d.T (3.1)
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can be approximated as
1 M
I~(qg—p)-f ith  f=— E i 2

where z; are appropriate sampling points covering the integration domain [p,q|. It
is apparent that the approximation is exact in the limit of large M. The important
point, that distinguishes MCI from conventional numerical integration methods, is the
random selection of these sampling points. This selection allows the application of
the central limit theorem (A.11) when calculating the mean value f in eq.(3.2). It
guarantees a Gaussian distribution of the mean with standard deviation

1 g:l[f(a:i) i
_ |

oF = (3.3)
It is important to notice the decrease of o7 with \/LM independently of the dimension
of the integral. When comparing with the conventional trapezoidal integration rules
with uniform grid points, the standard deviations decrease with ?/?W [PRESS 2002].
Hence, for dimensions d larger than four, MCI is already more efficient!.

3.1.2 Importance Sampling

The efficiency of MCI extensively improves when choosing importance sampled
points. The idea is to select sampling points that yield large values of f and thus
larger contributions to the integral I. Points with small values in f are neglected.

Let us consider the one-dimensional integral over f again. First, one considers another
function g that reasonably approximates f (i.e. g &~ f). Now, one chooses sampling
points according to the following probability distribution function,

p(z) == @)

=< , (3.4)
[ g(z)dz

which is constructed from g . The integral I in eq.(3.1) can then be re-written,

= [ %p@c)dx = [tz (3.5)

when introducing f := %. The last integral expression for I can be interpreted as

expectation value or weighted average of f with respect to a distribution function, p.

!In addition to the more efficient convergence of & 7, the example in the introduction also illustrated
the impossibility to manage the amount of uniform grid points in 84 dimensions.
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That modified integral can be calculated in analogy to expression (3.2) as the average
value of f,

1 -
I'~ M;ﬂyi)’ (3.6)

with the important difference, that the sampling points {y;}i=1,..; have to be taken
from the probability distribution p.

Importance sampling has an important advantage compared to a uniform selection of
sampling points. The modified integrand f is approximately independent of y and its
fluctuation is largely reduced. In turn when approximating the integral with the mean
value of f, the standard deviation of the mean of f is much smaller than for a (uniform)
randomly sampled integrand f. This importance sampling technique therefore reduces
the amount of required sampling points and thereby the numerical effort.

Several methods now exist to find sampling points according to a given distribution
function, p [LESTER 1994]. One of those is the powerful Metropolis method used in
this thesis.

3.1.3 Metropolis Algorithm

The Metropolis algorithm [METROPOLIS 1953] generates importance sampled points
according to any given distribution function, p. The idea of that algorithm is

1. to take a randomly chosen point, r, in the integration domain (configuration
space),

2. to perform a random walk (trial move) from r to r’ in the configuration space
with ' = r + x, where x is a normally distributed random vector with a mean
value of zero,

3. and to accept or reject that move according to a given acceptance rule (to be
derived later on).

4. If the move is accepted, the given starting point, r, becomes replaced with r'
and the whole process starts again with step 1 from r’. If the move is rejected,
that random trial move will be repeated starting again from r.

This generation process yields sampling points according to the given distribution p.
Figure 3.1 illustrates a set of 1000 sampling points generated for the electron density
for the Ny molecule. Note that these sampling points, r, are commonly called walkers
in allusion to their generation process.

The acceptance rule is a central part in the Metropolis algorithm. To derive an expres-
sion for it, let us consider two points, r and r’, in the configuration space. Following
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*X:in Bohr

Figure 3.1: The upper plot shows the electron density for an Ny molecule obtained with a
HF calculation. The lower plot shows 1000 walkers generated with the Metropolis algorithm
and distributed in the configuration space of Ny. Since Ny has 10 valence electrons, its
configuration space is 3 X 10 dimensional and each of the walkers has 3 x 10 dimensions. In
order to plot these walkers as shown above, all walkers are projected to the x- and y- plane
of the first electron.

Ref. [FOULKES 2001], one refers to a steady equilibrium if the probability of walk-
ers moving from an infinitesimal volume dr to dr‘ is the same as for the reverse case
from dr‘ to dr for one move.? Let us begin by describing a move of a walker from
position r (not a volume dr) into the volume dr‘. The total probability of that move

can be written as,
G(r = r)- P(r — r) - dr, (3.7)

where G(r — r‘) is the probability of the walker for moving from r to r’ and is the
Green function to be explicitly discussed in Section 3.3. P(r — r‘) is the probability
of accepting that move and represents the unknown acceptance rule we like to derive.
Based on expression (3.7), the average number of walkers moving now from volume dr
to dr‘ is given by multiplying that expression by pdr,

p(r)dr - G(r - r)- P(r — r‘) - dr. (3.8)

p is the walker density at r. Now, in fulfillment of the previously described steady
equilibrium, the following equality,

G(r - r)P(r » r')p(r) = G(r' - r)P(r' — r)p(r'), (3.9)

2 Attaining a steady equilibrium requires a sufficient large number of walkers. This is assumed
here.
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must hold for all r and r’. In order to satisfy that equation (i.e. the steady equilibrium),
different choices for P(r — r) exist. A typical choice is

G(r' = r)p(r)
Gl =)o) |
With this choices, eq.(3.9) can be easily shown to hold [LESTER 1994]. P(r — r') is

now the derived acceptance rule used in step 3. As stated above, the explicit form of
G will be introduced and discussed in Section 3.3.3

P(r — r') = min {1, (3.10)

This Metropolis algorithm can further be improved when modifying the proposition
rule of a move, r — r’, in step 2 by an “intelligent” proposal. That avoids a high
rejection rate for otherwise “blind” suggestions. In particular, the proposition of a
sampling point should favor points corresponding to an increase in the density, p, and
disfavor points for decreasing, p. We will derive that improved proposition rule in a
more general context for DMC in Section 3.3.3 but anticipate the result,

r'=r+47-v(r) + x. (3.11)

Here, v is the drift velocity given by v := p~'!Vp (further discussed in Section 3.3.3)
and d7 is a constant time step. When choosing this improved proposition rule, the
modified algorithm then becomes the Metropolis algorithm with importance
sampling [LESTER 2001].

3.2 Variational Monte Carlo

The introduced HF and CI methods in Chapter 2 rely on wavefunctions that are con-
structed from single or multiple determinants. The Variational Monte Carlo (VMC)
method presented in this section generalizes now this wavefunction ansatz that is
purely based on determinants. The wavefunction used in VMC (later on called trial
wavefunction W) is constructed from these determinants but additionally includes a
multiplicative correlation factor. This factor aims at improving the dynamic correla-
tion description of . However, this generalized representation of W also leads to a
complex and high-dimensional integral when evaluating the expectation value of the
Hamilton operator, <Wp|H|Ur >, or of any other operator. To evaluate this integral,
the introduced Monte Carlo Integration serves as a convenient and essential method.
After the evaluation of that integral, the energy expectation value obtained for W
can further be improved by optimizing the free parameters of Ut with an appropriate
optimization algorithm. Thereby, the Ritz variation principle in quantum mechanics
guarantees that the obtained minimum in the total energy is an upper bond of the
true ground state energy.

The following section presents all relevant parts of a VMC calculation and concludes
with a summary of the VMC algorithm used in this thesis.

3In this derivation, the explicit time dependence of the Greens function has been omitted.
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3.2.1 Total Energy

’_[:he VMC total energy, Evuc, is obtained by evaluating the expectation value of
H*¢ with respect to a trial wavefunction, . For a chosen expression for W, the
expectation value, Eyyic, can be expressed in integral form,

HeUT)(r
[ Wa(r) H%)(r)dr_f ()G |0 () P (r)dr

. _ — 12
VMC = f\I’T U (r)dr f [Up(r)]2dr f |Ur(r)|2dr , (3.12)
where the local energy, .
_ (HWy)(r)
Ei(r) = T (3.13)

is introduced. Applying the importance sampled MCI from Section 3.1.2, the integral
expression for Evyc can now be approximated as sum,

M
1 ,
EVMC ~ M E EL (I'(Z)), (314)

where the MCI technique automatically integrates the local energy with respect to the
2 .
weights, % . In the last sum, r) represents the i** walker. Now, the next arising

question is how to construct an appropriate trial wavefunction.

3.2.2 The Trial Wavefunction ¥t

The trial wavefunction, ¥, should be as similar as possible to the true wavefunction
to guarantee that Evyc is close to the true ground state energy. But also, it is required
that Wt is more compact than a full-CI wavefunction with millions of determinants
(Section 2.4). The idea in constructing Wt with only a few parameters is to use
the most important determinant(s) to properly describe static correlation. Then, an
additional multiplicative factor, the Jastrow factor, tries to account for a description
of the remaining dynamic correlation. Therefore, the trial wavefunction is commonly
defined as the product between a sum of determinants and a Jastrow factor,

m

‘IIT = (Z ann) . j({?"ia, Tja: rij})- (315)

n=1

D,, represent the determinants and d,, are their respective coefficients with n = 1,...m
In the case of m = 1, the sum reduces to the single HF Slater determinant. The
second factor in eq.(3.15) is the Jastrow factor, J. It depends on the electron-nucleus
distance, 754, and the electron-electron distance, 7;;, (the Latin indices count all N
electrons and the Greek indices all M nuclei). The curly bracket in the argument of
J refers to the set of all possible indices for 7,7 and «.
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Figure 3.2: This figure shows the Jastrow factors J°¢ € and J° ™ of the J(550)-factor for
an No molecule. The upper thicker line represents the Jastrow factor J°~™ for the electron-
electron correlation. The thin lower line represents the Jastrow factor J°~™ for the electron-
nucleus correlation. To avoid confusion, the reader should note that two different abscissa
are used in that plot, i.e. for the e-e and the e-n distances.

There are several ways for choosing the Jastrow factor, stemming from both, mathe-
matical simplicity and physical motivation. As we will discuss below, both criteria are
well satisfied for the Jastrow factor utilized in this thesis,

T {ria Tja,Tij}) = Jger oo g . geee (3.16)

N M N N M
= HHeAW H eBii H Hec”'“ (3.17)

na
with Aig = Zanaﬁ‘a, (3.18)
n=2
B, = ﬂJriB:b r (3.19)
Y Ltbyry = '
and C’ija = P(Cia,ﬁa, Tjaa Tij)- (320)

The three Jastrow factors in eq.(3.16) describe the electron-nuclear (e-n), the electron-
electron (e-e) and the electron-electron-nuclear (e-e-n) correlation. The polynomial
parts of A;, and B;; have orders ny and ng with (ny — 1) and np free parameters
Une and by, respectively. (Later on, polynomials will be identified by their orders.)
The last J¢ ¢ "-factor in eq.(3.16) describes so called three-body correlations and is
given by the polynomial P with coefficients c;,. Its quite complex construction is
based on polynomials simultaneously consisting of (e-e) and (e-n) coordinates and is
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omitted here (it can be found in Ref. [FILIPPI 1996]). Nevertheless, it is important
to know that some ¢;, coefficients (parameters) are dependent on each other, e.g. for
maintaining the anti-symmetry in the electron coordinates. Also, some c;, parameters
replicate the two-body correlation from 7™ and J°~°. In turn, these parameters need
to be ruled out when exclusively considering three body correlations. Table 3.1 shows
the number of independent three body parameters, c¢;,, that belong to the respective
order n¢ of the polynomial P.

For the notation of later Jastrow factors, we will use the following convention. A
Jastrow factor for example with five orders in all three polynomials, A;,, B;; and Cjjq,
will be denoted as J(555) and has 4+ 5+ 15 = 24 independent parameters. Attention
must be paid to the fact that hetero-nuclear molecules have one set of a;, and ¢, for
each species of atoms.

5 6

Orders ng in P 4
7 15 27

1 2
Cia 0 O

Table 3.1: This table shows the number of independent three body parameters c¢;o of J¢ ¢
which belong to the respective order n¢ in P.

In order to prevent domination of polynomials by their highest-order term at large
inter-particle distances, the Jastrow factor is written in terms of scaled coordinates,
T i and 7 ij

Tia

(1 —ehria) (3.21)

and 7 = —(1—e ). (3.22)

Slmx|=

In this way, the interval [0, oo[ with r€[0, 00[ is mapped onto the interval [0, x7'[.
Therefore, the value of J remains finite even for large distances r, where k is a vari-
ational parameter that can be optimized similarly to the other parameters in the
Jastrow factor.

The Jastrow factor defined in eq.(3.16) to (3.22) and used in this thesis fulfills impor-
tant features (advantages). (1) It allows to construct a rather compact trial wavefunc-
tion with only a few parameters. (2) It provides the correct analytic behavior when
two electrons or one electron and one nucleus approach each other (further discussed in
the next subsection). (3) Consequently, it gives an appropriate description of dynamic
correlations as introduced in Section 2.5. This is illustrated in Figure 3.2. There, the
behavior of the two Jastrow factor components J° ¢ and J°¢™ of the J(550)-factor
is shown for the No-molecule. The upper thicker line represents J° ¢ and shows the
reduced probability density of two electrons when they approach each other. This is
equivalent to an increased repulsion and a larger average distance between two elec-
trons. The thin lower line represents J° " and "corrects” the effect caused by J°~¢ for
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larger e-n distances. The remaining characteristics after multiplying these two com-
ponents is a lowering in the electron density around each electron. And their effects
cancel (the product of J*™ and J°° becomes one) for larger distances. This is in
accordance with the given picture of dynamic correlation in Section 2.5.

3.2.3 The Electron-Electron Cusp Condition

When using the previous expression of the Jastrow factor, one can already incorporate
the exact characteristics of the true wavefunction in the limit of small distances be-
tween two electrons. This is favorable since ¥ in eq.(3.15) is generally not an exact
representation of the true ground state. And the resulting local energy in eq.(3.13)
may diverge as 7;; — 0. The requirement on ¥t to keep the local energy finite in the
limit for two approaching electrons is called the electron-electron cusp condition.
This condition guarantees that the arising singularities in the Coulomb potential and
in the kinetic energy do cancel appropriately. Its derivation can be found in Ref.
[FOULKES 2001, FILIPPI 1996 and is stated for our Jastrow factor as follows,

1 1
bl = 5 and byl = e (3.23)
Here, bgT applies for two electrons with like spin and béT applies for two electrons with

anti-parallel spin. Both are coefficients in the B;; polynomial of the J° °-factor in
eq.(3.19).

3.2.4 Wayve Function Optimization

In the last sections, we have shown how to calculate the VMC total energy for a
chosen trial wavefunction, Ur. The optimization of ¥ is now the last step in a VMC
calculation to obtain the optimized VMC total energy. Two different approaches exist,
the variance and total energy minimization [LESTER 1994]. In the case where Ur is
the true wavefunction, both methods are equivalent due to the variation principle. If
U differs from the true wavefunction, it can be shown that energy minimization yields
lower energies compared to variance minimization |[Foulkes, private communication].
However, the variance minimization is found to be statistically more efficient in practice
due to the positive definiteness of the variance, where zero is the minimum value
[FOULKES 2001]. In this thesis, we use a combination of both methods that will be
presented in the following.

Variance Minimization
According to Ref. [LESTER 1994|, Variance minimization uses the inequality
Evmc[¥r] — o[¥r] < Ey < Evme[¥r] < Evmce[Yr] + o[¥r] (3.24)
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with the variance, 02, of the total energy given by

2 _ f|‘I’T| (Er — Evnc)? I‘ 1 < 9
o = f |\IIT|2dr ; EL I'Z EVMC) . (325)
In the last step, Monte Carlo Integration (MCI) has been applied and Eyyc is the
previously defined VMC total energy from eq.(3.12). Both upper equations show that
the variance vanishes if and only if the trial wave function is the true ground state
of the Hamiltonian. In other words, if Ut matches the exact ground state, the local
energy becomes a constant and equals Eyyic such that the variance vanishes, and vice
versa, if the variance is zero, ¥+ must be exact.

When minimizing 0? with respect to an initial set of variational parameters, a(?, of
the trial wavefunction, it is important to compare very small differences in o2 in order
to determine the optimal set of parameters, o*. This is achieved with an application
of a correlated sampling approach. Thereby, the same set of walkers are used when
proposing a new set of parameters, a{"), and when evaluating the variance with these
new parameters. This approach guarantees a greatly reduced statistical fluctuation
when evaluating small quantitative changes in o2.*

This correlated sampling technique is introduced in the following. First, eq.(3.25) is
written for the optimized set of parameters, a(Y,

2 Er oY) —E d
o*aV] = J ¥rla®] (Bsfo ] VMC[a )’ 5 (3.26)
[
When introducing the weight,
T[]
© oM .= T 3.27
w[a ) ] \IJQT[OA(O)], ( )
eq.(3.26) can be re-written as
o) IO (B0 = Burela®]) wla®, a®dr
[ ¥2[a@]w[al®), aV]dr
M
Z(EL — EVMc)QUJ[a(O), O!(l)]
N B . (3.28)
> wfal®, 0]
i=1

4The numerical optimization of the variational parameters, «, is performed by a combination of
three standard numeric optimization techniques, i.e. Levenberg-Marquardt, Simulated Annealing
and Metropolis Sampling. A discussion of these techniques is omitted here but can be found in Ref.s
[UMRIGAR et al. 1988, PRESS 2002].
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In the last step, MCI is used again. The important result now is that the two values
0?[a(] in eq.(3.25) and 0%[a(V] in eq.(3.28) are sampled with walkers generated from
the same distribution, U[a(%)].

However, the quantity o2 is a good estimate only, if Eyyic is accurately determined in
eq.(3.28). As this is generally not the case for a small number of walkers, it has been
suggested to replace Eyye with an appropriately chosen and fixed reference value, E,e¢
[LESTER 1994]. But it is generally difficult to know what the best value for E,f is,
since it is the true energy, ES;c[a*], for W¥MC[a*] with optimized parameters, a*,
and infinitely many sampling points. We will show that the variance minimization
additionally includes a total energy minimization when E.o < E$S,c[a*]-

Interdependence of Variance and Energy Minimization

Following Ref. [LESTER 1994], this interdependence between variance and energy
minimization can be seen as follows. When setting E.f := EQycle*] + JE for a small
value JE, the variance in eq.(3.25) becomes

Tpla) = 13 (Bula] - Bicla®] - 66
= o’ [oz]_—i- SE? + 20E - (E¥ycla®] — Evac[a]). (3.29)

The first term in the last equation is the variance, o2, that we like to minimize with
respect to a set of parameters «. The second term is a constant which does not
influence the minimization. The third term, however, is a linear function of Eyyc and
can be made small by choosing §E as small as possible (i.e. setting Eyer close to EQyc)-
As an alternative, this third term can also be used to minimize Evyc[a] when choosing
JE negative. For such a choice, the third term will always be positive (to show this,
we also used the fact that EQyc[e*] < Evamc|e]). In turn, minimizing that (positive)
difference between E$cla*]and Evyc|a] is equivalent to minimizing Evyc[a].

To conclude, when choosing E. sufficiently lower than E (in our calculations about
1-10 mHa), expression(3.29) is optimized using both, variance and energy minimiza-
tion. In the following, we will schematically illustrate the operational optimization
procedure within a complete VMC calculation.

3.2.5 The VMC Algorithm with Importance Sampling

The required steps within a complete VMC calculation as used in this work are illus-
trated in the flowchart in Figure 3.3 and are summarized as follows.

1. A HF or CI calculation is performed with the program package GAMESS
[SCHMIDT 1993] to obtain the HF or CI molecular orbitals. Thereby, pseu-
dopotentials are used which are described in Section 3.4.

31



3.2. VARIATIONAL MONTE CARLO CHAPTER 3. THEORY OF QMC

GAMESS HF / CI — PSD

<:| Pseudq-

‘ Construction of Slater Determinant potential
: [

VMC \IJT — \IJSD>< J

Construction of trial wavefunction

iy
A\

Proposal r'= r+dt v+
for moving the it electron

If rejected over all
\ electrons 1
g over a
Acceptance/Reject ﬁ o ers

for moving the it electron

Q Then, over
all blocks
MC Integration Y
Sample Ey,,.and/or . Lon Evmc and W
[ 1]
|
FIT manual adjustment of E
. . over all

Optimization of manual fit
OymclY(parameters)] iterations

Levenberg-Marquardt,
Simulated Annealing and
Metropolis Method

1L

Re-calculating the weights
w=Y2[c0]/¥?[c™]

over all n fit
iterations

7

Figure 3.3: This flow-chart illustrates the steps followed when performing a VMC calculation.
In total, three different programs are used where each one is framed with a box. All single
steps and variables are elaborated in Section 3.2.5.
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2. The trial wavefunction is constructed (see Section 3.2.2) by guessing the unknown
parameters in the Jastrow factor, a(%) (usually, by setting all parameters zero).

3. The importance sampled Metropolis algorithm is applied in the following (see
also Section 3.1.3). First, one triple of electron coordinates, r;, of a single walker,
r = (ry,...ry), is individually advanced by r} = r; +67-v; + x;, see also eq.(3.54).
Note, only one triple of electron coordinates (rather than the entire walker) is
moved to guarantee a small rejection rate.

4. Then, the Metropolis acceptance rule is applied. If that move is accepted, a next
electron, r; 1, will be moved within the walker, r, re-starting from step 3. If the
move is rejected, step 3 will be repeated for electron, r;.

5. After the generation of one walker r', the local energy Ep (r') will be evaluated.

6. The VMC total energy, Evuc, is evaluated based on the average of all previous
local energies (at the beginning of only one local energy) according to eq.(3.14).
The fluctuation of these local energies gives the variance, o2, and is calculated
according to eq.(3.28). Now, steps 3 to 6 are repeated until the standard de-
viation of the mean of Eyyc defined in eq.(A.10) in the appendix is below a
certain value (usually 1 mHa). It is important to notice that subsequently gen-
erated walkers are partly correlated since their positions are determined based
on their respective predecessors. To guarantee statistically independent local
energies when calculating Eyyc and o? (which is required when applying the
Central Limit Theorem) a number ., of subsequent walkers are blocked. tco
in eq.(A.14) is determined such that the walkers become statistically indepen-
dent. For a definition of t.,, see the auto-correlation function in eq.(A.15).
In all later calculations, t. is always less than 10.> Also, the first block is
omitted when calculating Eyyc and o2 since the initial set of walkers might be
improperly chosen.

7. After a successful VMC calculation from step 1 to 6 for the initial trial wave-
function, W, its initial parameters are now optimized based on minimizing o2
(see Section 3.2.4). First, E,ef needs to be manually adjusted in eq.(3.28) to be
lower than the previous Eyyic value (we choose a value of 1-10mH). When using
the first 4000 walkers generated under step 3 for the initial set of parameters,
a9 a first set of optimized parameters, oY), will be generated.

8. This optimization procedure will be automatically repeated (iterated) several
times (we use 20 iterations) and yields the optimized parameters, o, for the
initially set of walkers.

Steorr is defined as the number of time steps 67 (see Appendix A.14). Since the time is given in
units of Ha~!, 10 time steps correspond to a time of 7 = teorr - 67 = 1Ha ™! for teorr = 10 and a time
step 67 = 0.1Ha 1.
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Figure 3.4: The diagram on the left hand side shows the VMC and DMC total energy after
each VMC-FIT iteration cycle. The diagram on the right hand side shows the VMC variance
for each cycle. For these calculation, the cc-pCVQZ basis and the J(550) Jastrow factor is
used, where all other specifications are chosen as in Section 4.1. (The DMC total energies
are included in the left diagram and will be matter of discussion in Section 3.3.)

9. To check that o2 has achieved a global minimum for all points in the configuration
space, we then generate a new set of walkers from the optimized |¥r[a®?)]/?
distribution by re-doing step 1 to 6 again. This re-calculation of walkers, followed
by another consecutive variance optimization, is performed until the VMC total
energy is converged. Figure 3.4 in Appendix Ab presents the results for such an
iteration process.

3.3 Diffusion Monte Carlo

In this section, we describe the second Monte Carlo method used in this thesis: Dif-
fusion Monte Carlo (DMC). The idea of DMC is to solve the electron Schrédinger
equation by mapping it to the classical diffusion and rate equation. Then, these new
equations describe the unknown N-electron ground state, Wy, when evolving an initial
wave function, W, for a sufficiently long time. Since that evolution projects out the
ground state of W, this method is also referred to as ground state projection technique.

3.3.1 Ground State Projection

To illustrate this projection technique, we start from the time dependent electron

Schrodinger equation,
a“lj> e re
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where 7 and V¢ are defined in eq.(2.2) with H¢ = 7° 4+ V°. Now, we transform ¢ into
imaginary time, t — it =: 7 and introduce a constant offset, Ege,

W) = (T4 V* ~ B (7). (3:31)

The need for Eges will be justified shortly. This equation can formally be solved by
integration, o
(W(7)) = e THV=EreDT |y (7 = ). (3.32)

Then, the wavefunction |¥) can be expanded in energy eigenvectors, |@;),
B) = cildi), (3.33)
i=0

with H¢|¢;) = E; |¢;) and coefficients ¢;. Inserting that expansion into eq.(3.32) yields

W(r)) = e THV*—Ere| > cidn)
1=0
_ 6—(EO—ERef)T|CO¢0> + e_(El_ERef)T|cl¢1> + ... (334)

When adjusting Eges to be the true ground-state energy, Ey, the asymptotic solution
for large 7 (large in atomic units) of eq.(3.31) becomes a steady-state solution of the
ground state,

lim |¥(7)) = co|o)- (3.35)

T—00

This projection can be understood when remembering that all —(E; — Egef) terms
are negative for all excited states with ¢ > 1 and zero for the ground state with
i = 0. Consequently, for increasing 7 all factors in eq.(3.34) decay except the one with
Eo = Eger. For that reason, the imaginary-time evolution operator, e~V =Fren)7 g
called ground state projection operator® and is the basic concept of DMC.

3.3.2 Short Time Approximation

The ground state projection for an initially chosen wavefunction can be calculated
when writing eq.(3.32) in space representation,

U, r) = / (x|~ HV BT [V (¢! 0) ! (3.36)

= /G(r,r',T)\I’(r',O)dr', (3.37)

6The coefficient ¢ in eq.(3.35) is unimportant as it vanishes when normalizing |¢o).
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with < r|¥U >= U(r,7) and the Green’s function,
G(r,r',7) i= (x|e THV*+Eren)T|ply (3.38)

The Green’s function can be understood as the probability amplitude of a particle when
moving from position r’ to position r in imaginary time. Unfortunately, no analytic
solution exists that allows to calculate G' explicitly. However, G' can be evaluated
approximately when factorizing the time propagator, e (T*+V*~Eret)7 into a separate
kinetic and potential energy part,

e~ (Ve e — o3 (Ve —Brer)7 =T =5 (V*=Bren)T | ([73], (3.39)

known as the Trotter approximation [FOULKES 2001]. It is exact only for 7 — 0.
When further re-writing 7 = nd7 with neN, eq.(3.37) becomes

\I/(I" T) = / <r|e*(Te+VefERef)n(5’T |rl> \Il(rl, O)dr,
~ / <r|(e_%(Ve_ERef)e_Tee_%(ve_ERef))”‘”|r'> U(r', 0)dr’ (3.40)

= /<r| (e_(Ve_ERef)e_Te)JT (e_(ve_ERef)e_Te)dT e‘é(‘?e_ERef)’sT|r'> U(r',0)dr".

In the last equation, the character of an iterative projection process becomes
evident: after an initial operation on ¥(7 = 0), the same kinetic and potential energy
operator is n times iteratively applied acting to the right in the upper equation. Now,
in order to find a representation of those iterative operators, we first define two Green’s
functions,

Gaig (v, ', 7) := (r|eTe5T|r'> and  Grape(r, v, 7) == (r|e(ve*ERef)JT\r'), (3.41)

which are spatial representations of the two iterative operators in eq.(3.40). As a
matter of fact, Gqig and Gr.ie are at the same time solutions to the classical diffusion
and rate equation,

dG g .
- d:ﬂ = TGug = —V’Gag (3.42)

dGra e ¥
and — th = (V - ERef)Gratea (343)

with respective solutions
, 1 _ [r—r']2

Gain(r,1',67) = W@ 2 (3.44)
and  Grage(r,r',07) = e’dT[%Ve(r)J“%Ve(r')’ERef], (3.45)
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Vot \ g
Ref

death process
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Figure 3.5: This scheme illustrates the iterative branching (birth/death) and diffusion pro-
cesses as described by the two Green’s functions Grate and Ggig. If the potential energy is
larger than Eger, random walks are terminated. If the potential energy is less than Eger,
multiple copies of the walker may be generated.

following Ref. |[FOULKES 2001, LESTER 1994]. With this analogy, the iteration
procedure in eq.(3.40) has a simple stochastic interpretation. W plays the role of
the density of diffusing particles if one restricts the previous discussion to problems
with positive wavefunctions, i.e. to bosonic systems in their groundstate’. The two
Green’s functions then represent a combined diffusion and rate process acting on those
“particles”. In particular, when describing ¥ with a set of “particles”, the diffusion
process characterized by Ggg diffuses them according to a Gaussian distribution with
the variance 207 and zero mean. The subsequent rate process increases or decreases
the number of "particles” determined by G ... In particular, for each “particle”, n
multiple copies can be created according to the integer part of

n = int[e #7lzVEFIVE) Eral 4y (3.46)

In this expression, the first term is the branching probability given in eq.(3.45). The
second term, wu, is a uniformly distributed random number in [0,1]. Since “particles”
are created or annihilated, this process is also called branching or birth /death process.

A schematic illustration of these iteration processes is shown in Figure 3.5. In con-
clusion, when performing these iterative stochastic processes within eq.(3.40), the ob-
tained particle distribution iteratively converges to a discrete representation of the
true ground state.

"This limitation will be resolved when introducing the fixed node approximation is Section 3.3.5.
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3.3.3 Importance Sampling in DMC

The above scheme is very inefficient when solving the Schrédinger eq.(3.31). This
can be seen as follows. The Coulomb potential, V¢(r), increases when two electrons
approach each other. Since V¢(r) influences the branching process described by ex-
pression (3.46), changes in V¢(r) also lead to fluctuations in the number of walkers
(particles). However, this fluctuation problem can be largely controlled with the fol-
lowing importance sampling technique.

The idea of this importance sampling technique in DMC is to use a trial (or guiding)
wavefunction, U, to help “guiding” random walks towards regions where W is large
[KALOS 1974]. This technique is implemented when multiplying the Schrédinger
eq.(3.31) with Uyp. When further introducing a new distribution,

flx,7) ==Y (r,7)¥r(r,7), (3.47)
the arising equation
% = %V2f(1‘,’7') — V[v(r,7)f(r,7)] — [EL(r,T) — Eget] f(r, 7). (3.48)

is known as importance sampled Schrédinger equation. In that equation, we
have introduced the local energy, E,, from eq.(3.13) and the drift velocity,

V\IIT(I', 7')
\I’T(I', T) '

The importance sampled Schrédinger eq.(3.48) is a modification of eq.(3.31) and has
a similar formal solution,

v(r,7):= (3.49)

F(x,7) = exp (1 TVHELE) Ba f(p 7 = 0), (3.50)

in accordance to eq.(3.32). Sampling eq.(3.50) for f has two advantages compared
to the previous density ¥ : (1) Ve becomes replaced by Er. Unlike Ve, Er, can be
controlled by the quality of the trial wavefunction. As a consequence, the fluctuation
in the number of walkers (in the population) can be largely reduced. (2) The gradient
of the velocity, v, accounts for an additional stochastic processes, the drift of a walker,
which further improves the sampling process as explained in the following.

When writing eq.(3.50) in integral form and applying the short time approximation
again (both steps are in analogy to eq.(3.40)), a third Green’s function arises,

Gauie(r,1',07) :=< r|e‘57'v"\r' >, (3.51)

in addition to those in eq.(3.41). When using the product rule, V-v=v-V + (v- V),
and considering the fact that v is constant (which is true as 7 — 0), we can substitute
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Vv by vV in eq.(3.51). When further using the Taylor expansion for a scalar function,

f’
O™V £(r) = Flr + (67 - V)] (3.52)

[NOLTING 1996], Garite can be understood as a displacement of r by 67 - v which can
be expressed in the following delta function,

Garity =< 1t +07-v >=4[r — (v' + 67 -v)]. (3.53)

Now, the application of this Green’s function when describing the additional drift
process in eq.(3.48) is equivalent to a revised proposition rule in the Metropolis
algorithm in Section 3.1.3,

r'=r+6r-v(r)+x. (3.54)

In this expression, the walker, r, is drifted by the distance 67 - v and x is again the
normally distributed random vector with variance 267 and zero mean. When recalling
the definition of the drift velocity, v, in eq.(3.49), it can be immediately seen that
v drifts walkers into regions of large Wr. In particular, the velocity becomes large
when walkers approach a nodal surface, i.e. when Wt becomes small (recall that v is
singular for U1 = 0). And the velocity is small if walkers approach a maximum in Wr.

To conclude, the solution of the importance sampled Schrodinger eq.(3.50) is now
obtained by an iteration of three statistical processes: diffusion, branching (modified
by the local energy) and drifting.

3.3.4 Total Energy in DMC

In the last sections, we have discussed the finding of the exact ground state for the
time-dependent Schrodinger equation. In this section, we will show that the DMC
algorithm in principle yields the true ground state energy. Different approaches exist
to obtain the total energy in DMC [UMRIGAR et al. 1993]. In this work, we will use
the method of a mixed estimator which calculates the total energy as an average of
local energies similarly as in VMC.

To verify :chat, let us consider the mixed estimator, < \Ilo|ﬁ ¢ WUt >, as the expectation
value of H® using the exact wavefunction, Wo(on the left), and the trial wavefunction,
W (on the right). Via the hermiticity, H® can also be applied to the left on ¥y, which
yields

(UolH1%n) (ol ) _ | (Wol)
— Lo

(To|Tr) (W[ Tr) (Wo[upy — 0 (3.55)
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Figure 3.6: This schematic illustration shows the difference between the fixed-node DMC

ground state wavefunction, \Ing, and the exact wavefunction, ¥y. The black arrow indicates
the displacement between the fixed nodal surface (which is 0-dimensional in this illustration)

and the true nodal surface.

In this expression, the mixed estimator is normalized. Furthermore, that mixed esti-
mator can also be written in integral form,

[ Wo(r) HoT ( ydr [ To(r “’TE”HQ‘I’T [ flr )dr
f\IIO ) dI' f\IIO ffoo '
In the last step, we inserted the local energy from eq.(3.13) and the converged prob-

ability distribution fo, = VoW from eq.(3.47). Using importance sampled MCI in
eq.(3.56), the equality of the last two equations yields

(3.56)

) 1
EO = EDMC with EDMC = M ZIEL (I‘z) (357)

The last expression is the obtained estimate of the DMC total energy. Epyc then is
the exact ground state energy if the distribution f,, is converged to W W, where ¥g
is the true ground state and ¥+ the chosen trial wavefunction.

3.3.5 The Fixed Node Approximation in DMC

So far we have assumed that the wavefunction, W, is positive everywhere. When
dealing with fermion systems, however, the requirement of anti-symmetry also calls
for negative values of ¥ . But unfortunately, probabilistic methods such as DMC can
handle only positive probability distributions. There have been attempts to impose
sign variables to individual walkers [Anderson 1975|, but so far, their applications
(except for very simple ones like HF ) have not been successful due to large signal-
to-noise ratio [FOULKES 2001]. An alternative method, which is now the common
way to deal with this sign problem and implemented in our code, is the fixed-node
approximation. In this approximation, an initially calculated trial wavefunction, ¥,
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for N electrons divides the configuration space into pockets that are separated by
(3N — 1)-dimensional nodal surfaces on which Wy is zero. All walkers in one pocket
are now assigned the same sign, and the fixed-node DMC algorithm projects out the
fixed-node ground state, ¥§N. Thereby, the nodal surface of ¥y is kept as boundary
condition. For illustration, see Figure 3.6.

The implementation of the fixed-node approximation is a slight modification of the
normal DMC algorithm: a walker will be deleted if it crosses a nodal surface. But the
used importance sampling DMC algorithm drifts the walkers already away from the
nodal surfaces as explained in Section 3.3.3. Hence, the number of walkers crossing
the nodal surface is already reduced.

It can be shown that the fixed-node DMC energy, E{Y~, is variational,
Eg = (N[ H®[UgY) > E, (3.58)

and is an upper bound to the exact ground state energy [LESTER 1994]. In Ref.
[FOULKES 2001], the fixed node error of the total energy is estimated to be not larger
than 5% of the correlation energy. This estimation assumes a decent trial wavefunction
with a Slater determinant obtained by a HF calculation.

The fixed-node error can systematically be reduced when improving the nodal surface.
This can be done for example when using more than one determinant in ¥p. But
since the fixed-node error is always positive, it partly cancels when calculating energy
differences.

3.3.6 DMC Algorithm with Importance Sampling

The required steps within a complete DMC calculation are illustrated in Figure 3.7
and are summarized in the following.

1. The optimized trial wavefunction, ¥, from a previous VMC calculation is chosen
as initial wavefunction in DMC. For the molecules studied here, we will use a
population of P = 50 (the number of simultaneous walkers) which is the zeroth
generation of diffusion steps.®

2. In step 2 to 4, the next generation of walkers will be generated using the impor-
tance sampled Metropolis algorithm (see Section 3.1.3): in particular, a triple
of electron coordinates, r;, of a single walker, r = (ry,...ry), is advanced by
r'; =r;+x;+067-v(r). The time step, d7, is chosen as to minimize the time step
error discussed in eq.(3.39). At the same time, the auto-correlation time (see
also step 8) increases for smaller time steps and thereby the numerical effort.
Consequently, a compromise has to be made when setting the time step (details
are discussed in Section 5.5).

8The population needs to be larger than one walker, since their number will fluctuate in later
branching processes.
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Figure 3.7: This flow-chart illustrates the steps followed when performing a DMC calculation.
All single steps and variables are elaborated in Section 3.3.6.
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3. To account for the fixed-node approximation, our algorithm checks now whether
the proposed walker (with the new triple of electron coordinates) has crossed a
nodal surface. In this case, the proposed move will be rejected and the algorithm
resumes at step 2 again.

4. If the walker does not cross a nodal surface, it is then accepted with probability
P(r — r') given in eq.(3.10). In case of rejection, the algorithm resumes step 2
again, likewise. Normally, an acceptance ratio is obtained which is larger then
90%. In case of acceptance, steps 2 to 4 are iterated for the next electron, r;, 1,
in that walker, r.

5. After a successful diffusion and drift of one walker in steps 2 to 4, the walker
either branches into n copies or is eliminated according to the integer expression,

n= int[expf‘sT(%EL“H%EL(‘”’)*ER“) +ul . (3.59)

The first term in the above expression is the branching probability according
to eq.(3.45), where Ve(r) is replaced by Ep (discussed in Section 3.3.3). The
second term, u, is a uniformly distributed random number in [0,1]. Similarly as
in Figure 3.5, the upper expression describes a branching process that eliminates
a walker if the local energy, Ep, is larger than Eg.s and generates copies if the
local energy is less than Eges.

6. Steps 2 to 5 are iterated for all walkers in one generation.

7. The number of walkers in one generation fluctuates and might have changed
from its initial value due to the branching process. However, when adjusting
the trial energy, Eger, in eq.(3.45), the population, P (the number of walkers in
one generation), can be kept at a desired level. This is done by adjusting Eges
according to

P
ERef - Eguess + Kln(ﬁ)a (360)

where P is the current and P* the initial (desired) population. Egyess is the best
guess of the ground state energy. Initially, it needs to be adjusted manually
(e.g. Eguess(T = 0) = EVMC). Later on, it is replaced by Epyc. & is a feedback
parameter and is adjusted such as to stabilize the population around the initial
P~

8. The DMC total energy, Epmc, is obtained as average value of the local energy,

see eq.(3.57).

9. In order to guarantee statistically independent local energies when calculating
Epwmc , a certain number of diffusion steps are blocked before calculating Epyc.
Likewise as in the VMC algorithm (i.e. step 6, not repeated here), step 2 to 7
are iterated for a certain fixed number of generations which are grouped in one
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block. The block length is determined by the correlation time, .o, [see eq.(A.14
in Appendix A|, and is usually less then 5. The correlation time in DMC is also
discussed in Section 5.5.

10. The cycle 2 to 9 will be redone for as many blocks as are required to project out
all excited states (for our molecules, we use between 2000 and 8000 blocks).

3.4 Pseudopotentials in QMC

In this section, pseudopotentials in VMC and DMC will be discussed, since their
application introduces approximations that might influence our results. After a short
introduction, the construction of our used pseudopotentials is presented, followed by
their application in VMC and subsequently in DMC.

As already stated in the introduction of this thesis, all-electron QMC calculations have
been applied to first row molecules in few studies. But already for first row molecules,
these studies reflect the difficulty in the all-electron treatment by DMC calculations.
In addition, we already stated the numerical effort which severely increases with the
nuclear charge. Two main problems occur when dealing with core electrons in larger
atoms. (1) There is an increase of the fluctuations in the local energy, E;, since
the potential and kinetic energies are large in the core region. Because of a rapidly
changing wavefunction in the core region, it is very difficult to design such a trial
wavefunction that can decrease these fluctuations in Ep. (2) Due to an increased
variation in the wave function near a nucleus of large Z, the time steps need to be
small enough to reduce the rejection rate of the walkers. However, small time steps
drastically reduce the efficiency of DMC since the correlation time increases. The two
stated main problems are overcome with the pseudopotential approximation.

The pseudopotential approximation in QMC considers the core orbitals of atoms and
molecules as frozen. Then, the effects by those fixed orbitals are replaced by an angular
momentum dependent potential. A justification for that approximation is that the
core remains practically inert and has a negligible impact on the valence properties,
like chemical bonds. As an additional step, the valence orbitals are then replaced by
pseudo-orbitals. The pseudopotential is constructed such as to approximate the core-
valence interaction. Since we will use pseudopotentials obtained from a HF calculation,
it should be said that core-valence Coulomb interaction is not incorporated in our
pseudopotentials.

While pseudopotentials account for further approximations (first introduced to QMC
by [BACHELET 1989]), they drastically increase the efficiency of QMC algorithms.
An estimate of the scaling in DMC is given by N3 where N is the number of valence
electrons [MITAS 1991]. The large improvement in the exponent from 5.5-6.5 to 3 can
be understood by the removal or the core orbitals and thereby the two main problems
indicated in the first paragraph.
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3.4.1 The Construction of Pseudopotentials

The pseudopotentials used in our calculations are constructed from an all-electron HF
calculation of the free atom in spherical approximation. With the following ansatz for
the one-particle orbitals, ¢nim = pniYim(Where pp; is the radial part and Y, are the
spherical harmonics), the HF equation from Section 2.3 can be separated in a radial
HF equation,

+1 z 4

272 r Yloc
n is the principal quantum number, [ the angular momentum and m the magnetic
quantum number. r is the radius of the position of the 7™ electron, r; (the index i is
omitted for the radius) and Z is the nuclear charge. 9 is the local Coulomb potential
(Hartree potential) and 9% ., the non-local Fock operator (exchange operator) which
depends on [. Notice that both operators, i, and 95 .,, only describe the radial part

of the Coulomb potential and Fock operator given in eq.(2.13) and (2.14), respectively.’

(T) + @X(T)nlocl Pri (T’) = gnlpnl(T)- (361)

1
—§V3+

After solving eq.(3.61) self-consistently for all electrons with numerical HF
[JENSEN 2002], the core electrons are then eliminated and pseudo-orbitals, ¢b;b =
PPPY)m, are constructed. This construction is done by choosing a cutoff radius, 7o,
and eliminating all nodes for » < ry. For the pseudo-orbitals, it is required that they
should reproduce the behavior of the all-electron orbitals outside the cutoff radius for
r > 1o. Also, the continuity of the trial wavefunction at the cutoff radius, ry, and the

normalization need to be satisfied.
Following Ref. [LESTER 1994], the pseudo-HF equation then becomes

1 l+1) Zg . N N
vz D T ey 4 x| P 0) = st e). (362)
Here, 0},7; is the pseudopotential operator accounting for the core-valence interaction.

And 3{1¥ and 5% are the Coulomb and Fock operators acting on the pseudo-orbitals.
Zen 1s the effective charge and ¢,,; are the all-electron eigenvalues for the valence orbitals
from eq.(3.61). The pseudopotential can be obtained by inverting the pseudo-HF

eq.(3.62),

172 ,pPsp
@lpspl(r) = g+ Zeff _ l(l + 1) + ivrspnl (T) _ <1A)l}écval(r) + |
o¢ r 272 lep(r) pZzp(r)
It should be noticed that the constructed pseudo-orbitals and therefore the pseudopo-
tential in the previous expression exist only numerically (i.e. are constructed on a

grid). Therefore, to obtain an analytic expression, the analytic function,

9An explicit expression radial expression for both terms is omitted here. A derivation of these
terms can be found e.g. in Ref. [WAHN 2002].
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kmax

Do (7) Z AP (3.64)

is fitted on the numerical expression (3.63). Thereby, each of the | pseudopotential
components is fitted individually with A;;, ny and By, being the fitting parameters.

So far, we considered the HF equation for the radial part of one-particle orbitals.
Thereby, the pseudopotential was local for any fixed I. Now, we generalize the concept
of pseudopotentials to the entire atomic orbital. This generalization is important
when treating systems beyond single atoms but also to understand the application of
pseudopotentials to many-electron wavefunctions in VMC and DMC, later on.

Typically, norm-conserving pseudopotentials are set up and derived in terms of an

angular momentum dependent non-local operator'®, 377" " as found in
(il O73ge rF) = Z Z (Qim) o, (r) (m|SY). (3.65)
m=—1
Here, (Q]lm) = Y;,,(Q2) are the spherical harmonics, and 2 are the spherical coor-

dinates. 0h.0 are the pseudopotential operators from eq.(3.64) that are local in the

radial coordmate for a fixed quantum number, [. However, it is important to notice
that 92F is non-local due to its dependence on [.

The expression for 95> can be simplified as follows. The repulsive part (1 +1)/2r? of
the potential in eq.(3. 62) pushes an electron outward with increasing angular momen-
tum. Also, all components 0}, at large r reduce to the effective Coulomb potential,
ALY 1ndependently of I. Hence, 0h)> can be approximated by a multiplicative lo-
cal potential, 9 Luar 1> PlUs & few [—dependent “short-range corrections” for | < lyax

(where I« is appropriately chosen),

nloc

(rilomeelri) = O(r —r)oRd, (1) + AR (i, 17), (3.66)
bmasx o(r —1r") :
with  Ainrr) = 3 T AR () 3 Y (@)¥in(@) (367
1=0 m=—1

and Abei(r) = Oy (r) — ooy 1 (7). (3.68)

A?PP is defined to be the non-local pseudopotential from which the local component,
Oy 41(r), is subtracted. Eq.(3.66) to (3.68) are now a truncated expression for the
non-local pseudopotential.

10Gee for example the reference M. Fuchs, M. Scheffler Computer Physics Communications 119
67-98 (1999).
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For the nitrogen atom, Figure 5.2 presents the two pseudopotential components, @f(’)sfp
(local) and AdRY = 957, — O, (called non-local component) for three pseudopo-

tentials used in this work. The first is generated by Claudia Filippi following the de-
scribed procedure above [Filippi, private communication| and is optimized to describe
the atom. The respective coefficients are listed Appendix B. The second pseudopoten-
tial is the Stevens-Basch-Kraus (SBK) one and is taken from Ref. [STEVENS 1984].
For this SBK pseudopotential, a different approach was chosen to obtain the analytic
expression (3.64) for its pseudopotential components. In particular, expression (3.64)
was inserted into the pseudo-HF equations as an ansatz, while all parameters in that
expression were optimized to approximate the eigenvalues ¢;,. The third pseudopo-
tential, called MF in this thesis, was taken from Ref. [LESTER 2001, GREEFF 199§]
and was constructed similarly to the SBK pseudopotential.

3.4.2 Pseudopotentials in VMC

So far, the treatment of pseudopotentials was done in an independent particle picture,
in particular by HF (DFT would be possible, too). Now, we are interested in construct-
ing a many-electron pseudopotential for N electrons with coordinates r = ry, ...ry, and
in applying it to the many electron trial wavefunction, Ur. We are then also able to
construct the new Hamiltonian for pseudo-orbitals and to evaluate its local energy,
EL - ﬁepSp\I]T/\I]T'

Following Ref. [FAHY 1990|, the many-electron pseudopotential acts as an effective

one-body operator. This allows us to write the many-electron pseudopotential, Arﬁffc’,
as a sum of one-particle operators,
N
Viee = _ Viiees (3.69)
i=1

The one-particle operator, VHI;ZIC’Z-, only acts on the ¥ electron, while all other electron
coordinates are kept fixed. In a formal quantum mechanical notation, this can be
written as

VPP =1, @1y @ 0PP ... @ 1y. (3.70)

nloc i nloc:
Here, 9% . is the non-local one-particle operator from eq.(3.66) and 1, is the unity
operator with 7 =1,...s — 1,2+ 1, ...N.

Now, we want to apply VE® on U,

nloc

(x|VEPIWr) = [(e|VEP|e! >< v [Tp)dr (3.71)

nloc nloc

where the unity-operator, [ |r' >< r'|dr/, is inserted. When expanding VPP as in
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eq.(3.69) and use the notation |r) = |r;)|ry) ---|ry), we can write eq.(3.71) as

ZV;E(S)I(;'\I]T - / ZVHI;EEZ , |\IIT>d3I‘
Z/ rZ|UIIils(§)cz , |\I!T) r;. (372)

In the last step, we have used that Vn‘{ffc’z only acts on the ** electron coordinates and
becomes the single-particle operator o5, . according to eq.(3.70). Since 9% . is known
from eq.(3.66), we can finally write the action of the many-electron pseudopotential

on Ut as,

(Vs Z [ 0= P () + AT, 1) W] )

(3.73)
where AOPY (r;,r}) is given in eq.(3.67). For further convenience, let us divide the

last expression into a local and a non-local many-electron pseudopotential operator,
Ve — Vgsll’max Tt AVP®  defined as

nloc — [ nloc?

VEr L Trp(r) = Z@f?fc"zmﬂ r)Up(r), ..xh,..ry) (3.74)
and (AVEPGL)(r) = Z/ AP (0, ¥V T (E, oy xy )T (3.75)

Following now Ref. [MITAS 1991], we will write the new Hamiltonian from eq.(2.4) as
a sum of a local part, H{*™ (which includes V2 ), and the non-local part, AVEP,

HePP = FPPP 4 VP, (3.76)

nloc*

The contribution of HSP to the local energy is obtained as discussed in Section 3.2.

The second contribution by AVrﬁffc’ to the local energy is given by expression

Ima; l
5 A () X Vin(S0) fo, Vi () (e )

m=—1

S N
(AVlﬁo’z -y =
— \IIT(I‘l,..,I'Z',...I‘N)

=1

(3.77)

It describes the action of the non-local part of the pseudopotential onto the many-
electron trial wavefunction. To obtain the last equation, we substituted the expression
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for AP (r;,r;) from eq.(3.67) into eq.(3.75). Then we integrated over the delta
functions of the radial coordinates, r;, of all electrons. To finally evaluate eq.(3.77),
only 2-dimensional surface integrals over the angular coordinates, )}, for each electron
remain to be solved. To do so, our VMC code provides three technical choices of
numerical integration. (1) The Tetrahedron symmetry integration uses 4 points on
the sphere to calculate the integral'!. (2) The Octahedron symmetry integration uses
6 points and (3) the Icosahedron symmetry integration 12, 24 and 86 points. For a

more technical discussion about these integration techniques, see Ref. [MITAS 1991].

3.4.3 Pseudopotentials in DMC - The Pseudopotential Local-
ization Approximation

The evaluation of non-local pseudopotentials in VMC can “simply” be obtained by
numerical integration in two dimensions and can systematically be controlled. Not so
for DMC, there a complication arises with the non-locality of pseudopotentials. In
the following, we point out this difficulty which can then be avoided when doing the
pseudopotential localization approximation.

In Section 3.3.2, we introduced the Green’s function, G = G4igGrate, When iteratively
solving the Schrédinger equation. So far, we interpreted G(r’ < r,d7) as the prob-
ability amplitude for one walker to move from position r to r’ (in imaginary time).
This interpretation is valid if and only if GG is positive. It is clear that the diffusion
term, Ggig, is always positive. This is not so for Gpae. Let us focus on Giaie and recall
its explicit expression,

Grare(r, 1, 87) = (r|e™07(V*=FD)|p), (3.78)

If V¢ were a local operator, it could be shown that the matrix representation of G aze
is diagonal with only positive eigenvalues'?. But for non-local operators, like V2P the
matrix representation of Gy, may also have non-diagonal elements. In turn, Gyae is

not guaranteed to be positive for all r, v’ and 67 [FOULKES 2001].

Following now Ref. [MITAS 1991], the Hamiltonian H¢P*P is again written as in
eq.(3.76). Then, the importance sampled Schrédinger eq.(3.48) becomes

"'The integral of a function f defined on the unit sphere is approximated as i [, f(Q)dQ =~
1¥% . f(ai). The a; are equally distributed on the sphere [MITAS 1991].

a 0 0 e 0 0
12For illustration, the following equality may be used, exp{ 0]} = e 0 |,
c 0

which then can serve for generalization.
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df (r,7)
dr

_ %v? f(e,7) = V[f(r,7)v(r)]

([ B2 - Bx] wn)(x)
- ) fe7) -

(AVERD)(r)

nloc

¥(r)

f(r,7).(3.79)

Please notice the important difference between ¥ and U+.'* As pointed out above,

sampling this equation according to the previous DMC formalism would allow walkers
to change their signs. “This is likely to be a very noisy procedure as walkers with
opposite signs would almost completely cancel” [MITAS 1991|. It is the last term of
eq.(3.79) that contains the non-local part of the pseudopotential, AVHITEE, and gives rise
to a potential sign change in the sampling process. The idea now is to get rid of this
last term by evaluating AVHT)IC’ not with the unknown wavefunction, ¥, but instead
with the known trial wavefunction, U. The result is a differential equation with no

non-local operators as will be seen as follows.
When adding and subtracting the term AV /¥ to eq.(3.79), we get

nloc

df (r,7)
dr

_ %VQ F(r,7) = V[f(r, 7)v(r)] (3.80)

(2P + AVED - Bp)¥s ] (x) 1
- \IJT(I‘) f(I', T) - C(I')f(l‘, 7—) (38 )

with

nloc nloc

()  Ue(r)

e(r) = (3.82)

(AVP® @) (r) (AVPSPKIIT)(r)]

The e-term is the difference of the pseudopotential applied to the unknown sampled
wavefunction, ¥, and the trial wavefunction, ¥ . When neglecting this e-term, the
Schrodinger eq.(3.81) becomes a differential equation with only local terms. There-
fore, this approximation is called Pseudopotential Localization Approximation
and is exact when Ut is the true ground state wavefunction, ¥,. It can be shown
that the localization error in the total energy approaches zero quadratically as W
approaches an exact eigenfunction of He [MITAS 1991|. But unlike for the fixed-node
error, no variational principle holds and nothing can be said about the sign of the
pseudopotential localization error.

13T
DMC.

is the fixed guiding function and ¥ is the wavefunction that becomes the ground state in
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3.4.4 Interdependence of the Fixed-Node and Pseudopotential
Localization Approximation

What makes it even more difficult to estimate the pseudopotential localization error is
its inherent interdependency with the fixed-node approximation. This interdependence
becomes evident when considering the expression

(E[epsp + AVPSP - ET)\IJT (I‘)

loc nloc

Urp(r) ’
in the previous Schrodinger eq.(3.81). Following a similar discussion in Ref.
[MITAS 1991], this expression is singular at the nodal surface where the denominator
is zero (and the numerator can be assumed to be non-zero since Ur is generally not
an eigenfunction of these operators). Before doing the pseudopotential localization
approximation and omitting the e-term in eq.(3.81), these singularities occur twice in
this equation but with opposite sign. For that reason, they cancel each other. But
when omitting the e-term, the cancellation of the two singularities does not happen
any more.

(3.83)

Before elaborating on the interdependence of both errors, let us introduce the term
“critical regions” for regions that are close to the nodal surface, i.e. where the above
expression (3.83) may become large. Now, when walkers sample the ground state, it is
possible that some of them move into these critical regions where the trial wavefunction
is small. This is possible, since the true ground state wavefunction (which is different
from ¥T) could still have larger amplitudes in these critical regions. And these larger
amplitudes also lead to a larger walker density. These walkers would then contribute to
a pseudopotential localization error. To conclude, the fixed-node error always results
in a contribution in the pseudopotential localization error.

3.5 Correlated Sampling

The last section of this chapter will briefly introduce the Correlated Sampling (CS)
technique [FILIPPI 2000] which was recently developed and allows to calculate inter-
atomic forces more effectively with both VMC and DMC. The idea of this technique
is to introduce statistical correlation for calculating total energies at different nuclear
geometries. This correlation then allows to greatly reduce the statistical error when
considering differences of those total energies of their respective geometries.

3.5.1 Correlated Sampling in VMC

The main idea of this CS technique is to calculate the total energies at different
geometries from a single set of sampling points. Following Ref. [FILIPPI 2000|, we first
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define a primary nuclear geometry R (e.g. the experimental equilibrium geometry).
For this geometry, a primary set of M walkers, {r;};,—1 .., may be obtained from
distribution |¥r(R)|2. A secondary nuclear geometry R(*) is then given for a (fixed)
nuclear displacement, R — R(). Based on this displacement, Ur and He¢ are then
transformed into ‘IISFS) and He) by replacing R with R(®). The VMC total energy at
the secondary geometry can now be written as

[ (99w B (r)r
(e ) ar

with the local energy, E(LS) =H e(s)\Il(Ts) /\IIgs) If one sampled the above equation using
Monte Carlo integration, one would need a set of sampling points generated from
this secondary distribution, |\If(qf)|2. But since the aim of this CS technique is to use
the same set of sampling points stemming from the primary distribution |¥r|? when

sampling eq.(3.84), this equation will be re-written,

(5) —

Evmc : (3.84)

M (s)
) e (s E® W r;)| - w(r;
b = L@ ] war P WRER
J19r(r)[? - w(r)dr w o
Z:lw(ri)
in analogy to eq.(3.28) in Section 3.4.2, with weights
RO
= (3.86)

In the last step in eq.(3.85), Monte Carlo integration is applied with the important
improvement that only the primary walkers, r, are used when obtaining the secondary
VMC energy, EVMC(S). This means that EVMC(S) is not generated independently from
Evmc. Hence, the fluctuation of the difference EVMC(S) — Evuce is reduced.

The CS technique applied in this thesis uses eq.(3.85) with a slight modification,
the space-warp coordinate transformation. This transformation generates so
called secondary walkers, r(®), for each primary walker, r, with the aim to improve the
representation of \I’gf )(r) by ‘I’%f )(x(®). For this transformation, it will be assumed that
walkers translate rigidly with the nucleus if the walkers are adjacent to the displaced
nucleus, whereas this transformation should become less important for walkers at larger

distances to any nuclei.

A possible space-warp transformation which fulfills these assumptions and is used in
our algorithm is found in

Natom

rr) =r; + > (RY —R,) - Wa(ri, {Rs}), (3.87)

52



CHAPTER 3. THEORY OF QMC 3.5. CORRELATED SAMPLING

where ( R,) A
r, — o B
W (r;, {Rﬁ}) =N (3.88)
_ Rg)_4
B=1

decays sufficiently rapidly for larger electron-nuclear distances [FILIPPI 2000]. Now,
when substituting the secondary walkers r*) into eq.(3.85), we obtain

() PE S>[qx S>(r<s )] - w(r®)dr®)

Evuc® = f G (1) - w(r)dr (3.89)

With the introduced transformation in eq.(3.87), the integral over r®) in the previous
equation can now be reduced to an integral over r

B — LT @)PE WP O )] w@® ) - [)(x) dr
Y [T (x®(@))[2 - w(r®(r)) - [I(r)| dr '

(3.90)

To account for this transformation in the last equation, the volume element, dr(®) =
|J(r)| dr, is included. Thereby, we use the common Jacobi matrix with matrix elements
4 () = 8r§s) /Or; which are determined by the transformation in eq.(3.87). When
applying Monte Carlo integration again, the last equation finally becomes

5* EO w7 () () (e (£))(r)
= W , (3.91)
2w )9(ry)

.

() n

Evmc

which is sam led at the primary set of walkers. To conclude, the total energies,
Evmc and EVMC, at the primary and secondary geometries are sampled with the same
reference set of walkers leading to a substantial reduction in the fluctuation when
considering their differences.

3.5.2 Correlated Sampling in DMC

The implementation of CS in DMC resembles the methodology described for VMC
with one additional modification, the branching (birth/death) process. To account
for this branching, the primary and secondary walkers (see last section) must be re-
weighted according to a branching factor. In particular, for the primary walkers this
re-weighting factor is the one from a normal DMC calculation, ¢ ¢7(Fr(r)+Er(r)-2Er)/2
see eq.(3.59). For the secondary walkers, the factor is obtained similarly, whereas

17 is a (3M x 3M)-dimensional matrix where J;;(r) = 8r§s)/8ri is a (3 x 3)-dimensional sub-

matrix since r; and rgs) are 3 dimensional vectors.
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the local energy, ES) = E[e(s)\lh(lf)/‘lh(lf), in the re-weighing factor is evaluated at the
secondary geometry, R() . Thereby, the same primary walkers are used in analogy to
expression (3.85).

In a diffusion process described by DMC, it is important to notice, that the dynamics of
the secondary walkers depend on the dynamics of the primary ones (for all generations).
Consequently, the dynamics of the secondary walkers is not necessarily the right one
(i.e. as one would find for an independent evolution of walkers for the secondary
geometry). We will see later that the DMC total energy for the secondary geometries
are upper bounds for the true DMC total energy.

3.5.3 Re-Centered versus Orbitals Re-Optimized Correlated
Sampling

The described CS method in VMC and DMC is also referred to as re-centered CS
method which uses one reference trial wavefunction obtained at the primary geom-
etry. In this method, the secondary trial wavefunction, ¥(*) in eq.(3.85), is obtained
by replacing (re-centering) the primary with the secondary nuclear geometry. An im-
provement upon this method is obtained when the secondary trial wavefunction is not
“simply” based on this re-centering procedure. But in addition, the HF determinant
is re-optimized with a HF calculation for the secondary geometry before construct-
ing the secondary trial wavefunction. The re-optimized determinants then allow for
a more accurate description of the secondary trial wavefunction, known as orbital
re-optimized CS method. A further improvement can be achieved when the Jas-
trow parameters, in additional to the re-optimized HF orbitals, are optimized at each
secondary geometry.
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Chapter 4

Results

The last section gave a theoretical description of both the VMC and DMC methods.
This chapter presents and discusses the results we obtained through their applications.
Calculated VMC and DMC binding energies, equilibrium geometries and vibrational
frequencies for a set of molecules will be compared with reference values by other
quantum chemical methods. At the end of this chapter, we discuss VMC and DMC
results for H-bonds in malonaldehyde and di-ammonia.

4.1 Binding Energies

The correlation and binding energies are investigated for nine molecules: Hy, Ny, Oq,
OH, CO, Siy, H,O, NH3 (ammonium) and C30,H, (malonaldehyde). These molecules
are chosen to assess VMC and DMC calculations for a set of molecules with different
electron configurations and bond types. The Hy molecule is special as it is a two elec-
tron system with a nodeless wavefunction. For that reason, no fixed-node error occurs.
This is contrary to all atoms and molecules with more than two electrons. H, together
with HyO, NH; and OH are X-H type molecules with single bonds. The OH radical,
O, and Si, are molecules with non-zero total spin and an open shell electron configu-
ration, where the latter two molecules, O, and Siy, have double bonds. All molecules
investigated are based on first row elements, except for the second row Siy, that is also
interesting for its large inter-nuclear distance. The iso-electronic molecules CO and
N, are troublesome due to their triple bonds. Quantum chemical calculations reflect
this, showing severe problems for Ny to achieve chemical accuracy [FELLER 1998].
We chose malonaldehyde (C305H,) for its strong H-bond contributing to the binding
energy (explicitly discussed in Section 4.4).
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4.1.1 Terminology - Binding Energy

The theoretical binding energy, EP, is defined as difference obtained from the molec-
ular and atomic total energies given in eq.(2.9). For the molecule, the total energy has
been calculated within the harmonic approximation of the Born-Oppenheimer surface
around the equilibrium geometry, Ry (see also Appendix A.1),

3M—5o0r6 B
Ef (molecule) =EF%S(Ro) + Y R (4.1)
=1

M is the number of nuclei and w; are the harmonic vibrational frequencies, where ¢
denotes all degrees of freedom for internal vibrations'. The second addend corresponds
to the nuclear vibrational energy at zero temperature and is referred to as zero point
energy, E,,. . To compare with available experimental data, we consider the experi-
mentally measurable Gibbs free energy. It relies on a finite temperature and pressure.
The reader should notice that all experimental binding energies later on will refer to
zero temperature.

When solving the many-particle Schrodinger eq.(2.1), relativistic effects are omitted.
Yet, relativistic corrections are proportional to the forth power of the nuclear charge,
and thus negligible for light second row elements [KOCH 2001|.

The correlation contribution to the binding energy is defined in eq.(2.19) when

replacing the total with the binding energy. Also, molecular bond orders will be
used to describe and define chemical bonds,

N nd — N nti—bon
Bond Order :=—> 5 anti—bond (4.2)
where Nyong and Nanti—bond are the number of bonding and anti-bonding orbitals within
the molecular orbital scheme.

4.1.2 Technicalities
Construction of the Trial Wavefunction,Ur

For all binding energy calculations, the trial wavefunction, U, is constructed with
the J(553) Jastrow factor (introduced in Section 3.2.2) and with a single Slater de-
terminant. The Slater determinant is previously obtained by a HF calculation using
the program package GAMESS [SCHMIDT 1993]. Thereby, we use HF basis sets with
radial contracted Gaussian type orbitals (GTO) centered on the nuclei (see Appendix
4.A for a definition of GTOs and the explicit documentation of the construction of our

!The number of internal vibrations is 3M — 6 for M > 2. For M=2, the number of internal
vibrations is 1.
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basis sets). Depending on the spin state of our molecules, two types of HF calculations
are performed, i.e. RHF for closed shell and ROHF for open shell electron configu-
rations (introduced in Section 2.3). For atoms and molecules, Table 4.1 presents (1)
the used HF methods, (2) the spin quantum number, s, of the total spin, (S’}, (3) the

multiplicity, m, of (S,) given by 2s + 1 and (4) the respective bond orders. Also, CF
pseudopotentials will be used (introduced in Section 3.4).

| Hy,NH;,H,0 OH  Sip,0, CO,N; C30,H,| H COS8 N

HF type RHF ROHF ROHF RHF RHF ROHF ROHF ROHF
Spin s 0 0.5 1 0 0 0.5 1 1.5
Mult. m 1 2 3 1 1 2 3 4
Bond Ord. 1 1 2 3 - - - -

Table 4.1:  This table lists the type of HF calculations performed, the spin quantum

number s of the total spin (S), the multiplicity m of (S,) and the bond order for all atoms
and molecules

VMC and DMC Calculations

The procedure of a VMC and DMC calculation was explicitly described in Section 3.3
and 3.4. In a VMC calculation, we use 30,000 blocks and a block size of 20 walkers
accounting for a total of 600,000 walkers. The optimization procedure of the trial
wavefunction is done at 4000 sampling points and is performed five times (i.e. the
cycle of re-calculating the sampling points with VMC and re-optimizing ¥r). From
these cycles, we then take the best trial wavefunction which has the smallest variance
02yic- Usually, the lowest variance also corresponds with the lowest total energy, ES.
However, in instances where this is not the case in our calculations (possibly due to a
statistical error in the variance itself), we choose the UT with the lowest variance (see
Figure 3.4 for an illustration of plotted variances and respective total energies).?

Based on the chosen trial wavefunction, a subsequent DMC calculation is performed.
The diffusion time step is 67=0.1 Ha~!, the number of diffusion blocks is 4,000 with a
block size of 50 steps and a population of 40 walkers (this results in 8 million accepted
sampling points during a single DMC run). For all VMC and DMC calculations, the
experimental equilibrium geometries are used as listed in Table 4.6.

2There is a controversial debate if the lowest variance or the lowest total energy gives a more
reliable criterion for selecting the best ¥t since both are afflicted with a statistical error [F. Schautz,
private communication]. However, we chose the variance as criterion to be consistent.
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Zero Point Energy and Error Bars

Treated within the harmonic approximation, the zero point energy in eq.(4.1) is cal-
culated from the harmonic vibrational frequencies, w;. For the molecules Hy, Ny, O,
CO and H,O, all frequencies are calculated with HF, VMC and DMC as presented
in Section 4.3. For Si, OH and NHj, experimental frequencies are taken from Ref.
[NIST 2003]. For C305H4, all (twenty-one) frequencies are considered from a DFT
PBE-LDA calculation and are taken from Ref. [[SMER 2002].

For the calculated binding energy, the statistical error bar is calculated as a sum of
the statistical error bars of the molecule and of the free atoms. We use the standard
notation for a statistical error bar, i.e. 18.29(1) := 18.29 +0.01. Notice that the prob-
ability of being within one standard deviation is 67%, within two standard deviations
95% and within three 99.7%. All unit-conversions used are listed in Appendix A.6.

4.1.3 Results and Discussion

For all investigated molecules, Table 4.2 lists the calculated HF, VMC and DMC total
and binding energies. Deviations with respect to experimental binding energies are
presented in Table 4.3.3

We begin our discussion by presenting our results obtained by DMC. For all molecules,
the calculated negative binding energies show an overestimation on average by 0.2 eV
(or 3.2%) with respect to experimental values.* In particular, the best agreement
with experiment is found for Hy with a deviation of 0.002(3) eV. Here, we see that
the absence of nodes in the Ho-wavefunction allows for a very accurate prediction of
the experimental binding energy. For all other molecules, we find deviations which
are larger than chemical accuracy (/0.043 eV). We find that the group of the three
X-H-type molecules, Hy, NH3 and OH with single bonds, have results closest to the
experimental values (i.e. with deviations of less than -0.14 eV). The largest deviation
is observed for the triple-bonded Nj (-0.47 eV), followed by the double-bonded Ox(-
0.41 eV). At the same time, Ny and O, also show the largest contributions to the
DMC correlation energy per electron, i.e. Eg/ = 1.12eV for N; with 10 electrons
and E¢/e = 1.15eV for O, with 12 electrons (see Figure 4.1). These largest correlation
contributions suggest that correlation effects are particularly important for molecules
with multiple bonds.

When comparing the DMC results with those obtained by VMC, we find that DMC
binding energies clearly show systematically improved results. The largest improve-
ment upon VMC binding energies by DMC are found for CO (-0.95 €V), for O (-0.92

3Binding energies are noted as negative quantities throughout this thesis. Please note then, an
overestimation of the binding energy is equivalent to an underestimation of its absolute value!

4Since the experimental binding energy for malonaldehyde is about one order of magnitude lager
than for all the others, it is omitted in all following averages.
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4.1.

BINDING ENERGIES

Eatom Emolecule Ezpe Eb Eexpt
[in Ha] [in Hal [in eV] [in eV] [in eV]
Hy HF  -0.5000 -1.1330 -0.271  -3.347
VMC  -0.5000 1.1722(2) <0277 -4.409(6)
DMC -0.5000 -1.1746(1)  -0.274 -4.477(3) -4.480
Ng HF  -9.6478 -19.4751 -0.169 -4.715
VMC -9.7584(4) -19.8390(9) -0.159 -8.61(4)
DMC -9.7692(1) -19.8853(2) -0.149 -9.29(1)  -9.761
O, HF  -15.6658 -31.3650 -0.122  -0.787
VMC -15.8355(6) -31.814(1) -0.108 -3.79(7)
DMC -15.8487(3) -31.8741(8) -0.103 -4.71(2)  -5.117
Siy HF  -3.6806 -7.4212 -0.032 -1.6001
VMC -3.7537(3)  -7.5906(6) -0.032 -2.23(3)
DMC -3.7658(1) -7.6450(3) -0.032 -3.05(1) -3.225
CO HF  -5.3191 -21.2652 -0.141 -7.486
VMC -5.3986(3) -21.606(1) -0.141 -9.97(6)
DMC -5.4096(1) -21.6650(5) -0.138 -10.93(2) -11.110
OH HF -16.2683 -0.251 -2.538
VMC “16.4759(9) -0.232 -3.59(4)
DMC -16.5136(3) -0.232 -4.26(1) -4.393
H,0O HF -16.9058 -0.555 -5.976
VMC -17.1827(9) -0.585 -8.86(4)
DMC -17.2116(2) -0.585 -9.29(1)  -9.510
NH; HF -11.4594 -0.895 -7.584
VMC -11.7131(9) -0.895 -11.48(4)
DMC -11.7380(4) -0.895 -11.86(1) -11.999
CsO0oHy HF -50.3279 -1.784 -26.489
VMC -51.261(2) -1.784 -36.2(1)
DMC -51.3997(8) -1.784 -38.31(5) -39.383

Table 4.2: This table shows calculated HF, VMC and DMC total and binding energies. The
zero point energies are calculated as stated in the text. All experimental binding energies
are taken form Ref. [POPLE 1992] except for silicon and C302H, which are taken from Ref.
[NIST 2003]. Note that for CO in the Eatom column, the listed energies refer to the C-atom.
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AERy AEY o AER o Bond

[inevV] [in%] [in eV] [in %] [in eV] in % Ord.
H, 1.132 253 0.069(6) 1.5 0.002(3) 0.1 1
N, 5.046 51.7 1.151(46) 11.8 0.468(13) 4.8 3
Os 4.329 84.6 1.327(65) 25.9 0.411(22) 8.0 2
Si,  1.624 50.4 0.992(31) 30.8 0.172(15) 5.3 2
CO  1.854 422 1.134(63) 10.2 0.182(24) 1.6 3
OH  3.624 326 0.805(41) 183 0.137(14) 3.1 1
H,O 3.533 37.8 0.646(14) 6.8 0.219(14) 2.3 1
NH; 4414 36.8 0.521(36) 1.1  0.136(15) 1.1 1

C30oH, 12.9 32.8 3.213(107) 8.2 1.069(47) 2.7 1&2

Table 4.3: This table shows the deviations of the binding energies with respect to the experimental
values calculated with HF, VMC and DMC. All values are based on those in Table 4.2.

eV) and for Si (-0.82 eV). The smallest improvements are found for all X-H type
molecules, ranging between -0.07 eV (Hy) and -0.67 eV (OH). These findings show
that VMC results are not sufficient and can substantially be improved by a DMC
calculation.

For all our VMC and DMC results, we also find a systematic overestimation of the
binding energies. These overestimations imply that either the negative molecular total
energies are too high or the atomic energies are too low. Let us focus on VMC first.
Since the variational character of VMC only allows positive errors, the overestimation
in the binding energy must be a result of a larger error in the molecular total energy. In
turn, the same variational principle in quantum mechanics implies that the correlated
VMC trial wavefunctions must be poorer (i.e. has a larger deviation from the true
wavefunction) for molecules than for atoms. We can use the finding of poorer trial
wavefunctions for molecules when further discussing our DMC results. Supposing that
a poorer trial wavefunction leads to a poorer nodal surface, the fixed-node error would
then be larger in molecules than in atoms. Since the fixed-node approximation is
variational, this would explain (at least part of) the overestimation in the molecular
DMC total and binding energies.

Besides the fixed-node error, also other errors might play a role in the overestimation
of the DMC binding energies. The time step will be discussed in Section 5.5 and is
found to have an influence on the overestimation of the Ny binding energy as large as
0.1 eV (2.5 mHa). Also, the pseudopotential localization error can have a significant
influence. Since a substantial part of this thesis is devoted to help explaining these
deviations, we will commit the entire Chapter 5 to further examine possible errors.

To conclude, we find that VMC calculations are not sufficient when calculating to-
tal and binding energies and can be substantially improved with a subsequent DMC
calculation. Also, the findings from our selected set of molecules suggest that X-H
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Number HS C N O H,OHS, NH,HO CO N, O,C,OH
of electrons: 2 4 4 5 6 7 8 8 8 10 10 12 28
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Figure 4.1: For all atoms and molecules, this table shows the VMC and DMC correlation
energies divided by the number of valence electrons. All energies are based on Table 4.2.

type molecules with single bonds are relatively better described than others. For the
multiple-bonded molecules Ny and O,, our calculations show the largest deviations
from the experimental binding energies. But at the same time, we find that corre-
lation effects are particularly important for these two molecules. Also, our results
show that the atoms are already better described in VMC and DMC calculations than
compared to molecule. This will be further investigated in Chapter 5.

4.1.4 Comparison with other Quantum Chemical Methods and
DMC References

This section aims to compare our QMC binding energies with reference values by
quantum chemical® and density functional methods. In order to do so, we briefly
introduce two main quantum chemical approaches in addition to density functional
theory.

1. Based on many-body perturbation theory, the second order perturbation method
Mpller-Plesset (MP2) [Moller 1934 | is the least-expensive traditional method.
It approximately accounts for correlation energy most economically compared
to other quantum chemical approaches. And it scales with system size, O(m?),
where m is a measure of the molecular size [KOCH 2001]. Beyond MP2, the more
expensive Couped Cluster (CC) method is complete to the infinite order in
perturbation theory but is limited to a subset of possible excitations. CCSD(T)

5Generally, quantum chemical methods refer to post-Hartree Fock techniques which include static
and dynamic correlation.
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is a commonly used CC method which includes single, double and approximate
(perturbatively determined) triple excitations.

2. An alternative to CC is the Configuration Interaction (CI) method (already
introduced in Section 2.4). The QCISD(T) [POPLE 1987] is a commonly used CI
method that includes single, double and triple single-orbital excitations as well
as quadratic corrections. Both methods, CCSD(T) and QCISD(T) are among
the most accurate, but also most computational expensive wavefunction based
techniques available. They both scale with O(m"), whereas for comparison, the
HF method scales with O(m*) [KOCH 2001].

3. When compared to previous quantum chemical methods, Density Functional
Theory (DFT) is the most cost effective method to account for correlation en-
ergies. Its scaling factor is similar or even better then for HF®. Rather than being
based on a wavefunction, the energy is computed as a functional of the electron
density. The DFT method is exact in theory, however, it requires approximations
for the exchange-correlation functional. The BLYP approach with the Becke
exchange functional and the Lee-Yang-Parr correlation functional [LEE 1988| is
widely used. The improved B3LYP hybrid functional additionally includes the
exact exchange.

The following comparison in Table 4.4 refers to quantum chemical methods in their
standard approaches using basis sets that are commonly used in quantum chemistry.
Thereby, we present results obtained for two different basis sets. The first basis, 6-
311G*, is very similar to ours with the same number of GTOs [POPLE 1992| and is
listed in the first line for each molecule in that table. The second basis, cc-pCVTZ, is
three times larger [FELLER 1998] and is listed in the second line for each molecule.”
Then, we compare with more accurate but very costly CCSD(T) reference calculations
where the basis set limit is extrapolated beyond the aug-ccpV5Z basis [FELLER 1998].
To put our findings in perspective, we then compare our results with reference results
for a broader set of molecules. Figure 4.2 illustrates the deviations from experimental
values for VMC and DMC and for all reference methods with the larger basis set.

We begin the discussion by considering the average absolute deviations of the calcu-
lated and reference binding energies from the experimental value (listed at the bot-
tom of Table 4.4). For the larger basis, the average deviations of the BLYP, MP2
and CCSD(T) values are very similar as for DMC (0.22 eV). When comparing to
CCSD(T), the DMC results are better for the X-H molecules and slightly worse for
the other molecules. A significant improvement by about a factor of 3 is obtained for
B3LYP compared to all other averages. This improvement also holds for all individual

6 A definite scaling number in DFT depends on the basis and functionals chosen. The scaling is
O(m*) for the BSLYP, O(m?) for LDA or GGA and can even be reduced to O(m!) with additional
approximations.

"Used basis set abbreviations can be found in Ref.[JENSEN 2002].
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this work references

AEnr  AEqQmc AEgr AEpLyp AEmsryp AEwmp2 AEqQcisp  AEcgcsp(T) AE%’ESD(T)

H,

1.132  -0.002(3) | 1.189 0.005 -0.012 0.725 0.525 - -
1.111  0.003 -0.034 0.255 - -0.220 -

Ny

5.046 0.47(1) 5.203 -0.269 0.250 0.563 1.422 - -
4.880 -0.488 0.016 -0.0024 - 0.364 0.104

02

433  0.41(2) 3.864 -0.815 -0.172 0.017 0.824 - -

(4.033VHF) 3.721 -0.683 -0.0130 0.190 - 0.189 0.075

Sig

1.624 0.18(2) 1.783 0.058 0.216 0.716 0.784 - -
1.516 -0.110 0.079 0.289 - 0.141 0.000

OH

1.854 0.13(1) 1.891 0.117 0.190 0.72 0.755 - -
1.683 -0.072 -0.012 0.151 - -0.074 0.013

CO

3.624 0.18(2) 3.812 -0.052 0.308 0.082 0.815 - -
3.690 -0.112 0.192 -0.267 - 0.189 0.068

HQO

3.533 0.22(1) 3.799 0.52 0.615 1.323 1.544 - -
3.3 0.121 0.186 0.169 - -0.257 0.032

NH;

4414 0.14(2) 4.632 0.290 0.321 1.959 1.976 - -
4.251 -0.085 -0.062 0.461 - -0.503 0.070

Average absolute deviation

3.19 0.22 3.27 0.26 0.26 0.76 1.08 - -

3.02 0.21 0.07 0.22 - 0.27 0.05

Table 4.4: This table compares the deviation of the binding energies from experimental
values in eV for our HF and DMC calculations and reference HF, BLYP, B3LYP, QCISD(T)
and CCSD(T) calculations. For each molecule, the first row refers to values obtained for the
6-311G* basis set and are taken from Ref. [POPLE 1992|. The second row refers to values
obtained for the cc-pCVQZ basis, there the CCSD(T) values are obtained from [Feller, private
communication| and all others from Ref. [NIST 2003]. In the last column, the CCSD(T) limit
is additionally presented from Ref. [FELLER 1998] and was obtained by an exponential fit
over the total energies obtained for the aug-cc-pVDZ through the aug-ccpV5Z basis. For
all listed binding energies, the zero point energy is included. For all references, the binding
energies are obtained at the bond length optimized within each method, whereas for HF and
DMC calculations, experimental bond lengths are chosen from Table 4.6. In addition to our
RHF or ROHF calculations for all molecules as specified in the Table 4.1, we also show the

calculated UHF binding energy for Os. 63
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Figure 4.2: This table compares the deviation of the binding energies from experimental
values in €V for our VMC and DMC calculations and reference BLYP, B3LYP and CCSD(T)
calculations. All values are taken from Table 4.4 with the larger basis set, cc-pCVTZ. The
CCSD(T) values are obtained from [Feller, private communication| and all others from Ref.
[NIST 2003].
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values. This is not surprising since the B3LYP hybrid functional is fitted to the set
of G2 molecules® to reproduce the experimental binding energies. And our molecules
are a subset of G2. The largest average deviation is obtained for HF which is about
one order of magnitude larger than for all other methods. Thereby, it should be noted
that our HF values agree fairly well with those reference HF values.®

In the previous section, we discussed the systematic overestimation of the VMC and
DMC binding energy with respect to the experimental value. For all reference methods
except for HF, no such a trend can be seen. This is not surprising since these methods
do not guarantee to yield equally good atomic or molecular energies. And DFT meth-
ods in particular do not provide an upper bound of the total energy. A last observation
in this context is the dependence on the basis set of all reference methods. The average
deviation from the experimental value reduces for all listed reference methods in Table
4.4 when increasing the basis set. In particular, the reduction for MP2 and B3LYP is
by a factor 4. But for BLYP, this improvement is not guaranteed for each molecule,
like for Ny. These results show that both, DF'T and quantum chemical methods have
a strong dependence on the chosen basis sets. The basis set dependence for QMC will
be discussed in Section 5.2.

So far, we compared to reference methods in their standard approaches with commonly
used basis sets. In particular for CI and CC methods, further systematic improvement
can be achieved when increasing the basis set. Yet, at the same time the numerical
effort increases drastically. The last column in Table 4.4 lists results obtained for such
an extensive CCSD(T) study. There, the total energies are calculated by an expo-
nential fit through the results obtained for different basis sets up to the aug-ccpV5Z
basis. The obtained average absolute deviation by 0.05 eV has the best agreement with
experimental values compared to all previous reference and DMC results. However,
in Chapter 5 we will show that DMC results can likewise be improved. It is worth
mentioning that the largest deviation for CCSD(T) of 0.10 eV is also found for Nj.

To put our findings in perspective, we now compare with results for the broader G2
test set. We find that BLYP and B3LYP yield slightly larger average deviations for
the G2 set compared to our subset of molecules, i.e. 0.32 eV for BLYP and 0.14 eV for
B3LYP [PERDEW 2003|. For CCSD(T), we find very similar average deviations for
the G2 set and our subset of molecules, i.e. 0.27 eV for the cc-pVTZ basis and 0.06 eV
for the complete basis set limit [FELLER 1998|. This comparison suggests that our
limited set of selected molecules is already a good representation for a broader set of
molecules.

8The G2 test set consists of 148 molecules, which are listed for example in Ref. [FELLER 199§]
and are a selection of first and second row molecules.

9Tt should be said that all reference HF calculations are obtained by an UHF calculation, whereas
ours are obtained for RHF or ROHF as stated in Table 4.1. We have additionally listed the UHF
value in Table 4.4 for Os, since our RHF value previously disagreed by about 0.5 eV from the UHF
reference value.
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inlev] | Ny 0, Siy OH Co H,0 NH;
this work | 0.47(1) 0.41(2) 0.18(2) 0.13(1) 0.18(2) 0.22(1)  0.14(2)
reference | 0.18(3) 0.27(2) 0.046(9) 0.004(9) 0.13(1) 0.004(9) 0.009(9)

Table 4.5: This table compares our DMC results with those obtained in a recent DMC
reference study [GROSSMAN 2002]. In particular, deviations from the experimental binding
energies (taken from Table 4.2) are listed.

Before finishing this section, we like to compare our DMC binding energies with a
recent DMC reference study, listed in Table 4.5. For our set of molecules, this ref-
erence study presents an average absolute deviation of 0.08 eV with respect to the
experimental binding energy. This deviation is more than twice as small as compared
to our results. In particular, the deviation of the Ny binding energy is determined to
be 0.18(3) eV and is significantly smaller than our deviation of 0.47(1) eV. These dif-
ferences might have several reasons, like the use of different pseudopotentials or basis
sets. The examination of these differences will be part of Chapter 5. However, it can
be anticipated that this deviations remain largely unclarified.

To conclude this comparison, we find that our DMC binding energies compete with
DFT methods and quantum chemical methods in their standard approaches. However,
we have seen that CCSD(T) calculations can be further improved and yield results close
to chemical accuracy, yet, at the expense of large numerical effort. But we will show
in Chapter 5 that also our DMC results can be significantly improved when increasing
the number of determinants in the trial wavefunction or when using different pseu-
dopotentials. In the same Chapter 5, we also hope to clarify the significant differences
between our and the reference DMC calculations.

4.2 Equilibrium Geometries

In this section, we will investigate the equilibrium geometries for the five molecules
Hy, HyO, Oy, Ny, and CO, (with bond orders 1, 1, 2, 3, 3, respectively).

4.2.1 Terminology

In experimental molecular spectroscopy, the common definition of the equilibrium ge-
ometry, Re = (Rye,...Rase), for a system of M nuclei is defined as the global minimum
on the Born-Oppenheimer surface [given in eq.(A.1), see Appendix Al]. The equi-
librium bond length is the distance between two neighboring nuclear coordinates,
Tije = |Rije — Rje|. Other definitions exist in addition to the one presented. For
example, the ground state equilibrium geometry, Ry, is defined as the expectation
value of the bond length in the ground state. And it differs from R, by considering
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Figure 4.3: The figure a) defines the Cartesian and the polar coordinates to describe the
atoms of the water molecule, H-O-H, and b)-d) illustrate its three vibrational frequency
modes.

the zero point motion'’[BANEWELL 1994|. The ambiguity in defining equilibrium
geometries is due to the lack of direct measurements for bond lengths (see also Ref.
[BANEWELL 1994|). For the theoretical approach in this thesis, we will follow the
standard practice and calculate R..

The Born-Oppenheimer Surface for Di- and Tri-Atomic Molecules

For di-atomic molecules, the Born-Oppenheimer surface effectively reduces to 1 di-
mension (i.e. the 6 degrees of freedom for di-atomic molecule are 3 for translations,
2 for rotations and 1 for internal vibrations). For tri-atomic molecules, the Born-
Oppenheimer surface is effectively 3-dimensional (i.e. the 9 degrees of freedom are
3 for translations, rotations and vibrations). Figure 4.3 illustrates the 3 vibrational
normal modes of the water molecule.

Obtaining the 3-dimensional Born-Oppenheimer surface using QMC methods is very
costly due to the large amount of required grid points in real space (7 grid points
in each dimension would require 343 points at which the total energy needs to be
calculated). To save a substantial amount of computer time, we use a model that
effectively maps the 3-dimensional Born-Oppenheimer surface onto 2 dimensions.

The idea of that mapping was suggested by [LANDAU 1963, STRUVE 1989] and is
exact for infinitesimal displacements of the atoms from their equilibrium geometry po-
sition, Re. First, this model assumes a harmonic treatment of the Born-Oppenheimer
surface around R, resulting in the (3 x 3)-dimensional force matrix H (see Appendix

10For comparison, the difference between re and ro is 0.01 A for Hy and 0.003 A for N,
[ENGELKE 1984].
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Figure 4.4: This figure shows schematically the two-dimensional BOS for the water molecule
dependent on two coordinates. Here, we chose the x- and y- axis but these can be trans-
formed into polar coordinates r and 20©. To obtain this two-dimensional BOS, a second
order polynomial in two coordinates (with 12 monomials) is fitted to the total energy at the
corresponding grind points.

A1). The second assumption is that the force matrix is diagonal when choosing relative
coordinates S; with ¢ = 1,2, 3 as eigenvectors. These are

Si. = r1—re, Sy=r9—71, and S3 =06 — O,, (4.3)

where r; and ro are the radial bond coordinates and 20 the bond angle. And r,
and 20, are the bond length and angle in equilibrium. (In Carthesian coordinates,
the relative coordinates are explicitly stated in eq.(A.7) as illustrated in Figure 4.3.)
For these eigenvectors S;, the respective eigenvalues (force constants) are k;.. Both
assumptions in this model are true when considering infinitesimal small displacements.
And the total energy in that model can be expressed as

1 1 1
EOBOS(Sl, S2, S3) = 5/‘615’12 + 5/‘628% + 5/‘638;, (44)

where EE©® is given in eq.(A.2). Since the two force constants k1. and ks are equal for
symmetry reasons, the last equation can further be simplified. Based on that equation,
re and ©, can be determined.

4.2.2 Technicalities

We use the orbital re-optimized correlated sampling technique in VMC and DMC (in-
troduced in Section 3.5) to obtain the potential energy surface for each molecule. For
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di-atomic molecules, the 1-dimensional energy surface is evaluated at 7 geometries that
are chosen with an equi-distance of 0.02 Bohr. Thereby, 7 separate HF calculations are
performed for each energy curve to determine the HF optimized molecular orbitals.
These HF orbitals are then used in the subsequent orbital re-optimized correlated sam-
pling calculations. As reference geometry for each correlated sampling calculation, we
use the value of the experimental bond length. All VMC and DMC input parameters
are chosen as in Section 4.1. After the VMC and DMC calculations, a fourth order
polynomial is fitted to the seven energy values to obtain an analytic expression for the
potential energy curve. The equilibrium bond lengths are then determined as minima
from these polynomials.

The equilibrium geometry for the HoO molecule is obtained according to eq.(4.4).
First, we determine the potential energy curve for the approximate stretching mode
described along the coordinate S;. Thereby, 7 grid points are chosen to symmetrically
stretch and compress the two O-H bonds along these two coordinates at a fixed exper-
imental bond angle. Then, we determine the second energy curve for the approximate
bending mode described along the coordinate S3 (bond angle). Thereby, 7 grid points
are chosen as to symmetrically bend the two O-H bonds along that coordinate S3 at
a fixed experimental radius. Based on eq.(4.4), the equilibrium geometries 7, and 20,
are then determined as minima from the forth order polynomials fitted along each
coordinate.

For all bond lengths and angles, the standard deviation of the mean, &, is determined
geometrically. First, the total energies are plotted at the seven grid points with re-
spective error bars. Then, two curves are fitted within these error bars allowing these
curves to have the largest difference in their bond lengths and angles'!. The difference
in there bond length /angles gives one standard deviation of the mean.

4.2.3 Results and Discussion

Table 4.6 shows the calculated HF, VMC and DMC bond lengths and the bond angle
for HyO. Also, this table shows their deviations from experimental values.

When focusing on bond lengths calculated with DMC, we find the best agreement
with experimental values for the two H-X type molecules Hy and H5O, i.e. with an
accuracy of 0.000(1) A for both molecules. These molecules are then followed by the
two iso-electronic, triple-bonded N, and CO molecules where both have deviations
of 0.004(1) A from experimental values. We find the largest deviation for O, with
0.0140(4) A. Also, despite the good agreement for the HyO bond length we find a
deviation of the bond angle for HyO of 0.7 % or A20pyc = 0.8(1)° with respect to
the experimental bond angle.

HMore technically, the first fitted curve is positioned as to cross EBOS 4+ & on one end of the curve
and EBOS — G on the other end, whereas the opposite is done for the second curve.
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inA] | rHF TVMC TDMC Argrp Arymc Arpmc T expt

Hy, | 0.732 0.740(1) 0.7414(6) | -0.009  -0.001(1) 0.0004(6) | 0.741

Ny | 1.073  1.090(1) 1.0900(6) | -0.021 -0.004(1) -0.0040(6) | 1.094
Oy | 1.161 1.194(1) 1.1930(4) -0.046 —0.013(1) —0.0140(4) 1.207
CO | 1.107 1.117(1) 1.1190(8) | -0.008  0.002(1) 0.0040(8) | 1.115
H,O | 0.946 - 0.957(1) |-0.011 - 0.000(1) 0.957
in[°] | 20pr  20vmc  20pumc A20pr A20yvmc A20pumc | 20expt
H,O | 107.25 - 105.3(1) 2.74 - 0.8(1) 104.51

Table 4.6: This table shows the calculated bond lengths and the bond angle (for H2O) for
HF, VMC and DMC. The experimental values for HoO are taken from [CRC] and for all
others from [HERZBERG 1979].

When comparing the DMC bond lengths with those obtained by VMC, we find an
insignificant improvement by DMC for the H, bond length of 0.001(2) A. For Ny, the
best estimate by DMC corresponds with the VMC value. Yet, in the cases of Oy and
CO, we observe an insignificant worsening of the DMC bond lengths when comparing

with their VMC results, i.e. by 0.001(1) A for O, and by 0.002(1) A for CO.

As a first conclusion, we find that the correlated sampling VMC and DMC methods
yield bond lengths that correspond with experimental values within about 0.01 A. In
particular for the two X-H molecules, our calculated bond lengths agree very well with
the experimental values. The double-bonded O, molecule shows the largest deviation
which again reflects the need for an improved nodal surface as discussed in Section
4.1. Also, we find that a correlated sampling VMC method seems sufficiently accurate
when calculating bond lengths, unlike for EP. Further investigations of systematic
dependencies within this correlated sampling method will be presented in Section 5.8.

4.2.4 Comparison with other Reference Methods

This section compares our calculated bond lengths with HF, MP2, BLYP, CISD(T)
and CCSD(T) reference values presented in Table 4.7. For illustration, the deviations
from the experimental values are plotted in Figure 4.5 for all methods and molecules.

All reference methods within their chosen basis sets do not yield bond lengths better
than our DMC results. In particular, the average absolute deviations from the exper-
imental values are 0.007 A (CC), 0.01 A (CI), 0.024 A (BLYP) and 0.024 A (MP2)
compared to VMC and DMC with 0.005(1) A for both methods. This good descrip-
tion of the bond length within VMC and DMC is also true for each single reference
value with Os being the exception. For Oy, CCSD(T) shows a smaller deviation with
0.003 A from the experimental value. Even for Ny, an elaborate CCSD(T) reference
calculations for a much larger aug-cc-pV5Z basis (see Table B.1) or even a cc-pV6Z
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this work references
[inA] | Argr Arpumc Argp(ret.) Argryp  Armp2 Arqoasp  Argesc(r)
Ho, | -0.009 0.0004(6) | -0.011/-0.007 0.007 -0.003 0.005 0.002
No | -0.021 -0.0040(6) | -0.016/-0.017 0.024 0.036 0.020 0.005
O -0.046 -0.0140(4) | -0.039/-0.048 0.033 0.039 0.014 0.003
CO | -0.008 0.0040(8) | -0.001/-0.005 0.035 0.035 0.030 0.021
H,O | -0.011 0.000(1) -0.010/-0.011  0.023 0.012 0.013 0.003
[in°] | A20pr A20pumc | A20pprer)  A20pLyp  A20mp2  A20qcisp  A20¢csc(T)
H,O | 2.74 0.8(1) 0.99/1.42 -1.81 -0.51 -0.51 -0.91

Table 4.7: This table compares the calculated bond lengths and the bond angle (for HyO)
through DMC with MP2, BLYP, CC and CI reference values. For the reference HF values
Argp(rer.), two sets are presented, the first is taken from [POPLE 1992| (basis: 6-31G*)
and the second one from [NIST 2003](basis: cc-pVDZ). The CC reference value for Ny
is taken from Table B.1 (basis: aug-cc-pV5Z, T. Kliiner) and the other CC values from
[NIST 2003](basis: 6-311G*). All other reference values are taken from [POPLE 1992](basis:
6-31G*). The experimental values are taken from [HERZBERG 1979].

basis [LU 2003| still show a deviation of 0.005 A from the experimental bond length
compared to DMC with 0.004 A. For H50, the best reference bond angles are obtained
with MP2 and CISD(T) which both underestimate the angle by 0.5°. CCSD(T) and
BLYP underestimate the bond angle by almost one and two degrees, respectively. In
comparison, our DMC result overestimates the experimental value by 0.8(1)°.

At the end, we compare our results with two reference QMC studies. Ref.
[FILIPPI 2000] presents calculated bond lengths for seven di-atomic first row molecules
where the same correlated sampling technique is applied as in our work. For these
molecules, that study predicts an average absolute deviation from the experimental
values of 0.019(1) A for VMC and 0.007(2) A for DMC. There averages correspond
with ours in DMC, whereas our average deviation is significantly lower for VMC. In
particular for O, their VMC and DMC results both agree with ours, whereas their
results are slightly worse for Ny with a deviation from the experimental value by
0.010(1) A for VMC and by 0. 007(1) A for DMC. Another very recently published
Ref. [LU 2003| presents the bond length for Ny calculated with a DMC method based
on floating spherical Gaussians (different to our DMC method). Their result agrees
very well with respect to the experimental value by 0.001(4) A and with respect to
our bond length by 0.005(5) A.

To conclude this comparison, we find that our bond lengths calculated with VMC
and DMC are comparable or even better compared to those by DFT and quantum
chemical methods in their standard approaches. Also, we find that our results are
in good agreement with reference values from two DMC studies within the statistical
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Figure 4.5: This figure compares the deviations of bond lengths from experimental values
for our HF, VMC and DMC calculations with reference values by MP2, BLYP, CI and CC.
All references are the same as in Table 4.7.

error bar.

4.3 Vibrational Frequencies

In Section 4.2, we determined the equilibrium geometries for five molecules. For the
same molecules, we will also determine their internal vibrational frequencies.

4.3.1 Terminology

In molecular spectroscopy, vibrational frequencies of molecules are often given in the
harmonic approximation. Similarly as for equilibrium geometries, other definitions
exist for vibrational frequencies that account for excitation and anharmonic effects
[HERZBERG 1979]. In this thesis, we follow this standard practice and calculate the
harmonic vibrational frequencies, w., as eigenvalues from the dynamical matrix D
within the Born-Oppenheimer approximation (see Appendix A.1).
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4.3.2 Technicalities - Treatment of Di- and Tri-Atomic
Molecules

The harmonic vibrational frequencies are obtained from the potential energy curves
calculated in Section 4.2. For di-atomic molecules, the vibrational frequencies are
determined by
_ [Ke d*EFO5(r)
We = ; and Ke = T "fe’

where p is the reduced mass, r the relative bond coordinate and r, the bond length in
equilibrium.

(4.5)

To determine the three vibrational frequencies for HoO, the same model is used as
in Section 4.2.1. Following Appendix A.1, we transform the six Cartesian coordi-
nates'?, (; (defined in Figure 4.3) into six mass-weighted coordinates, n; = &+/m;,
with i€¢[1,...6] and 1 := (1, ...ns). Furthermore, a matrix T is constructed to fulfill
the transformation S = Tn, with § := (51, 52,53). The derived expression of T is
explicitly given in eq.(A.8). The dynamical matrix, D, can then be written in terms of
the force constant matrix, H. Following eq.(A.6), the eigenvalues of D are determined
by the secular equation,

D - w2 i| = |THT - wi| =0, (4.6)

where w;. are the three vibrational frequencies with ¢ = 1,2,3 and 1 is the unity
matrix.

To determine these three vibrational frequencies for H,O, we first need to obtain the
three force constants Kie, ke and k3. (With K1.= Kge). This is done in analogy to
expression (4.5). There, the energy curves for the bending and stretching modes are
used from Section 4.2. After the force constants have been determined, the vibrational
frequencies are then obtained by evaluating eq.(4.6).

The error bars of w, are determined as for the bond length. Two curves with the
largest possible difference in their vibrational frequencies are fitted within the error
bars of the seven calculated total energies for each energy curve. The difference in the
two vibrational frequencies gives one standard deviation of the mean.

4.3.3 Discussion

Table 4.8 shows the vibrational frequencies for HF, VMC and DMC. When looking at
the DMC results, we find that all vibrational frequencies are within (or very close) to
the statistical error with Oy being the exception. The best agreement with experiment
is again found for the Hy molecule with -1(2) cm™!. The largest deviation is found for
O, with a deviation from experiment which is three times its statistical error bar of 27

12H,0 has 3N = 9 Cartesian coordinates which reduce to six due to planar symmetry.
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[in cm™'] ‘ JHF Jymc Jomc ‘AfHF Afvme  Afpmc ‘ Jexpt
H, Do | 4579 4459(69) 4415(2) | 163 43(69)  -1(2) | 4416
N, Do | 2727 2460(104) 2400(38) | 367  100(104) 40(38) | 2360
O,  Doon | 1972 1744(33) 1665(17) | 392  164(33) 85(27) | 1580
CO  Coop | 2274 2277(88) 2225(49) | 104  107(88) 55(49) | 2170
H,O A, | 4145 ; 3008(52) | 313 ) 76(52) | 3832

A, | 1726 ; 1691(56) | 78 ; 43(56) | 1648

B, | 4205 ; 3065(67) | 262 ; 22(67) | 3943

Table 4.8: Frequencies are calculated with HF and the orbital re-optimized correlated sam-
pling VMC and DMC method. The experimental reference values are taken from Ref.
[HERZBERG 1979].

cm!. This large deviation for Oy corresponds with findings in Sections 4.1 and 4.2.
For H,O, we find a better agreement with respect to the experimental value for the
anti-symmetric stretching mode, 22(67) cm™!, than for both symmetric bending and
stretching modes, 43(56) cm™'and 76(52) cm™'. When comparing the DMC results
with the once obtained by VMC, we find a systematic improvement by DMC for all
molecules, i.e. by 42 ecm™! (Hy), by 60 cm™" (Ny), by 79 cm™! (O,) and by 52 cm™!
(CO).

As a first result, the obtained DMC vibrational frequencies agree with respect to the

experimental value within (or very close to) their statistical errors with the exception
for O,.

Another finding is that our best estimates for all VMC and DMC vibrational frequen-
cies systematically overestimate the experimental value. Although this overestimation
is statistically not significant except for O, it should be noticed that the statistical
error is about 2% for DMC and 4% for VMC. However, we will show in Section 5.8
that the best estimate of the vibrational frequency does not change more than a few
cm~! in the case of Ny when increasing the evolution time. To interpret this overes-
timation in VMC and DMC, let us recall that the vibrational frequencies are already
overestimated by HF on average by 240 cm . This suggests that subsequent VMC
and DMC calculations (that are based on latter HF calculations) do not sufficiently
describe the correlation effects that are necessary to yield the true vibrational fre-
quencies. In particular for VMC, this shows that the J-factor does not sufficiently
compensate the missing correlation of a HF determinant. For DMC, this overestima-
tion in the vibrational frequencies (in the curvature of the energy surface) suggests
that the correlated sampling technique introduces a slight positive bias. And this bias
appears to be larger for secondary geometries that are further away from the reference
geometry.

To conclude, the used correlated sampling method yields DMC vibrational frequencies
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m ] | Afur Afouvc | Afurrery Afsive Afure Afqoisp Afcesper) | fept

H, | 163 -1(2) | 230/143  -43 117 ~49 6 4416

N, | 367 40(38) | 398/376  -23  -180 40 19 2360

O, | 392 85(27) | 418/397  -62  -167 59 23 1580

CO | 203 55(49) | 269/233  -65 45 6 5 2170
313 76(52) | 238/298  -264  -56 81 9 3832

H,O | 78  43(56) | 179/96 34 87 97 21 1648
262 22(67) | 246/295  -253  -25 65 2 3943

Table 4.9: This table compares calculated HF and DMC deviations of the vibrational fre-
quency from the experimental values with reference values by HF, BLYP, MP2, CISD(T)
and CCSD(T). The first reference value for HF is taken from [POPLE 1992] (basis: 6-31G*),
while the second HF reference value from [NIST 2003] (basis: aug-cc-pVDZ). The CC refer-
ence values are taken from [NIST 2003] (basis 6-311G*), and all other reference values from
[POPLE 1992| (basis: 6-31G*). The experimental values are taken from [HERZBERG 1979].

that agree with the experimental values within (or close to) their error bars of 20-
80 cm™! or about 2% that we currently aim at. The only exception is found form O,
similar as in Section 4.1 and 4.2. Also, correlated sampling DMC results systematically
improve results from VMC calculations by about 50 cm™! for our molecules. Further
systematic influences of our used correlated sampling technique on the vibrational
frequency will be discussed in Section 5.8.

4.3.4 Comparison with other Reference Methods

Table 4.9 presents our calculated HF and DMC vibrational frequencies and compares
them with reference values by HF, BLYP, MP2, CISD(T) and CCSD(T). For our DMC
vibrational frequencies, the average absolute deviation from the experimental values is
46(42) cm~'. Compared with DMC values, all reference methods show a larger average
absolute deviations except for CCSD(T), i.e. for BLYP by 106 cm™!, for MP2 by 97
cm™! and for CISD(T) by 57 cm~!. For CCSD(T), the average deviation of 12 cm™!
is about four times smaller than for DMC. This is also approximately true for each
individual frequency. Finally, we compare our results for Ny with the same reference
DMC study [LU 2003] as in Section 4.2.4. This study presents a vibrational frequency
which agrees within 11(38) cm ™! with the experimental value and within 51(76) cm ™ *
with ours.

To conclude the comparison for the vibrational frequencies, we find that our DMC re-
sults compare very well with reference values by quantum chemical and DF'T methods.
Only CCSD(T) reference values seem to be systematically improved compared to our
DMC values. All other considered reference methods yield vibrational frequencies with
a fluctuation in their results which makes them difficult to compare with our results.
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However, the majority (and thus the average value) of their vibrational frequencies
has a larger deviation from the experimental value as found for our DMC calculations.

4.4 Hydrogen Bonding and QMC

So far, this thesis was concerned with physical properties of molecules predominantly
determined by covalent bonding. Thereby, we obtained bond strengths with typi-
cal values of several eV. Now, this section investigates hydrogen-bonds which have a
strength that is more than one order of magnitude smaller. The H-bonding strength
can range from 2 to 40 kcal/mol (0.9 to 1.7 eV) (in contrast, chemical bonds are usu-
ally larger than 50 kcal/mol or 2 €V). One commonly distinguishes these strengths in
three classes: weak (<3 kcal/mol or 0.1 eV), normal (3-15 kcal/mol or 0.1-0.7 V) and
strong H-bonding (>15 kcal/mol or 0.7 eV) [JEFFREY 1994].13

In this thesis, we will examine the H-bond strength and their influence on the proton
transfer reaction barriers for two small molecular systems, di-ammonia and malon-
aldehyde. We chose malonaldehyde since it is considered as a prototype of strong
intra-molecular H-bonded systems. Some experimental data and a fair amount of
theoretical work are available [BARONE 1996]. Unlike malonaldehyde, di-ammonia
is governed by a weak hydrogen bond and is investigated as theoretical benchmark
system in some earlier studies [NOVOA 1995]'*. Here, we will investigate two differ-
ent equilibrium geometries for di-ammonia that are obtained by two DFT methods
[ISMER 2002].

QMC methods promise to be very suitable when describing H-bonding energetics.
This will become evident when recalling the underlying interactions of these bonds.
We begin by briefly introducing H-bonds and subsequently discuss the proton transfer
process.

4.4.1 Hydrogen Bonding

H-bonds describe attractive interactions between a proton, covalently bonded to a

donor-atom X, and a proton acceptor Y,
X —H .Y (4.7)

where X and Y are electronegative atoms such as O, N or S. Thereby, the proton
donor and acceptor can be in the same molecule (like in malonaldehyde) or in different

3When discussing H-bonding, it is common practice to use kcal/mol. For consistency reason
however, we additionally specify the eV value.

14Talking about ammonium and working at the Fritz-Haber Institut, I am delighted to remark
that Fritz Haber (1868-1934) got the Nobel Prize in Chemistry in 1918 for the development of
the procedure of synthetic ammonium production, known as Haber-Bosch-Method today, see also
http://www.nobel.se/chemistry /laureates/1918 /index.html.
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Figure 4.6: The upper and lower graph schematically show the Born-Oppenheimer Surface
for malonaldehyde and di-ammonia, respectively. In particular, one sees three local extrema
which belong to the non-bonded (NB), equilibrium (EQ) and transitional (TR) structure
described in the text. The H-bonding energy Epp and the proton barrier Etg are both
indicated.

molecules (like in di-ammonia). In the literature, there is a controversy about the exact
nature of H-bonding due to their very different strengths. A common description of
the nature of H-bonds is given by an electrostatic and induced electrodynamic (van
der Waals) interaction [HADZI 1997|. In addition, a covalent contribution has been
suggested based on a calculated charge transfer between the acceptor Y and donor X
and ranges from 0.01 to 0.03 electrons depending on the H-bonding [SCHEINER 1997].
This charge transfer would then imply a hybridization or a covalent contribution to
the H-bonding. Yet in an exclusive electrostatic and van der Waals description, charge
transfer can be understood as a static polarization of the electron clouds in the X-H
and Y fragments [HADZI 1997|. In the following, let us consider H-bonds in terms of
electrostatic and van der Waals interactions.

(1) The electrostatic interaction arises from the electronegativity which shifts a
fraction ¢ of an electron from the hydrogen H to the proton donor X as indicated in
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expression (4.7). This results in a dipole that in turn interacts electrostatically with
an electron pair of Y (dipole-dipole interaction).

(2) Van der Waals interaction'® arises from fluctuations in the electron distribu-
tion of one molecule. This fluctuation dynamically polarizes the charge distribution of
another neighboring molecule and results is an attraction between the two molecules.
These fluctuations, specifically the average response to these fluctuations, are exactly
described by the true wavefunction and contribute to the dynamic correlation intro-
duced in Section 2.5. Hence, DMC should be suitable in principle to describe these
induced electrodynamic interactions which are estimated to contribute about or less
than 2 kcal/mol (or 0.05 e€V) to the H-bonding energy [SCHEINER, 1997].

To calculate H-bond energies for both of our molecules, we introduce the non-bonding
(NB) and the equilibrium (EQ) geometry for each molecule as shown in Figure 4.6.
The NB geometry is arranged in the way that no H-bridge exists, and it is optimized
to yield a local minimum in the Born-Oppenheimer surface. The E(Q geometry is
optimized to yield a global minimum in the Born-Oppenheimer surface in the presence
of an H-bond. Consequently, the H-bonding energy, Egg, for both molecules is given
by

Enp = Eg°(NB) — Eg*°(EQ), (4.8)

when calculating the electronic ground state energies, EE©°, at the NB and EQ geom-
etry.

4.4.2 Energy Barriers in the Proton Transfer

“The proton transport from one atom to another has been defined as the most general
and important reaction in chemistry” [BARONE 1996]. It plays an important role
in a multitude of processes such as acid-base neutralization or enzymatic reactions.
Two aspects are relevant for the proton transfer. (1) The first aspect is the proton
(hydrogen) motion on the Born-Oppenheimer surface from the first equilibrium po-
sition, EQ, across a transition (saddle) point, TR, to a neighboring, EQ, position as
shown in Figure 4.6. Thereby, the TR geometry is defined as the local maximum of
the curve connecting the two EQ positions on the Born-Oppenheimer surface (i.e. the
TR point leads to the lowest potential energy barrier along this connection curve).
Generally, this first aspect strongly depends on the hydrogen bridge strength and the
inter-atomic distances. (2) The second aspect is the rearrangement of the electron
system that occurs during the proton transfer. In turn, this determines a geometric
rearrangement of the “backbone” in the case of malonaldehyde (see for example Ref.
[ISMER 2002]). Consequently, the proton barrier, Epg, for both molecules is given by

15The van der Waals interaction, as discovered by London in 1930, is also known as London force,
dispersion force or induced electrodynamic interaction.
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J  Geo- | Eig Eiot - Ecor B - Ecom
metry | [in Ha] [in Hal] [in Ha) [in Ha] [in Hal
Malonaldehyde

NB 553 eserpa | -50.3114 | -51.2536(16) -0.9422(16) | -51.3815(6) -1.0701(6)

EQ 553 eeerpa | -50.3279 | -51.2614(17) -0.9335(17) | -51.3995(8) -1.0716(8)

TR 553 eeeLoa | -50.3134 | -51.2582(17) -0.9448(17) | -51.3923(7) -1.0789(7)

Di-Ammonia

NB 550 PBE -22.9180 | -23.3922(20) -0.4742(20) | -23.4738(4) -0.5558(4)
553 PBE -22.9180 | -23.4256(16) -0.5076(16) | -23.4748(6) -0.5568(6)
550 pee-Lpa | -22.9187 | -23.3846(20) -0.4659(20) | -23.4750(6) -0.5563(6)
553 pee-Lpa | -22.9187 | -23.4256(16) -0.5069(16) | -23.4764(6) -0.5577(6)

EQ 550 PBE -22.9219 | -23.4058(14) -0.4839(14) | -23.4809(6) -0.5593(6)
553 PBE -22.9219 | -23.4231(12) -0.5012(12) | -23.4810(5) -0.5591(5)
550 pee-Lpa | -22.9232 | -23.4000(15) -0.4768(15) | -23.4788(4) -0.5556(4)
553 peeLpa | -22.9232 | -23.4253(12) -0.5021(12) | -23.4804(5) -0.5572(5)

TR 550 PBE -22.8010 | -23.2993(16) -0.4983(16) | -23.3801(6) -0.5791(6)
553 PBE -22.8010 | -23.3120(14) -0.5110(14) | -23.3815(4) -0.5805(4)
550 pee-Lpa | -22.8007 | -23.3010(17) -0.5003(17) | -23.3808(4) -0.5801(4)
553 pee-Lpa | -22.8007 | -23.3160(14) -0.5153(14) | -23.3825(5) -0.5818(5)

Table 4.10: This table lists the total and correlation energies for malonaldehyde (MA) and

di-ammonia (DA) for a pseudopotential HF, VMC and DMC calculation. For both systems,
the total energy is evaluated at the non-bonding (NB), equilibrium (EQ) and transition (TR)
geometry as represented in figure 4.6. All geometries indicated in column three are previously
obtained within DFT PBE-LDA and PBE [ISMER 2002]. Column two indicates the Jastrow
factor used.

Epp = Eg7°(TR) — E7°°(EQ), (4.9)

when calculating the electronic ground state energies, EF©5, at the TR and EQ geom-
etry.

4.4.3 Technicalities

The used trial wavefunctions are again based on CF basis sets and pseudopotentials
with a J(550) Jastrow factor. For di-ammonia, we additionally perform calculations
with J(550). The VMC calculations for malonaldehyde and di-ammonia are performed
with 600,000 walkers (in blocks of 20 walkers). For the Jastrow factor optimization,
we use 4,000 walkers and perform five optimization cycles. The DMC calculations
for malonaldehyde and di-ammonia have a population of 50 walkers and consist of
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Figure 4.7: These figures show the calculated DMC total energy at the non-bonding (NB),
equilibrium (EQ) and transition (TR) structures for di-ammonia. The left figure uses one
energy scale, whereas the right one uses two scales for better illustration (the left ordinate
belongs to the NB and EQ structures, the right one to the TR structure). The used DFT
PBE structures are labeled with black circles and the DFT PBE-LDA optimized structure
with gray circles. All values refer to the same Jastrow factorJ (553).

160,000 and 100,000 diffusion steps, respectively. The two used geometries, previously
obtained with DFT for the different functionals PBE-LDA and PBE, are taken from

Ref. [ISMER 2002].

4.4.4 Results and Discussion

Table 4.10 shows the total and correlation energies for malonaldehyde and di-ammonia
calculated with HF, VMC and DMC at the introduced non-binding (NB), equilibrium
(EQ) and transition (TR) geometries.

We begin our discussion by considering the influence of the Jastrow factor on the
DMC total energy for di-ammonia. For all three geometries, we find an insignificant
improvement of about 0.03-0.05 eV (1-2 mHa) when comparing the DMC total energies
for the two Jastrow factors, J(553) and J(550). As of this improvement, we will limit
the following discussion to values for the larger Jastrow factor.

The role of different structures will now be discussed for di-ammonia based on Table
4.10. Thereby, we consider the DMC total energies calculated for the NB, EQ and
TR geometries optimized by DFT PBE-LDA and PBE. There, we find that the PBE-
LDA geometries yield about 0.03 eV (1mHa) lower DMC energies for the NB and TR
geometry as for the PBE geometry. This is different for the EQ geometry. There, we
find that the PBE structure yields a DMC energy that is lower by about 0.03-0.05
eV (1-2 mHa) as for the PBE-LDA structure. Figure 4.7 illustrates these differences
between the PBE-LDA and PBE structures for all three geometries.
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Malonaldehyde Di-Ammonia
[in kcal/mol] Eug Epgp Eus EPB,min EPB,max
HF 0.45 0.39 0.09 3.29 3.30

VMC | 0.22(9) 0.09(9) | 0.07(7) 2.91(7) 3.02(7)
DMC | 0.49(3) 0.20(4) | 0.13(3) 2.68(3) 2.71(3)

Table 4.11: This table shows the H-bonding energy Exgp and the proton barrier Epg for
malonaldehyde and di-ammonia. Taking the total HF, VMC and DMC energies from table
4.10, Egp and Epp are then obtained from formulas (4.9) and (4.8). For both molecules,
the most appropriate (available) geometry has been chosen as discussed in the text: for
di-ammonia, we use the optimized geometries denoted as arguments of the structures: NB
(PBE-LDA), EQ (LDA) and TR(PBE-LDA or PBE); for malonaldehyde, only PBE-LDA
optimized geometries are used. For all energies, the Jastrow factor J(553) has been chosen.

Thanks to the variational principle for the NB and EQ geometries, the lowest total
energy gives the best prediction of the true value. This is different for the TR geom-
etry. There, the Born-Oppenheimer surface is a saddle point'® where the variational
principle does not hold any more. Hence, we can not tell which structure is closer to
the true one based on the calculated total energies. Therefore, the best prediction of
the total energy for the TR geometry is the range of 0.03 eV (1 mHa) between the
upper and the lower energy. Figure 4.7 illustrates these results with a doted line: this
line indicates the lowest DMC energies at the NB and EQ geometries and the different
DMC energies for the PBE and PBE-LDA structures at the TR geometry.

Let us summarize our results about the different structures. Our finding in the total
energies suggest that PBE-LDA are better for the NB geometry whereas the PBE
structure are better for the EQ geometry. These findings give an indication when
investigating the appropriateness of the PBE-LDA and PBE functionals in DFT (see
also next section ).

Under consideration of the previous discussion, our best estimate for the H-bonding
energy, Egg, and the proton barrier, Epg, are calculated and listed in Table 4.11. Since
available experimental data have a large uncertainty, we instead compare our results
with elaborate CC reference calculations. This comparison, however, will be postponed
to the next section. For now, we will just state the “disappointing” finding that the
VMC H-bond energies appear to be lower than the HF values for both molecules. In
contrast, DMC (and CC calculations) yields values that are larger than by HF. This
shows that the inclusion of correlation by the Jastrow factor within VMC does not
necessarily improve the HF value for the H-bonding energy. And this shows again the
need for a subsequent and more accurate DMC calculation.

16In both Figures 4.6 and 4.7, the Born-Oppenheimer surface shows a maximum at the TR point in
1 dimension. However, for di-ammonia, the 18 dimensional Born-Oppenheimer surface has a saddle
point at the TR geometry.
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[in oV] J |Eis  EysC  Egse [Epy  EZR©  ERR©
PBE 550 | 0.19 0.37(7) 0.20(2) ] 3.29 2.90(8) 2.75(3)
553 | - 0.07(5) 0.17(2)| -  3.02(7) 2.70(2)
PBE-LDA 550 | 0.12 0.42(7) 0.10(2) | 3.33 2.69(8) 2.67(2)
553 | - 0.01(5) 0.11(2)| - 2.97(7) 2.66(3)

Table 4.12: This table shows the H-bond energy, Exp, and the proton barrier, Epg, for
di-ammonia calculated with HF, VMC and DMC. The first two lines give Egg and Epg for
the DFT PBE geometry calculated with two Jastrow factors J(550) and J(553). The last
two lines show the same for the DFT PBE-LDA geometry.

Before comparing our results with reference values, a last finding is obtained when
examining the DMC correlation energies in Table 4.10. For both molecules, we find
that the correlation energy of the TR geometry is about 0.68 eV (25 mHa) lower for
di-ammonia, and 0.19 eV (7 mHa) lower for malonaldehyde, than for corresponding
EQ and NB geometries'”. From these increased values, we can infer that electron cor-
relations are particularly important for the TR geometry. Another finding is that HF
yields already H-bond energies in agreement with our DMC results, whereas the proton
barrier is significantly overestimated by HF compared to DMC. To conclude, corre-
lation effects are an important aspect in the intra/inter-molecular proton transport
process.

4.4.5 Comparison with other Quantum Chemical Methods

Table 4.13 compares the DMC proton barriers, Epg, and H-bonding energies, Eyg, for
both molecules with values obtained by DFT, CC and MP2 calculations.'®

When looking at di-ammonia first, our best calculated H-bonding energy of 0.13(3)
eV agrees with the CC value of 0.13 V. The DFT PBE or PBE-LDA methods both
underestimate Eyp by 0.02 eV or 10% (PBE) and by 0.04 €V or 31% (PBE-LDA) with
respect to the DMC value. In the same comparison, B3LYP over- or underestimates
Egng by 0.03 eV depending on the basis set chosen, and MP2 shows similar basis set
dependencies as B3LYP. For the di-ammonia proton barrier, Epg, no values in the
literature are found, except the two obtained by DFT PBE/PBE-LDA. Compared to
our DMC values, PBE barriers underestimate the DMC values by 0.61 eV or 23% and
PBE-LDA barriers underestimate the DMC values by 0.2 eV or 8%.

When looking at malonaldehyde, similar observations hold for the calculated proton
barrier, Epg. Our DMC value of 0.20(4) eV is in agreement with the CC value of

For clarity, a lower correlation energy has a larger absolute value.
18While experimental values exist for these values [TSUZUKI 2001], their error bar is of several
kcal /mol which precludes a meaningful comparison with theoretical data.
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0.18 €V. Also, all three DFT methods underestimate the DMC value for the proton
barrier by about 0.17 eV (PBE), 0.07 ¢V (PBE-LDA) and 0.11 eV (B3LYP) or by
85% (PBE), 35% (PBE-LDA) and 55% (B3LYP). However, when considering the H-
bond energy, Eyg, the DMC value is in less good agreement with the CC one and
is 0.15(3) eV lower. This disagreement might be explained on the one hand by the
influence of the chosen PBE-LDA structure at the EQ geometry. (For di-ammonia,
we showed earlier an influence of 0.03 - 0.06 eV when choosing different structures at
the EQ geometry). On the other hand, also the CC reference value could be too high
as a result of an insufficient basis set. To further investigate this slight difference, one
could try different geometries which may be obtained e.g. by the correlated sampling
technique introduced in Section 3.5. But this is beyond the scope of this thesis.

To conclude, our DMC H-bond energies and proton barriers agree with CC calculations
where available and show a deviation of less than 0 - 0.02(4) eV, except in the H-bond
energy for malonaldehyde. In particular, we have examined reference values for proton
barriers by DFT. For malonaldehyde, we confirm their significant underestimation
by about 0.07-0.11 eV or 35-85% with respect to DMC values. For the weakly H-
bonded di-ammonia, we find that DFT barriers are about 0.2-0.61 eV or 8-23% lower
with respect to our DMC results. Thereby, we set a benchmark calculation since no
alternative quantum chemical studies are found in the literature. Finally, we have
shown that the PBE functional yields better equilibrium structures for di-ammonia
then the PBE-LDA functional.
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[iIl eV] basis ‘ EHB EPB
Malonaldehyde

DMC CF 0.49(3) 0.20(4)

HF CF 0.45 0.39

HF 6-31G/6-311G(2d,2p) | -/0.54 0.39/0.38

PBE plane waves 0.65 0.03

PBE-LDA plane waves 0.52 0.13

B3LYP DZp 0.65 0.09

CCSD(T) DZp 0.64 0.18

MP2 6-311G(2d,2p) 0.61 0.16

Di-Ammonia

DMC CF 0.13(3) 2.68(3) - 2.71(3)

HF CF 0.09 3.29 - 3.30

HF cc-pVDZ /cc-pVTZ 0.14*/0.08* -

PBE plane waves 0.11 2.07

PBE-LDA plane waves 0.09 2.48

B3LYP cc-pVDZ/pVTZ 0.19*/0.10* -

CCSD(T) cc-pVTZ 0.127** -

MP2 cc-pVDZ/pV5Z/ 0.08%**/0.13**

Table 4.13: This table compares the DMC H-bonding energies Egg and the proton barriers
Epp for malonaldehyde and di-ammonia with reference energies obtained with three different
DFT methods, CC and MP2. The calculated DMC values are taken from table 4.11. All
DFT PBE/PBE-LDA reference energies are taken from [[SMER 2002] where geometries are
optimized within each method. For malonaldehyde, all other reference energies are taken from
[BARONE 1996] where geometries are optimized with B3LYP. For di-ammonia, all energies
labeled with * are taken from [NOVOA 1995] where geometries are optimized with BLYP/6-
31++G(2d,2p); energies with ** are from [TSUZUKI 2001] where geometries are optimized

with MP2/6-311G**.
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Chapter 5

Methodological Investigations

In the last chapter, we have investigated the applicability of the VMC and DMC meth-
ods in calculating physical properties of molecules. Among all investigated molecules,
we found that our DMC binding energy for N, had the largest deviation of 17 mHa
(0.47 eV or 4.7%)" from the experimental value. There exist two DMC reference
values in literature which show a deviations of 6 mHa from the experimental value
[GROSSMAN 2002, MITAS 1994|. In this section, we examine reasons for this dif-
ference and discuss possible improvements in our calculations. In particular, we an-
alyze the role of different approximations within our VMC and DMC methods and
investigate the results obtained upon the use of different Jastrow factors, basis sets,
pseudopotentials and multi-determinant trial wavefunctions. In addition, we will ex-
amine computational parameters which are specific to DMC, i.e. the role of the time
step in the diffusion process, the total number of diffusion steps (diffusion time), the
population size and the numerical integration method when evaluating the non-local
pseudopotential components. We will end this chapter by discussing some method-
ological dependencies found within the correlated sampling method when determining
inter-atomic forces.

5.1 Jastrow Factor

In this section, we investigate the dependence of the VMC and DMC results when
increasing the degree of the polynomials in our [J-factor. This corresponds to a suc-
cessive increase the number of J-parameters (see Section 3.2.2) from 3 to 24, while
the same HF Slater determinant is used. For all calculations, we use the CF basis
and pseudopotential, the time step 67 = 0.1 Ha~! and other input parameters as in
Section 4.1.

'In the last chapter, we have used eV as a typical unit for binding energies. When discussing
methodological investigations throughout this chapter, we will consistently use Ha.
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j E{%tv[c %}jﬁc OvMC  Tcorr E%)ltv[c %)K/EC ODMC  Tcorr
# | [in Ha] [in Ha] [in Ha] [Ha™!] | [in Ha] [in Ha] [in Ha] [Ha™!]
220 3 | -9.7475(5) -0.0997(5) 0.346 1.21 | -9.7695(8) -0.1217(8) 0.346 3.29
330 5 |-9.7549(4) -0.1071(4) 0.313 1.19 |-9.7690(6) -0.1212(6) 0.322 3.24
440 7 | -9.7553(4) -0.1075(4) 0.318 1.17 | -9.7699(7) -0.1221(7) 0.327 3.13
550 9

553 11 | -9.7589(4 0.291 1.17 | -9.7694(5 0.290 2.98
554 16 | -9.7593(4 0.288 1.16 | -9.7694(5 0.288 2.93
555 24 | -9.7616(4 0.284 1.14 | -9.7700(5 0.284 281
025* 24 | -9.7610(4 0.273 1.11 | -9.7697(3 0.284 2.61

(5) (5) (8) (8)
(4) (4) (6) (6)
(4) -0.1075(4) (7) (7)
-9.7563(4) -0.1085(4) 0.315 1.16 |-9.7697(6) -0.1219(6) 0.325 3.21
(4) (4) (5) (5)
(4) (4) (5) (5)
(4) (4) (5) (5)
(4) (4) (3) (3)

Table 5.1: For the N-atom, this table lists the VMC and DMC total and correlation energies,
the standard deviations of the local energies, and the correlation time calculated for different
Jastrow factors, J (i.e. for different numbers of parameters). For all calculations, we use to
Jastrow factor with independent parameters, aqn, by and capn, (ipot=4 in our code) except
for the calculation in the last row. That Jastrow factor, J(025*) (ipot=3 in our code), is
allowed to have dependent aqy, by, and coy, parameters (note that J(025%) has no aqy,, one
b, and only c,y, parameters but has the same number of parameters as J(555) (for the
used notation, see Section 3.2.2). For all VMC and DMC calculations, we choose the CF
pseudopotential and basis, the time step, 67 = 0.1 Ha~!, a fixed scaling factor x = 0.8 and
other input parameters as in Section4.1.

tot tot
J | Evuc Eic ovMc  Teorr | EpDMc Epnc ODMC  Teorr
[in Ha] [in Ha] [in Ha] [Ha—!] | [in Ha] [in Ha] [in Ha] [Ha™!]

220 | -19.8046(13) ) 0.73 1.90 | -19.8845(3
330 | -19.8174(11) ) 0.66 1.84 | -19.8840(3
440 | -19.8244(11) -0.3493(11) 0.64 1.81 | -19.8843(4
550 | -19.8314(11) ) 0.64 1.82 | -19.8854(3

( 0.74 343
(
(
(
553 | -19.8390(9
(
(
(

(3) (3)
3) (3) 0.68 3.45
(4) (4) 069  3.29
1 1 (3) (3) 068 3.8
) ) 055 161 |-19.8853(2) -0.4102(2) 0.59  3.24
554 | -19.8441(11) -0.3690(11) 0.55  1.56 | -19.8852(3) (3) 058 3.13
555 | -19.8464(9) ) (3) (3)
) ) (2) (2)

025* | -19.8499(9

0.55 1.52 | -19.8855(3 0.57 3.10
0.54 1.48 | -19.8856(2

0.57 3.09

Table 5.2: This table gives the same information as the previous Table 5.1 but for the
Ny-molecule, instead.

86



CHAPTER 5. METHODOLOGICAL INVESTIGATION®1. JASTROW FACTOR

-9.745 - =
© = = VMC N-atom £ -19.817 =VMC N2
K B -
T 0750 - DMC N-atom < - - DMC N2
N
Z 97551 = = = -19.83 -
S = S -
2 -9.760 - = = =
S - B -19.85 | -
(= [0)
LL“J’ -9.765 - 5
Borol® * & o= = = - g -19.87 1
'_
o 2 ‘ 12 17 2 1969 — | -
7
Number of Parameters 2 ! Num be1rzof Paraljn7etels %
-19.881 - - DMCN2 | o7es ©
£ « T 0310 % k x VMC Binding Energy
T —e— DMC Natom I £ ¥ o
'=-19.882 - -9.769 ¢ % o DMC Binding Energy
g z 5 -0.320 1 3 ¥
-19.883 - 19770 5 € £ ¥
> S & 0.330
5.19.884 | +tormm g 27
[0} S ow
0 w5
5-19.885 1 T-9772 & £ -0.340 1
2 © tsti; i 8
-19.886 ; ; ; ; 9.773 -0.350 : ; ; ; ; ‘
2 7 12 17 22 0 5 10 15 20 25 30
Number of Parameters Number of Parameters

Figure 5.1: The upper two diagrams show the VMC and DMC total energy of the N-atom
(left hand side) and the Ng-molecule (right hand side) for different Jastrow factors (and
respective numbers of parameters). The two lower diagrams show the DMC total energies
for N and Ny on a smaller scale (left hand side) and the VMC and DMC binding energy for
Ny (right hand side). All values are taken from Table 5.2 and 5.1.

For N and N,, Table 5.1 and 5.2 present the calculated VMC and DMC total and
correlation energies, the standard deviations of the local energies and the correlation
time. The respective binding energies? are plotted in Figure 5.1.

When increasing the number of J-parameters successively from 3 to 24, we find that
the VMC total energy decreases monotonically by 14(1) mHa for N and by 42(1)
mHa for Ny. In contrast, the DMC total energy does not change significantly. These
changes in DMC are within one standard error (N-atom) or close to one standard error
of 1 mHa (Ny-molecule). Nevertheless, for the No-molecule, one could assume a slight
improvement in these DMC total energies for larger [J-factors by about 1 mHa. But
these improvements are not larger than two standard errors and are therefore again

2In Chapter 4, the zero point energy was included in all discussed binding energies. Throughout
Chapter 5, the zero point energy will be omitted to simplify the discussion.
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not significant. We furthermore find the reduction of the standard deviation of the
local energy for N by a factor of 0.8 in VMC and DMC, and for Ny by a factor of 0.7
(VMC) and 0.8 (DMC) for the improved J-factor.

As a first summary, we find a significant decrease in the VMC total energy and in the
variances when increasing the number of J- parameters. This implies an improvement
in the quality of U. At the same time, we find that the DMC total energy is fairly
independent and does not significantly change when increasing the number of J-
parameters. This behavior is also illustrated in the two upper and the one lower left
diagram of Figure 5.1.

Similar results are found when looking at the binding energies that are presented in the
lower right diagram of Figure 5.1. There, we see that larger [J-factor has no significant
influence on the DMC binding energy as well. This is different for VMC, there we find
a general decrease in the binding energy by more than 10 mHa when increasing the
number of J-parameters. Thanks to the variational character in VMC, this implies
that the No-molecule is relatively (to the N-atom) better described by W for larger
J-factors than it is for smaller J-factors.

A similar observation can be made for di-ammonia in the last section, i.e. in Table
4.10. When using the J(553)-factor with eleven instead of the J(550)-factor with
nine parameters, the VMC total energy decreases by several tens of mHa for different
geometries. Whereas the DMC total energy did not change by more than a standard
error of 1 mHa.

As a conclusion from our investigations for different J-factors, we find that the number
of J-parameters is rather important for the VMC total energy and for respective
binding energies. Not so for DMC calculations, there the influence of the number of
J-parameters has no significant influence much larger than the standard errors we
currently aim at, for both, the total and binding energy.?

5.2 The Basis Set

So far, we used the “minimal” CF basis set of 3s3pld Gauss type orbitals (GTOs)
as listed in Table B.3 in the appendix. This minimal basis set consists of 36 basis
functions for Ny, and allows for the lowest computational costs. In this section, we
examine the VMC and DMC total energies when using two larger basis sets in which
the one-particle orbitals of the HF Slater determinant are expanded. Also, by using
the results of the last section, we will limit this investigation to the J(553)-factor.*

3We have tested the influence of the J-factor also for most other calculations in this thesis. But the
results have been omitted in the previous discussion, since we have found the same stated conclusion.

4All calculations in this section are additionally performed for the 7 (550)-factor showing no sig-
nificant difference in agreement with Section 5.1.
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Basis ‘ Eip ‘ Efc IvVMC Evvic ‘ Efuc Ebyc
N
CF 70.6478 | -0.7584(4) 0.30 -0.1106(4) | -9.7692(1) -0.1214(1)

CF+ | -9.6487 | -9.7607(3) 0.28 -0.1120(3) | -9.7697(1) -0.1210(1)
cc-pCVQZ | -9.6482 | -9.7569(7)  0.39  -0.1087(7) | -9.7721(2) -0.1239(2)
Ny
CF -19.4751 [ -19.840(1) 0.55  -0.364(1) | -19.8853(2) -0.4102(2)
CF+ | -19.4846 | -19.843(1) 0.55 -0.358(1) | -19.8867(2) -0.4021(2)
cc-pCVQZ | -19.4847 | -19.841(1)  0.67  -0.356(1) |-19.8947(3) -0.4100(3)

Table 5.3: This table shows the HF, VMC and DMC total and correlation energies, and
the standard deviation of the local energies for the three different basis sets, CF, CF+ and
cc-pCVQZ. For all VMC and DMC calculations, we use the CF pseudopotential, J(553),
07 = 0.1 Ha~! and other input parameters as in Section 4.1.

5.2.1 Selection and Construction of the HF Basis Set

The two new basis sets are selected as follows. The first one, CF+, is obtained by
partly un-contracting the CF basis and increasing the variational flexibility in the HF
calculation. In more detail, the eight primitive s- and p- GTOs are split into two
contracted GTOs with three (primitive) GTOs and into one contracted GTO with
two (primitive) GTOs. This results in 5s5pld GTOs with 52 basis functions for No.
To select the second basis, we first calculated the HF total energies for a range of
available HF basis sets taken from Ref.[GAUSSIAN 2003] (Table B.2 in the appendix
lists these HF total energies). Then we select the basis with the lowest HF energy for
Ns. In our selection, we have to restrict our final choice to basis sets without f- and
higher orbitals which our QMC code can presently not handle. The selected basis,
cc-pCVQZ, has 8s7pbd GTOs with 118 basis functions for Nj.

For both new basis sets, the HF total energy leads to a decrease for Ny and N with
respect to the minimal CF basis, i.e. for Ny by 2 mHa (CF+) and 10 mHa (cc-pCVQZ),
and for N by 1 mHa (CF+) and 0.4 mHa (cc-pCVQZ), see also Table B.2. This clearly
shows that the HF energy for the minimal CF basis for N5 is not converged. However,
when looking at this table, we also see that our “best” selected cc-pCVQZ basis still
differs by almost 5 mHa from the energy for the largest tested basis. This larger
difference of 5 mHa is due to the additional f- and g-orbitals. This implies that our
largest HF basis does still not yield a converged HF energy. This is different for the
N-atom, where the HF energy is found to be converged already for the CF+ and
cc-pCVQZ basis.
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5.2.2 Results & Discussion

The calculated HF, VMC and DMC total energies for the three basis sets, CF, CF+
and cc-pCVQZ, and the same CF pseudopotential are listed in Table 5.3. The resulting
HF, VMC and DMC binding energies are listed in Table 5.4.

This paragraph first states our detailed findings before beginning the discussion (and
can be skipped). When using the CF+ basis instead of the CF basis, the total energy
decreases for N by 2(1) mHa (VMC) and by 0.5(2) mHa (DMC). For Ns, the total
energy decreases by 3(2) mHa (VMC) and by 1.4(4) mHa (DMC). When considering
instead the larger cc-pCVQZ basis with respect to the CF basis for N, we find an
increase in the total energy by 2(1) mHa (VMC) but a decrease by 2.9(3) mHa (DMC).
For Ny, we obtain a decrease by 1(2) mHa (VMC) and by 9.4(5) mHa (DMC). When
looking at the variance for the CF+ basis and compare with the CF basis, o decreases
by a factor of 0.9 for N but remains unchanged for Ny. In the contrary, when using
the largest cc-pCVQZ basis instead of the CF one, ¢ increases by a factor of 1.3 for N
and by 1.2 for No.

As a first observation for the CF+ basis, we obtain a slight decrease in the VMC and
DMC total energies of 1-3 times the statistical error, by 2.3(7)-3(2) mHa for VMC and
by 0.5(2)-1.4(4) mHa for DMC, compared to values for the CF basis. However, the
binding energy is unchanged (i.e. the improvement in the total energy of N and Nj is
similar and “cancels”).

When analyzing our finding for the cc-pCVQZ basis, the VMC results are a little
surprising. On the one hand, the VMC total energy increases slightly for N by 2(1)
mHa but does not significantly change for Ny by -1(2) mHa when comparing with
respective results for the CF basis. On the other hand, the standard deviation of the
local energy increases (by a factor of 1.3 for N and by 1.2 for Ny) with respect to
results by the CF basis. These findings of an increased variance and a more or less
unchanged VMC total energy suggest that the quality of the VMC trial wavefunction
is poorer for the larger cc-pCVQZ basis (together with the J(553)-factor) than for the
CF basis.

One might wonder now why W is poorer for an increased HF basis even if the HF total
energy is improved for the increased HF basis. However, it is true that a larger HF basis
does not necessarily lead to an improved description of ¥ which can be understood
as follows. The one-electron (molecular) orbitals in the determinantal part of U are
optimized on the HF level. This means that the HF Slater determinant is optimized
without including static and dynamic correlation. Since these HF optimized molecular
orbitals are then fixed when constructing the correlated U1 and when optimizing the
J-parameters, there is no guarantee that the “improved” HF wavefunction also leads
to an improvement of the correlated Ur. It would be interesting in a further study
to simultaneously optimize these molecular orbitals in addition to the J-parameters.
But this is beyond the scope of that thesis.

For the DMC energies, however, we stated already a significant decrease by 2.9(3)
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Basis (DL DL DL AERuc
[in Ha] [in Ha] [in Ha] [in Ha]
CF -0.1795 -0.3232(9) -0.3469(4) -0.0172(4)

CF+ | -0.1872 -0.3216(7) -0.3473(4) -0.0168(4)
ce-pCVQZ | -0.1883 -0.327(2)  -0.3505(7) -0.0136(7)

Table 5.4: This table shows the HF, VMC and DMC binding energies for Ny based one Table
5.3. The last column lists the deviation of the DMC total energy from the experimental value
(which is -0.3641 Ha, see Table 4.2).

mHa for N and by 9.4(5) mHa for Ny (for the cc-pCVQZ basis compared with the CF
one). These significant decreases in the DMC results seem rather surprising. When
starting with a poorer Ut with a larger variance, one would generally not expect
lower (better) DMC total energies. Therefore, this increase may be accidental. A
possible explanation for this larger “unexpected” decrease in Epyc (when comparing
with results for the CF basis) may be as follows. Since the fixed-node error has a
variational character with only positive contributions, we can already rule it out to be
the reason for this decrease in Epyc. However, the pseudopotential localization error
does not satisfy a variational principle for Epyc and increases quadratically in (U -
W) see Section 3.4.3. Therefore, the decrease in the DMC total energy for N and N,
could be explained with the poorer trial wavefunction, U, which results in a negative
pseudopotential localization error.

One way to confirm this finding of an increase pseudopotential localization error is to
use an even larger basis. But also the non-local components of the pseudopotentials
determine this error when evaluating eq.(3.81). Therefore, we examine this question
in the next section when using different pseudopotentials.

Finally, we like to consider the binding energy in Table 5.4 for this cc-pCVQZ basis and
compare with results by the CF basis. We find a lowering (improvement) in the binding
energy by 4(3) mHa (VMC) and by 4(1) mHa (DMC) and thus a closer agreement with
the experimental value. Yet, these improvements may be considered accidental since
the change in the VMC binding energy is based on an increase (worsening) by 2(1) mHa
in the atomic VMC energy. For the DMC binding energy, it remains unclear whether
the additional decrease of 4 mHa is due to an increased pseudopotential localization
error.

To conclude this section, we find that the selected basis set has a considerable influence
on the VMC and DMC results. For the CF+ basis, we find slight improvements in
the VMC and DMC total energy. But these improvements cancel in the binding
energy and become insignificant when comparing with values for the CF basis. For
the cc-pCVQZ basis, however, we find a significant improvement in the DMC total
and binding energy (and somewhat unchanged VMC total energies). Yet, our findings
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Figure 5.2: For the N-atom, these two diagrams show the angular momentum dependent
components of three different pseudopotentials, CF, MF and SBK (see Section 3.4). The
diagram on the left hand side compares the respective local [ components, the diagram on
the right hand side compares the non-local s-p components.

of larger variances for this cc-pCVQZ basis leave some doubt in these improvements in
DMC. If we confirmed this finding (as we will do in the next section), we would obtain
an important result for later QMC investigations: When constructing an appropriate
correlated VMC trial wavefunctions, it is crucial to consider the obtained variances,
even if the VMC total energies seem to be unchanged or when the DMC energies are
apparently lowered (improved).

5.3 Pseudopotential

Two questions remain to be answered. Can we reduce the deviation of 17(1) mHa
from the experimental binding energy for the CF pseudopotential? Is the found im-
provement of 4(1) mHa in the last section fortuitous for the increased cc-pCVQZ basis
set and the CF pseudopotential? In this section, we will examine QMC results for
three different pseudopotentials, CF, MF and SBK, which are introduced in Section
3.4. For illustration, their local and non-local radial components are plotted in Figure
5.2. To get an additional feeling about the role of the basis for different pseudopoten-
tials, we will also consider two further basis sets. They are denoted here as MF and
pV7CV5Z and taken from Ref [GAUSSIAN 2003]. The MF basis is constructed from
7s7pld GTOs with 66 basis functions for Ny. The pV7CV5Z basis is constructed from
12511p9d GTOs (constructed by merging the two basis sets, cc-pCV5Z+ and cc-pV7Z)
with 198 basis functions for Nj.

92



CHAPTER 5. METHODOLOGICAL INVESTIGATIONS. PSEUDOPOTENTIAL

PSP Basis | Eigt | EYic o VMC | Bk DMC
N
CF_ CF+ T0.6487 | -9.7607(3) 0.28 -0.1120(3) | -9.7697(1)  -0.1210(1)
MF  MF -0.6280 | -9.7402(4) 029 -0.1113(2) | -9.7487(3)  -0.1200(3)
SBK pV7ZCV5Z | -9.6443 | -0.7551(2)  0.28 -0.1108(2) | -0.7649(3)  -0.1206(3)
CF  ccpCVQZ | -0.6482 | -9.7560(7) 0.39 -0.1087(7) | -9.7721(2)  -0.1239(2)
MF  cc-pCVQZ | -9.6283 | -9.7384(3)  0.39 -0.1101(3) | -9.7520(2)  -0.1237(2)
SBK cc-pCVQZ | -9.6437 | -9.7559(7) 044 -0.1122(7) | -9.7649(5)  -0.1212(5)
N,
CF  CFt 119.4846 | -19.843(1) 055 -0.353(1) | -19.8867(2) -0.4021(2)
MF  MF 119.4420 | -19.802(1)  0.56 -0.360(1) | -19.8442(3) -0.4022(5)
SBK pV7ZCV5Z | -19.4769 | -19.8368(3) 0.56 -0.3599(3) | -19.8829(5) -0.4060(4)
CF  ccpCVQZ | -10.4847 | -19.841(1)  0.67 -0.356(1) | -19.8947(3) -0.4100(3)
MF  cc-pCVQZ | -19.4449 | -19.8028(5) 0.66 -0.3579(5) | -19.8527(4) -0.4078(4)
SBK ccpCVQZ | -19.4755 | -19.834(1)  0.76 -0.359(1) | -19.8827(6) -0.4072(6)

Table 5.5: This table presents the HF, VMC and DMC total and correlation energies and
the standard deviation of the local energies for three different pseudopotentials, CF, MF
and SBK (specified in the first column) and the, MF, cc-pCVQZ and pV7ZCV5Z basis sets
(specified in the second column). For all calculations, we choose the J(553)-factor and the
time step, 67 = 0.1 Ha !, except for the pV7ZCV5Z basis where 67=0.0025 Ha~! is chosen
(in this calculation, larger time steps caused an instability in the population evolution). All
other input parameters are as in Section 4.1. The SBK pseudopotential calculations are done
by M. Fuchs.

5.3.1 Results & Discussion

For all three pseudopotentials, Table 5.5 presents the calculated HF, VMC and DMC
total and correlation energies. Based on these data, the respective binding energies
are calculated and listed in Table 5.6. To simplify the discussion, we will limit our
examination of the VMC and DMC results for each pseudopotential to those obtained
from the basis which leads to the lowest variance (together with the chosen J(553)-
factor). As a further limitation, only binding and correlation energies can be considered
since total energies are rescaled by different pseudopotentials.

Let us consider the correlation energy for the N-atom first. The three VMC calcu-
lations for the respective pseudopotentials agree within 1 mHa which is about twice
the error bar that we aim at here. The same agreement is found for all three correla-
tion energies with DMC. For additional analysis, one can also consider the difference
between the VMC and DMC correlation energy for each respective pseudopotential
which is 9.0(2) mHa (CF), 8.7(5) mHa (MF) and 9.8(6) mHa (SBK). Since these dif-
ferences all agree within their statistical accuracy, they show that the DMC results
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yield a consistent improvement upon VMC for all three pseudopotentials. All these
findings suggest that the N-atom is systematically well described by the three differ-
ent pseudopotentials. For Ny, however, an analogous discussion can not be led since
the correlation energy depends on the HF total energy. And in the last section, we
demonstrated that these HF values are not converged for example for the CF+ basis
(not so for N, where we found that all HF energies for basis sets larger than CF+ are
converged).

A further result is the large similarity between the MF and CF pseudopotential cal-
culations for VMC and DMC. This can be seen in the binding energy (i.e. with a
difference of 0(4) mHa for VMC and 0(1) mHa for DMC ). The same holds for the dis-
cussed correlation energy for N and N,.> Also, the variances for both pseudopotential
calculations are very similar. All these findings correspond with our expectation, since
both pseudopotentials show a similar qualitative behavior in their local an non-local
components, such as the finite value at the nucleus (see Figure 5.2).

When comparing now with the SBK pseudopotential, we find an additional drop (im-
provement) of the binding energy by 5(3) mHa (VMC) and by 6(2) mHa (DMC). This
improvement appears to be systematic when going from VMC (5 mHa) to DMC (6
mHa) and suggests consistency in both methods (similar as found when going from
VMC to DMC in the atomic correlation energy). Since we showed consistency within
the atomic correlation energies for all three pseudopotentials, we expect this improve-
ment by 6 mHa from an improved result for the Ny DMC total energy. However,
the conclusion we can draw from these finding is that the SBK pseudopotential yields
binding energies that are closer to the experimental value.

When resuming the discussion about the cc-pCVQZ basis from Section 5.2, we find
further confirmation that the cc-pCVQZ basis is not as appropriate as the CF basis
when construction Up. Additionally, we have found similar VMC and DMC atomic
correlation energies for all three pseudopotentials. When comparing these “well be-
haved” VMC atomic correlation energies with the VMC result for the cc-pCVQZ basis,
we find a slight increase between 2(1) and 3(1) mHa. In contrast, the same comparison
shows a significant decrease in the DMC correlation energy between 2.9(3) and 3.9(5)
mHa.% Since these findings in the correlation energies suggest the same inconsistent
behavior as in the last section (i.e. a slight increases in the VMC correlation energies
and a significant decrease in the DMC correlation energy), we have further evidence
that the cc-pCVQZ basis yields to “misbehaved” results.

To conclude, we have found a good agreement within our VMC and DMC results for

5 Although we mentioned some reservation when comparing the correlation energies for No, it can
be assumed that these two basis sets (i.e. CF+ and MF) yield similar deviation from the true HF
limit due to their similar sizes.

6An analog discussion for No shows a similar underestimation of the negative correlation energy,
i.e. the correlation energy is increased by 2-4 mHa (VMC), whereas the DMC correlation energy is
decreased by 4-8 mHa (DMC). But again, this comparison needs to be treated with reservations for
reasons mentioned earlier.
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PSP Basis EYuc Educ DL
[in Ha] [in Ha] [in Ha]

CF  CF+ -0.322(2) -0.3473(4) -0.0168(4)

MF MF -0.322(2) -0.347(1)  -0.017(1)

(2)
(2)
SBK pV7ZCV5Z | -0.327(1) -0.353(1)  -0.011(1)
CF  cc-pCVQZ | -0.327(2) -0.3505(7) -0.0136(7)
(2)
(2)

MF  cc-pCVQZ | -0.326(2) -0.3487(8) -0.0154(8)
SBK cc-pCVQZ | -0.322(2) -0.353(2)  -0.011(2)

Table 5.6: This table shows the VMC and DMC binding energies for Ny based one the total
energies in Table 5.5. The last column lists the deviation of the DMC binding energy from
the experimental value (which is -0.3641 Ha, see Table 4.2). For all values, the zero point
energy is excluded.

all our three pseudopotentials when describing the N-atom. Also the VMC and DMC
binding energies show good agreement for the MF and CF pseudopotential. Substan-
tial systematic improvements in the No VMC and DMC total energies have been found
for the SBK pseudopotential leading to an improved binding energy (i.e. to the current
best estimate with a deviation of 11(1) mHa to the experimental value). Finally, we
have found further evidence that the “improved” DMC total energies obtained by the
cc-pCVQZ basis in the previous section are influenced by a negative pseudopotential
localization error. Hence, the improvement of 4(1) mHa in the DMC binding energy
obtained for the cc-pCVQZ basis is most likely fortuitous.

5.3.2 Comparison with other QMC Calculations

For N and Ny, Table 5.7 presents a compilation of available reference DMC total, corre-
lation and binding energies. The reference values closest to the (negative) experimental
value are the two DMC binding energies for the SBK pseudopotential with deviations
of 6(3) mHa [MITAS 1994| and 6(1) mHa [GROSSMAN 2002|. Both studies only dif-
fer in the HF basis set. The next best reference result has already a deviation of 29(1)
mHa from the experimental value and is obtained by an all-electron DMC calculation
(also for one determinant) [FILIPPI 1996]. A reference binding energy with the largest
deviation of 36(100) mHa [SUBRAMANIAM 1992| is obtained by a Greens function
QMC method [LESTER 1994| which is an alternative to the short-time approximated
DMC method that we use.

So far, our best binding energies overestimate the (negative) experimental value by
17(1) mHa (CF pseudopotential) and by 11(1) mHa (SBK pseudopotential). In com-
parison, our SBK binding energy slightly overestimates the two reference values ob-
tained for the same pseudopotential, i.e. our value slightly differs by 5(2) mHa to the
value by Grossman and has no significant change of 5(4) mHa to the value by Mitas.

95



5.3. PSEUDOPOTENTIAHAPTER 5. METHODOLOGICAL INVESTIGATIONS

PSP  Basis | DL Efr ER o B EXuc Ref.
N, N
- - - - - - -0.3641 expt.

CF CF+ 119.8867(2)  -0.4021(2) | -9.7697(1)  -0.1210(1) | -0.3473(4) | this work
SBK pV7ZCV5Z | -19.8829(5)  -0.4060(5) | -9.7649(3)  -0.1206(3) | -0.353(1) | this work
References in QMC

SBK CGaussian | -10.888(2)  -0410(2) | -9.7649(5) -0.121(1) |-0.358(3) | Mitas
TM  Gaussian | - - -9.7944(6)) -0.120(1) | - Mitas
PC  Gaussian - - -9.7715(9)  -0.121(1) | - Mitas
SBK Gaussian? | - - - - -0.358(1) | Gross.
all-el. Gaussian -109.487(1)  -0.494(1) | -54.5760(8) - -0.335(3) | Filippi
all-el. Gaussian -109.5046(3) - - - - Liichow
all-el. - 1109.52(8)  -0.53(8) | -54.57(2) - 0.4(1) | sub.

Table 5.7: This table compiles reference total, correlation and binding energies in Hartree.

Thereby, all fixed-node DMC calculations are done with a trial wavefunction based on a single

Slater determinant. The respective pseudopotential and basis for each reference calculation

is listed in the first two columns. The references (Ref.) noted in the last column are (1)
[MITAS 1994| where the pseudopotentials PC = Pacious and Christiansen, TM=Troullier

Martins are abbreviated, (2) [GROSSMAN 2002] where natural orbitals (nat. orb.)

are

abbreviated, (3) [FILIPPI 1996] the DMC total energy for Ng is taken from this ref., for N
we use -54.5760(8) mHa [private communication|, both values are for one determinant, (4)
[MANTE 2001], (5) [SUBRAMANIAM 1992]. Our binding energies are taken from Table 5.5

and 5.6.
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In a more detailed comparison between our SBK results and those by Mitas, we find
an excellent agreement between his and our atomic total energy with 0(1) deviation.”
For Ny in contrast, our DMC total energy is 5(3) mHa higher (thereby, the HF value
of Mitas and our calculations agrees within 1 mHa, i.e. -19.478 mHa by Mitas and
-19.477 mHa by us).

These slight differences between our results and those by Grossman and Mitas need
further clarification. One could speculate that the differences might be a result of
the different HF basis sets, i.e. Mitas uses a 6s6pld GTOs basis set which is smaller
than our basis with 12s11p9d GTOs. In the last section, we found that the HF basis
can have an influence of several mHa to the binding energy. However, we confirmed
our SBK VMC and DMC results for 12s11p9d GTOs with very similar results found
for a second smaller basis with 8s7p5d GTOs.2 This agreement in our results does
not answer this question. Another possible explanation of these deviations could be
the different implementation of the DMC method. Therefore, it is interesting in later
studies to further investigate these results in doing a more accurate QMC calculation
with MCSCF determinants for Mitas’ or our basis set.

In a last comparison with the all-electron DMC calculation by C. Filippi, we find a
binding energy with a deviation which is almost twice as large as our deviation for the
CF pseudopotential calculation. This shows that an all-electron DMC calculation for
one determinant with affordable numerical effort does not give better results than our
pseudopotential calculations.

To conclude this comparison, we have found that our Ny DMC binding energy for
the SBK pseudopotential slightly differs from two reference DMC values. In this
comparison, we found that our DMC total energy is in good agreement for the atom
but is significantly higher for the molecule. Nevertheless, our results obtained by the
two other pseudopotentials, CF and MF, yield deviations in the binding energies that
are even larger. Only a more accurate DMC calculation using MCSCF determinants
might give an answer.’

"Mitas has obtained atomic correlation energies for three different pseudopotentials (although two
of them are not discussed in this thesis). As can be seen in Table 5.7, all his results are between -0.120
to -0.121 Ha. That range is exactly the same as we find for our three pseudopotential calculations in
Table 5.5. This once again confirms our previous assertion that the atom is already well described
within our DMC calculations.

8The results for the 8s7p5d basis have not been discussed since they show an increased variance.
However, they are listed in Table 5.5.

9To help explaining the remaining difference of 17(1) mHa to the experimental value, we also
investigate our CF pseudopotential with an elaborate CC calculation. Thorsten Kliiner (FHI, Berlin)
calculated the Na binding energy for our pseudopotential and then for all-electrons as comparison
(for a set of five different basis sets). The results are listed in Table B.1 in the appendix. When
choosing the largest basis (aug-cc-pV5Z), the deviations from the experimental value are 2 mHa, for
the pseudopotential and 5 mHa for the all-electron calculations. This pseudopotential calculation
agrees already fairly well with the experimental value. But this agreement should be considered
with reservation for two reasons. (1) The total energy for the next smaller basis (aug-cc-pVQZ)
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Figure 5.3: This scheme illustrates the molecular orbitals for the No-molecule. Thereby, the
log and 1oy orbitals are eliminated in our calculations by the use of pseudopotentials.

5.4 MCSCF

So far, we could not resolve the discrepancy between our best estimate of the binding
energy and the experimental value. Thereby we have always used a single determinant
in the construction of previous trial wavefunctions. In this section, we will further
extend U by including additional determinants (excited states). In doing so, we hope
to improve W and thereby to reduce the fixed-node and pseudopotential localization
error (i.e. both errors vanish if ¥ is the true ground state). In particular, we will
focus on the Ny molecule since previous results suggest consistency in the description
of the N-atom as was elaborated in the last section.

5.4.1 MCSCF Trial Wavefunctions

To find the appropriate determinants when expanding ¥ in determinants as noted
in eq.(3.15), we choose the Multi-Configuration Self-Consistent Field (MCSCF)
method'®. First, we determine a set of molecular orbitals (MOs) with a HF calcu-
lation for N,. Based on these MOs, we then perform a MCSCF calculation with an
active space with 3 highest occupied MOs and 3 lowest unoccupied MOs. This means
that the determinants within the N, MCSCF wavefunction are constructed out of 2
inactive and 6 active HF-MOs which are illustrated in the occupation scheme in Figure

increases already by 20 mHa for N and by 40 mHa for N compared to results for the largest basis,
see Table B.1. (2) Our DMC total energies are already lower than the respective CC values, i.e. by
13 mHa for N and by 9 mHa for N». (1) and (2) imply that the CC values may not be well enough
converged, yet. But despite these concerns, this CC calculation for our pseudopotential seems to
yield a N2 binding energy which is within chemical accuracy (2 mHa) to the experimental value. This
agreement supports that our used CF pseudopotential is generally well constructed (see also Section
3.4).

100ne could also use the CI method, but MCSCF additionally optimizes the MOs insider the deter-
minants. This additional optimization gives rise to an additional improvement of the determinants.
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5.3. The following MCSCF calculation then yields the optimized MCSCF wavefunc-
tion. From the obtained MCSCF wavefunction, we then extract the determinants with
the largest coefficients (the procedure of how to obtain the determinants is summarized
in Appendix A.4).

Table 5.8 presents the 17 most important determinants and their weights which are
extracted from the previous MCSCF calculation. In this table, these determinants
are identified by their electron excitations. After the ground state Slater determinant,
the next two important determinants with weights 0.123 represent double excitations
of two electrons noted as 7, — 7. Thereby, two electrons are excited from the
double-degenerated m, MO (i.e. one electron from m,, and the second from 7,,) into
the double-degenerated MOs 7, (i.e. one electron into 7y, and one into 7g,, see also
Figure 5.3). The next determinants are the four that describe two single excitations,
1my, 1my, — lmg 1m,,, where two determinants have weights 0.078 and two determi-
nants weights 0.049. Etc. These additional determinants are required to adequately
describe the static correlation when constructing the correlated Ur (see also Section
2.5). In the following, we will present the VMC and DMC total energies when including
different numbers of determinants.

5.4.2 Results & Discussion

In a first set of calculations, we will optimize the Jastrow factor of Ur. In a second set,
the optimization also includes the coefficients of the determinants. For all calculations,
we use the J(550) Jastrow factor and the CF basis set and pseudopotential. All VMC
and DMC total energies are summarized in Table 5.9. In the same table, the obtained
DMC binding energy is listed. These binding energies are calculated from the Ny DMC
total energy for multiple determinants, whereas the N-atom total energy is obtained
for a single determinant and the same J(550)-factor. This treatment with different
numbers of determinants is justified for two reasons. First, our previous results suggest
already a good description of the N-atom. Secondly, for the Ny molecule we only allow
excitations into the 17, , 17y, and 30, MOs. Similar excitations are not possible for
the N-atom. Since any excitation within the 1s,2s and 2p configuration violates the
spin multiplicity of 4 for the N ground state, the HF Slater determinant is the best
approximation within this confined active space of 1s, 2s and 2p atomic orbitals. If one
had allowed excitations beyond the 1s, 2s and 2d, one would have needed to include
MOs beyond 30, for the molecule. (See also Figure 5.3 for this argument.)

Optimization of the Jastrow Factor only

When optimizing only the J-factor for 7, 41 and 56 determinants with fixed coef-
ficients, we find an expected monotonic decrease in the DMC total energy for an
increasing number of determinants. This improvement upon the single HF' determi-
nant is 5(1) mHa when using 56 determinants. The behavior of the VMC total energy
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Det. Coef. opt. Coef. Electron Configuration Electron Excitation

# (20g,20u,1muy s 1muy,30g, Imgy , 1mgy, 3ou)

1 0.9665 0.09849 22222000 HF ground state

2 -0.1228 -0.0784 22022020 1w, — 1w,

3 -0.1228 -0.0784 22202200 lmg, = 1y,

4 0.0778 0.0429 22+4-24+-0 ol Amy, — 1nf 1mg,
5 0.0778 0.0429 22— +2- +0 Ly, 1md, — 1mg, 1)
6 0.0493 0.0316 22++2- -0 Irf 1ml, — 1wy, 17y,
7 0.0493 0.0316 22— - 2++0 lmg, my, — 1m) 1n ],
8 0.0430 0.0235 22— 2++0+- 3o 1my, — 1m) 30y
9 0.0430 0.0235 22+42-0- + 3o 1m} — 1m, 30
10 -0.0072 -0.0430 222 4+4-0- 3Ug'17r;2 — 17rg.'130;
11 -0.0072  -0.0430 2224 - 0+ 3o I, = 1mg, 3oy
12 0.0275 0.0286 22+ 2- +0 Lol Amy, — 1mg 1m g,
13 0.0275 0.0286 22— +24-0 oy Imf, — 1mf 1mg,
14 0.0048 0.0162 22— 2++0- + 3o imy, — 1mg, 30y
15 0.0048 0.0162 22+2- 0+~ 30, 1mf, — 1) 30,
16 -0.0066  -0.0162 222- +— 0+ 307 1my, — 1m, 3o
17 -0.0066 -0.0162 222+ +0- 3o, 1m} — 1m} 30,

Table 5.8: This table lists the first 17 determinants with largest coefficients when expanding
the optimized MCSCF wavefunction for Nyo. The second and third column lists the MCSCF
coeflicients before and after the optimization of ¥r. Thereby, the sum of the squared coeffi-
cients is one. In the MCSCF calculation, we define the active space as the 3 highest occupied
MOs and the 3 lowest unoccupied MOs, 1my,, 1my,,304, 17y, 1mg,, 30y. The two lowest
MOs, 204,20y, are fixed resulting in a total of 8 MOs. Then, each determinant is constructed
out of these 8 MOs. This construction is indicated in the forth column, where “+” indicates
an occupied MO with a spin up and “-” with a spin down electron or by a pair of electrons
indicated by “2”. In the last column, we use the common notation, where we indicate from
which and into which MOs the electrons are excited in each determinant. Thereby, each 7
or o represents a single electron.
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Opt. No. of | Evumc ovmc | Epmc teorr ERmc
Det. | [in Ha] [in Ha] | [in Hal [in 1/Ha] [in 1/Ha|
Jonly L (HF)|-10831(1) 0.64 |-10.8354(3) 3.28  -0.346(1
7 -19.855(1 0.53 | -19.8884(2 2.87 -0.349
41 -19.849(1 0.55 -19.8907(3 3.19 -0.351
56 -19.847(1 3 3.32 -0.351

J and Det. 7 -19.8618(

17 | -19.8624(
41 | -19.8645(
56 -19.8627(9

)

) 0.53 |-19.8952(2
) 052 |-19.8959(2
) 051 |-19.8947(2

2.74 -0.356
2.82 -0.357
2.78 -0.395

) (3) )
) (2) (1)
) (3) (1)
) 0.57 | -19.8906(3) 1)
8) 052 |-19.8941(2) 281  -0.355(1)
8 (2) (1)
9 (2) (1)

(2) 1)

Table 5.9: This table shows the VMC and DMC total energies which are calculated for 1,
7,17, 41 and 56 determinants. The last column lists the DMC binding energy. The binding
energy is calculated together with the atomic DMC total energy obtained for a single Slater
determinant and the same J(550)-factor (i.e. -9.7697(6) mHa, see Table 5.1). The upper
part of this table lists the results obtained by optimizing the J-factor, the lower part is
obtained by additionally optimizing the coefficients of the determinants.

is slightly different. Although we find a decrease in the VMC total energy from 1 and
7 determinants by 24(2) mHa, the total energy slightly increases again by 7(2) mHa
when going from 7 over 41 to 56 determinants. Also, the variance increases from 0.53
to 0.57.

One might wonder about the decrease (improvement) in the DMC total energy on the
one hand, while on the other the VMC total energy and the variance increase again for
a number of determinants larger than 7. The reason for this behavior could be similar
as discussed in Section 5.2 for the cc-pCVQZ basis. In a MCSCF calculation, the
MCSCF determinants are optimized to already describe correlation effects, i.e. mainly
static but increasingly dynamic correlation for a larger number of determinants. But
when including the J-factor, it could be possible that the determinant coefficients
stemming from the MCSCF calculation are not appropriate any more. Therefore, we
will additionally optimize these determinant coefficients.

Optimization of the Jastrow Factor and the MCSCF Determinant Coeffi-
cients

The VMC and DMC results are illustrated in Figure 5.4 when simultaneously optimiz-
ing both, the J-parameters and the determinant coefficients. For both, the VMC and
DMC total energy, we find a monotonic decrease with the exception of an insignificant
increase from 41 to 56 determinants by 2(2) mHa for VMC and a slight increase by
1.2(4) mHa for DMC. Hence, the largest decrease in the total energy is 34(2) mHa for
VMC and 10(1) mHa for DMC when going from 1 to 41 determinants.
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Figure 5.4: These figures show the behavior of the total energy calculated with VMC (left
scale) and DMC (right scale) for 1, 7, 17, 41 and 56 determinants in each diagram. (In
the left diagram, error bars are smaller than the symbols.) The right diagram excludes the
results for a single determinant in order to enlarge the energy scale to make the error bars
visible. Here, the J(550)-parameters of and all determinant coefficients are simultaneously
optimized.

As a first observation, we confirm the necessity to optimize both, the [J-parameters
and the MCSCF coeflicients. Their simultaneous optimization yields an additional
decrease in the total energies by about 15 mHa (VMC) and by 5 mHa (DMC). Also,
the VMC total energy and the variance decreases monotonically for an increasing
number of determinants.

At the same time, these improvements also lead to a lower DMC binding energy of
-0.357(1) mHa (for 41 determinants). This binding energy now shows the smallest
deviation of 7(1) mHa from the experiment compared to 17(1) mHa with a single
determinant. This gives an improvement by 10(2) mHa or by 3% of the experimental
binding energy. And when comparing with the one determinant result for the SBK
pseudopotential, we still find an improvement by 4(2) mHa.

This significant improvement in the Ny DMC total and binding energy can be traced
back to a reduction of the fixed-node error in the Njy-molecule. The reduction of
that error becomes evident when recalling the variational character of the fixed-node
approximation and the two findings (1) that the variance reduces by a factor of 0.8 and
(2) the VMC total energy decreases by 34(2) mHa when using Ut with 41 determinants
instead of one. Both findings show that Ut is improved. Supposing that the improved
quality of the multi-determinant Ut leads to an improved nodal surface, this change
of 10 mHa indicates that the single-determinant WUt resulted in a larger fixed-node
error that is now (at least partly) corrected. This correction corresponds to 2.5%
of the correlation energy or 2.7% of the binding energy. At the same time, also the
pseudopotential localization error reduces for a better representation of .. But since
this error does not follow a variational principle, the resulting change could be either
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negative or positive, and could have contributed to the improvement of 10(2) mHa or
worked against.

To conclude, the inclusion of multiple determinants in W substantially improves the
VMC and DMC binding energy with a remaining deviation of 7(1) mHa or 1.9% to the
experimental value. Also, we find that the additional optimization of the coefficients
of the MCSCF determinant is important and yields an additional significant decrease
in the VMC and DMC total energy (compared to results obtained by exclusively op-
timizing the J-parameters). When looking for further strategies to improve upon the
remaining deviation of 7(1) mHa, our calculations suggest that further increasing the
number of determinants (within the chosen active space) will not necessarily improve
the DMC result. Instead, one could increase the active space of the MCSCF calcula-
tion and also include 3d orbitals (see also the Grossman study in the next subsection).
But also, since we found a further improvement by 6(2) mHa when using the SBK
pseudopotential in the last section, it would be interesting to investigate the DMC
result with this SBK pseudopotential and a multi-determinant .. But this is beyond
the scope of this work.

5.4.3 Comparison with other QMC MCSCF References

In a QMC study, Grossman investigated the total energy for the phosphorus molecule
P, which has the same number of valence electrons as Ny [GROSSMAN 2002|. In the
construction of U, he obtained the determinants with the same MCSCF method, but
with 16 lowest unoccupied MOs, compared to our 3. This study shows an improvement
of the DMC total energy of 7(1) mHa when increasing the number of determinants
from 1 to 269. This agrees fairly well with our previous improvement of 10(2) mHa.

In another study, the N, VMC and DMC total energy was investigated with an all-
electron calculation in Ref.[FILIPPI 1996]. For a ¥ with 17 determinants, this study
shows an improvement in the total energy by 62(1) mHa (VMC) and by 18(2) mHa
(DMC) compared to a single-determinant ¥rp. If we add the same determinants™
in our (pseudopotential) calculation, the corresponding improvements are 31(2) mHa
(VMC) and 10(1) mHa (DMC). Here, our deviation from the reference values is not
surprising, since an improvement in the all-electron wavefunction has larger effects
than in our pseudo-electron wavefunction. Now, when considering the binding ener-
gies, their deviations from the experimental value are ER,; = —0.029(3) Ha (1 de-
terminant) and E,;~ = —0.011(3) mHa (17 determinants).!? Their obtained binding

'Not only the number of 17 determinants is equal in our and the reference calculation, but also the
electronic configuration (all excitations as listed in Table 5.8) of each determinant. However, our 17
determinants are only optimized to account for the spatial symmetry (resulting in 9 free coefficients
to optimize), whereas the 17 determinants in the reference calculation are arranged to additionally
account for spin symmetry (resulting in 5 free parameters to optimize) [FILIPPI 1996]. Nevertheless,
the resulting spin contamination in our calculation is usually neglected.

12Tn Ref.[FILIPPI 1996], no binding energies are calculated. However, these stated binding ener-
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energy significantly improves for 17 determinants with respect to experiment. When
comparing to our deviation of 7(1) mHa from the experimental binding energy, the all-
electron result for 17 determinants are in good agreement with ours (within the error
bar of 4 mHa). Hence, this rather good agreement confirms that our pseudopotential
calculations yield similar results then all-electron calculations.

gies are obtained in a similar manner as we calculated our previous binding energies. Thereby, we
use the atomic DMC total energy, -54.5760(8) mHa, obtained for one determinant [Filippi, private
communication]|.

104



CHAPTER 5. METHODOLOGICAL INVESTIGATIONS 5.5. TIME STEPS

o Correlation Time
200 ¢

Polynomial Fit

Fit(t)=0.7692 t0-7493

Q

Correlation Time in Units
of Steps
S

0,001 0,01 0,1 1
(logarithmic) Time Steps 07 in 1/Ha

Figure 5.5: For Ny, the calculated DMC correlation time, teoyr, is plotted over the time step,
o7. All values are taken from Table 5.10.

5.5 Time Steps

For all previous calculations, we have used the time step 67 = 0.1Ha ! (except for

the SBK pseudopotential calculations, where 7 = 0.0025 Ha ! was used!'?). In this
section, we will examine the influence of different time steps on the DMC total en-
ergy. On the one hand, the time step should ideally be zero to make the short time
approximation negligible (see Section 3.3.2). On the other hand, the efficiency in the
DMC process drastically decreases for smaller time steps since the correlation time,
tcorr, increases. That increase is demonstrated in Figure 5.5 where t o is plotted over
the logarithmic time step scale (for smaller time steps, t. must increase larger then
an exponential function, since %o, can not be appropriately described by a polynomial
fit function for smaller time steps when plotting it over a logarithmic scale).

In practice, one commonly performs calculations with several larger time steps and
then extrapolates these calculated DMC total energies to the value at 67 = 0 [Schautz,
private communication|. Ref.[UMRIGAR et al. 1993] now suggests for our DMC al-
gorithm that the total energy converges, and can already be approximated with a
DMC total energy that is obtained for a single time step of the order of 7 = 0.1 Ha™!
(i.e. for two elements, Be and Liy, this reference proposes a plateau in the DMC total
energy for 67 < 0.1 Ha !, such that the total energy does not change any more for
smaller time steps).

In this section, we examine the convergence behavior of the DMC total energy at
different time steps with 0.001 < 67 < 1 Ha ! for N and Ny and two different basis sets
(CF and cc-pCVQZ). All results are illustrated in Figure 5.6. From our calculations,
the Ny DMC total energies for the CF basis are listed in Table 5.10 for 12 different
time steps. To account for the additional increase in the correlation time for smaller

3For SBK pseudopotentials, we found an instability in the population evolution for time steps
larger than 67 = 0.0025Ha ! (see Section 5.3).
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time steps as shown in Figure 5.5), we also need to increase the number of diffusion
steps within one block (for example, at d7 = 0.001 with ¢..,, = 203, we use 12,000
steps within one block).

5.5.1 Results & Discussion for Different Time Steps

When looking at the DMC total energy for the CF basis first, the upper diagram in
Figure 5.6 on the left hand side shows an increase in the total energy when starting
from 7 = 0.5 Ha™! and going down to smaller values. For both N and Ny, the total
energy reaches a maximum and then decreases up to 4.6(8) mHa for Ny and up to 1.2
(5) mH for N. The diagram in the second row presents the same data over a logarithmic
scale. The constant negative slope of the DMC total energy for small time steps (over
the logarithmic scale) suggests that the total energy is still not converged for our
smallest time step. For the cc-pCVQZ basis in contrast, we find a different trend
illustrated on the right hand side of Figure 5.6. The DMC total energy monotonically
increases for both N and Ny for small time steps. On a logarithmic scale, the slopes
of the N and N, total energies becomes horizontal for small time steps which suggests
that the total energy is converged for even smaller time steps.

In the above results, two findings appear to be peculiar. First, we do not find the
expected plateau in the DMC total energies for smaller time steps for both basis sets.
In particular for the CF basis, the DMC total energies do not seem to converge. And
secondly, the behavior for smaller time steps seems to depend on the chosen basis set,
i.e. for small time steps, the total energy decreases for the CF basis and increases for
the cc-pCVQZ basis.

We have not really understood the reason for these results. One possible explanation
for both of these finding could be the occurrence of a pseudopotential localization
error which would allow an explanation of the negative and positive deviation (de-
pending on the basis set). But this findings could also be a result from the used DMC
implementation. However, these changes in the total energies appear to be less impor-
tant for the binding energy when looking at the two bottom diagrams in Figure 5.6.
In particular, the largest decrease in the binging energy for the CF basis is between
67 = 0.1Ha ' and 67 = 0.01Ha ' with 2.541.0 mHa. But this lowering in the binding
energy appears to be slightly reversed for even smaller time steps. For the cc-pCVQZ
basis all differences are within 1.3+1.5 mHa and are not significant.

As a conclusion from our time step investigation, we find a behavior of the DMC
total energy which is different from our expectation of a plateau for time steps smaller
than 0.1 Ha=!. For the CF basis, we find a maximum in the total energy and an
additional significant decrease by 5(1) mHa for the smallest time step investigated.
In the contrary, no plateau was found for the cc-pCVQZ basis. However, the binding

14 As a rule of thumb, we try to keep the block size as large as ten times the correlation time, ¢corr
[private communication, C. Filippi], while keeping the number of 8000 diffusion blocks fixed.

106



CHAPTER 5.

METHODOLOGICAL INVESTIGATIONS

5.5. TIME STEPS

N2 Total Energy in Ha

N2 Total Energy in Ha

Binding Energy in Ha

-19.892 4

-19.894

—x—N2 b=CF |
=—N b=CF
K

0.001

-0,345 4
-0,346
-0,347 A
-0,348 4

-0,349 +

0.01 0.1

-0,35
0

0,02 0,04 0,06 0,08
Time Steps

0,1

(either logarithmic or geometric)

-9.762

-9.764

-9.766

-9.768

-9.77

-9.772

-9.762

-9.764

-9.766

-9.768

-9.77

-9.772

N2 Total Energy in Ha

N2 Total Energy in Ha

Binding Energy in mH

-19.888 N2 b=cc- | T 9768
-19.89 PCVQZ | | 477
=— N b=cc-
-19.892 - pCVvQzZ | + -9.772
-19.894 - + -9.774
-19.896 - + -9.776
-19.898 ‘ 9.778
0.2 0.3
-19.888 - -9.769
-19.89 -9.771
-19.892 - 9773
-19.894 - 9775
-19.896 - 9.777
-19.898 ‘ H -9.779
0.001 0.01 0.1
-0.348 - —e— Binding
Energy b=cc-
-0.349 4 pCVvQZ
-0.35 ~
-0.351 4
-0.352 4
-0.353 T T T \ )
0 0.02 0.04 0.06 0.08 0.1

Time Steps

(either logarithmic or geometric)

Figure 5.6: The diagrams show the time step convergence for the DMC total energy for
N and N for two different basis sets, CF and cc-pCVQZ. All diagrams on the left hand
side refer to the CF basis, all diagrams on the right hand side to the cc-pCVQZ basis. In
particular, the first diagram in each column shows the total energy behavior for N and Ns.
All abscissas are assigned an equi-distant energy scale for a better comparison where the left
scale refers to the No and the right one to N (indicated through the gray color). The diagrams
in the second row show the same information but on a logarithmic time step scale. The two

diagrams on the bottom show the binding energy over different time steps. As input, we use
a single Slater determinant, the J(553)-factor and other parameters as listed in Table 5.10.
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Input Output
0T Steps/Block Blocks Total Points Et & OTeff Toff teorr
[in Ha~1] # 7# [# in million] [in Ha] [in Ha"!] [in Ha™!] #
0.001 12000 8000 3840 | -19.8893(4) 0.001 96000 202.62
0.005 600 8000 192 | -19.8885(4)  0.0049 23952  49.93
0.01 600 8000 192 | -19.8882(2)  0.0099 47664  26.96
0.025 100 12000 48 | -19.8875(3) 0.0244 29328 9.87
0.05 50 12000 24 | -19.8858(3)  0.0474 28446 5.29
0.075 50 8000 16 | -19.8852(4)  0.0688 27512 3.92
0.1 50 8000 16 | -19.8853(2)  0.0886 35452 3.23
0.13 50 8000 16 | -19.8846(3)  0.1105 44216 2.62
0.15 50 8000 16 | -19.8845(3)  0.1240 49616 2.54
0.2 50 8000 16 | -19.8847(3) 0.1543 61732 2.22
0.5 50 8000 16 | -19.8893(3) 0.2635 105400 1.68
1 50 8000 16 | -19.8952(3) 0.3055 122208 1.78

Table 5.10: This table shows the Ny DMC total energy for different time steps, 67, using the
CF basis set. In particular, the number of diffusion steps per block, the number of blocks and
the resulting total number of sampling points [number/block x (number of blocks) X (number
of populations, nconf=40)] are listed. This table also shows the resulting effective time step,
0Teft, the effective diffusion time, Terr = def Xnumber/block x (number of blocks), and the
correlation time, tcorr.

energy is less effected when going to smaller time steps. But still, we find a drop of
2.5+1.0 mHa for the CF basis (and no significant change for the cc-pCVQZ basis).
However, this finding suggests that the influence of the time step should be investigated
in all future studies.

5.6 Time Evolution in DMC

So far, we have used a fixed population size of 40 walkers. In this section, we examine
the influence of the waker size on the DMC total energy for No. At the same time,
we will examining the time evolution of the DMC total energy. To do so, we choose
four different population sizes with 3,10, 50 and 130 walkers, a time step of 67 = 0.1
Ha™!, a block size of 50 walkers, 8000 blocks and the [J(553) Jastrow-factor. Figure
5.7 presents the time evolution of the No DMC total energy for these four population
sizes.

We find that the calculation with the smallest population (of 3 walkers) also shows the
largest fluctuation throughout the entire diffusion time. This fluctuation then reduces
for an increasing number of walkers. And when comparing the two largest populations
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Figure 5.7: This figure shows the time evolution of the DMC total energy for Ny calculated
with different population sizes of 3, 10, 50 and 130 walkers. This time evolution is plotted over
the number of blocks starting with 1000 blocks (the initial blocks are omitted due to large
fluctuation in the total energy). For the population of 50 walkers (blue line), the statistical
error bar is included. The explicit values for the No DMC total energies (and errors) after
8000 blocks are -19.886(1) Ha (3 walkers), -19.8854 (6) Ha (10 walkers), -19.8853(3) Ha (50
walkers) and -19.8851(2) Ha (130 walkers). For all calculations, a block size of 50 walkers,
J(553) and 67 = 0.1 Ha™! is used.
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nquad Basis EDMC (N) EDMC (NQ)
# [in Ha] [in Ha]
4 CF 29.7693(1) -19.8853(2)
6 CF -9.7692(1) -19.8848(2)
12 CF 19.7691(1) -19.8853(2)
86 CF -9.7692(1) -19.8849(2)
4 cc-pCVQZ | -9.7724(2) -19.8947(4)
6  cc-pCVQZ | -9.7721(2) -19.8938(4)
12 ce-pCVQZ | -9.7722(2)  -19.8942(4)
86  cc-pCVQZ | -9.7721(2) -19.8948(4)

Table 5.11: For the N-atom and Ny, this table presents the DMC total energies for different
numbers of quadrature points and two different basis sets both specified in the first two
columns. The VMC trial wavefunctions used for these calculations are previously optimized
using four quadrature points. For all calculations, 8,000 blocks, a block size of 50 walkers, a
population size of 40 walkers, J(553) and 7 = 0.1 Ha~? is used.

(50 and 130 walkers), their DMC total energies evolve very similarly. Also, for all four
walker sizes, the final DMC energy after 8000 blocks agrees within their statistical
errors (listed in the caption).

As a conclusion, we find that the choice of our four population sizes has no significant
effect on the results after a sufficient long time evolution (like 8000 blocks in our case
with a resulting diffusion time of 7 = 40,000 Ha™!). Also, the DMC total energy
for the two larger populations seem to be converged already after 4000 blocks (other
than for the two smaller populations). These findings suggest that all calculations in
the previous sections with walker sizes of 50 (or 40) and a block size of 4000 are not
significantly influenced by the number of walkers. And the evolution time is chosen
sufficiently long in our calculations.

5.7 Different Quadrature Rules

In all previous sections, we have used four quadrature points to evaluate the two-
dimensional surface integral in eq.(3.77) for any VMC and DMC calculation (see also
Section 3.4.2). In this section, we investigate the influence of different quadrature
points on the DMC total energy for two different basis sets, CF and cc-pCVQZ. In
particular, 4, 6, 12 and 86 quadrature points are chosen at which the two-dimensional
surface integral is evaluated in a DMC calculation. Table 5.11 presents the DMC total
energies obtained by the different numbers of quadrature points and basis sets for N
and Ny. All DMC calculations are based on the same trial wavefunction!®. Further

15In the optimization of ¥, four quadrature points are used in each VMC run.
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VMC and DMC input parameters are specified in the caption.

We find that all deviations in the DMC total energy for different quadrature points
for N and Ny are within (or close to) one standard deviation. Our results indicate
that the 6 point quadrature method yields slightly higher total energies for both basis
sets and for N and Ny when comparing with all other results. But these differences
are not significant. Therefore, our results could not identify any significant influence
on the DMC total (binding) energy when evaluating the non-local components of the
pseudopotential for different numbers of quadrature points.

5.8 Correlated Sampling

In Section 4.2 and 4.3, we used the VMC and DMC orbital re-optimized correlated
sampling method to determine the equilibrium geometry and the vibrational frequency
for selected molecules. In this section, we examine the convergence of these two phys-
ical properties for Ny over the diffusion time (the number of blocks). In particular,
we will compare these results obtained by the orbital re-optimized correlation sam-
pling method with the re-centered correlated sampling method (introduced in Section
3.5.3). The first method uses a re-optimized HF wavefunction for each geometry of
the potential energy curve, whereas the second method uses a re-centered reference
HF wavefunction for each geometry. Also, we like to investigate the influence of the
selected reference (or primary) geometry by calculating the potential energy surface
for different reference points.

5.8.1 The Potential Energy Curve and the Diffusion Time

Figure 5.8 presents the Ny potential energy surface after 2000, 4000, 6000 and 8000
diffusion blocks (in Section 4.2 and 4.3 we used 4000 for all calculations). The derived
bond lengths and vibrational frequencies are listed in this same figure. We find that
when going from 2000 to 4000, to 6000 and to 8000 blocks, the respective changes
in the equilibrium bond length are 0.0001(15) A, 0.0004(11) A and 0.0001(9) A. The
vibrational frequency changes by 1(91) cm™!, 3(73) cm ! and 0(65) cm ™, accordingly.

To summarize, the observed changes in the bond lengths and vibrational frequencies
for different block lengths are several times smaller than the assessed statistical error
bars, which is less than 0.001 A for the bond length and less than 30-60 cm~! in the
vibrational frequency. In turn, our results suggest that not much more accuracy is
gained for more than 2000 blocks (or a diffusion time larger than 7 =10.000 Ha1).
Therefore, we can conclude that both physical properties are well converged for our
calculations with 4000 blocks.
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Figure 5.8: For different numbers of diffusion blocks, this figure presents the potential energy
surface for Ny calculated with the orbital re-optimized correlated sampling DMC method.
The two derived physical properties, bond length and vibrational frequency, are listed in the
diagram for different numbers of diffusion blocks. For these calculations, we use the reference
geometry 1.101 A, the CF pseudopotential, the CF basis, 67=0.1 Ha*, J(553), a block size
of 50 walkers and a population of 40 walkers. The error bars in the bond length and the
vibrational frequency are obtained as described in Section 4.2 and 4.3. It should be noticed,
that the indicated error bars in the total energies refer to the difference in the total energy
with respect to the reference geometry. And for the total energy at the reference geometry,
this diagram shows the error bar for a normal (uncorrelated) DMC calculation. (Since the
uncorrelated error bars are in the order of 1mHa, we only included a single error bar for the
total energy after diffusion 200,000 steps.)
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5.8.2 Orbital Re-Optimized versus Re-Centered Correlated
Sampling

Before discussing the two correlated sampling (CS) methods, let us consider “uncor-
related” VMC and DMC calculations for different geometries. They are presented in
the first two diagrams in Figure 5.9. These diagrams show significant fluctuations in
the VMC (left diagram) and DMC (right diagram) total energies between different
geometries (i.e. fluctuations of several times the statistical error). Hence, the physical
properties derived from such uncorrelated VMC and DMC calculations are subject to
very large errors. This shows the need for the CS methods as used in this thesis.

In Section 4.2, we used the orbital re-optimized correlated sampling method. Now, we
will compare this method with the re-centered correlation sampling method. Figure
5.9 shows the calculated N» potential energy curves by applying both CS methods in
VMC (second row) and in DMC (third row). Thereby, the reference geometry 1.08
A (left diagrams) and 1.101A (right diagrams) is used. (In Figure 5.9, the reference
geometry is indicated with a circle.) Let us first compare the two different methods,

then, we will discuss the influence of the reference geometry.

When comparing the re-centered with the re-optimized CS calculations (at the 1.08
A reference geometry), we see a systematic improvement of the vibrational frequency
by 389(182) cm™" (VMC) and by 149(104) cm~" (DMC), respectively. For the bond
length, we find no significant difference, i.e. by 0.001(2) A (VMC) and by 0.000(2)
A (DMC). In the same comparison but at a different reference geometry at 1.101
f&, we find similar systematic improvements of the vibrational frequency but a slight

worsening for the bond length (i.e. by 0.005(3) A (VMC) and by 0.002(1) A (DMC)
with respect to the experimental value at 1.094 A.)

To summarize the difference between the re-centered and orbital reoptimized CS
method, we find that the vibrational frequency is significantly improved (more than
twice than the error bar) for the re-optimized CS method. This improvement is in
agreement with our expectation, since the optimized HF determinant (in the orbital
re-optimized CS method) allows for an improved Wt at the secondary geometries.
When recalling that the fixed node error is variational, it becomes evident that an
improved W lowers the total energy at the secondary geometries and thus the curva-
ture in the potential energy curve. At the same time, no significant change has been
found in the bond length (only a slight but insignificant worsening when using the
re-optimized CS method).

Now, we discuss our findings when comparing the two different reference geometries.
The difference obtained by the re-centered CS method at the two reference geometries
are not significant in the frequencies (i.e. 179(176) cm~! for VMC and of 30(117)cm !
for DMC). While for the bond length, we find slight differences of 0.009(3) mHa (VMC)
and 0.004(2) mHa (DMC) for the two reference geometries. In the same comparison
between the two reference geometries for the re-optimized CS method, we find a similar
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Figure 5.9: All diagrams show the potential energy curve for No. The two upper diagrams
compare both correlated and uncorrelated sampling calculations for VMC (on the left hand

side) and for DMC (on the right hand side). The two diagrams in the second row compare

VMC re-centered and orbital re-optimized correlated sampling calculations for two different
reference geometries, for 1.080 A (on the left hand side) and for 1.101 A (on the right
hand side). The two lower diagrams show the same comparison for DMC calculations. The

respective reference points are encircled in all diagrams. For all calculations, we use the CF
pseudopotential and basis. For the DMC calculation, we used é7=0.1 Ha™!, J(553), 4000
blocks, a population size of 40 walker and a block size of 50 walkers. For the VMC calculation,
we used a 30,000 blocks and a block size of 20.
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insignificant change in the frequencies and a similar slight changes in the bond length

(i.e. 0.005(2) A (VMC) and by 0.002(1) A (DMC)).

When summarizing the influence of the reference points on the physical properties from
our previous comparison, we find no significant influence on vibrational frequencies.
Not so for bond lengths, there we find a slight dependence on the choice of the reference
point for both CS method likewise. In particular, we find an influence that can exceed
the statistical error bar of currently 0.002 A by about 2-3 times.

To conclude this section, our investigations suggest that the used orbital re-optimized
CS method yields more reliable results when determining the vibrational frequencies
than compared to the re-centered method. However, a similar improvement is not
indicated by our results when calculating bond lengths. Also, we found that the
choice of the reference points has an influence on the bond length which may exceed
several times the statistical error bar. This influence need to be incorporated when
calculating bond length with the CS technique investigated in this thesis.
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Chapter 6

Summary and Outlook

In this thesis, we investigated the capability of the Variational Monte Carlo (VMC)
and the Diffusion Monte Carlo (DMC) method when performing electronic structure
calculations. We examined selected physical properties of nine first and second row
molecules. We furthermore showed that DMC, as a correlated total energy method,
is very appropriate when describing hydrogen-bonding energetics and proton transfer
energy barriers for two selected H-bonding systems. Thereby, DMC allowed us to
check for deficiencies in other reference methods (like DFT).

For our investigated molecules, we obtained dissociation energies, equilibrium geome-
tries and fundamental vibrational frequencies with similar accuracy as found by quan-
tum chemical methods (like MP2, CISD(T), CCSD(T)), or Density Functional Theory
(DFT) methods (like BLYP or B3LYP). We used the specific CHAMP implementa-
tion of the VMC and fixed-node DMC method with a single Slater determinant trial
wavefunction. Our best estimates for all binding energies showed an average absolute
deviation from the (negative) experimental value by +0.22(1) eV. For the equilib-
rium geometries and vibrational frequencies, we used a recently developed correlated
sampling method. This method allowed us to significantly reduce the statistical fluctu-
ations - a necessity when adequately calculating small energy differences (interatomic
forces). Our best DMC results for these molecules showed bond lengths that differed
between 0.000(1) A and 0.014(1) A from the experimental value. For the vibrational
frequencies, the deviations from the experimental value is rather systematic with an
average deviation of +46(42) cm~!. Although our binding energies still showed slight
deviations from the experimental value, our results confirmed the soundness of the
applied DMC method when comparing with alternative quantum chemical or DFT
methods.

In addition to these nine covalently bonded molecules, two model systems (di-ammonia
and malonaldehyde) for weak and strong H-bonding were investigated. In particular,
we examined the H-bonding energetics and the proton transfer energy barrier. These
two quantities play a key role for the understanding of biomolecules. Our results
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agreed fairly well with elaborate reference CCSD(T) values where available. For the
di-ammonia proton barrier, our QMC calculation were the first benchmark calculation
beyond two DFT calculations. Since DMC gives in principle an accurate treatment
of the exchange-correlation energy, it is a useful tool for benchmarking and to check
for deficiencies of other methods (like DFT upon its GGA approximation). In our
investigations, we clearly confirmed a severe underestimation by the DFT-PBE and
DFT-PBE-LDA methods when describing energy barriers. For malonaldehyde, an
underestimation is found by 0.08 eV or 82% (PBE) and by 0.03 eV or 33% (PBE-
LDA). A similar result is found for di-ammonia with an underestimation by 0.61 eV
or 23% (PBE) and by 0.2 eV or 8% (PBE-LDA). At the same time, we found that the
PBE optimized equilibrium structure is improved over the PBE-LDA optimized one.
More investigations of this kind on a much wider set of H-bonded systems with QMC
would help to further generalize statements such as found for our H-bonded model

types.

The third major investigation of this thesis was an in-depth study of the Ny molecule.
We identified relevant aspects in our VMC and DMC methods giving rise to systematic
errors in the total and binding energy. Four major findings were made in this context:

(1) We found that an improved basis set in our HF calculations did not necessarily
lead to an improved representation of the correlated trial wavefunction and thus to an
improved DMC result. This showed the requirement of a careful optimization of the
initial trial wavefunction used in DMC.

(2) From our test of different pseudopotentials, we identified their influence on the
binding energy as large as 0.2 eV which is in agreement with values found in the
literature [MITAS 1994]. The best binding energies were found for the Stevens-Basch-
Kraus (SBK) pseudopotential. However, we could not clarify the slight difference in
the binding energy between our SBK pseudopotential calculations and those by two
SBK reference DMC studies. This difference of 0.14(3) eV or 5(1) mHa could be a
result of the different basis sets chosen. But since we found no evidence for such an
influence in our SBK calculations for different basis sets, this slight deviation could
also be a result of the different DMC implementations. Only a more elaborate QMC
calculation with more determinants can further clarify that.

(3) We found a significant improvements in the DMC binding energy when using a
multi-determinant ansatz in the trial wavefunction. For the Ny total and binding
energy, we found a decrease by -0.27(3) eV or -10(1) mHa compared to results for
a single Slater determinant (and the CF pseudopotential). This improvement led to
our best estimate of the Ny binding energy with a deviation of 0.19(3) eV from the
experimental value (which is 1.9% of the binding energy). Hence, this significant
change in the binding energy is most likely be the result of a reduced fixed-node or
pseudopotential localization error. This clearly shows that later QMC calculation
should rely on these improved trial wavefunctions.

(4) Also, we identified that the chosen time step in our DMC calculations can have an
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influence as large as 0.07(3) eV. Hence, later studies in DMC should also pay attention
to the influence of the chosen time step on the DMC results.

To conclude, this thesis has demonstrated that DMC results already compare well
with quantum chemical and DF'T reference methods. Also, systematic errors in our
QMC calculations could largely be controlled and substantially reduced, although with
an increase in computational effort. More systematic QMC studies for different basis
sets, pseudopotentials and many-determinant trial wavefunction will be important to
further improve the understanding of the influence of specific approximations made
within QMC. Their understanding is crucial for the DMC method to become an im-
portant tool in electronic structure calculations since it provides in principle a highly
accurate and systematically controlled treatment of many-electron correlation.
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Appendix A

A.1 Harmonic Approximation of the BOS

The BOS, EE©S, given in eq.(2.9), describes the effective potential of the motion of M
nuclei with coordinates R, where the equilibrium geometry Ry = (Rg1,...Roas) of
the M nuclei is defined at the minimum of the BOS,

(o) »

When expanding ES©S around the equilibrium geometry Ry for small displacements
of the M nuclei, EE°S can be harmonically approximated’,

M
1
EEOS(R) ~ EFOS(Ry) + 2 Z(ROI —Ror)Hr s (Ros — Roy) (A.2)
1,7
82EBOS (R))
with H ,=-2_" , A3
LI ( OR[OR; ) g, (4.3)

The linear term in the expansion vanishes as a result of eq.(A.1). H is the (3M x 3M)-
dimensional Hessian or force constant matrix. Its secular equation,

H - \1| =0, (A.4)

yields eigen-values, \; with i = 1,...3M, and -vectors which are forces and correspond-
ing normal coordinates, respectively. 1 is the unity matrix.

!The further splitting of Ry into the x,y and z components has been omitted for simplicity.
Consequently, the expression (A.5) itself is a (3 x 3)-matrix.
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When introducing three-dimensional mass-weighted coordinates, n; = /m (R, —
Ry ) for M nuclei with J = 1,...M and nuclear masses m, the force matrix H can
be transformed into the (3M x 3M)-dimensional dynamical matrix D, with

H, 1 H2EBOS O2EBOS
DI,J = : = ( 0 ) == ( 0 ) . (A5)
vmimy  /mim; \OR;0R; ) ¢ Mmidns /

The eigenvalues of the dynamical matrix, obtained by its secular equation,

D —wii| =0, (A.6)

are the 3M harmonic vibrational frequencies ,w; for 3M independent harmonic oscil-
lators. The 3M eigenvectors correspond to the mass weighted normal coordinates.

A.2 Internal and Mass-weighted Coordinates for H,O

The normal coordinates Sy, S5 and S3 for H,O of the force matrix in Section 4.2 can
geometrically be constructed from Figure 4.3a,

S1 = —(&sin® 4+ & cosO) + &sin© + Ecos ©

Sy = &sin® —&,¢c0s0 — &sin© + £cos O (A.7)
1

S3 = T—(—glcos@—I—§28in®+§3cos®+§4sin@—&,-sin@).

e

As discussed in Section 4.3, HoO has six Cartesian coordinates, (; with 1=1,...6. When
transforming these coordinates into six mass-weighted coordinates, n = (11, ...16),

as defined in the previous section, the matrix T is then chosen to transform 7 into
S = (Sl, SQ, 83) with § = T’I’], and

—sin © —cos® 0 0 sin © cos ©
vVmu vVmH . vmno VMo
T = 0 0 sin © —cos® —sin©® cos © (A 8)
- N N4 vmo the./mo . .
—cos © sin © cos © sin © sin © —sin©
Ten/MH Ten/MH Ten/MH Ten/MH Ten /MO Ten/ MO

A.3 Definitions in Statistics

The mean value Z of a variable z; with N independent values, i = 1,...N, (also called
best estimate for z;) is defined as
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| N
T = N Z Z;
=1
The variance o? of that variable z; with mean 7 is defined as

o, 1 —\2 _ —\2
TE=No12 (z: = 7)" = ((& = 2)°), (A.9)

where (-) is the expectation value. The standard deviation is defined as

1 -2
0 =\ N1 Z(:CZ — )2 (A.10)

According the the central limit theorem? (or theorem for large numbers) the standard
deviation of the mean is then given by

Og

Mok

(A.11)

Oz =

It is worth mentioning that the standard deviation of the means goes as ﬁ and is
independent of the dimensionality of z;. However, the standard deviation of the mean
in eq.(A.11) relies on independent variables z;.

In statistical mathematics, the correlation of two variables x and y taken from two
sets of random variables { X} and {Y} is defined as,

cor(z,y) := cov(z,y) with (A.12)

\/cov , Z)cov(y, §)
cov(z,y) = ((z-y)?) = ( y) — (@)(y) (A.13)

The correlation vanishes, cor(z,y)=0, if (zy) = (z)(y).
The auto-correlation time,
Teorr -= tcorr . 67—; (A14)

with time step 07 and fteorr€[1,...N], identifies the number for subsequent variables
within one set of N pseudo-random variables, { X } = {z1,..,2x} that are necessary to

2The central limit theorem states that the sum of N independent variables z; with mean Z and
variance o2, which are drawn from the same and arbitrary distribution {X}, approaches a normal
(Gaussian) distribution with mean p and variance 02, /N as the sample size N becomes large.
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become uncorrelated. When normalizing the correlation function given in eq.(A.12),
one obtains the auto-correlation function,

N
1 1 2
= 2 Titinr — (7 D0 )
C(t) .: Cor($N7$N+t) — Nt 7 e Ni:l ' ’ (A.15)
cor(zy, Tn)

for large N and (zy) = (xny_4). The auto-correlation function yields ¢(t = 0) = 1 and
c(t = teorr) = 0.

In order to incorporate the correlation of the N variables with a correlation time, ...,
into the standard deviation of the mean in eq.(A.11), N must be divided by t..r which

can be written as,
g

Ocorr = ——V teorr- A.16
Vi (4-16)

A.4 Construction of our HF Basis sets

The HF basis sets used in this work are radial, contracted Gaussian type orbitals
(GTO) centered on the nuclei. Generally, a primitive GTO is given by,

Xcnim (7,8, ) = NYim (0, @)r~'e ™5 (A.17)

where r, § and ¢ are polar coordinates, Y}, the spherical harmonics and n the main,
[ the angular momentum and m the magnetic quantum number. (; gives the width
of the radial part of the GTO and N is a normalization factor. The contraction of n
primitive GTOs with the same angular momentum into a single contracted GTO,

X?nzm = Z CiX ¢tmn, (A.18)

1=1

gives a compact representation of the radial part of the HF orbitals, where the weights
C; are called contraction coefficients. For C, N, O and Si, we use the contraction noted
as (10s10p1d)—[3s3p1d].> To be more specific, the first eight s- and p-primitive GTOs
are contracted and describe the atomic orbital. The others are called polarization
functions and are added to have more flexibility when describing molecular orbitals.
For the H-atom, the basis contraction is noted as (9s1p)—|2slp|. The coefficients (j;
and C'; for the CF basis and the N-atom are listed in Appendix B. These coefficients
were previously obtained by fitting expression (A.18) to a numerical solution of the
radial HF eq.(3.62) and was done by Claudia Filippi [private communication)].

3Such notation means that 10 s and p primitive GTOs are contracted into 3 s and p GTOs.
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APPENDIX A. QMC

A.5 Technical Instructions for a MCSCF Calculation
with QMC

To give an overview, we will list the subsequent steps which are required to perform
a QMC calculation for multiple determinants. Thereby, we use the GAMESS package
[SCHMIDT 1993].

1. The first step is to perform a HF calculation. The calculated coefficients of the
MOs are written into an *.dat file which is then copied into the MCSCF file
called *.mcscf.inp.

2. Using this input, a subsequent MCSCF calculation is performed by correctly
assigning the active space with the highest occupied and lowest unoccupied MOs.
Let us call the output *.mcscf.log.

3. Based on this MCSCF output, the subsequent gamess2efp script (with
“gamess2efp -E *.mcscf.log > *.mcscf.csf”) converts the ground state MCSCF
wavefunction in *.mcscf.log into so called Configuration State Functions* (CSF)
and their constituting determinants. In particular, the coefficients for all CSF
are given, where each of these CSFs is further broken down into its constitut-
ing determinants which have again a coefficient within the CSF. All results are
written in the file *.mcscf.csf.

4. Edit the script “twf.inp” with “load *.mcscf.csf”.

5. The script “efpci csf.x” (with “efpcicsf.x < twf.inp” > *twf.log) finally decom-
poses all CSF into single determinants (where the script considers that one deter-
minant may belongs to several CSF simultaneously). Thereby, the determinants
are ordered according to decreasing importance as listed e.g. in Figure(5.8).
That script also writes out the file qmcwf.inp (which can be used as input file
only for the new version® of the VMC and DMC programs).

6. With the last script “gamess2qmc” (with “gamess2qmec -n x -t initial *.mcscf.log”),
the required numerical orbital are generated for x orbitals (*.mcscf.lcao) which
need to be renamed to orbitals.1.

7. Having done steps 1 to 6, a subsequent VMC / QMC calculation can be per-
formed as described in Section 3.2 and 3.3. One important aspect need to be
mentioned for the optimization procedure of ¥. We ensure the spatial sym-
metry of U1 by equating the determinantal coefficients that belong to the same
configuration state function, see also Ref. [ROOS 1992].

4CSF are linear combinations of certain determinants which allows to create functions that are
eigenvectors of the spin. Detailed discussions about CSF can be found in Ref.[JENSEN 2002] or
[ROOS 1992].

5The version after January 2003.
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A.6 Unit Conversion

Quantity SI
Hartree 1Ha = 27.21140 eV
Elementary Charge le = 1.602189-10"! C
Bohr Radius ag = 0.529177-10710 m
Planck constant h = 6.582122-10716 eVs
atomic mass lu = 1.66057-107%7 kg
Boltzmann
Other Conversion Factors
lkcal/mol = 1/627.5 Ha
lkcal/mol = 1/23.060 eV
1kJ/mol = 1/96.548 eV
lcal = 4.18680 J
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Tables

Basis Eﬁf(l))lecule Egtstl))m EI];SP r R glll)llecule Eefmlg)lm Ef]?;ln r N
[in Ha] [in Ha] [ineV] [in A]| [in Hal [in Ha] [in eV] [in A]
CF -19.8013 -9.7404 8.723 1.100
aug-cc-pVDZ | -19.7115 -9.6945 8.778 1.100 | -109.2942 -54.4870 8.713  1.100
aug-cc-pVTZ | -19.8124 -9.7310 9.533  1.100 | -109.3808 -54.5169 9.441 1.100
aug-cc-pVQZ | -19.8363 -9.7366 9.880  1.100 | -109.4072 -54.5255 9.693 1.100
aug-cc-pVbZ | -19.8759 -9.7569 9.852  1.100 | -109.4155 -54.5282 9.770  1.100
CF 198019 -9.7404 8741 1.116
aug-cc-pVDZ | -19.7133 -9.6945 8.825  1.125 | -109.2953 -54.4870 8.744 1.121
aug-cc-pVTZ | -19.8124 -9.7310 9.534 1.104 | -109.3808 -54.5169 9.442 1.104
aug-cc-pVQZ | -19.8363 -9.7366 9.880  1.099 | -109.4072 -54.5255 9.693 1.101
aug-cc-pVbZ -109.4155 -54.5282  9.770  1.099

Table B.1: This table presents the Ny total and binding energies calculated with CCSD(T)
for the CF pseudopotential and for all electrons. In the upper half of the table all energies

are calculated at a fixed equilibrium distance. In the lower part of this table, all energies

are calculated at the optimized geometry for that basis set. All calculations were done by
Thorsten Kliiner at the FHI, Berlin (2003).
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Basis GTOs Eiot (N2)  Etot(N)
[in Ha] [in Ha]
6-31++G 4s3p -19.2995  -9.5960
6-311++G(3df,3pd) 5s3pld -19.4136  -9.6145
cc-pCVDZ 4s3pld | -19.4195 -9.6198
6-31G (3df,3pd) 352p3d1f | -19.4226 -9.6135
aug-cc-pVTZ 5sdp3d2f | -19.4483 -9.6256
cc-pV5Z (without f,g)  6s5pdd | -19.4528  -9.6319
d-aug-cc-pV6Z 9s8p7d -19.4589  -9.6355
aug-ccpVQZ 6s5p4d3f | -19.4638 -9.6361
aug-pV7Z (without f,g) 9s8p7d -19.4650 -9.6387
CF+ (Claudia Filippi) 5s5pld -19.4771  -9.6487
aug-ccpV5Z Ts6pbd4f | -19.4787 -9.6435
cc-pwCVTZ 6s5p3d1f -19.4812  -9.6472
cc-pCVTZ 6s5p4d1f | -19.4819 -9.6455
cc-pCVQZ (without f) 8s7phd -19.4846  -9.6482
cc-pwCOV5Z (without f,g) 10s9p7d | -19.4857  -9.6486
cc-pCVHZ (without f,g) 10s9p7d -19.4858  -9.6488
cc-pCVQZ 8s7pbd3f | -19.4881 -9.6483
cc-pCV5Z 10s9p7d5f | -19.4892  -9.6488

Table B.2: This table present HF total energies for a selection of different basis sets for
N and Nj. All basis sets are taken from Ref. [NIST 2003]. For all calculations, the CF
pseudopotential is used. All basis set abbreviations can be found in Ref.[JENSEN 2002].
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Basis set ‘ ‘ Pseudopotential

[ PGTO ‘ C Coef. ‘ ‘ U k Allk; nyg Bl’k:

S 1 21.233646 -0.000673 0 1 5.00000 1 24.28433
2 0.049437  0.004632 0 2 121.42166 3 11.78922
3 0.117541  0.103962 0 3 -1.00044 2 124.58565
4 0.279466  0.472762 0 4 -143.94439 2 13.30095
5 0.664458  0.461672 0 5 213.14309 2 19.31139
6 1.579818  0.130162 0 6 -146.66953 2 28.03784
7 3.756178  -0.194645 0 7 72.02484 2 40.70759
8 8.930698  0.017413 0 8 -27.13661 2 59.10255

S 1 0.3 1 0 9 6.92602 2 85.80985

S 1 0.1 1 1 1 -5.29300 2 50.00000

p 1 21.233646 -0.000308 1 2 9.76307 2 4.00000
2 0.049437  0.063051 1 3 -143.68226 2 5.29589
3 0.117541  0.212836 1 4 615.65354 2 7.01161
4 0.279466  0.334176 1 5 -1213.22120 2 9.28318
5 0.664458  0.322225 1 6 1573.26177 2 12.29067
6 1.579818  0.217975 1 7 -1344.36312 2 16.27251
7 3.756178  0.092588 1 8 746.97583 2 21.54435
8 8.930698  0.039922 1 9 -264.70274 2 28.52412

) 1 0.3 1 1 10 55.38172 2 37.76514

p 1 0.1 1

d 1 0.8 1

Table B.3: This table present the used CF basis and CF pseudopotential for the N-atom.
For the basis, all parameters are defined in Appendix A.4. For the Pseudopotential, all
parameters are defined in Section 3.4.1.
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