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Abstract
My research interest are biomolecular structure and dynamics. In essence, I want to con-
tribute to an understanding of how the machinery of life works. Proteins and peptides play
a central role in most of life’s manifestations. I study their properties at different levels of
detail and with varying levels of theory.

The molecular mechanics of the blood protein von Willebrand factor (VWF) and the reg-
ulation of its function by mechanical stimuli may serve as an entry point. Here we see a
gigantic protein at work that acts as a shear-󰅮low sensor in hemostasis. At the level of protein
domains, I investigate the effect of tensile force on protein structure. Partial unfolding or
interface opening as a response to a stretching force regulates VWFs blood-clotting activity.

In order to get a deeper insight into the rules that shape proteins, I study their structural
building blocks, i.e. comparably short sequences that form helices, strands, or turns, in
isolation. The empirical force 󰅮ields that are standardly used to simulate large systems, for ex-
ample the VWF simulations, fail here and I resort to the 󰅮irst principles of density-functional
theory (DFT). Especially by comparison to ionmobility spectrometry and gas-phase infrared
spectroscopy one can validate the accuracy of a simulation approach. Furthermore, the
combination of computational and experimental infrared spectroscopy can be used for
structure elucidation of peptides in the gas phase. By that I can take a close and unperturbed
look at the interactions that shape polypeptides.

The 󰅮irst step in order to predict molecular properties is often the prediction of a molecular
structure or the structure of a complex of two or more molecules. This represents a high-
dimensional search problem. I discuss this on the example of molecular docking, where I
present a search method to predict protein-ligand complexes and where we assessed the
accuracy of commonly-used empirical energy function in comparison to semi-empirical
quantum mechanics. Furthermore, I present a systematic 󰅮irst-principles based search
across chemical space for amino acids and their complexes with divalent cations and a
genetic algorithm implementation to perform DFT-based structure searches for medium-
sized bioorganic molecules.
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Zusammenfassung
Das Hauptaugenmerk meiner Arbeit liegt auf der Untersuchung der Struktur und Dynamik
von Biomolekülen, ich möchte also mit meiner Forschung zum Verständnis der Prozesse in
lebenden Organismen beitragen. Proteine und Peptide spielen hier eine zentrale Rolle, da
sie an faktisch allen Lebensäußerungen beteiligt sind. Ich untersuche ihre Eigenschaften
mit verschiedenen Methoden der Computer-gestützten Chemie.

Von Willebrand Faktor (VWF) ist das größte extrazelluläre Protein im menschlichen Körper
und nimmt eine Schlüsselstellung in der Hämostase ein. VWF fungiert unter anderem als
Scher󰅮lusssensor: hinreichend hohe Scherraten strecken das Riesenmolekül. Ich untersuche
mit Hilfen von Kraftfeld-basierten Molekulardynamiksimulationen wie die resultierende
Streckkraft entlang der Proteinkette nun die Blutgerinnungsaktivität des VWF durch teil-
weise Entfaltung von speziellen Domänen bzw. durch das Eröffnen von Wechselwirkungen
zwischen benachbarten Domänen reguliert.

Zur Erforschung der grundlegenden Regeln der Protein- und Peptidstrukturbildung unter-
suche ich Sekundärstrukturbausteine, also kurze Sequenzen die entweder Helices, Bänder
oder Umkehrschleifen bilden, in der Gasphase. Empirische Kraftfelder, wie sie zur Simu-
lation von Proteinen häu󰅮ig genutzt werden, versagen hier und ich verwende stattdessen
󰅳irst principles Methoden, vor allem Dichtefunktionaltheorie (DFT). Besonders die Mög-
lichkeit zum Vergleich mit experimentellen Daten aus Ionenmobilitäts-Spektrometrie oder
Gasphasen-Infrarotspektroskopie erlaubt es die Genauigkeit der Simulationstechniken kri-
tisch zu beurteilen. Darüberhinaus ergibt sich aus der Kombination von theoretischer und
experimenteller Spektroskopie eine Methode zur Strukturau󰅮klärung die es mir ermöglicht
die intrinsische, ungestörte Strukturbildung von Polypeptide zu untersuchen.

Der erste Schritt zur Berechnung von Eigenschaften ist zu meist die Vorhersage der Struk-
tur eines Moleküls oder eines molekularen Komplexes. Ich diskutiere Möglichkeiten zur
Lösung dieses hochdimensionalen Suchproblems unter anderem am Beispiel der Vorhersa-
ge von Protein-Ligand-Komplexen durchmolecular docking, der Suche nach strukturellen
Trends unter den proteinogenen Aminosäuren auf Basis einer 󰅳irst principles basierten
Struktursuche und anhand der Implementierung einer globalen DFT Struktursuche mit
Hilfe genetischer Algorithmen für bioorganische Moleküle.
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1 Introduction and overview

The molecular machinery of life works at length and time scales that are hard to grasp
as they differ so much from our normally experienced environment [1]. When taking a
macroscopic view on matter, things may often appear solid and seem to essentially not
change over years, while in the nanoscopic world of biomolecules everything appears to be
in constant movement [2]. However, this seemingly chaotic scenario follows rules and by
that enables the manifestation, progression, and evolution of life as we know it. The work
that I summarize here deals with limited efforts towards an understanding of the basics of
structure formation and dynamics of biomolecules. My tools are molecular simulations at
different accuracy levels of description, from the atomistic molecular mechanics viewpoint
of force 󰅮ields tomore elaborate electronic structure theory calculations bymeans of density-
functional theory or high-level quantum chemistry.

In order to keep this introduction concise, I decided not to repeat the introductory remarks
and references that the readerwill 󰅮ind in the respective sections of the attached publications.
Instead, this chapter gives a short overview of my work. The chapters that follow the
introduction summarize three broader research areas of mine represented by selected
publications:

Chapter 2 introduces important aspects of themechano-regulation of themultimeric blood
protein von Willebrand factor (VWF): (i) VWF function is dependent on the multimer
length. The protease ADAMTS13 cleaves a binding site that is only accessible upon
mechanical activation by partial unfolding of the VWF A2 domain [CB1]. (ii) In this
unfolding process, the extended peptide chain is under tension. We investigate the
isomerization of the prolyl cis/trans peptide bonds under stretching force as a possi-
ble re-folding timer [CB2]. (iii) By the same stretching force along the polypeptide
chain, the interactions between neighboring domains can be broken. The interaction
between the neighboring A1 and A2 domains auto-inhibits the interaction between
VWF-A1 and the platelet receptor GPIb in a force-sensitive fashion [CB3].

Chapter 3 deals with examples of peptide foldamer structure formation studied in a col-
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laborative effort by gas-phase spectroscopy and molecular simulations. The aim is a
detailed understanding of the principles that govern structure formation of the basic
building blocks, i.e. secondary structure elements like helices, strands, and turns,
of the large proteins that were studied in Chapter 2. Theoretical structure/energy
predictions in conjunction with gas-phase experiments enable on the one hand the
unambiguous structure assignment and on the other a rigorous assessment of the ac-
curacy of the appliedmethods. In that spirit, I included threemanuscripts in Chapter 3:
(i) a recent review that I have written together with Mariana Rossi (EPF Lausanne)
that introduces the experiments and simulation approaches [CB4], (ii) a comparative
study of helix forming Æ and Ø peptides in the gas phase [CB5], and (iii) a study of the
impact of Li+ and Na+ cations on the structure and dynamics of short prototypical
turn-forming peptides [CB6].

Chapter 4 discusses the sampling andpresentationof potential-energy surfaces ofmolecules
and molecular complexes with different approaches and based on different 󰅮lavors of
energy functions. I include four manuscripts from the area of global structure search
in Chapter 4 that describe (i) the implementation the bio-inspired particle-swarm
optimization search method for molecular docking [CB7], (ii) an assessment of the
accuracy of commonly used scoring function in molecular docking in comparison
to semi-empirical quantum mechanics [CB8], (iii) an implementation of a genetic
algorithm as a global search technique for the use with 󰅮irst-principles methods [CB9],
and (iv) an application of global structure search to investigate a region of chemical
space, namely the proteinogenic amino acids in isolation or interacting with a divalent
cation [CB10].

1.1 Biomolecules and how to describe their energetics

There are three main classes of biomolecular oligomers and polymers, namely nucleic acids
(Figure 1.1A), peptides and proteins (see Figure 1.1B), and carbohydrates (Figure 1.1C). In
the following, each of these classes will be brie󰅮ly introduced. Due to my research interest,
the readerwill notice a bias towards gas-phase investigations. The investigation ofmolecules
in isolation allows for a detailed look at their intrinsic properties and serves as a references
point to, for example, estimate the impact of solute-solvent interactions.

Nucleic acids are carriers of genetic information and act as coenzymes in biochemical
reactions. Furthermore, they might also have played a key-role in chemical evolution at the
postulated RNA-world stage [3, 4, 5]. Indeed, nucleic acids can act as catalysts, information
storage, and as an energy source. In todays living organisms, a sequence of nucleotides
in deoxyribose nucleic acids (DNA) can be transcribed into ribose nucleic acids (RNA)
that then serves as template for the stepwise linkage of the amino acids into a peptide
or protein chain. This process, and 󰅮low of information, is known as central dogma of
molecular biology. Nucleic acids feature a sugar-phosphate backbone with nucleobases
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Figure 1.1 – Schematic chemical structures of the three dominant classes of biopolymers:
A) nucleic acids, B) peptides, and C) carbohydrates.

connected to the (deoxy)ribose moieties (see Figure 1.1A for a pictorial representation of
the different groups). Structure formation is mainly triggered by stacking of base pairs and
by intermolecular hydrogen bonding between speci󰅮ic pairs of bases (base pairing) in case
of DNA or intramolecular base pairing in case of RNA. Gas-phase studies allow to decipher
the basics of these interactions in great detail, a recent review by Abi-Ghanem and Gabelica
[6] can serve as entry point to the literature about nucleic acids in the gas phase.

Peptides and proteinsmake up the machinery of life and are involved in essentially all of
its manifestations, from comparably small signaling peptides to gigantic protein complexes.
A peptide or protein is a linear chain (oligomer) of amino acids (residues) that are linked by
so-called peptide bonds (see Figure 1.1B). Besides the amino and carboxy groups that form
the peptide bonds, the different amino acids carry a side chain ‘R’ with differing chemical
functionality. The sequence of the different amino acids that are linked to form a peptide
or protein is called primary structure. Based on the length of such a sequence, shorter
oligomers are called peptides, while oligomers beyond a certain length (from about 50
amino acids on) are called proteins. Secondary structure formation occurs at the level of
peptides (Figure 1.2) and is mainly dependent on the conformational properties of the
monomers and backbone hydrogen bonding. In larger oligomers, i.e. in proteins, side chain
interactions and packing gain importance and govern tertiary structure formation. Christian
An󰅮insen postulated that, at least for small proteins, the native structure is fully encoded
in the amino acid sequence [7]. For a functional protein, under its natural solvent, pH, and
temperature conditions, the native state is uniquely stable, is robust with respect to small
perturbations of the environmental conditions, andmust be kinetically accessible. The latter
means that the free energy path from an unfolded state to the native state must be downhill
in energy andwithout too high barriers. Gentle treatment during ionization kinetically traps
them in the solution state and allows for their interrogation under clean-room conditions.
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Recent reviews introduce the 󰅮ield with a focus on peptides [CB4] or on large proteins and
assemblies thereof [8].

Polymeric carbohydrates serve as nutrition and energy source or as structural scaffolds.
Complex carbohydrates, a.k.a. glycans, can be linked to proteinswhere they promote folding
and function as recognition tags [9, 10]. The monomeric building blocks are connected by
glycosidic bonds (see Figure 1.1C) to form polymeric or complex carbohydrates. Diversity
here stems not only from the available about 20 different monosaccharide units. In contrast
to the backbones of peptides or nucleic acids, carbohydrates are not necessarily composed as
linear chains. The building blocks have one donor (the anomeric C) but multiple acceptors
for glycosidic bonds, such that branched structures can be realized. In addition, due to
chirality, glycosidic bonds can be formed in two chiral forms: the Æ and Ø enantiomers.
These features result in a diversity of possible topologies of carbohydrates that surpasses
the number of possible sequences in nucleic acids and peptides by orders of magnitude,
even with relatively small numbers of building blocks [11]. The signi󰅮icant conformational
degrees of freedom are rotations around the single bonds of the glycosidic linkages and the
puckerings of the monosaccharide rings [12].

A central focus ofmywork has been on the secondary structure formation anddynamics
in peptides. The respective secondary structure elements, i.e. helices, pleated-sheets, and
turns (Figure 1.2) [13], form already in peptides of a few to some tens amino acids of
length. Turns are non-periodic motifs, while helices and sheets are regarded as periodic,
in the sense that a repeating unit can be de󰅮ined, allowing for a characterization based on
pairs of torsional angles. Helix nomenclature is based on the periodic hydrogen bonding
patterns between close non-nearest neighbor building blocks. This will be discussed in
Section 1.3, see also Figure 1.7 there. The most common types, the Æ and the 310 helices,
are characterized by H bonds between residue i to i +4 and residue i to i +3, respectively.
Sheets are H bonded extended strands that are characterized as parallel and anti-parallel
depending on the relative orientation of their peptide chains. Finally, turns are important for
higher-order structures as they reverse the propagation direction of sheets and helices, so
that compact structures can be formed [14, 15, 16]. Turns do not necessarily form H bonds,
yet H bonds are a common feature among them. The most common are Ø turns, which cause
a 180o change in the propagation direction.

Computational studies allow us to investigate structure and dynamics of peptides and
proteins, nucleic acids, carbohydrates etc. in atomistic and electronic detail and can provide
a link to biochemical experiments and biophysical measurements. Practical biomolecular
simulations aiming at the prediction of experimental observables have to balance:

• the required accuracy of the underlying description of the potential energy to predict,

• the eventually immense computational costs of simulating systems of biomolecular
size (hundreds to thousands to ten thousands of atoms), and
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Figure 1.2 – Overview over the structure levels of proteins: periodic and non-periodic sec-
ondary structure elements, and an example of a tertiary protein fold. The three-dimensional
structure examples are taken from PDB-ID 3PPY [CB11].

• the necessary numbers of energy and force evaluation to sample a energy surface
during conformational searches or molecular dynamics simulations until convergence.

Every practically applicable simulation approximates reality, consequently the result-
ing simulation-derived physical observables deviate from the results of an experimental
measurement. But also experimental values come with uncertainties that stem from the
techniques themselves or from problems with preparing samples or controlling the environ-
ment. On the theory side, a description of the molecular potential-energy surface (PES) is
basis to almost all molecular simulation techniques. Molecular mechanics rely on a classical
mechanics description of the molecule and offer atomistic resolution. First-principles based
electronic structure theory methods are based on fundamental physical laws and constants.
Besides atomic coordinates and number of electrons, no further input is required.

A computationally ef󰅮icient, but rather approximate, level of description is the use ofmolec-
ularmechanics. The total energy of amolecules is here described by additive contributions
of bonded and non-bonded interactions. Bonded interactions model chemical bonds and
are based on the connectivity of the molecular structure. They are represented by harmonic
potentials for bond lengths (2 atoms), bond angles (3 atoms), and torsional angles (4 atoms).
Non-bonded interactions are electrostatic interactions of (partially) charged atoms that
are modeled by Coulomb’s law and van-der-Waals interactions that are accounted for by
Lennard-Jones potentials. The combination of the formulation of the molecular mechanics
equation with the parameters and atom typings is called a force 󰅯ield. Popular force 󰅮ields
are, for example, OPLS-AA [17], Amber99sb [18], and Charmm22 [19, 20]. Force-󰅮ield based
simulations allow for pushing the boundaries when it comes to system sizes or time scales.
However, some clear limitations have become obvious in recent years, mainly due to the
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limited achievable accuracy of the underlying parametrization and formulation. There exist
examples where it has been shown that simulations can divergewhen running for long times
[21] and that different standard protein force 󰅮ields yield completely different kinetic and
dynamic data [22, 23]. Nevertheless, force 󰅮ield simulations offer an illustrative qualitative
glimpse at the dynamic behavior of the molecules that make up living organisms.

In principle, electronic-structure theory offers an empiricism- and parameter-free de-
scription. To that end, the ultimate aim of most computational chemistry approaches is to
solve the time-independent, non-relativistic Schrödinger equation. That can be used to
estimate ground-state properties of systems in which relativistic effects can be neglected.

H™n = En™n

The wave function™n(xi ,RI ) is a function of the coordinates of all electrons i and their spin
(xi ) and of the position of the nuclei RI . The wave functions™n at the states n would give
us access to all the information we are interested, most prominently the energy E0 of the
ground state n = 0. The Hamilton operator of this eigenvalue equation contains a kinetic part
dealing with the movements of all involved particles (electrons and nuclei) and a potential
part that describes the attractive interactions between nuclei and electrons as well as the
repulsive interactions among the nuclei and electrons, respectively.

The mass difference between the involved particles, nuclei and electrons, is high. That
allows for an extreme interpretation of the relative movements of both types of particles:
electrons move fast in a static arrangement of the atomic nuclei. The approximation of
“clamped nuclei” allows for the formulation of an electronic Hamiltonian Helec that acts on
the electronic wave function™elec, here, the nuclear coordinatesRI only enter as parameters,
not as variables anymore. This separation of electronic and nuclear degrees of freedom
is known as Born-Oppenheimer approximation [24]. The total energy of the electronic
system is now de󰅮ined as the sum of Eelec, i.e. the eigenvalue of Helec with ™elec, and the
energy of the nuclear repulsion Enucl.

The calculation of the ground state energy for a molecule seems now a simple task. The only
input required are the positions of the involved atoms and the number of electrons. The
remaining parts, for example the operator for the electronic kinetic energy, are independent
of the systems that is under investigation and all properties of interest could be derived
by applying the respective operator to the wave function. Unfortunately, there is no way to
directly analytically solve Schrödinger’s equation for systems with practical relevance due
to the many-body problem of the electron interactions.

Instead, approximate solution must be sought. One way is to approach the exact solution for
the ground state, which is de󰅮ined by the ground state wave function™0 and has the ground
state energy E0. To that end, the variational principle is employed: computing the energy
Etrial with a wave function™trial with the Hamilton operator for a given system will always
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give an upper bound for the observable. As a consequence, the best possible guess with
regards to yielding the lowest value for Etrial for the trial wave function™trial is identical to
the ground-state wave function™0 of the system.

Approaching the exact solution by applying the variational principle would require to search
through the space of all possible wave functions – an approximation is necessary here. In
the Hartree-Fock method, a reasonable subset of physically meaningful wave functions
is de󰅮ined [25, 26, 27]. The Slater determinant ©SD approximates the wave function that
describes the behavior of the N electrons of the system. ©SD is the anti-symmetrized product
of N one-electron wave functions: spin orbitals ¬i (xi ) that are composed of a spatial orbital
¡(r ) and one of the two possible spin functions Æ or Ø.

Wave function basedmethods rely on theHartree-Fock approximation that thewave function
of a systems can be written as Slater determinant of one-electron wave functions. In the
Hartree-Fock method, a single electron moves in an average electrostatic potential of all
other electrons and the instantaneous part of the electron-electron interaction is neglected.
The missing correlation energy contribution can be attributed for by post-Hartree-Fock
methods like Møller-Plesset perturbation theory [28] and coupled-cluster theory [29].

Density-functional theory (DFT) represents an alternative approach to wave function the-
ory as it seeks to predict the ground-state properties from the electron density. Foundation
of DFT is the Hohenberg-Kohn theorem [30] that states:

1. There exists a bijective relation between the ground-state wave function and the
ground-state electron density for the Hamiltonian of a given system. Consequently,
any ground-state property can be formulated as a functional of the density of electrons.

2. The application of the variational principle now allows to 󰅮ind this ground-state elec-
tron density as it is minimizes the total energy.

The Kohn-Sham Ansatz [31] makes the idea by Hohenberg and Kohn practically usable. They
assumed a set on non-interacting particles that have the same electron density and total
energy as the realistic set of interacting particles. By that, the energy functional is essentially
a sum of contributions, i.e. non-interacting kinetic energy, potential energy, Coulomb energy,
and the exchange correlation energy. This formulation of the total energy by Kohn and Sham
is exact and its solution based on the exact electron density would give the same result as
the solution of the Schrödinger equation with the exact wave function. In practice however,
the exchange-correlation (XC) functionals are unknown and have to be approximated. This
gives rise to a large zoo of functionals that can be sorted according to what Perdew has
named Jacob’s ladder of DFT [32].

By choosing one of the above mentioned energy functions, a potential-energy surface
(PES) is de󰅮ined for a given molecule: for each combination of nuclear coordinates a total
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energy value can be computed. In summary, this results in a high-dimensional and rather
rugged landscape with multiple points of interest, especially the low-energy minima. The
discussion of accuracy of density-functional approximations and other methods to compute
potential energy of biomolecules is a central part of the research that I am involved in. This
is exemplary being discussed in Chapters 3 and 4 and in some of publications that I have
(co)authored, e.g. [CB4, CB6, CB12, CB10].

The force 󰅮ield based simulation of proteins, like the ones on von Willebrand factor in
Section 1.2, are usually the starting point for a biochemist in the 󰅮ield of computational
chemistry. In order to take a closer and more accurate look on the structure and dynamics,
the systems have get smaller as the methods get more accurate and computationally more
demanding. Such studies on peptides and peptide foldamers are discussed in Section 1.3.
Computational studies in biochemistry often involve the prediction of structure of molecules
or molecular complexes. There structure sampling methods like the ones discussed in
Section 1.4 are being used.

1.2 The molecular mechanics of the blood protein von Wille-
brand factor

In the late nineteenth century, Erik Adolf von Willebrand, a Finnish physician, started to
practice on the Åland islands. He discovered a bleeding disorder that he called an inherited
pseudo-hemophilia [33]. Later, the syndrome was named after him as von Willebrand
disease (VWD). VWD is the most common inherited bleeding disorder and it took several
decades until the molecular origin of the disease was identi󰅮ied. Only in the 1970s the
protein von Willebrand factor (VWF) was identi󰅮ied as the coagulation factor linked to VWD
[34, 35]. The different manifestations of VWD are caused by functional defects of VWF itself
as well as by reduced expression or total absence of VWF. Besides its role as cause of VWD,
VWF is linked to in󰅮lammation as well as to pathological blood-clot formation in stroke
scenarios.

VWF is a giant glycoprotein that is released by endothelial cells into human blood. Mature
monomeric subunits of VWF are 2,050 amino acids long and are connected to multimer
chains of lengths of up to 100 monomers. The domain structure of the monomer is shown
in Figure 1.3. In blood vessel endothelial cells, pre-pro VWF is a product of protein biosyn-
thesis and is subsequently transferred to the endoplasmatic reticulum (ER, Figure 1.4).
In the ER, the signaling peptide is cleaved-off and C terminal dimerization is facilitated
via the formation of covalent disul󰅮ide bonds between the CK domains of pro-VWF. While
transferring to the Golgi and post-Golgi apparatus, the dimers multimerize via N terminal
disul󰅮ide-bond formation and simultaneous propeptide cleavage. VWF multimers of masses
between 800 kDa and 20,000 kDa are stored in Weibel-Palade bodies and are eventually
released to the blood stream [36].
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Figure 1.3 – The von Willebrand factor (VWF) domain structure.

Figure 1.4 – The von Willebrand factor (VWF) biosynthesis.
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In a collaborative project that is part of the DFG-funded Research Unit SHENC,1 wewere able
to identify protein disul󰅮ide isomerase PDIA1 as the enzyme that catalyzes the C terminal
linkage of VWFmonomers to dimers in the ER [CB13]. In conjunction to the experimental
investigations, we contributed with protein docking and molecular dynamics simulations to
the understanding of the mechanism of VWF dimerization: PDIA1 initiates the dimerization
by forming two disul󰅮ide bonds Cys2771-2773’ and Cys2771’-2773 between the CK domains
of the twomonomers. Subsequently, the third bond Cys2811-2811’ is formed, presumably, to
protect the 󰅮irst two bonds from reduction, thereby rendering the dimerization irreversible.

Key property of VWF is its sensitivity to the shear 󰅮low that results from the parabolic
distribution of 󰅮low velocities in an approximately cylindric blood vessel with 󰅮low velocities
being maximal in the center and going to zero at the vessel wall [35, 37, 38]. Special 󰅮low
conditions, e.g. turbulent 󰅮low, can result from branching vessels, pathological stenoses,
or at sites of vessel rupture. At low shear rates, VWF is wound-up to a globular shape
due to speci󰅮ic and unspeci󰅮ic intra-chain interactions. With increasing shear rate, VWF
starts to form tethers and, with even higher shear rates acting upon it, fully untangles to
an extended chain [39, 40]. The shear force is still acting on the molecule and is translated
into an extensional force along the macromolecule. This force acts as trigger for several of
the functions that VWF participates in and some of them will be discussed in the following.
Two aspects are crucial for the shear-󰅮low sensing properties of VWF: (i) as a molecule of
some ten micrometers in size, VWF large enough to sense shear and (ii) a second aspect,
which appears to be often underestimated, is the impact of the heavy glycosylation of
the macromolecule. The complex carbohydrates that are covalently linked to VWF are
hydrophilic and, in contrast to a protein, do not collapse in water to a densely packed entity.
Rather, these hydrophilic glycans stick out to the solvent and act as sails that have a strong
impact on the hydrodynamic radius of VWF and its ability to sense shear 󰅮low.

We have studied several aspects of VWF acting in physiological and pathophysiological
scenarios by means of molecular simulations. Of special importance here is the role of VWF
to form blood clots at sites of vascular injury. At such a site, VWF binds (mediated by its A1
and A3 domains) to collagen, a main component of the extracellular matrix (ECM) [CB14].
The extended VWF chain is sticking out and recruits platelets by a speci󰅮ic interaction with
glycoprotein IbÆ, a receptor presented by platelets. VWF, the ECM, and platelets represent
multi-valent binding partners. More and more of them are recruited during the growth of
such a clot and the vascular injury is closed. Two aspects are critical here for the regulation
of this process: the initiation of clot formation to close the injury and the inhibition of clot
growth to avoid closure of the blood vessel. Both aspects are mechano-regulated via the
ability of VWF to act as force sensor.

Experiments have shown that the binding of VWF to platelets is triggered by mechanical
stimulation through shear 󰅮low. Based on that we have developed the hypothesis that under

1DFG Research Unit FOR1543: http://www.shenc.de
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Figure 1.5 – Structural features (A) and topology of secondary structure elements (B) of the
VWF A2 domain.

unperturbed conditions, with no force acting, the binding site for GPIbÆ at the A1 domain
of VWF is occluded by the directly neighboring A2 domain [CB3]. In order to test this
possibility, we performed unbiased molecular dynamics simulations as well as protein-
protein docking simulations. Indeed, a number of stable poses were predicted that suggest
that such competitive binding of A2 to A1 is possible. Under shear stress, when a stretching
force acts on the macromolecular chain of VWF, the two domains are pulled apart from each
other and the GPIbÆ binding site of A1 is presented. Now the interaction between VWF-A1
and platelet-GPIbÆ is possible. In order to test the hypothesis of VWF auto-inhibiting its
binding to GPIbÆ under low-shear conditions, collaborators performed binding studies of
wild-type VWF and ¢A2 VWF (i.e. VWF without the A2 domain). They could show that the
¢A2 variant, in comparison to the wild type, required little to no mechanical activation to
form aggregates.

The A2 domain has a further function, it carries a cleavage site for the plasma protease
ADAMTS13. However, this cleavage site is hidden in the center of the domain and is thus
not accessible for the cleaving enzyme. Only when a stretching force is applied along the
protein chain, the A2 domain partially unfolds [41, CB1]. As a consequence, VWF under
above-critical shear is activated for both, cleavage and clotting. Besides the hidden cleavage
site, the A2 domain has several additional interesting features (see Figure 1.5A), for example
a vicinal disul󰅮ide bridge at the end of the C terminal helix that sets it apart from the 󰅮lanking
and otherwise highly homologous A1 and A3 domain. In the latter, the disul󰅮ide bridge spans
the whole sequence of the respective domain and prohibits any force induced unfolding.
Furthermore, one of the loops connecting the secondary structure elements in the C terminal
half of the A2 domain adopts the somewhat uncommon ØV I a turn. This type of turn is
characterized by a cis peptide bond. A stretching force that rests on an extended peptide
chain acts on the cis bond and triggers the isomerization to a trans peptide bond [CB2].
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Overall, the architecture of the A2 domain is peculiar: the regularity of the Æ-Ø alternation
that is expected for a Rossman fold is broken in case of the VWF A2 domain. The sec-
ondary structure elements of the N-terminal half are oriented as follows (see Figure 1.5B):
Ø1-Æ2-Ø2-Ø3-Æ2-Æ3. The C terminus however is perfectly regular: Ø4-Æ4-Ø5-Æ5-Ø6-Æ6.
The alteration in the C terminal half and the resulting knot (see scheme in Figure 1.5B)
renders this part of A2 stable against unfolding. In the future I would like to understand how,
once the mechanical load is released, the intact N terminus acts as template and supports
the refolding of the C terminus of A2 by simulation.

In order to gain a deeper understanding of peptide structure formation, we study shorter
peptides in more detail. Some aspects of that are introduced in the next section.

1.3 Peptide foldamers in the gas phase

Structure formation of natural peptides and peptide foldamers has been a longstanding
research topic of mine [CB15, CB16]. This work is motivated by the importance of sec-
ondary structure elements, for example helices, as recognition elements in protein-protein
interactions. The applicability of, in particular, natural peptides to design modulators of
protein-protein interactions is hindered by their rapid metabolization and limited selectiv-
ity for alternative binding partners [42]. Already seemingly trivial modi󰅮ications like the
inversion of the chirality at the CÆ can overcome the enzymatic susceptibility of peptides. A
promising route to peptides with improved bioavailability and structure formation proper-
ties are homologous peptides. In comparison to the native Æ peptides, homologous peptides
feature an increased backbone length of their building blocks. Or in other words, homolo-
gous peptides are composed of Ø, ∞, or ± amino acids, see Figure 1.6. The groundbreaking
synthetic work in this 󰅮ield came from the groups of Gellman [43, 44, 45] and Seebach [46,
47].

Previous work of mine focused on the investigation of the helix formation propensities of
such peptides by an automatic approach to characterize structures using 󰅮irst-principles
methods. A thorough survey of the 󰅮ield can be found in a review to which I have contributed
[CB15]. Helical hydrogen bonding is not limited to the patterns that are known and preferred
in natural Æ peptides, i.e. the Æ and 310 helices. Instead, hydrogen bonding can occur
in multiple patterns in forward or backward direction relative to the sequence direction
(Figure 1.7A). The preference for a speci󰅮ic helix type can for example be triggered by side
chain substitution patterns [CB17] or by backbone modi󰅮ications [CB18].

Mixed or Ø helices (Figure 1.7B) represent a particular type of secondary structure that
represents an overall helical fold combined with an H-bonding pattern that reminds of
Ø strand/sheet structures (see Figure 1.2). A known naturally occurring example of this
structure type is the peptide antibiotic gramicidin A embedded in a membrane [48]. We
have shown that such structure types are intrinsically preferred over the alternative, Æ- or
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310-helix like, structures and only penalized in polar environments [CB19].

Combinations of different non-natural building block types further enrich the possibilities of
structure formation and allow for the isosteric replacement of natural Æ peptide sequences
[CB20, CB21]. Especially the feature of Ø/∞ peptides to represent an isosteric replacement
of Æ peptides has initiated a fruitful collaboration with experimentalists, the group of Beate
Koksch at FU Berlin [CB22, CB23, CB24, CB25, CB26].

The 󰅮irst-principles calculations of peptides and homologous peptides are often performed
on isolated molecules in the gas phase. The relevance of such studies is highlighted in
an article by Franziska Schubert et al. [CB12]. There, the conformational space of two
large polyalanine peptides that differ in the N-terminal versus C-terminal localization of a
protonated lysine residue is investigated. This alternative placement of the positive charge
relative to the sequence has dramatic effects on the structure formation of the peptides. The
C-terminal placement triggers perfect helix formation with a clear and steep folding funnel
due to a favorable charge-dipole interactions. In the contrary, the N-terminal localization
of the charge results in diverse globular structures that are close in energy. Such case is of
course a challenge for a theoretical description as already small systematic errors in the
energy function lead to inconsistencies in the predictions. In that work, due to the careful
comparison to experimental data, we were able to assess and push the current limitations
of DFT-based structure prediction for biomolecules. Another aspect besides the energy
function, namely the search algorithm itself, is the subject of the following section.

Figure 1.6 – Chemical formulas of Æ, Ø, ∞ and ± peptides. The backbone torsion angles are
highlighted in grey. Only the peptide main chain atoms are shown, aliphatic hydrogens and
side chains are not shown for clarity.
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1.4 Sampling biomolecular potential-energy landscapes

Simulations have the potential to be faster and less costly than experiments. In principle,
simulations represent an ideal way to compute properties like binding energies, diverse
types of spectra, catalytic activity, and manymore. These computed observables can then be
compared to experimental measurements and by that simulation can serve as a microscope
to investigate biochemical processes at atomistic and even electronic resolution. In addition,
in silico approaches can map uncharted territory of chemical or materials space or explain
under-resolved experiments. The 󰅮irst step towards the prediction of properties or physical
observables is usually the search for the three-dimensional structure of a given molecule.

The Born-Oppenheimer approximation yields the de󰅮inition of the potential-energy surface
(PES) of a molecule: the potential energy as a function of the nuclear degrees of freedom. On

Figure 1.7 – H-bonding types for helices in homologous peptide foldamers. A Unidirectional
helical H-bonding patterns with hydrogen bonds pointing backward (blue) or forward (red)
relative to the sequence direction. B H-bonding pattern for mixed or Ø helices [CB17, CB19].
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the PES, points of interest are the global minimum, low-energy local minima, and transition
states between them. When searching for minima – and some examples will be discussed in
the following, a few considerations have to be made beforehand according to the choice of
the coordinate system, the type of energy function, and the applied search method. A good
search method has to ful󰅮ill several requirements [49, 50]. For example, it should:

• be able to 󰅮ind the global minimum,

• quickly locate and leave local minima,

• focus on overall PES structure and explore conformational space as fast as possible,

• not blindly jump, but use accumulated knowledge to avoid complete enumeration as
well as revisiting of known regions of structure space.

Systematic searches

As stated above, the choice of the coordinate system is critical for thewaywe can search a PES.
In order to represent a molecule in Cartesian coordinates, the position in space of each atom
is given by a coordinate in x , y , and z direction. In molecules, an intuitive and successful
choice are internal coordinates that neglect external motion (rotation and translation).
Internal coordinates are build-up starting from a seed atom, all other atoms are related
to it by bond lengths, bond angles, and torsion angles. Bond lengths and angles deviate
only slightly from average values for the different minima of a given molecule. Torsion
angles on the other hand are suf󰅮icient to describe the different possible conformations
well. Consequently, systematic searches of the structure space of molecules are often based
on the discretization of the torsion angles and a complete enumeration of the resulting
possible combinations. A classical example is shown in Figure 1.8: The conformational
space of the acetylated and amino-methylated amino acid alanine (the so-called alanine
dipeptide) can be described by the two backbone torsion angles ¡ and √. For all possible
combinations of the discretized torsion angles a constrained relaxation with the torsion
angles kept constant can be performed. Plotting now potential energy as a function of the
two torsion angles results in a Ramachandran plot. This representation was 󰅮irst proposed
by Ramachandran, Ramakrishnan, and Sasisekharan in 1963 [52] based on simple steric
repulsion of the involved atoms. Later, 󰅮irst-principles calculations were performed at the
Hartree-Fock level, for example by Head-Gordon in 1991 [53] or by Rommel-Möhle in 1993
[51]. Since then, the Ramachandran plot of the the alanine dipeptide has been continuously
re󰅮ined at ever higher levels of theory. The energetically favored structures are well visible:
for example the global minimum, the C eq

7 conformer, and the second stable C5 conformer in
the second quadrant. In such representation, also the high barriers separating the basins
can be seen. In the meantime, a multitude of such studies has been performed for many of
the proteinogenic amino acids. However, the data is highly diverse, the individual structure
searches and 󰅮irst-principles calculations differ in many parameters. A comparison across
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chemical space however is only possible based on a rigorously consistent search approach
setup for all different amino acids. An example is a search on the conformational trends and
the impact of divalent cations for twenty proteinogenic amino acids and dipeptides [CB10].

The dimensionality of the search space can easily be increased by increasing the number of
rotatable bonds. This is shown for the example of homologous peptides in Figure 1.6. Al-
ready with three torsional degrees of freedom, for example in the Ø amino acid in Figure 1.6,
a straightforward visualization of the structure space becomes complicated. Further in-
creasing the numbers of degrees of freedom leads to numbers of structures to consider that
make complete systematic enumerations impossible, for example for one of the oligomeric
molecules that are exemplary sketched in Figure 1.7. In order to investigate such structures
in a systematic way, the actual volume of conformational space that is sampled has to be
reduced in a clever way. In case of the homologous peptide oligomers that are used as an
example here, the following criteria were applied:

Figure 1.8 – Systematic evaluation of the conformational space of the alanine dipeptide.
By plotting potential energy as a function of the torsion angles ¡ and √, a 󰅮irst principles
Ramachandran plot can be obtained. Numbers in parentheses are HF/6-31G* relative
energies in kJ/mol. The plot is work by Rommel-Möhle [51] and was published before in
[CB15].
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• Only periodic structures are considered. Periodic here refers to repeating confor-
mations of the building blocks, in short, the torsion angle patterns of all monomeric
subunits must be the same.

• Only sensible structures, i.e. structures without atom clashes, are accepted.

• Only structures that feature helical hydrogen bonds (see Figure 1.7) are considered.

The input structures that remain after 󰅮iltering with these criteria are then subjected to
󰅮irst-principles geometry optimizations. This criteria-based reduction of search space was
successful for multiple types of homologous peptides (see references cited in [CB15]), but a
weak point remains: by that approach we gain no information about alternative structures
that are potentially more stable, but do not 󰅮it to the applied selection criteria for input
structures. In this very case, we are on the safe side: experiments con󰅮irm the assumption
of helical structures, see [CB15] and references cited therein. Besides chemical intuition
and structural considerations, experimental constraints could eventually be incorporated in
such a search as well.

Minima hopping and basin hopping

The basic idea ofminima and basin hopping is the reduction of the PES to so-called attraction
basins. An attraction basin is a region of the potential-energy surface where a geometry
optimization from each point leads to the sameminimum [49]. The PES sampling is realized
by alternating steps of generating input structures and local relaxations. Barriers that 󰅮lank
the currentminimum are overcome by projections out of the currentminimum that generate
new input structures. Possible ways to generate these new geometries are for example:
(i) Monte-Carlo moves [54, 55, 56], (ii) short molecular dynamics trajectories [57], and
(iii) projections along normal modes [58]. Structure searches employing basin or minima
hopping usually involve immense amounts of energy function calls and force evaluations,
see for example the case of a large silicon crystal unit cell in the paper by Goedecker [57].
While using computationally less costly empirical energy functions, this is not an issue
for moderately sized systems. However when describing the PES using computationally
demanding 󰅮irst principles methods or when investigating systems with more and more
degrees of freedom, this can render such searches intractable.

Replica-exchange molecular dynamics

The use of replica-exchangemolecular dynamics (REMD) offers an unbiased, straightforward
and easy to implementway for structure searching [59, 60]. Within an ensemble ofmolecular
dynamics trajectories that run in parallel at different temperatures, exchange attempts
based on the Metropolis criterion [61] facilitate traversing through a range of temperatures.
The idea is to overcome barriers at high temperature and to freeze-out structures at low

17



temperature. With current computational resources, force-󰅮ield based REMD searches can
very well be performed for reasonably large systems and reach µs to ms time scales, see
for example references [CB5] and [CB12]. For the biomolecular systems that are of interest
here, 󰅮irst principles based REMD [62] can only be performed as a re󰅮inement step in the ps
time range [CB5, CB10, CB12].

Random structure search

A simple yet effective way to reduce the computational overhead in the creation of new
candidate structures for local optimization is ab initio random structure search (AIRSS)
advocated for by Pickard and Needs [63]. Randomness is an important ingredient that
ensures the success of the method, deep (global) minima often have huge attraction basins
and thus “random hits often”. But also chemical intuition or experiment-derived knowledge
can be incorporated. For example, only sensible structure guesses are further processed.
That means that structures with, for example, too short bond lengths are skipped. And
indeed, it seems that the fraction of the PESwith too short bonds contains little to nominima.
Once a low energy basin is located, shake steps in the spirit of the projections that are used in
minima or basin hopping can be used to overcome barriers. Based on the funnel hypothesis
it is expected that low-energy basins are located near to low-energy basins in structure
space. All in all, one can say that AIRSS utilizes randomness within boundaries that are
based on chemical knowledge and intuition.

Genetic algorithm searches

Genetic algorithms (GA) belong to the family of evolutionary algorithms (EA) or to an
even broader group of bio-inspired and population based search techniques [64]. The
quest for the globally optimal structure is reformulated to the Darwinian survival of the
󰅮ittest concept and applied to a population of, at 󰅮irst, randomly generated structure guesses
(individuals). During the course of the global optimization, genetic operations (crossing over
and mutation) are being used to evolve the population over generations. As a concession to
the peculiarities of chemical structure search, usually local optimization steps are performed
for each newly generated individual in the population, see for example reference [65].
As such, the Darwinian evolutionary concept is superseded by Lamarck’s idea in such
algorithms. An implementation of a GA for structure search with 󰅮irst-principles methods
has been realized by Adriana Supady [CB9] and is described in Section 4.3.2

Particle-swarm optimization

The bio-inspired search technique particle-swarm optimization (PSO) mimics the social
behavior of animals, for example, bird 󰅮locking or 󰅮ish schooling [66]. This technique was

2Source code available from: https://github.com/adrianasupady/fafoom
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successfully applied [67, 68] to molecular docking, an in silico drug design technique that
aims to predict the pose of a molecular ligand in the binding pocket of a protein [69, 70].
PSO is well suited to tackle the continuous search space of protein ligand interaction. The
search for the global minimum starts with a population of random solutions; the search for
optima is facilitated by updating generations, making the swarm virtually 󰅮ly through the
search space. The best position in search space so far (best solution achieved) is tracked for
the individual particle as well as for the whole swarm. With the change of generations of
the swarm, the particles are accelerated toward these best solutions. We have implemented
such an algorithm in the molecular docking program Paradocks [CB7].3

Stochastic surface walking

The above mentioned search techniques like basin hopping, AIRSS, or GA search focus on
󰅮inding low-energy minima and neglect the connecting paths between them. In the contrary,
the stochastic surface walking (SSW) aims at 󰅮inding local and global minima while also
maintaining information about the paths connecting them [71]. To achieve that, in SSW
a complicated PES is explored by repeating a three-step process consisting of climbing,
relaxation, and Metropolis Monte Carlo. The climbing is implemented by modifying the
PES: between two points on the PES, a minimum and a higher-energy structure for example,
biasing Gaussian potentials are placed to stepwise move the structure uphill in energy. After
a while, all biasing potentials are deleted and a local relaxation is performed. The acceptance
of the new local minimum is based on a Metropolis criterion. By design, the resulting SSW
trajectories contain information about transition paths as well as about minima.

3Source code available from: https://github.com/cbaldauf/paradocks
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Summary. Background: To avoid pathological platelet aggre-
gation by von Willebrand factor (VWF), VWF multimers are
regulated in size and reactivity for adhesion by ADAMTS13-
mediated proteolysis in a shear flow dependent manner.
Objective and methods: We examined whether tensile stress in
VWF under shear flow activates the VWF A2 domain for
cleavage by ADAMTS13 using molecular dynamics simula-
tions. We generated a full length mutant VWF featuring a
homologous disulfide bond in A2 (N1493C and C1670S), in an
attempt to lock A2 against unfolding. Results: We indeed
observed stepwise unfolding of A2 and exposure of its deeply
buriedADAMTS13 cleavage site. Interestingly, disulfide bonds
in the adjacent and highly homologous VWF A1 and A3
domains obstruct their mechanical unfolding. We find this
mutant A2 (N1493C and C1670S) to feature ADAMTS13-
resistant behavior in vitro. Conclusions: Our results yield

molecular-detail evidence for the force-sensing function of
VWF A2, by revealing how tension in VWF due to shear flow
selectively exposes the A2 proteolysis site to ADAMTS13 for
cleavage while keeping the folded remainder of A2 intact and
functional. We find the unconventional #knotted$ Rossmann
fold ofA2 to be the key to thismechanical response, tailored for
regulating VWF size and activity. Based on our model we
discuss the pathomechanism of some natural mutations in the
VWF A2 domain that significantly increase the cleavage by
ADAMTS13 without shearing or chemical denaturation, and
provide with the cleavage-activated A2 conformation a struc-
tural basis for the design of inhibitors forVWF type 2 diseases.

Keywords: ADAMTS13, force-probe molecular dynamics,
Rossmann fold, shear flow, ultra-large von Willebrand factor.

Introduction

von Willebrand factor (VWF) is a huge multimeric protein
found in blood plasma. VWF mediates the adhesion of
platelets to the sub-endothelial connective tissue and is the key
protein in primary hemostasis in arterial vessels and the
microcirculation [1,2]. Monomeric VWF is synthesized in
megakaryocytes and endothelial cells. After transfer from the
cytosol to the endoplasmatic reticulum, VWF matures by C
terminal dimerization (disulfide bonds between CK domains)
and N terminal multimerization (disulfide bonds between D3
domains) while being transferred through Golgi and post-
Golgi apparatus. Finally stored in endothelial Weibel–Palade
bodies and platelet a-granules, VWF is up to 100 monomers
long and highly glycosylated [3]. Multimers are released from
storage organelles by adequate stimuli.

The VWF multimers released from storage are particularly
rich in ultra-large VWF (ULVWF). These highly active
forms get rapidly yet only partially cleaved by the protease
ADAMTS13 at the cleavage site Tyr1605–Met1606 within the
A2 domain [4,5]. ADAMTS13 is a zinc-containing metallo-
protease from the ADAMS/ADAMTS family. Shear stress
in blood vessels has been shown to drive VWF multimers
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Frauke Gräter, EML Research gGmbH – Villa Bosch, Schloss-

Wolfsbrunnenweg 33, D-69118 Heidelberg, Germany.

Tel.: +49 6221533267; fax: +49 6221533298.

E-mail: frauke.graeter@eml-r.villa-bosch.de

1These authors contributed equally to this work.

Received 25 May 2009, accepted 16 September 2009

Journal of Thrombosis and Haemostasis, 7: 2096–2105 DOI: 10.1111/j.1538-7836.2009.03640.x

! 2009 International Society on Thrombosis and Haemostasis35



into an elongated conformation with increased activity for
adsorption to the blood vessel surface, a mechanism to stop
bleeding after mechanical injury [6,7]. Mechanical forces due
to shear flow regulate selective cleavage of ULVWF and
thereby their size distribution [8,9]. If this size regulation fails,
ULVWF accumulates and results in phenotypic manifestation
of thrombotic thrombocytopenic purpura (TTP) [10]. In
contrast, reduced VWF concentration, functional deficits, or
complete absence of VWF results in the different types of von
Willebrand disease (VWD) [11], the most common inherited
bleeding disorder in humans. While the shear stress-induced
adhesion and cleavage have been demonstrated in detail
in vitro, the underlying molecular mechanism of shear-induced
activation of VWF for ADAMTS13 cleavage is currently
unknown.

Structural information in atomic detail for VWF is scarce. A
single VWF is a multi-domain protein featuring a multitude of
functionalities (Fig. 1A). The central A domain triplet is
pivotal for adhesion and clotting, featuring binding sites for
collagen (A1, A3) and the platelet receptor glycoprotein Ib
(GPIb, A1), and the ADAMTS13 cleavage site (A2). A1 and
A3 have been shown by X-ray crystallography [12,13] and A2
by homology modeling [14] and X-ray crystallography [15] to
adopt a Rossmann a/b-fold. The ADAMTS13 cleavage site in
A2 appears to be buried, suggesting that forces in stretched
VWF multimers induce unfolding and exposure [16]. In recent
experiments, described by the groups of Springer, Wong and
co-workers [17], unfolding of the A2 domain by optical
tweezers and subsequent cleavage by ADAMTS13 was
observed.

We here investigate the unfolding and activation mecha-
nism of A2 for ADAMTS13 cleavage under force by
molecular simulations. By applying force distribution analysis,
a method previously introduced by our group [18], we reveal
how the atypical Rossmann fold topology of the VWF A2
domain senses mechanical force by selectively exposing and
activating the ADAMTS13 cleavage site. We compare a
homology model of the VWF A2 domain with the crystal
structure 3GXB and discuss their special structural features.
Furthermore, we predict and analyze, based on a homology
model of the VWF A2 domain, the impact of mutations
stabilizing the A2 domain by introducing a disulfide bond
into VWF A2, in analogy with A1 and A3. We demonstrate
this mutant VWF to be resistant against ADAMTS13 in
vitro. Our results show VWF A2 domain unfolding as a
response to shear stress to be the essential event in VWF size
regulation.

Materials and methods

Homology modeling and in-silico mutation

The sequences of the VWF A domains have a residue identity
of 20–25%. Based on multiple sequence alignments and
structural alignments we created a homology model of the
VWF A2 domain (residues 1488–1676 of human VWF) and

the mutant A2 domain (N1493C and C1670S) from a human
VWF A1 X-ray structure (PDB: 1AUQ). Details of the
homology modeling performed with MOE (2007.9, Chemical
Computing Group CCG, Montreal, Canada) can be found in
the Supporting Information.

Based on the model of the A2 domain, the A2 double
mutant N1493C/C1670S was generated. A disulfide bridge
was introduced between the termini by the N1493C muta-
tion, enabling a link between C1493 and C1669. To maintain
a constant content of cysteine residues, known to be
beneficial for protein expression (see below), a second
mutation C1670S was introduced. Both models were vali-
dated by molecular dynamics (MD) simulation (Fig. S3B,C).
The model is available as Supporting Information or from
the authors.

D’ D3 A1 A2

C terminus
N terminus

vSS

CS

βVIa

CS

A3 D4 B1-3 C1 C2 CK

β1 α1

α2 α1

β2

β3 β2 β1

α3 α4 α5

β4

CS

β5 β6

N

C

β3 α2 α3 β4

βVIa vSS

α4 β5 α5 β6 α6

CBCB CSGPIbA

B

C

D

Fig. 1. (A) Domain organization of the VWF with collagen binding sites
(CB) in domains A1 and A3, a glycoprotein Ib (GPIb) binding site in A3,
and the ADAMTS13 cleavage site (CS) in A2. (B) Structure of the VWF
A2 domain (PDB: 3GXB) in cartoon representation, the cleavage site
(CS), the bVIa turn (bVIa), and the N terminal vicinal disulfide bridge
(vSS) are highlighted in green; a-helices are red, b-sheets are yellow, and
the a4-less loop is pink. (C) Secondary structure organization; b and a
denote b-strand and a-helix, respectively. (D) The schematic sketch of the
spatial secondary structure orientation shows the classical Rossmann fold
of the C terminal half of the A2 domain with the cleavage site (CS, green
marker) while the N terminal half shows a #knotted$ Rossmann fold with
significantly higher stability under force.
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Molecular dynamics simulation

All simulations and part of the analysis were carried out with
the Gromacs suite of programs (version 3.3.1) [19]. The OPLS
all-atom force field was used for the proteins [20] solvated in
dodecahedral boxes with at least 7500 TIP4p water molecules
[21], and periodic boundary conditions were applied. The
typical protonation states at pH 7 were chosen for ionizable
groups of the peptide. The necessary amount of counter-ions
(Cl) and Na+) was added to ensure a neutral system. A
temperature of 300 K and a pressure of 1 bar were assumed.
The wild-type and mutant A2 models were simulated three
times each for 30 ns and with different seeds for the initial
velocity generation. Force-probeMD simulations, each!26 ns
in length, were performed two times independently on the
3GXB X-ray structure (residues 1495–1671) and three times
independently on a truncated VWF A2 model (residues 1492–
1670). Harmonic springs, attached to the terminal Ca atoms,
with spring constants of 500 kJ (mol nm2))1, were moved
away from each other with a velocity of 1.25 nm ns)1. To
restrict the system size along the pulling direction, after partial
unfolding the residues 1637–1671 of A2 (3GXB) and residues
1636–1670 of the A2 homology model were removed, water
was added to the system, and the force-probe MD simulations
were continued.

For FDA, two starting systems were taken from snapshots
of the unfolding trajectory. Already unfolded parts, starting
from Glu1652 for the first and from Ser1613 for the second
system, were removed. Constant force of 10 and 100 pN,
respectively, for the relaxed and stretched state, was applied in
opposing direction to both termini. Each of the two systems
was equilibrated under the respective constant force for 30 ns.
For both systems, the all-atom RMSD to the starting structure
remained below 0.35 nm for both pulling forces (Fig. S1),
indicating that the system is able to bear the mechanical stress
within this time scale without rupture. In the following, 10
simulations for the folded and 20 simulations for the unfolded
state were performed for 30 ns and 15 ns each, starting with
different random velocities. LINCS [22] and a time step of 2 fs
were used for the folded state, whereas no constraints and a
time step of 1 fs were used for the unfolded state. We used the
FDA code [18] for Gromacs 4.0 [23] to write out forces Fij
between each atom pair i and j. Forces were averaged over the
total simulation time of 300 ns per system, respectively,
sufficient to obtain converged averages. Changes in forces,
DF, are the differences in pair-wise forces between the systems
pulled with 10 and 100 pN. Residue-wise forces F res

uv were
obtained by summing up forces Fij for all pairs of atoms
i and j in residues u and v, respectively. The absolute sum

DFres
u ¼

X

v

DFres
uv

!! !!

reflects the changes in strain acting on a single residue and was
used to color-code force distribution onto the protein back-
bone. Strain along the backbone was measured as the sum of
all bonded interactions between adjacent residue pairs. As we

use an approximation for angular and dihedral terms and
solvent is not included in the FDA but in the simulations,
changes in backbone forces indicate strain between two
residues, but the values are not physically correct forces.
Further simulation details can be found in the Supporting
Information.

VWF engineering and analysis

By in vitro mutagenesis of full length VWF we exchanged
N1493 at theN terminal site for cysteine andC1670, one of two
neighboring cysteines at the C terminal site of the A2 domain,
for serine to allow creation of a cysteine bond in the A2
domain. In additional mutagenesis experiments we also
eliminated the existing disulfide bonds in the A1 (C1271S/
D1459C) and A3 domains (C1686S/S1873C). In vitro muta-
genesis of full length VWF cDNA in the mammalian expres-
sion vector pcDNA 3.1 was performed with the quick change
mutagenesis kit (Stratagene) using primers of 41–46 bp in
length harboring the particular base exchange. Transfer of the
cDNA transfection of 293 cells by means of liposomal transfer,
cell culture conditions, and harvesting and preparing of
recombinant VWF, was performed as described previously
[24]. TheADAMTS13 assaywas based on recombinant human
ADAMTS13 (rhuADAMTS13), adjusted to 0.05 U mL)1 in
Tris/HCl buffer (5 mM, pH 8.0). 100 lL of this solution were
added to 200 lL conditioned media containing rhuVWF
(80 U dL)1) and incubated with 10 mM barium chloride. The
aliquots were then dialyzed against buffer solution (1.5 M urea,
5 mM Tris/HCl at pH 8.0) and incubated at 37 "C for 5h. The
reaction was stopped with EDTA (10 mM) [24,25]. ADAM-
TS13-proteolyzed mutant and wild-type VWF was also
analyzed by polyacrylamide gel electrophoresis under reducing
conditions [26]. VWF phenotypic characterization by VWF
multimer analysis recorded by digital photo imaging (Fluor-
Chem 8000) was carried out according to previously published
protocols [27–29].

Results and discussion

Force-induced unfolding of the A2 domain

In vivo, the VWF multimer size is regulated by ADAMTS13
depending on shear flow conditions. Shear flow elongates
VWF and results in a tensile force propagating throughout
all VWF domains including A2 in the stretched protein [6,7].
We examined tensile stress on the VWF A2 conformation by
force-probe MD simulations where a pulling force is applied
on the termini of A2 in opposite directions. Force profiles
for two independent simulations are shown in Fig. 2. The
initial conformation (snapshot 1, Fig. 2) is stepwise unfolded.
Starting from the C terminus the secondary structure
elements are sequentially peeled-off, namely a6, b6 and a5
to yield a first intermediate (snapshot 3, Fig. 2), followed by
b5 and the a4-less loop [15] leading to exposure of
the cleavage site (snapshot 4, Fig. 2). Overall, inter-b
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strand interactions show higher mechanical resistance than
interactions involving helices. A short movie in the Support-
ing Information illustrates the sequential unfolding of VWF
A2 under force.

In a very recent study, Wong, Springer and co-workers
demonstrated the enforced activation of the VWF A2 domain
for ADAMTS13 cleavage with a laser tweezers set-up [17].
They report a subset of their unfolding experiments to exhibit
an intermediate state with a contour length of about 23 nm
(40% of the length of the completely unfolded A2 domain with
58 ± 5 nm). Such an intermediate state corresponds well with
the state 4 shown in Fig. 2. In this state 60 of 174 residues
(35%) are unfolded at the C terminus, which results in an
overall contour length of 24.6 nm, including the length of the
intact N terminal part of the domain with 3 nm. Our force-
probe simulations thus suggest that the experimentally detected
unfolding intermediate is ready for cleavage by ADAMTS13.
A study by De Cristofaro and co-workers is focused on the
mechanism of ADAMTS13 catalysis. Their work with VWF73
(a truncated A2 domain covering VWF residues Asp1596–
Arg1668) suggests as well that a partially unfolded state of
VWF A2 is ready for ADAMTS13 cleavage [30].

Force distribution analysis of the VWF A domain

The stable N terminal b1 strand is locked to the center of the
protein, keeping the protein core including the cleavage site
largely intact (Fig. 1D), while the C terminal structural
elements, being more responsive to the external force, are
pulled out step by step until the cleavage site is accessible. This
distinct response of the two halves of the domain is determined
by the underlying topology of the VWF A-type domains. The
C terminal part of the A2 domain represents a Rossmann fold,
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Fig. 2. The force profiles for two independent force-probe MD simula-
tions of 3GXB are shown. After extending the protein chain to 15 nm, the
simulations were continued with the unfolded C terminal part (sequence
numbers 1637 and higher) being cut off. Selected snapshots are shown as
cartoons; the cleavage site is shown in green; the fully unfolded C-terminal
fragments in 2, 3 and 4 are omitted for clarity.
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Fig. 3. Force distribution analysis (FDA) of the A2 domain (3GXB).
(A) Cartoon representation of an A2 folded state (state 2 in Fig. 2) in two
views. Changes in pair-wise forces, DF, are color-coded ranging from
blue for DF = 0 to red for high DF. The external pulling force distributes
along a direct path between termini, leaving the N-terminal part nearly
unaffected (below the dotted line). (B) Strain along the backbone of the
folded structure (solid gray line), measured in terms of changes in bonded
interactions between residue pairs. Sequence positions of secondary
structure elements (helices and strands) are highlighted by colored bars.
The color-coding reflects the protein topology: structural elements that are
unfolded in state 4 of Fig. 2 and strand b1 are red; structural elements
that remain intact in state 4 of Fig. 2 are blue (compare with the cartoon
representation above the plot). The dashed line represents the mean
force over all bonded residue pairs. This mean force on structural elements
a1, b2, b3, a2 and a3 (blue line) is lower than on structural elements
b1, b4, a4less, b5, a5 and b6 (red line). High pair-wise forces around
Thr1576 (between a2 and a3) are an artifact resulting from rare loop
rearrangements.
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with the characteristic sequential order of the secondary
structure elements b4–a4 less–b5–a5–b6–a6, bridging each
strand in the parallel b sheet alignment with an a helix
(Fig. 1D). This sequential arrangement results in the stepwise
unfolding under force. In contrast, the modified Rossmann
fold of the N terminal half of the A2 domain prevents
unfolding.Here, b strands are swapped such that b1, the strand
directly subjected to the external force, is tightly embedded in
the protein core (Fig. 1D), so as to form rupture-resistant
interactions with adjacent strands b2 and b4.

We further validated the key role of this particular #knotted$
Rossmann topology for the mechanical response of A2 by
force distribution analysis (FDA). FDA reveals the distribution
of internal strain within a structure subjected to an external
force bymonitoring changes in pair-wise atomic forcesDF [18].
We determined the strain distribution in an early unfolding
intermediate of the VWFA2 domain in which themechanically
labile helix a6 is already unraveled (Fig. 2, snapshot 2). The
tensile force mainly propagates through the part of the central
b sheet formed by strands 1, 4, 5 and 6 of the domain (Fig. 3A),
following a direct path between the two termini. Force
distributes from the C terminal strand via strands b5 and b4
to the very center of the structure, strand b1, transferring the
force out of the domain to the N terminus. From the pair-wise
forces plotted in Fig. 3(B) it is also evident that substantial
parts of the N terminal half are under low (sub-average) force
as a direct result of the unconventional Rossmann fold.
Significant high forces in this part of the protein are only
observed at the loop directly attached to strand b1 (connection
to helix a1) and at the loop connecting a1 and b2, that is in
close proximity to the N terminus, the point of force
application. Strand b1 virtually shields the tertiary structure
formed by b1–a1–b2–b3–a2–a3 from force-induced unfolding.
Accordingly, this area is under low strain, as evident by the
cold coloring mapped on the structure in Fig. 3A. The
shielded region is in the lower right of the dashed line.
Interestingly, this architecture would allow the N terminal half
of the A2 domain to carry out a particular – albeit currently
unknown – function, even while the C terminus is unfolded and
cleavage ready.

The cleavage site Tyr1605–Met1606 is the topological
middle point of the folded and intact A2 domain and
therewith protected from cleavage. Mechanical force induced
a cleavage-ready unfolding intermediate as observed in our
force-probe MD simulation (Fig. 2 state 4) as well as in
experiments [17]. In order to investigate the impact of pulling
forces on the cleavage site, the Tyr1605–Met1606 peptide
bond, FDA was performed on the partially unfolded
cleavage-ready A2 domain. We find the backbone between
Tyr1605 and Met1606 to be under extra-ordinarily high
strain, and strain distribution seems to be directed in a way to
specifically target these residues, Fig. 4A. Analysis of inter-
side chain forces, this is, forces that pairs of side chains exert
on each other, reveals that a large part of the strain on the
cleavage site results from neighboring residues located in the
central b-strands. The force network in Fig. 4(B), mapping

changes in forces between residue pairs as edges onto the
structure, shows a clear polarization. There are almost no
edges crossing a virtual plane that separates the cleavage site
residues, resulting in a weakened peptide bond potentially
mechanically activated for cleavage. This specific deflection of
mechanical load onto the cleavage site is mainly realized by
strong pair-wise interactions between Tyr1605 and Ala1500,
Phe1501, Val1502 and Val1604 (Fig. 4C), and between
Met1606 and Thr1608 (Fig. 4D), respectively. Thus, in
addition to mere exposure to ADAMTS13, the Tyr1605–
Met1606 proteolytic site in the VWF A2 unfolding interme-
diate is selectively tensed up due to an optimized
force distribution. We therefore predict mutations in the local
force network to attenuate the strain in the peptide bond and
to consequently alter its susceptibility to ADAMTS13
cleavage.

Homology modeling of the VWF A2 domain

Until recently [15], no experimentally derived structural data on
the VWF A2 domain was available. Thus, a homology model
including residues 1488–1676 of human VWFwas created. The
model fully includes the very terminal sequences of A2, and
thereby the site of mutagenesis for introducing a disulfide bond
(see below). It is therefore more comprehensive but otherwise
highlysimilar toaprevioushomologymodel thatcoversonly the
VWF residues 1496–1669 [14] and to theX-ray structure 3GXB
covering residues 1495 to 1671 (Fig. S4) [15]. The rmsd (N, Ca,
Cb,C,O)between snapshotsofour trajectoriesof thehomology
model and 3GXB is around 0.2 nm, and < 0.1 nm for the
heavyatomsof the cleavage site.Also, the unfoldingmechanism
of A2 observed in our simulations largely agrees with the X-ray
structure and the model (cf. Fig. 2 and Fig. S5). The predict-
ability of the A2 structure, including differences in A1 and A3,
implies that the tertiary fold is largely defined by the
primary sequence of A2. However, our model also misses two
features by which A2 differs from its highly related adjacent
domains, as now revealed by the A2 crystal structure [15]
(cf. Fig. S4):

First, the remarkable experimental finding of a vicinal
disulfide bridge between the very terminal Cys residues 1669
and 1670 was not predicted in the homology model. Helix a6 is
capped and rigidified by the C terminal vicinal disulfide bond,
thereby mechanically stabilized and unfolding at once. With
reduced Cys side chains as in our homology model, the helix
unfolds stepwise in the force-probe simulations (Fig. S5). The
presence of the helix cap, however, does not significantly change
the rate limiting steps involving high forces for the rupture of
the hydrogen network of the central b-sheet after the early helix
a6 unfolding. Based on the high strain of the eight-membered
disulfide-bonded ring and possible environmental changes, we
hypothesize a redox-dependent regulation of the forced onset of
A2 unfolding via the vicinal disulfide bond.

Second, the peptide bond between Trp1644 and Pro1645 is
cis configured in the X-ray structure. The turn comprising this
peptide bond is of type bVIa [31] in the X-ray structure, while a
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bIII turn is predicted in our model instead (cf. Fig. S4). Our A2
model suggests that cis as well as trans configuration for this
particular peptide bond is structurally feasible. Given the
impact of cis-trans isomers on protein folding [32], their
possible interconversion by mechanical forces [33], and the
absence of Prolyl-cis/trans-isomerases in the extra-cellular
space, they might play a regulatory role.

However, the actual physiological significance of both, the
vicinal disulfide bridge and the cis or trans configuration of the
peptide bond, remains to be identified for this particular case.

In vitro mutagenesis and electrophoretic analysis

Our unfolding simulations suggest A2 to be activated for
ADAMTS13 cleavage under high shear flow conditions by
exposing the cleavage site after partial unfolding of the
C-terminal domain. A1 and A3 have highly similar amino
acid sequences and three-dimensional structures, and thus
would be expected to unfold along a similar mechanism.
Examination of the 3D structures of the VWF A domains
shows the existence of disulfide linkages between the termini of
the A1 and A3 domains, respectively, but not for the A2
domain. The snipped sequence alignment in Fig. 5A illustrates
that A1 and A3 feature two cysteine residues each at their N
and C termini, allowing the formation of disulfide bridges. A2
has two vicinal cysteine residues at its C terminus (Fig. 5A) and

none at the N terminus. The domain can unfold under force
and is mechano-responsive. The cysteine hooks ensure the
structural integrity of A1 and A3 under shear flow for specific
interactions with collagen and GPIb as essential for VWF
adhesion and aggregation, while allowing the selective force-
induced unfolding of only the A2 domain for cleavage by
ADAMTS13.

Based on the homology model of the VWF A2 domain, we
designed the ADAMTS13-resistant VWF variant mutA2 (cf.
Table 1 for nomenclature of all VWF variants) by introducing
a cysteine at position N1493 to allow disulfide bond formation
with residue C1669 at the A2 C-terminus in analogy with the
A1 domain. The magnification in Fig. 5A illustrates the
virtually perfect orientation of the side chains of residues
N1493 and C1669. C1670 was changed to serine to generate
maximal homology of A2 with A1 and A3 and to avoid the
possibility of alternate disulfide bonding at the A2 carboxy
terminal. A model of the mutant A2 domain was subjected to
MD simulations to test the feasibility of disulfide bond
formation and the domain$s structural integrity uponmutation.
The data are shown in the Supporting Information (Fig. S3C)
and indicate tolerance of the mutations and conservation of the
A2 structural features.

To confirm the generation of an artificially introduced A2
disulfide bond in vitro, we subjected A2 mutant full-
length recombinant VWF (mutA2) to multimer analysis in
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comparison with flVWF. The mutA2 variant migrated faster
than flVWF, suggesting a more compact structure with higher
electrophoretic mobility (Fig. 5B,C). In contrast, removing the
disulfide bridges in the A1 (C1272S and D1459C, mutA1) or

A3 domain (C1686S and S1873S, mutA3) towards an open
structure as in wild-type A2 resulted in a decrease of the
electrophoretic mobility, both in the presence and absence of
A2, respectively (Fig. 5B,C). These results support the assump-
tion of the generation of a cysteine-bridge connection of the A2
N and C terminus analogous to A1 and A3. We then exposed
all variants to ADAMTS13 and monitored proteolysis by
multimer analysis. We could show that, in contrast to flVWF,
ADAMTS13 proteolysis of mutA2 was completely absent,
similar to the A2 domain deleted VWF variants DVWF,
mutA1D and mutA3D (Fig. 5D). This was further confirmed
by reduction of cysteine bonds by b-mercaptoethanol to
exclude the possibility that the mutA2 variant was actually
proteolysed but just held together by the created cysteine bonds
(Fig. 5E). Opening the disulfide bond of the A1 and A3
domain by mutagenesis in A2 domain deleted VWF (variants
mutA1D and mutA3D) did not result in proteolytic suscepti-
bility of the respective domains, indicating that the homo-
logy of A1 and A3 to A2 is too low for substrate recognition
by ADAMTS13 (Fig. 5D). A speculative physiological
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Table 1 Overview of the expressed VWF variants, their sensitivity against
ADAMTS13 and the relative migration speed of the multimers in elect-
rophoresis

Name Mutations

Cleavage
by

ADAMTS13

Migration
relative

to flVWF

Based on full-length VWF
flVWF None + –
mutA1 C1272S/D1459C + Slower
mutA2 N1493C/C1670S – Faster
mutA3 C1686S/S1873C + Slower

Based on VWF without A2 domain
DVWF None – –
mutA1D C1272S/D1459C – –
mutA3D C1686S/S1873C – –
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effect of the loss of the termini-linking disulfide bonds in
A1 and A3 domain would suggest a significantly reduced
affinity of A1 to collagen and GPIb and of A3 to collagen
due to the disturbed structural integrity, especially in blood
flow.

Conclusions

We here show by simulations and in vitro mutagenesis how
force-induced partial unfolding is required for ADAMTS13-
mediated cleavage of VWF A2. The unfolding and activation
mechanism of A2 can be abolished by a single mutation,
N1493C, in analogy with the mechanism that presumably
protects A1 and A3 from unfolding and loss of function.
We find the C-terminal part of VWFA2 to be unraveled under
force, suggesting ADAMTS13 to primarily recognize this
partially unfolded domain rather than the native state of A2.
This is in excellent agreement with recent in vitro studies
on the interaction of VWF A2 with ADAMTS13 [34,35].
Our data also suggest that this ADAMTS13-susceptible
unfolding intermediate corresponds to the intermediate
very recently observed in A2 single molecule stretching
experiments [17].

The force-sensing mechanism of the A2 domain provides an
intriguing explanation for the size regulation of ULVWF:
larger multimers involve higher pulling forces and therefore
higher unfolding rates at a given shear flow. As a result, larger
VWF is cleaved more readily. The forces required for the
exposure of the cleavage site in A2 as observed here (up to
1000 pN) can be expected to be significantly larger than those
inducing unfolding in in vivo conditions due to the short
nanosecond time scale of the simulations within which the
unfolding is forced to occur [36]. Under physiological condi-
tions, cleavage will preferentially occur for the upper limit of
VWF multimer sizes, and thus under flow conditions that lead
to tensile forces beyond the 5–10 pN estimated for average
VWF sizes [6] (A Alexander-Katz, personal communication,
2009). Indeed, the experimental evaluation of VWF A2
unfolding by optical tweezers suggests forces in the range of
10–15 pN [17].

The intermediates of mechanical unfolding of the VWF
A2 domain observed here (and not a static intact
equilibrium state) represent the substrate of ADAMTS13.
These dynamics of the A2 domain during unfolding are
prerequisite to explore the structural and functional deter-
minants of A2 recognition by ADAMTS13. The gained
knowledge (e.g. the actual structure of the partially unfolded
A2 domain) can be used to design inhibitors of ADAMTS13
and can provide a route to drugs targeting enhanced VWF
cleavage in blood.

VWF A2 mutations previously identified as causing von
Willebrand disease type IIA due to an increased susceptibility
to ADAMTS13 [24] cleavage can now be rationalized on the
basis of our model. They can be expected to involve
destabilization of the overall A2 structure by forcing charged
groups into regions of hydrophobic packing (I1628T and

G1629E), perturbing b-turn formation between the VWF A2
secondary structure elements b5 and a5 (G1631D), or by
destabilizing A2 due to a drastic increase in spatial demand
of the side chain (G1609R). Structural destabilization in turn
facilitates A2 unfolding and cleavage site exposure to
ADAMTS13.

While the C terminal part of the A2 domain follows a highly
conserved unfolding pattern if subjected to tensile stress, the N
terminal #knotted$ Rossmann fold remains completely intact
even under high forces. We hypothesize that the second
important function of A2, the proposed inhibition of the A1
GPIb interaction [37], which mediates the binding of VWF to
platelets, is located at this force-resistant part of the domain.
Thereby, as a consequence of the two distinct Rossmann
topologies within the A2 domain, size regulation of VWF by
ADAMTS13 does not affect platelet interaction. As a second
consequence of the unconventional Rossmann fold, we find
strain to internally propagate selectively to the ADAMTS13
cleavage site, bringing the peptide bond under tension. We
hypothesize that this specific force-activation affects the
catalytic activity of ADAMTS13, as a direct impact of the
A2 mechanics on the A2-ADAMTS13 biochemistry, similar to
what has been shown for disulfide bond cleavage by DTT and
thioredoxin [38].

We here assumed that the stretching force in VWF
propagates to A2 primarily along the protein backbone. A
full A1-A2-A3 structure is needed to re-examine the unfolding
mechanism taking inter-domain interactions into account, as a
next important step towards deciphering the molecular details
of VWF mechanical response.

Another example for a Rossmann fold in which the termini
are locked together by a disulfide bond is the VWF type A
domain of human capillary morphogenesis protein 2, interest-
ingly again a collagen-binding adhesion protein [39]. To what
extent nature has made use of the Rossmann fold as a module
that can be reversibly switched into a force-resistant state
remains to be seen.

Addendum

C. Baldauf, R. Schneppenheim and F. Gräter designed the
research described in this article. C. Baldauf, W. Stacklies
and J. Zhou performed modeling and simulation described in
the article. T. Obser, A. Pieconka and S. Schneppenheim
performed experiments. C. Baldauf, R. Schneppenheim,
W. Stacklies and U. Budde analyzed and interpreted the data.
C. Baldauf, R. Schneppenheim, W. Stacklies and F. Gräter
wrote the paper.
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ABSTRACT: The cis peptide bond is a characteristic feature of turns in
protein structures and can play the role of a hinge in protein folding.
Such cis conformations are most commonly found at peptide bonds
immediately preceding proline residues, as the cis and trans states for
such bonds are close in energy. However, isomerization over the high
rotational barrier is slow. In this study, we investigate how mechanical
force accelerates the cis to trans isomerization of the prolyl−peptide
bond in a stretched backbone. We employ hybrid quantum mechanical/molecular mechanical force-clamp molecular dynamics
simulations in order to describe the electronic effects involved. Under tension, the bond order of the prolyl−peptide bond
decreases from a partially double toward a single bond, involving a reduction in the electronic conjugation around the peptide
bond. The conformational change from cis to extended trans takes place within a few femtoseconds through a nonplanar state of
the nitrogen of the peptide moiety in the transition state region, whereupon the partial double-bond character and planarity of
the peptide bond in the final trans state is restored. Our findings give insight into how prolyl−peptide bonds might act as force-
modulated mechanical timers or switches in the refolding of proteins.

■ INTRODUCTION
The imino acid proline is unique among the proteinogenic
amino acids, as the side chain is linked back to the backbone via
a bond to the nitrogen, making it a secondary amine. This
feature is the basis for a number of distinctive structural
characteristics of proline in the context of peptide sequences:
(i) the lack of a polar hydrogen prohibits proline from acting as
a H-bond donor; (ii) the backbone torsion angle ϕ (angle
CNCαC) is part of the heterocycle and thus conformationally
restricted; and (iii) the trans state of the prolyl peptide bond is
energetically only slightly preferred over the cis state, as in
either case the Cβ of the preceding residue is close to a carbon
atom of proline (either Cα or Cδ). This is reflected in the
analysis of high-resolution X-ray structures from the RCSB
protein data bank,1 where more than 90% of the cis peptide
bonds in proteins are Xaa-Pro imide bonds.2 Still, the barrier
between both states is high, and the interconversion from cis to
trans is slow in equilibrium.3−6 The general mechanism of
peptide bond isomerization involves a change of the bond order
from a partial double bond to a single bond, followed by a
return to partial double-bond character. This is caused by the
pyrrolidine N changing from a planar sp2 state to a pyramidal
sp3 state with a lone pair orbital. The resulting lone pair dipole
interacts with the CO dipole and influences the peptide
bond rotation during isomerization.7 Furthermore, the
transition state is stabilized by the interaction between the
N−H of the following peptide bond with the lone pair of the

sp3 N.5,8 This isomerization can be catalyzed by peptidyl−
prolyl cis−trans isomerases.9−12
Proline is found in a number of structural proteins, including

tropoelastin. Elastin-like polypeptides (ELP) are models of
tropoelastin and consist of multiple repeats of the sequence
Val-Pro-Gly-Xaa-Gly. The high Pro content results in a high
share of cis-prolyl peptide bonds. Single-molecule force-
spectroscopy experiments by Zauscher and co-workers on
ELP and poly-Pro peptides revealed a temperature-independent
extensional transition upon application of a stretching force.
This increase of the contour length was interpreted as force-
induced cis to trans isomerization of multiple prolyl−peptide
bonds.13 A scheme of the cis to trans isomerization is shown in
Figure 1A.
Another place where cis peptide bonds and Pro residues are

frequently found in proteins is at type VI β turns, with a cis
prolyl−peptide bond between residues 2 and 3 of the turn.14,15

Such turns act as hinges during protein folding and arrange
helices and strands in their native three-dimensional fold. The
structural difference between the cis and the trans conformation
of the peptide bond is significant, and an isomerization might
substantially alter protein (re)folding pathways and timings.6

An example where mechanical force meets the regulation of
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physiological function is the giant blood protein von
Willebrand factor (VWF). The multimers of VWF are sensitive
to the shear forces present in flowing blood and translate shear
flow to an extensional force along its length axis.16,17 As a result,
individual domains of VWF partially unfold and eventually βVIa
turns with cis prolyl−peptide bonds are under direct exten-
sional force. Possible refolding is hindered if the prolyl−peptide
bond of the βVIa turn isomerizes to the trans form.18 Indeed, in
a subset of the optical tweezers experiments reported by
Springer and co-workers refolding of the tethered A2 was
delayed.19 This can be interpreted as force-induced cis to trans
isomerization of the prolyl−peptide bond in the A2 domain
that hampers refolding.
The question arises how mechanical force facilitates the

prolyl cis to trans interconversion over the rotational barrier of
60−80 kJ/mol.5,8 Because of a general interest in mechano-
chemistry and with regard to the potential physiological
importance of this process, we present here a study of the
forced cis to trans isomerization of the prolyl−peptide bond by
classical molecular mechanics and hybrid quantum mechanics/
molecular mechanics (QM/MM) force-clamp molecular
dynamics (FCMD) simulations. Previous theoretical efforts to
reveal the mechanism of isomerization have employed
optimizations along the reaction pathway from trans to cis,
based on a QM or QM/MM description.5,7,8,20 We obtained
dynamic trajectories and kinetic information as a function of
the applied external force while also taking full solvation into
account. We find mechanical stretching of the peptide to
weaken the peptide bond, making the distorted nonplanar
transition state region with reduced electronic delocalization
accessible within shorter time scales.

■ RESULTS AND DISCUSSION
To trigger the isomerization transition from cis to trans prolyl−
peptide bond, we applied an extensional force to the backbone
of a short model peptide, AAPA (Figure 1B), dissolved in water
during FCMD simulations. The Cα of residues Ala1 and Ala4
were subjected to a constant pulling force (Figure 1B). In

response to the applied force, AAPA adopted an extended
configuration, with the prolyl−peptide bond maintaining its cis
conformation.
Starting from this mechanically stretched peptide conforma-

tion, we next investigated the isomerization reaction of the
prolyl peptide bond in AAPA. The cis to trans isomerization
reaction under force can be expected to require a change of
bond character and hybridization of the involved atoms. These
electronic structure effects are not accurately described by
classical force fields, which are parametrized on the basis of
equilibrium states without considering transition states. We
therefore relied on hybrid quantum mechanical and molecular
mechanical simulations (QM/MM) to consider electronic
effects relating to the prolyl−peptide bond (Figure 1B).
Constant forces ranging from 1.1 to 5 nN were applied; the
lowest force for which isomerization was observed within a time
of 500 ps was 3 nN. The experiments of Valiev et al. on ELP
were performed with a constant pulling velocity; the forces they
measured prior to the isomerization event were lower than ours
by a factor of 10, in the range of 200−260 pN.13 Higher forces
induced isomerization on shorter time scales, with a subpico-
second transition in the 4−5 nN range (Figure 2). The force

dependence of the transition time was fitted with the linear Bell
model,21,22 yielding a distance Δx of 0.02 ± 0.007 nm between
the reactant (cis) state and the transition state. The model
predicts a lifetime at zero force (and similarly at the relatively
low forces in experiments13) on the order of τ0 ≈ 10−4 s.
However, the limited range of time scales accessible in the
QM/MM simulations entails a large uncertainty of these values
and does not allow us to distinguish between linear (like the
Bell model) and nonlinear models like the Dudko−Hummer
model.23 Nevertheless, our simulations can be semiquantita-
tively validated by comparison to experiment. Using the Eyring
equation, the estimated lifetime can be converted into an
activation free energy of ∼60 kJ/mol, which is in line with the
experimental zero force barrier of ∼60−80 kJ/mol.13,24−26 The
barrier appears indeed slightly underestimated, as we predict
life times on the order of 0.1 ms instead of the lifetimes in
atomic force microscopy experiments, which are larger than
milliseconds.13 However, the overall agreement is satisfying
given the difference in force application (here constant force, in

Figure 1. (A) Schematic representation of the cis to trans
isomerization. Bonds and atoms defining the peptide bond torsion
are highlighted in red. (B) Schematic representation of the AAPA
peptide as modeled in our simulations. QM region is separated from
the MM region by a dashed line. In the force-clamp simulations, the
Cα atoms of Ala1 and Ala4 (gray spheres) were subjected to a constant
force in opposite directions.

Figure 2. Isomerization lifetimes τ at different forces as obtained from
FCMD simulations. Lifetimes from QM/MM simulations are shown
in red and those from pure MM simulations in black. Fits of the linear
Bell model21 to the data are shown as lines.
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experiments constant velocity pulling) and the limited time
scales of our simulations necessitating a defective extrapolation.
At a first glance, performing the same FCMD simulations of

the AAPA peptide in a pure MM description appears to
reproduce the main findings of the QM/MM simulations
(Figure 2). Indeed, a similar linear dependency of the logarithm
of the lifetime of the cis isomer to the applied force was
observed, now spanning a larger force and time range. The Bell
model fit gives Δx = 0.023 ± 0.004 nm, comparable to the
value obtained from our QM/MM simulations. However, for a
given lifetime, smaller forces are required in the MM
simulations as compared to QM/MM, as reflected by a shorter
zero-force lifetime of τ0 ≈ 10−5 s. Even with an error of at least
1 order of magnitude up or down, we can conclude that the
MM description underestimates the transition free energy
barrier for isomerization. As we will show further below, this is
due to the lack of changes in hybridization and bond order
during the process.
How does the cis to trans isomerization proceed? We next

analyze the mechanism of the isomerization via geometrical
properties of the model system. In the following we will focus
on the QM/MM trajectory at 3 nN, the lowest force for which
isomerization was observed on accessible time scales. The
macroscopic order parameter observed in pulling experiments
with optical tweezers or atomic force microscopy is an increase
of the contour length, which here corresponds to the distance
dCαCα of the Cα atoms adjacent to the prolyl−peptide bond.
During the simulation a sudden jump of dCαCα from about 0.35
to roughly 0.4 nm can be observed between 360 and 370 ps of
simulation time (Figure 3A), which indicates a two-step
process. The resulting difference between the stretched cis
and trans states is 0.05 nm; the difference between the
equilibrium cis state and the stretched trans state is about 0.1
nm, well in line with an investigation by Reimer and Fischer,
who measured Cα distances around Pro residues of selected X-
ray structures from the Protein Data Bank. For residues directly
adjacent to the Pro residue, they reported an increase in dCαCα
from cis to trans of about 0.08 nm.27 The change in prolyl
peptide bond geometry between the two isomers translates into
larger shifts in the adjacent backbone segments. This is why
Valiev et al. consider an increase of the contour length by 0.2
nm per cis to trans isomerized prolyl−peptide bond as an effect
on the overall peptide conformation.13 Simultaneously with the
increase in contour length, the dihedral angle ωAla−Pro (defined
by the backbone atoms Cα−C−N−Cα) rotates from 0° (cis) to
180° (trans) (Figure 3B). This behavior confirms that
experimental observations of jumps in contour length during
the stretching of ELP13,28 and VWF29,19 can be interpreted as
prolyl−peptide bond isomerization into the trans state.
The Cα distance corresponds to the experimental observ-

ables, yet it offers only limited insight into the mechanism of
isomerization. Thus, we focus on further order parameters
describing the transition mechanism. One such parameter is the
bond length dCN of the peptide bond, which is plotted in Figure
3C. In equilibrium, the C−N peptide bond is shorter than a
typical single C−N bond, as the p orbitals of N and carboxyl C
are conjugated. The single peak of dCN from 0.14 to 0.145 nm
and back coincides with the jumps in contour length and
peptide bond torsion angle. This illustrates that the change of
bond order from partially double to single and back is a
consequence of the elimination of orbital conjugation and its
reformation between C and N. The connected change in
hybridization state of the peptide bond N can be tracked by the

volume of the tetrahedron consisting of the nitrogen and the
atoms bound to it (C, Cα , Cδ) as shown in Figure 3D. In the
stretched cis state, the pyramid N, C, Cα , Cδ has a volume of
0.15 Å3. During isomerization, this volume peaks at 0.3 Å3 and
relaxes back to about 0.15 Å3 (Figure 3D) following the
transition of the N hybridization from sp2 to sp3 and back to
sp2.
The force-induced cis to trans isomerization of the prolyl−

peptide bond occurs through a rotation of the peptide bond
torsion angle by roughly 100° (Figure 4A). According to an
overview of the possible transition states by Fischer,30 this
transition state can be characterized as syn/exo. Only the Ala2-
Pro3 peptide bond rotates, while the other torsions have been
already stretched out by the pulling force and remain at
extended values around 180° (except the ϕPro3 which is fixed in
the heterocycle). The transition state can be more readily
analyzed by relating the major order parameter, the prolyl
dihedral angle ω, to the other degrees of freedom affected by
the isomerization, namely, dCαCα, dCN, and VNCCαCδ (Figure

Figure 3. Mechanism of a cis to trans isomerization event (QM/MM,
F = 3 nN). Different order parameters are shown with respect to the
simulation time: (A) contour length given by the distance between the
Cα atoms of Ala2 and Pro3 (dCαCα); (B) torsion angle of the peptide
bond between Ala2 and Pro3 (ωAla−Pro); (C) length of the peptide
bond between Ala2 and Pro3 (dCN); (D) volume VNCCαCδ of the
tetrahedron defined by the atoms C (of Ala2), N, Cα , and Cδ (of
Pro3) as a measure for N hybridization. Black lines show the measured
values from the FCMD simulation; red lines are running averages with
a window size of 100 data points. Time range of isomerization is
highlighted by gray rectangles.
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4B−D). The change in peptide bond torsion angle ωAla−Pro
coincides with the change in contour length measured by dCαCα
in Figure 4B. Even though our force-clamp MD simulations do
not allow us to draw quantitative conclusions on the transition
state, Figure 4B clearly features an area with a low population of
states (gray shade), within which the transition state is likely to
be located. Notably, this transition state region features an
angle ω ≥ 100°, slightly beyond the halfway rotation, and a
contour length dCαCα between 0.36 and 0.39 nm. This
corresponds to an elongation with respect to the product
state by 0.01−0.04 nm. Thus, the change in contour length
from the cis to the ∼100° rotated state serves as a direct
structural interpretation of the Δx of 0.02 ± 0.007 nm obtained
from the Bell model fit (see above) and suggests this as the
transition state. Both the peptide bond length (dCN) and
VNCCαCδ only show increased values within the sparsely
populated region of conformational space that includes the
transition state and then return to equilibrium values (Figure
4C and 4D). Again, this highlights the change in bond character

(double to single and back to double) and hybridization (sp2 to
sp3 and back to sp2) during isomerization. In all our
simulations, employing a range of different forces, isomerization
occurs by rotation from 0° via 90° to 180°, with the lone pair of
the sp3 passing an ecliptic conformation with the preceding Cα.
Rotation via −90°, with an ecliptic orientation of the lone pair
and the carboxyl O, was never observed. In a previous
theoretical study of the isomerization in the absence of
mechanical strain both rotation directions were observed.8

Another important feature of the mechanism shown in previous
studies is that the pyramidal state of the peptide bond N is
stabilized by a N···H interaction with a downstream backbone
NH.5,8 Here, instead, activation of the prolyl−peptide bond is
not promoted by an attacking nucleophile but by mechanical
force.
How can the described force-induced isomerization mech-

anism (Figure 4) be related to the increase in rate (Figure 2)?
Forces of a few nN extend the C−N bond to a length that is
closer to the single bond (0.147 nm) than to the double bond
(0.132 nm). This change in length of the C−N bond in the cis
and trans state as well as for the transition state region is shown
in Supporting Information Figure 2 for the sampled range of
forces. The transition state region features bond lengths typical
of a single bond, while the product trans state relaxes back to
partial double-bond character. Stress relief after isomerization
allows bond lengths even smaller than that of the cis state at the
same force. Thus, application of mechanical force destabilizes
the reactant cis state, thereby moving it closer to the transition
state. It may be that a stabilization of the transition state by
force is another factor for lowering the activation barrier, but
the limited sampling of transitions does not allow the inference
of a relationship between the transition state energy of bond
character and force (Supporting Information Figure 2).
From a technical point of view, it is interesting to compare

the mechanism of isomerization as observed in the QM/MM
description with the pure OPLS-AA force field treatment. In
both setups, sudden and concurrent changes of the contour
length and the peptide bond torsion angle, the two main order
parameters representing the peptide bond isomerization, can be
observed (Figure 3 and Supporting Information Figure 3). A
clear difference becomes obvious when monitoring dCN and
VNCCαCδ. The isomerization mechanism involves transient
femtosecond scale changes in both parameters with the QM/
MM treatment (Figure 3), whereas no such changes occur in
the classical force field model (Supporting Information Figure
3). In the pure MM treatment, the force constant of the prolyl
peptide bond potential remains unmodified and cannot reflect
the bond order changes of the peptide bond undergoing
isomerization. Furthermore, the change of the hybridization
state of the nitrogen, measured via the tetrahedron volume
VNCCαCδ, is prevented by the improper dihedral potentials
exerted on the peptide bond in the force field description of the
system. Thus, as expected, only the QM/MM simulation is able
to reflect the nature of the isomerization of the prolyl−peptide
bond, most importantly including the transient sp3 hybrid-
ization of N associated with a loss of π-electron conjugation of
the prolyl−peptide bond.

■ CONCLUSION
In this work, we were able to elucidate the mechanism of force-
induced cis to trans isomerization of the prolyl−peptide bond
with QM/MM FCMD simulations. Tensile force releases the
partial double bond and converts it to a single bond, rather like

Figure 4. (A) Representative snapshots from the QM/MM trajectory
at F = 3 nN, exemplifying cis, transition (TS), and trans state. (B)
Distance of Cα atoms of Ala2 and Pro3 (dCαCα) plotted versus the
torsion angle of the peptide bond between Ala2 and Pro3 (ωAla−Pro).
(C) Length of the peptide bond between Ala2 and Pro3 (dCN) plotted
versus ωAla−Pro. (D) Volume VNCCαCδ of the tetrahedron defined by the
atoms C (of Ala2), N, Cα , and Cδ (of Pro3) plotted versus ωAla−Pro.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3042846 | J. Phys. Chem. B 2012, 116, 9346−9351934950



a clutch. Isomerization (rotation around the peptide bond) can
then occur, and afterward the ‘clutch’ closes and the partial
double bond reforms. In quantitative agreement with experi-
ments, force increases the isomerization rate. One important
factor for the force-induced acceleration is a lengthening of the
reactive C−N bond by force toward the single-bond character
of the transition state.
A previously discussed mechanism for the cis to trans

isomerization in equilibrium by Karplus and co-workers is
based on the interaction of a downstream amide hydrogen with
the free electron pair of the transition state nitrogen.5,8 Such a
mechanism is impossible in the stretched state of the peptide
under tensile force. Instead, force appears to take up the role of
the activating stimulus and stabilizes the transition state (the
change of bond order and hybridization) which allows for
isomerization. Another interesting observation of our study is
that the direction of the isomerization always proceeds from 0°
via 90° to 180°. Apparently, the chirality of the peptide in
combination with the strain along its length axis results in a
preferred rotation direction. The semiquantitative agreement of
our MM and QM/MM simulations on the lifetime−force
relation is of methodological interest. However, the limitations
of molecular mechanics become obvious when studying the
actual isomerization mechanism whose main features, the
changes of the bond order and the hybridization state, can only
be accounted for by electronic structure theory.
Our study demonstrates that cis to trans isomerization can be

triggered by mechanical force. It contributes to an interpreta-
tion of experimental findings on the behavior of ELP under
tensile force.13 Our findings are of special relevance to the
purported regulatory role played by force-triggered cis to trans
isomerization of the prolyl−peptide bond, in which it acts as a
folding timer: in force-responsive proteins, cis prolyl−peptide
bonds can isomerize to the trans state and hinder refolding
until spontaneous isomerization returns it to the original state.
We note that our results suggest only a minor acceleration of
the cis to trans isomerization (by a factor of less than 10) at
physiological forces of less than a few 100 pN. Nevertheless, if
isomerization is a rate-limiting step for protein folding, tensile
forces can tune the competition between proline isomerization
and folding, thereby potentially altering folding pathways. We
speculate that such a mechanism may be functionally important
for the blood protein VWF.

■ METHODS
The tetrameric peptide Ala1-Ala2-Pro3-Ala4 (AAPA) was
modeled in a type VIa β-turn conformation and immersed
within a cubic TIP4P31 water box. Classical MM MD
simulations were performed with Gromacs 3.3.132 and the
OPLS-AA force field,33 with an MD step size of 2 fs. Cut offs
were applied to van der Waals interactions, and the particle-
mesh Ewald method was used for long-range electrostatics.34

The simulations were carried out in an NPT ensemble coupling
to a Nose−́Hoover thermostat35,36 of 300 K and to a
Parinello−Rahman barostat of 1 atm.37 The initial system was
prepared by performing a free MD simulation in equilibrium
for 50 ns. Later, external stretching force was applied to the Cα
atoms of residues Ala1 and Ala4 (highlighted in Figure 1B). A
series of FCMD simulations38 was performed with constant
forces ranging from 0.1 to 3 nN; a list with all forces for which
cis to trans isomerization occurred can be found in Supporting
Information Table S1.

The combined QM/MM simulations under tension were
performed with Gromacs-3.3.132 and Gaussian03.39 As shown
in Figure 1B, the tetrapeptide AAPA was divided into a QM
region and a MM region by cutting the carbon−carbon bonds,
as the dashed line shows. The QM region with 16 atoms was
simulated with B3LYP/6-31G* hybrid density functional
theory40,41 as implemented in Gaussian03. The carbon−carbon
bonds connecting the QM and MM part were capped with
hydrogens for QM calculations.42,43 The QM part of the system
was modeled under a Coulomb field of all MM atoms. The
QM/MM FCMD simulations were carried out with constant
forces from 2 to 5 nN with an integration step size of 1 fs,
starting from a structure sampled from MM simulations at the
same force.

■ ASSOCIATED CONTENT
*S Supporting Information
Details of the simulation setups and results of the equilibrium
MD and pure MM FCMD simulations; brief analysis of the
pure MM equilibration MD simulation of AAPA; tables with
the lifetimes of cis states in pure MM and QM/MM FCMD
simulations; plot with dCN bond distances of the prolyl peptide
bond in the cis, trans, and transition state over a range of
applied forces; order parameters dCαCα , ωAla−Pro, dCN, and
VNCCαCδ of the prolyl peptide bond from a pure MM FCMD
simulation; exemplary structure files of the initial conformation,
extended cis conformation, and extended trans conformation of
Ala-Ala-Pro-Ala. This material is available free of charge via the
Internet at http://pubs.acs.org.
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Thromb. Haemost. 2009, 7, 2096−2105.
(19) Zhang, X.; Halvorsen, K.; Zhang, C.; Wong, W.; Springer, T.
Science 2009, 324, 1330.
(20) Fischer, S.; Michnick, S.; Karplus, M. Biochemistry 1993, 32,
13830−13837.
(21) Bell, G. I. Science 1978, 200, 618−627.
(22) Evans, E.; Ritchie, K. Biophys. J. 1997, 72, 1541−1555.
(23) Dudko, O.; Hummer, G.; Szabo, A. Phys. Rev. Lett. 2006, 96,
108101.
(24) Fischer, G.; Schmid, F. X. Biochemistry 1990, 29, 2205−2212.
(25) Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475−2532.
(26) Aliev, A.; Bhandal, S.; Murias, D. C. J. Phys. Chem. A 2009, 113,
10858−10865.
(27) Reimer, U.; Fischer, G. Biophys. Chem. 2002, 96, 203−212.
(28) Valiaev, A.; Lim, D.; Schmidler, S.; Clark, R.; Chilkoti, A.;
Zauscher, S. J. Am. Chem. Soc. 2008, 130, 10939−10946.
(29) Springer, T. A. J. Thromb. Haemost. 2011, 9, 130−143.
(30) Fischer, G. Chem. Soc. Rev. 2000, 29, 119−127.
(31) Jorgensen, W.; Jenson, C. J. Comput. Chem. 1998, 19, 1179−
1186.
(32) Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model. 2001, 7,
306−317.
(33) Jorgensen, W.; Ulmschneider, J.; Tirado-Rives, J. J. Phys. Chem.
B 2004, 108, 16264−16270.
(34) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089−10092.
(35) Hoover, W. Phys. Rev. A 1985, 31, 1695.
(36) Nose, S. Mol. Phys. 1984, 52, 255−268.
(37) Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182−7190.
(38) Grubmüller, H.; Heymann, B.; Tavan, P. Science 1996, 271, 997.
(39) Frisch, M. J.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.:
Wallingford, CT, 2004.
(40) Becke, A. J. Chem. Phys. 1993, 98, 5648−5652.
(41) Lee, C.; Yang, W.; Parr, R. Phys. Rev. B 1988, 37, 785.
(42) Field, M.; Bash, P.; Karplus, M. J. Comput. Chem. 1990, 11,
700−733.
(43) Groenhof, G.; Bouxin-Cademartory, M.; Hess, B.; de Visser, S.
P.; Berendsen, H. J. C.; Olivucci, M.; Mark, A. E.; Robb, M. A. J. Am.
Chem. Soc. 2004, 126, 4228−4233.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp3042846 | J. Phys. Chem. B 2012, 116, 9346−9351935152



2.3 Force-sensitive autoinhibition of the vonWillebrand factor
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1Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; 2Experimental Dermatology, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany; 3Department of Applied Experimental Biophysics, Institute of Biophysics,
Johannes Kepler University, Linz, Austria; 4Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany; and 5Theory Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

ABSTRACT Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets
at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage.
However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain un-
known. In this study, we describe, to our knowledge, a new force-sensory mechanism for VWF-platelet binding, which addresses
these questions, based on a combination of molecular dynamics (MD) simulations, atomic force microscopy (AFM), and micro-
fluidic experiments. Our MD simulations demonstrate that the VWF A2 domain targets a specific region at the VWF A1 domain,
corresponding to the binding site of the platelet glycoprotein Iba (GPIba) receptor, thereby causing its blockage. This implies
autoinhibition of the VWF for the binding of platelets mediated by the A1-A2 protein-protein interaction. During force-probe
MD simulations, a stretching force dissociated the A1A2 complex, thereby unblocking the GPIba binding site. Dissociation
was found to be coupled to the unfolding of the A2 domain, with dissociation predominantly occurring before exposure of the
cleavage site in A2, an observation that is supported by our AFM experiments. This suggests that the A2 domain prevents
platelet binding in a force-dependent manner, ensuring that VWF initiates hemostasis before inactivation by proteolytic
cleavage. Microfluidic experiments with an A2-deletion VWF mutant resulted in increased platelet binding, corroborating the
key autoinhibitory role of the A2 domain within VWF multimers. Overall, autoinhibition of VWF mediated by force-dependent
interdomain interactions offers the molecular basis for the shear-sensitive growth of VWF-platelet aggregates, and might be
similarly involved in shear-induced VWF self-aggregation and other force-sensing functions in hemostasis.

INTRODUCTION

Von Willebrand Factor (VWF) is a giant extracellular pro-
tein playing a key adhesive role in blood clotting. Activated
by shear-stress, this protein cross-links the extracellular
matrix of the endothelium with blood platelets, at sites
of vascular injury (1,2). It efficiently participates in the
shear-induced reversible formation of biopolymer-colloid
aggregates (3), and its malfunction leads to pathological
bleeding and thromboembolic disorders (1).

Functional VWF is a linear multimer of tens of covalently
linkedmonomers (4), extending up to 15mm (5). Eachmono-
mer,with a length of 60 to 80 nm (2,6), comprises 2050 amino
acids in domains of few nm in size (7). The large size in the
mm range enables VWF multimers to sense changes in the
shear flow of blood and to translate them into a mechanical
stretching force along the protein chain (5,8,9). Shear-forces,
by inducing a tumbling motion alternating between globular
and extended states, facilitate the adhesion of VWF to the
extracellular matrix (5,10) and to flowing platelets (3).

The VWF A1 and A2 domains are critical for the activa-
tion of VWF to bind platelets and for its deactivation by
size control. These two domains are adjacent to each other
and connected by a linker of ! 30 amino acids (Fig. 1 A).
X-ray crystallography revealed that both domains adopt a
stable Rossmann a/b-fold (11,12), stabilized by calcium
in the case of A2 (13,14). Platelets bind through the glyco-
protein Iba (GPIba) to a region of the A1 domain (15,16),
in a shear-dependent manner (17–21). For size control, the
A2 domain is cleaved by the metalloprotease ADAMTS13
(22), after exposure of the Y1605-M1606 (YM) cleavage
site, because of shear-induced domain unfolding (23–27).

Under equilibrium or under low shear-stress conditions,
VWF is incapable of binding platelets. This inactivation
has been associated with a shielding of the GPIba binding
site of A1. Recent experiments revealed that, in addition
to the D’D3 domains (28) and the linker connecting them
to the A1 domain (29), isolated A2 domains modulate
glycoprotein Ib (and thereby platelet) binding (30,31). How-
ever, electron microscopy (EM) images established the sep-
aration between these two domains, within the same VWF
molecule, from 4.4 to 11 nm (6), challenging the inhibitory
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role of A2 on A1. Hence, little is known on how these two
domains interact with each other, causing inhibition, and
how sensitive this interaction is to shear-forces in flowing
blood. It also remains unclear how VWF activation, through
the release of the GPIba binding site, and VWF deactivation,

through unfolding of the A2 domain, are mechanically
regulated to balance the propagation and attenuation of
hemostasis. We addressed these questions by performing
molecular dynamics (MD) simulations of the VWF A1 and
A2 domains, under equilibrium and force-probe conditions,
together with molecular docking calculations, atomic force
microscopy (AFM) binding measurements, and microfluidic
experiments. To our knowledge, our results suggest a novel
mechanism for shear-dependent primary hemostasis,
involving a force-sensitive autoinhibition state, in which
platelets are incapable to bind to VWF because of direct
(intra- or intermolecular) A1-A2 interactions precluding
the A1-GPIba interaction.

MATERIALS AND METHODS

Equilibrium MD simulations

In the first simulation system, the A1 and A2 domains of the VWF were
not covalently connected by their interdomain linker. They were either
initially separated by distances from 6.1 to 8.6 nm to monitor association
or already bound in conformations blocking the GPIba binding site
(obtained by docking, see below) for refinement. The second simulation
system corresponded to the VWF-A1A2 fragment consisting of the A1
and A2 domains connected by a 30 amino acid linker, with an initial in-
terdomain separation of 7.9 nm based on EM estimates (6). The most pre-
dominantly found sugars in the VWF glycome (32,33) were attached to
the protein (Fig. 1 A and Fig. S1 in the Supporting Material). Simulations
were carried out with the GROMACS package (4.5 version) (34–36).
Sixteen or 17 runs, considering multiple interdomain initial orientations,
were performed for each condition (R 82 ns per run) yielding a concate-
nated simulated time of 4.86 ms. The GPIba binding site accessible
surface (GPIba-BS-AS) was computed by monitoring the amount of
exposed surface of the GPIba binding site in the A1 domain. A principal
component analysis (PCA), consisting in the calculation and diagonaliza-
tion of the covariance matrix of the atomic coordinates (37), was em-
ployed to monitor the interdomain orientations (Fig. 2). The solvent
accessible hydrophobic surface (SAHS) reduction was estimated as
[SAHS(A1A2) " SAHS(A1) " SAHS(A2)]/[SAHS(A1) þ SAHS(A2),
computing separately the surface for the complex (A1A2) and for the
domains A1 and A2.

Force-probe MD simulations

The A1 and A2 domains of the VWF were subjected to external harmonic
forces on the N-terminus of the A1 domain and on the C terminus of
the A2 domain (Fig. 3 A). Harmonic springs (with elastic constants of
500 kJmol–1nm–2) were attached to these termini and moved away from
each other at a speed of 0.2 m/s. These simulations were started from 17
different starting conformations: one was extracted from an equilibrium
MD run showing spontaneous binding (run number eight in Fig. 1 C) and
the remaining 16 corresponded to representative conformations of the equi-
librium simulations of the VWF-A1A2 complex (one conformation taken
from each run presented in Fig. 2 A). Hence, starting conformations with
high but also moderate stability were considered. The two monomers
were not connected, first, to resemble dissociation of the A1-A2 complex
either within or across VWF monomers (preventing from possible artifacts
by the inclusion of the flexible linker for which the structure is unknown),
and second, to have a direct comparison with our AFM experiments (also
carried out with nonconnected domains, see below). Dissociation was
assigned to the moment when the interdomain number of contacts was
zero. Detachment of the A2-b5 strand from the core of the A2 domain

FIGURE 1 Blockage of the GPIba binding site in the VWF revealed by
MD simulations of the VWF A1 and A2 domains. (A) Scheme illustrating
the human VWF-A1A2 fragment (residues 1269 to 1670). The A1 and A2
domains are connected by a 30 residue linker (yellow). GPIba anchors
platelets to VWF by binding to the A1 domain. VWF size is controlled
by cleavage of the unfolded A2 domain by ADAMTS13. O-linked (cyan)
and N-linked sugars (N-sugars, orange) are found within the fragment.
(B) One of the multiple starting conformation used in the MD simulations
(protein as cartoon and surface and sugars as sticks). The domain-domain
center of mass (A1-A2) separation is indicated with the black arrow. (C)
A1-A2 separation along the concatenated MD simulation time. Gray lines
separate individual MD runs. The right plot shows the normalized histo-
gram of the A1-A2 separation. Conformations at the bottom show examples
with the two domains in contact (cartoon) contrasted to the region occupied
by GPIba when it binds to A1 (red surface), taken at the instants marked
with the red symbols. (D) GPIba binding site accessible surface (GPIba-
BS-AS) as a function of the A1-A2 separation (main panel) and its normal-
ized histogram (right plot), recovered from MD simulations. Reduced
GPIba-BS-AS values indicate blockage of the GPIba binding site. The
GPIba-BS-AS derived from the VWF A1-GPIba complex x-ray structure
(16) is depicted by the cyan line. The red symbols correspond to the confor-
mations shown in (C). To see this figure in color, go online.
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was monitored by measuring the distance between V1625-P1627 (at b5)
and V1604-Y1605 (at b4).

Molecular docking

To augment the MD-generated conformational ensemble of the VWF-
A1A2 complex, with a blocked GPIba binding site, we used molecular
docking. Two independent docking approaches, either using Patchdock
(38) with further refinement with Firedock (39) or using RosettaDock
(40) were considered. Starting conformations of the MD simulations with

the domains in contact were generated by Patchdock and Firedock (see
selection criterion in Fig. S3).

Cloning, expression, and purification of VWF
constructs

The cDNAs coding for either the full-length human VWF, or the A1, A2,
and A3 domain, the latter three with 6x His-tag, were cloned into the
mammalian expression vector pcDNA3 (41). DA1-VWF and DA2-VWF
mutants were obtained by deleting either the A1 or the A2 domain from
the full-length cDNA, by site-directed mutagenesis, employing the Quick-
Change kit (Stratagene, La Jolla, CA). All primers are available on request.
Recombinant expression of VWF constructs in HEK293-EBNA cells was
performed as described (42) and the His-tagged VWF domain constructs
were purified employing the His-Pur Ni-NTA Resin (Thermo Scientific,
Waltham, MA).

AFM

Force distance cycles (FDC) were acquired by approaching and retracting
the VWFA1 domain (C-terminally linked to the AFM cantilever by malei-
mide-polyethylene glycol (PEG)-NHS -mPN- molecules) to VWF A2 do-
mains (C-terminally immobilized on a mica surface by mPN linkers).
The disulfide bond Cys1272-Cys1458, connecting the N- and C terminus
of the A1 domain, ensured a high similarity of the pulling geometry in

FIGURE 2 Orientational preferences of the VWF-A1A2 complex in the
blocked state. (A) Principal component analysis (PCA) of the structures of
the not-covalently linked VWF-A1A2 complex, with the GPIba binding
site blocked, predicted by molecular docking, yielded two main collective
vectors (eig1 and eig2). MD trajectories (the last 50 ns) starting from these
structures were projected onto the two-dimensional (2D) space created by
these two vectors (projections in arbitrary units). Each dot, representing a
simulation snapshot, reflects an adopted interdomain orientation. Each
run is colored according to its interdomain potential interaction energy,
V, and average solvent accessible hydrophobic surface reduction, SAHSR
(see B). Representative orientations of runs with both high V and SAHSR
(enclosed by the red circle in B) are displayed (A1 domain, white; A2
domain, color; b3 strands, cartoon; A2 b6 strand, ribbon, and A2 C termi-
nus, sphere). The red arrows illustrate the change in orientation of A2 on
horizontal changes in the 2D-PCA space. (B) SAHSR as a function of V
(time-average5 standard deviation from the last 50 ns of each run). Colors
indicate the projection along a linear fit (black line), with both V and
SAHSR ranging from small (light green) to large (blue) values. To see
this figure in color, go online.

FIGURE 3 Force response of the VWF-A1A2 complex from force-probe
MD simulations. (A) The N-terminus (Nt) of the A1 domain and the C ter-
minus (Ct) of the A2 domain were pulled away from each other by har-
monic springs. The domains were initially in contact but not connected
by a linker (domains in cartoon and N-linked sugars in stick representa-
tion). (B) Snapshot illustrating a typical dissociation event of the
VWF-A1A2 complex induced by the applied force (same representation
as in A). Slight unfolding of the C-terminal part of the A2 domain was
observed. The disulfide bond Cys1272-Cys1458 (C-C) prevented the A1
domain from unfolding. (C) Cumulative dissociation events (from 17
runs) as a function of the distanceDe"e between the pulled N- and C termini
at the moment of dissociation. Here, DD ¼ De"e " De"eð0Þ, subtracting the
initial distance De"eð0Þ, is shown. The Y1605-M1606 (YM) ADAMTS13
cleavage site was exposed after separation of the A2 C-terminal b5 strand
from the core of the protein (event indicated by the dotted line). The black
circle corresponds to the dissociation event illustrated in (B). To see this
figure in color, go online.
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the force-probe MD simulations (pulling the N-terminus) and the AFM ex-
periments (pulling the C terminus). Binding events were discerned from
nonspecific adhesion by how much they differed in the approach and retrac-
tion force signals. To have an unbiased choice of binding events, FDC dis-
playing a characteristic worm-like-chain-type force signal, as well as FDC
not showing such behavior, were included for further analysis. To validate
specific binding, control experiments were carried out either in the presence
of 0.1 mg/ml soluble A2 domains or by replacing either the A1 or the A2
domain by VWF A3 domains. The latter case constitutes a critical control
experiment, because A3 is a protein domain that is in the vicinity of A1
and A2 in physiological conditions, and also has the Rossmann topology.
For each system, four cantilever tips were utilized. At least 1000 FDC
were recorded for each of the tips at a pulling speed of 600 nm/s.

The elongation L corresponded to the extension of the A1 and A2
domains, together with the ones of the mPN linkers and 3-aminopropyltrie-
thoxy silane (APTES) coating molecules. It was measured, during a binding
event, as the distance in which the attraction and retraction force-distance
curves differed minus the cantilever deflection CD (Fig. 4 A). In practice,
Lþ CD was measured by fitting a second-order polynomial to the force
curves, followed by the determination of the point in the retraction curve
where the force abruptly returned back to zero. The cantilever deflection
CD was determined as the applied stretching force F (extracted at the
moment of rupture during the FDC) divided by the actual spring constant

of the cantilever (30 pNnm–1). The expectation value of L (EV) was esti-
mated as EV ¼

P
iPiLi, with Pi the measured probability to have an elon-

gation of Li, summing over all the measured Li values. To account for the
size of the A1 domain and the mPN linkers, lA1 þ 2ll was subtracted to each
measured elongation L. The size of the A1 domain (lA1) was estimated as 2
' its radius of gyration (1.6 nm, derived from MD simulations of the iso-
lated A1 domain (43)). Aworm-like-chain model was employed to compute
the extension ll of the mPN linkers as a function of the force F. It reads as
follows:

FP

kBT
¼ 1

4

!
1" ll

lc

""2
" 1

4
þ ll
lc
;

where P is the persistence length (0.38 nm (44)), lc is the mPN linker con-
tour length (8.9 nm, considering 27 PEG units and 0.33 nm per unit), kB
is the Boltzmann constant, and T is the temperature. The cumulative distri-
butions of both the original elongation L and its theoretical reduction
(accounting for the size of A1 and linkers) were shown.

Microfluidic experiments

For distinct shear rate application, air-pressure driven microfluidic channels
were coated with recombinant wild-type VWF, DA2-VWF, or DA1-VWF.
For the functional characterization, the coated microfluidic channels were
mounted onto an inverted fluorescence microscope and perfused, as previ-
ously published (45), with wild-type VWF, VWF with the A2 domain
deleted, or VWF with the A1 domain deleted. Live cell fluorescence images
were taken and analyzed at shear rates in the range of 500 s–1 to 4000 s–1. To
track the motion of VWF-platelet fibers and aggregates, an image compo-
sition of 20 sequential frames (taken at a frequency of two frames/s) was
implemented. Increasing number of frames was considered for the compo-
sition (from one to all 20 frames), subtracting identical pixels among
frames. Dynamical monitoring allowed the exact determination of the crit-
ical shear rate for VWF-platelet fiber and aggregate formation.

See further details of the simulations and the experimental procedures in
the Supporting Material.

RESULTS

Blockage of the VWF GPIba binding site in A1
by A2

We first investigated whether the VWF A2 domain sponta-
neously binds to the A1 domain. To this end, we carried
out 17 independent 100 ns equilibrium MD simulations,
starting with these two domains separated by distances
(between their center of masses) from 6.1 to 8.6 nm and
adopting different orientations with respect to each other
(Fig. 1 B). The linker connecting the two domains was not
considered (in the following, this situation will be referred
as not connected domains). The two domains spontaneously
came into contact and remained stably bound in seven out of
17 simulation runs, as reflected by drops in their separation
to values smaller than 5 nm (Fig. 1 C).

We next analyzed if the GPIba binding site in the A1
domain was blocked upon binding of the A2 domain. We
quantified the amount of blockage by computing the GPIba
binding site accessible surface (GPIba-BS-AS) (Fig. 1 D).
The GPIba-BS-AS histogram recovered from our simula-
tions revealed a major peak close to the value estimated

FIGURE 4 Force response of the VWF-A1A2 complex from AFM. (A)
Typical approach-retraction force-distance profiles associated to no-binding
and binding events. The elongation L, of the A1 and A2 domains, together
with the mPN linkers and the 3-aminopropyltriethoxy silane coating mole-
cules, summed to the cantilever deflection (CD) was determined by the
difference between approach and retraction curves. (B) (1) Number of bind-
ing events between VWFA1 and A2 domains. A1 was connected to the tip
of the AFM cantilever (triangle) using malemide-PEG-NHS (mPN) linkers.
It was approached to and retracted from the surface carrying mPN-linked
A2 domains. Force-distance cycles presented in (A) correspond to this sit-
uation. (2–4) Number of binding events measured in control AFM experi-
ments, in which the A1 domain was blocked by soluble A2 domains (2), or
either the A2 domains on the surface (3) or the A1 domain connected to the
cantilever (4) were replaced by VWFA3 domain. (C) Cumulative distribu-
tion of L (black line) and its correction by subtracting the size of A1 and the
mPN linkers (gray area). Dotted line indicates the expectation value (EV)
of L. To see this figure in color, go online.
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from the x-ray structure of the VWF A1-GPIba complex
(16) (33.4 nm2), indicating no blockage. In addition, the his-
togram contained a tail extending to values smaller than
20 nm2, reflecting substantial blockage (of more than 40%
of the x-ray GPIba-BS-AS). Remarkably, blockage was
found correlated with the separation between domains,
with the GPIba binding site fully accessible (large GPIba-
BS-AS) only for large interdomain separations, whereas
completely blocked (small GPIba-BS-AS) when the A2
domain approached the A1 domain. Thus, from our simula-
tions, A2 binding to A1 implies blockage of the VWF-
GPIba interaction site.

We also tested the blockage of the GPIba binding site
within a VWF-A1A2 fragment, with the A1 and A2 do-
mains connected by the linker. We simulated the dynamics
of such fragment, in 16 independent MD runs of 82 to
100 ns, with initial interdomain separations (! 7.9 nm)
and linker extensions (! 6.0 nm) taken from EM estimates
(6) (Fig. S2 A). The fragment populated the lower range of
separations measured in the EM experiments (6) (Fig. S2 B).
Again, the MD-generated conformations included several
instances of direct A1-A2 interactions (Fig. S2 B). The pres-
ence and involvement of the O-linked glycosylated linker
now alleviated the strong correlation between A1-A2 bind-
ing and blockage of the GPIba binding site as observed for
not connected domains (Fig. S2 C).

Orientational preferences in the blocked state

Our simulations raised the question on the most-favorable
conformation of the two domains with GPIba binding
blocked. We addressed this by performing molecular dock-
ing followed by MD refinement. We generated a set of
conformations by docking the A2 domain to the A1
domain. From this set, we selected representative confor-
mations with both the GPIba binding site blocked and
high docking score as starting positions of 16 MD simula-
tions of 100 ns each (see Fig. S3 and the Supporting
Material for the selection criterion). Similar conformations
presenting blockage were predicted by two independent
docking approaches (Fig. S4). Furthermore, an enrichment
of blocked conformations over random conformations
was observed, because of their large interdomain shape
complementarity and favorable protein-protein interac-
tions, thus justifying our selection criterion of only
blocked and high-docking-score structures (Fig. S5 and
the Supporting Material).

During the simulations the domains remained bound
causing blockage, while maintaining their internal structure
almost intact (backbone root-mean-square deviation to the
initial structure below 1.5 Å for A1 and 2.3 Å for A2), but
accommodating with respect to each other in multiple orien-
tations. To capture the extent of stable blocking interdomain
orientations we carried out a PCA of the conformations
predicted by docking (yielding two main collective eigen-

vectors covering 68% of the possible interdomain orienta-
tions), followed by projections of the MD trajectories onto
the two-dimensional (2D) space generated by these two vec-
tors (Fig. 2 A). Furthermore, we narrowed the orientations to
those with high interdomain potential energy, V, and sub-
stantial solvent accessible hydrophobic surface reduction
(SAHSR) (Fig. 2 B). Remarkably, in all orientations with
large Vand SAHSR contributions, the A2 domain was found
directly obstructing the A1-domain b3 strand (the one con-
necting with GPIba (15,16)) and displaying only small
orientational deviations (small point clouds in the 2D-
PCA projections), indicating high structural integrity.
Within this preferred set of VWF-A1A2 complexes, the
A2 domain oriented in two main modes: either with its C
terminus in proximity to the A1 domain or—on ~180( rela-
tive rotation—with its b3 strand in proximity, almost form-
ing a stable interdomain b-sheet in the latter case (compare
top with bottom projections and snapshots in Fig. 2 A). The
residues Arg1668 and Asp1587, both in A2, were found to
strongly interact with A1: Arg1668, when the C terminus
was in proximity to A1, and Asp1587, when the b3-strand
was in vicinity. Destabilizing mutations Arg1668Asp and
Asp1587Lys are thus potential candidates to detect the
most favored conformation of the complex among the two
observed orientational modes. In addition, replacement of
Val1548 located directly at the b3 strand of A2, for instance
by a bulky polar residue such as serine or asparagine, would
further distort the orientational mode that features a quasi
interdomain b-sheet.

We validated the observed orientational preferences
by comparing this with our previous set of simulations
(Fig. S6). The docking-MD refined region was also
sampled during the MD simulations starting from separated
domains, with the A2 domain located directly in front of
the b3 strand of the A1 domain. However, the conforma-
tional ensemble in the blocked state was further broadened
presumably because of the sugars and also the linker
between A1 and A2.

VWF-A1A2 complex under force: activation
versus cleavage

Induced by shear-forces, the release of the GPIba binding
site in the A1 domain would allow platelet-binding
activation, whereas exposure of the YM catalytic site after
unfolding of the A2 domain would enable cleavage and
degradation. We studied how a stretching force balances
these two processes. For this purpose we performed 17
independent force-probe MD simulations, starting from a
diverse set of conformations of the two domains, not con-
nected, forming a complex, and with the GPIba binding
site obstructed (Fig. 3 A). We pulled the N-terminus
of the A1 domain and the C terminus of the A2
domain away from each other, until dissociation of the
complex (and thereby unblocking of the GPIba binding
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site) occurred (Fig. 3 B). The A2 domain slightly unfolded
in its C-terminal part, while the A1 domain remained
folded because of its Cys1272-Cys1458 disulfide bond
(Fig. 3 B).

We quantified the extent of unfolding of the C terminus of
the A2 domain by monitoring the increase in the distance be-
tween the pulled termini,De"e, with respect to the initial dis-
tanceDe"eð0Þ. Exposure of theYMcleavage site, as an initial
requirement for ADAMTS13 cleavage, occurred after the
detachment of the b5 strand (De"e " De"eð0Þx13:6 nm).
In comparison, dissociation of the fragment, as needed for
activation, occurred before YM exposure, in 15 of the 17
runs (88% of the cases) (Fig. 3 C).

We next probed the physical interaction between A1 and
A2 and the coupling between dissociation and unfolding, as
suggested by our simulations, at the single-molecule level
by using AFM (Fig. 4). FDC were acquired by approaching
the A1 domain (linked to the AFM cantilever) to A2 do-
mains (immobilized on a surface) and retracting it again.
A retracting force signal differing from the approaching
one, with an abrupt drop to zero at dissociation, was used
as an indicator for a binding event (Fig. 4 A). It was
observed in ~23% of the cycles (1 in Fig. 4 B). In contrast,
a substantially reduced number of binding events (less than
10%) was observed in the presence of soluble A2 domains,
presumably because of the blocking of the A1 domain at the
cantilever (2 in Fig. 4 B). As a control, reduction in the
number of binding events was also observed when replacing
either the A2 domains at the surface (3 in Fig. 4 B) or the
A1 domain at the cantilever (4 in Fig. 4 B) by VWF A3
domains. This implies that binding events are exclusively
through A1-A2 interactions, thus confirming the observa-
tion from our MD simulations and from previous binding as-
says (30) that the VWF A1 and A2 domains specifically
interact.

To further investigate the coupling between dissociation
of the VWF-A1A2 complex and unfolding of the A2
domain, we measured the elongation of the complex
(together with linkers and coating molecules) before disso-
ciation by AFM (Fig. 4 C). The measured expectation
value of the elongation (~28 nm) was substantially lower
than the extension of a fully stretched unfolded A2 domain
(~80 nm (23–27)). In fact, in all FDC, the elongation
remained below those levels of extension. Although the
noise in the length distribution is expected to be large
because of the tip and surface chemistry, our AFM data
speak against full unfolding of A2 before dissociation.
Instead, it suggests a small extent of unfolding of A2
before dissociation.

Functional characteristics of VWF with the A2
domain deleted in shear-induced fiber formation

We next examined if the A2 domain inhibits VWF-platelet
binding in a shear-dependent manner, by performing micro-

fluidic experiments, in wild-type VWF-coated channels,
under replacement of the plasmatic wild-type VWF by re-
combinant VWF with the A2 domain deleted (DA2-
VWF), and in a wide shear range. In the presence of
wild-type VWF in the perfusion medium, above a critical
shear rate of 4000 s–1, large aggregates of VWF and plate-
lets were observed to roll along the surface coated with
VWF (Fig. 5, top right). At lower shear rates, rolling
VWF-platelet aggregates were absent. Here, we only
observed either rolling of single platelets along the micro-
fluidic channel (at 500 s–1, Fig. 5, top left) or reversibly
formed platelet-decorated VWF fibers, which stayed
attached to the channel surface (at 2500 s–1, Fig. 5, top mid-
dle). Instead, in the presence of DA2-VWF in the perfusion
medium, the critical shear rate for rolling aggregate forma-
tion was decreased to 2500 s–1, indicating a gain of function
for the VWF by deletion of its A2 domain (Fig. 5, middle,
and Movie S1). Identical results were obtained using
DA2-VWF instead of wild-type VWF for coating of the
microfluidic channels (data not shown). In a multimer anal-
ysis, similar VWF size distributions were observed for the
mutants and for the wild-type VWF, just slightly shifted
down because of the deletions in the mutant proteins
(Fig. S7). Changes in the VWF distribution size are thus
discarded as the reason for the gain in function of the
DA2-VWF mutant. As expected, neither fibers nor VWF-
platelet aggregates were formed in the presence of VWF
with an A1-domain deletion (Fig. 5, bottom). Furthermore,
coating with DA1-VWF led to a complete absence of
both single platelet rolling and the formation of rolling

FIGURE 5 Changes in shear-induced fiber and aggregate formation on
deletion of the VWF A2 domain. Live-cell fluorescence images of
platelet-decorated VWF fibers and platelet-VWF aggregates observed in
microfluidic experiments at the indicated shear rates (different columns).
Microfluidic channels were perfused with plasmatic wild-type VWF (wt-
VWF, top row), VWF with the A2 domain deleted (DA2-VWF, middle
row), or VWF with the A1 domain deleted (DA1-VWF, bottom row). A
static image is presented as background, displaying platelets, fibers, and ag-
gregates in black. Moving fibers and aggregates are highlighted in color.
Their positions were tracked during 10 s after taking the static image.
Flow direction is indicated with the arrow and the line corresponds to
100 mm. To see this figure in color, go online.
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VWF-platelet aggregates independent of the VWF present
in the perfusion medium.

DISCUSSION

Blockage of the GPIba binding site mediated by
A1-A2 interactions implies autoinhibition

Our extensive set of simulations (in the ms time range) dem-
onstrates that the GPIba binding site of VWF (located in the
A1 domain) can be significantly blocked, upon spontaneous
binding of the A2 to the A1 domain (Fig. 1). In addition, the
binding of these two domains was further confirmed at the
single-molecule level by AFM (Fig. 4). The increase in
blockage with reducing interdomain separation observed
in our simulations suggests that the A2 domain does not
recognize a random region in the A1 domain but instead it
specifically targets the GPIba binding site. This observation
was further supported by our docking calculations, which
showed enrichment toward blocked conformations over
random conformations, by enhanced shape complemen-
tarity and favorable protein-protein interactions (Fig. S5).
With the GPIba binding site blocked, platelets are prevented
to bind and thus the VWF remains inactive. Our results,
together with the experimentally observed platelet-binding
modulation in the presence of A2 domains (30), thus imply
an autoinhibition mechanism for the binding of platelets to
the VWF mediated by A1-A2 interactions.

Additional simulations, this time with the two domains
connected (also in the ms time range), revealed broad dy-
namics of the VWF-A1A2 fragment (Fig. S2). Although
the A2 domain (bound to the A1 domain) was sometimes
observed causing no shielding, presumably stabilized by
the connecting linker, it was also found in many other times
substantially blocking the GPIba binding site. This indi-
cates that not only not connected, but also vicinal, cova-
lently linked, A1 and A2 domains can interact with each
other causing blockage, further supporting the hypothesis
of VWF autoinhibition because of A1-A2 interactions.

Our simulations of connected domains sampled a range
from compact to extended conformations, covering the lower
region of the interdomain separationsmeasured byEM(6). In
fact, compact conformations are expected from a direct A1-
A2 interaction, as established in previous assays (30) and
confirmed in our AFM experiments. Also, the presence of a
third domain (e.g., D’D3 or A3) or deposition on the surface
may favor more extended conformations in the EM experi-
ments compared with the ones sampled in our simulations.

Autoinhibition driven by A1-A2 interactions provides a
molecular picture of the shielding of the GPIba (platelet)
binding site, crucial to maintain the VWF inactive under
equilibrium conditions. This is a complementary scenario
to previous shear-dependent models (18,20) for GPIba
binding, but is the only one reconciling previous inactiva-
tion experiments (30).

Main orientational modes of the autoinhibited
state

From our simulations, the minimum structural requirement
to block GPIba binding is to have A1-A2 binding and this
is effectively achieved by the A2 domain specifically target-
ing the GPIba binding site in A1. Our docking calculations
and further extensive MD refinement narrowed the interdo-
main conformational variability to two main orientational
modes of blockage, stabilized by an attractive interdomain
potential energy and a reduction in the amount of solvent
accessible hydrophobic surface (Fig. 2). A2 located either
with its C terminus or with its b3 strand in proximity to
the b3 strand of A1, resulting in a quasi-extended cross-
domain b-sheet in the latter case. Notably, as a general
feature, the A2 domain obstructs the A1-domain b3 strand
(which connects to GPIba (15,16)), thus suggesting drastic
VWF autoinhibition. Direct blockage of the main interac-
tion partner of GPIba in the A1 domain (the b3 strand)
was also observed in our simulations started from unbiased
positions, with the domains separated, further supporting
our proposed mode of autoinhibition. In addition, the agree-
ment between our force-probe MD simulations and AFM
experiments (see below) stresses on the validity of the cho-
sen conformations from docking, followed by MD refine-
ment, and the robustness of the MD simulation results.
Our structural predictions are anticipated to motivate future
structural studies aiming at determining the structure of
the A1-A2 complex, in the nonconnected and connected
situations, both of physiological relevance. Mutants
Arg1668Asp, Asp1587Lys, and Val1548Ser(Asn) may serve
as initial candidates for mutagenesis studies to discern
among the two proposed modes of blockage.

In the simulations started from separated domains, addi-
tional blocking orientations were observed. Here, the pres-
ence of the N-linked sugars or the O-glycosylated linker
may also play stabilization roles. An additional stabilization
of the blocked (autoinhibited) state of the VWF by the
sugars is consistent with recent microfluidic experiments
that showed an increase in platelet adhesion when the
VWF was N-deglycosylated (46).

Force unblocks the GPIba-binding site before
exposure of the ADAMTS13 cleavage site,
ensuring VWF activation before cleavage

In our force-probe simulations, we induced the dissociation
of the complex formed by the A1 and A2 domains by
applying an external stretching force. In complex, the
VWF A2 domain showed only marginal unfolding, which
proceeded from the C terminus, in line with the unfolding
mechanism previously observed for this domain in isolation
(with different force fields) (23,47). Dissociation was found
to occur before exposure of the ADAMTS13 cleavage site in
the A2 domain with a very high probability (~0.88) (Fig. 3).
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This is consistent with our AFM measurements, which
yielded in the majority of the binding events small elonga-
tions of the VWF-A1A2 complex at rupture (Fig. 4). Our
simulations and AFM thus support that a stretching force
unblocks the GPIba-binding site, by detaching the A1 and
A2 domains, and that this process is coupled to the exposure
of the ADAMTS13 cleavage site in the A2 domain after its
unfolding. The stretching force ensures, however, that the
VWF is activated for platelet binding predominantly before
deactivation through cleavage. In this respect, the interac-
tions between A1 and A2 may also serve to clarify the
role of ristocetin, coupling platelet binding and ADAMTS13
cleavage (48).

Deletion of the A2 domain results in a VWF with a
gain of function

Our microfluidic experiments showed a reduction of the
critical shear-rate for the formation of VWF-platelet fibers
and rolling aggregates, when the A2 domain was deleted.
This implies a VWF with a gain in function (Fig. 5). Our re-
sults in consequence expand the experiments by Martin
et al. (30), proving that not only present in solution but
also within the VWF molecule, the A2 domain critically in-
fluences platelet binding in a shear-dependent manner. In
addition, our combined computational and experimental re-
sults suggest that the A2 domain stabilizes a VWF inactive
state, by direct A1-A2 interactions, either within or across
VWF monomers. However, additional inhibitory mecha-
nisms must be at play, because the DA2-VWF mutant still
requires intermediate shear rates for the formation of rolling
aggregates (2500 s–1 for DA2-VWF instead of 4000 s–1 for
the wild-type VWF). We speculate that the exposure of the
GPIba binding site requires both a global globule-to-stretch
transition, eventually involving other—specific or nonspe-
cific—domain-domain interactions (e.g., between D’D3
and A1 (28)), and VWF-A1A2 dissociation.

CONCLUSIONS

In this study, we examined the inactivation of VWF for
platelet binding, induced by a specific domain-domain inter-
action, and its coupling to VWF cleavage degradation driven
by force, by using MD simulations, molecular docking,
AFM, and microfluidic experiments. We demonstrate that
under equilibrium conditions the VWFA1 and A2 domains
bind to each other, with the A2 domain specifically targeting
the GPIba binding site in the A1 domain, thus blocking the
binding ofGPIba (and thereby of platelets) to VWF. This im-
plies autoinhibition of the VWFmediated by A1-A2 interac-
tions. We identified two main orientational blocking modes,
which have the shielding of the A1 b3 strand, the site critical
for GPIba binding, in common. Detachment of the two do-
mains, induced by a stretching force, unblocked the GPIba
binding site most predominantly before exposure of the

cleavage site in the A2 domain. This suggests that A2 blocks
GPIba binding in a force-dependent manner, but guarantee-
ing that the VWF is ready for activation before cleavage, to
mechanically balance the propagation and attenuation of he-
mostasis. Deletion of the A2 domain enhanced platelet bind-
ing, corroborating the key autoinhibition role of this domain.
In summary, our results suggest, to our knowledge, a new in-
terdomain-mediated autoinhibition mechanism that explains
the inactivation of VWF under equilibrium conditions while
allowing shear-sensitive growth of blood coagulates. This
mechanism reconciles previous and can be tested by future
experiments. It will be highly interesting to investigate if
this or other domain-domain interactions are a common reg-
ulatory mechanism, not only for the shear-sensitive binding
of VWF to its partners, but also potentially for the shear-
dependent self-aggregation of VWF.

SUPPORTING MATERIAL

Supporting Materials and Methods, seven figures, and one movie are avail-
able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)
00302-1.
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3.1 Going clean: Structure and dynamics of peptides in the gas
phase and paths to solvation
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1. Biomolecules in the gas phase

In spite of bearing little resemblance to biological environ-
ments, the experimental and theoretical study of biomolecules 
in the gas phase has been steadily gaining importance in the 
past decades, especially among physical scientists. Pioneer 
experimental studies starting in the late 90s encompassing all 
main groups of biomolecules [1–9] were able to show that 
much physical insight on structure formation and dynamics 
of these molecules can be gained from transfering them to 
the gas phase. The reason is that the gas phase offers clean 
conditions, under which theory and experiment can meet on 
equal footing and can follow a stepwise bottom-up approach 

towards the full complexity of the real biological environ-
ment. The reduced size of the systems allows their treatment 
with a range of theoretical methods that rely on approaches to 
solving the quantum mechanical Schrödinger equation, usu-
ally referred to as ‘first-principles’ methods. These methods 
are typically much more accurate than empirical models—but 
due to the intrinsic approximations in them, it is also a priori 
unclear how well they are actually able to describe the struc-
ture and dynamics of biomolecules in the gas phase. In this 
synergistic combination, experiments can serve as a bench-
mark for testing how appropriate the theoretical treatment of 
these complex systems is, while theory can be employed to 
give a physical interpretation to experiments.

In this review, we give a brief survey of the current state of 
the field regarding the study of, in particular, peptides in the 
gas phase. We focus on the theoretical side of this field, sum-
marizing what is the current state-of-the-art with respect to 
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accuracy of such calculations, the systems sizes they can treat, 
what is their predictive power, and where there is room for 
improvement—basing a good portion of it on works in which 
the authors were involved. We also give special attention to 
the dynamical nature of these molecules, and the importance 
of grasping at least local entropic, anharmonic and tempera-
ture effects. There will be less of a focus on long time scale 
dynamics of these molecules, which involve large conforma-
tional rearrangements (e.g. folding). We choose to concentrate 
on local dynamics because these span time scales currently 
accessible to first principles potentials. Also they can be con-
nected to most state-of-the-art experiments available in the 
literature for medium-sized peptides.

1.1. Polymeric biomolecules in the gas phase

There are three main classes of biomolecular oligomers and 
polymers, namely peptides and proteins (see figure 1), nucleic 
acids (figure 2(A)) and carbohydrates (figure 2(B)). Below 
we briefly describe each of them, with a stronger focus on 
peptides and proteins, which will be the main subject of this 
review.

Peptides and proteins make up the machinery of life and 
are involved in virtually all of its manifestations, from compa-
rably small signaling peptides to gigantic protein complexes. 
A peptide or protein is a linear chain (oligomer) of amino 
acids (residues) that are linked by so-called peptide bonds (see 
figure 1, top). Peptide bonds are formed between the amino 

group and carboxylic acid group of two building blocks. 
In addition, amino acids carry a side chain ‘R’ of differing 
chemical functionality. The sequence of the different amino 
acid side chains R is called primary structure and defines the 
structure and dynamics of the peptide or protein. Oligomers 
beyond a certain length (from about 50 amino acids on) that 
are able to form distinct structural motifs are called proteins. 
Structure formation at the level of peptides (secondary struc-
ture) is mainly dependent on the conformational properties 
of the monomers and backbone hydrogen bonding. In larger 
oligomers, i.e. in proteins, side chain interactions and pack-
ing gain importance and govern tertiary structure formation. 
These larger proteins or even complexes thereof can be stud-
ied in isolation as well (see, for example, a recent review by 
Carol Robinson [11]).

Among other biological functions, nucleic acids are the 
carriers of genetic information. In an organism, a sequence 
of nucleotides in deoxyribose nucleic acids (DNA) can be 
transcribed into ribose nucleic acids (RNA) that then serves 
as template for the stepwise linkage of the amino acids into 
peptide or protein chain. They feature a sugar-phosphate 
backbone with nucleobases connected to the (deoxy)ribose 
moieties (see figure 2(A) for a pictorial representation of the 
different groups). Structure formation is mainly triggered via 
intermolecular hydrogen bonding between specific pairs of 
bases (base pairing) in case of DNA or intramolecular base 
pairing in case of RNA. A recent review by Abi-Ghanem and 
Gabelica [12] may serve as an entry point to the literature 

Figure 1. Overview over the structure levels of proteins with the chemical structure of a peptide chain, periodic and aperiodic secondary 
structure elements, and an example of a tertiary protein fold. The three-dimensional structure examples are taken from PDB-ID 3PPY [10]. 
Copyright 2011 American Society & Haematology.
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about nucleic acids in the gas phase. Arcella et al [13] inves-
tigate DNA in the gas phase by combining ion-mobility mass 
spectrometry and extensive classical molecular dynamics 
(MD) and ab initio molecular dynamics (AIMD) simulations. 
They describe rich dynamics of DNA that quickly looses 
memory of its solution structure in the gas phase and explores 
a large conformational space. Of special interest is the obser-
vation of protons hopping between phosphates of the DNA 
backbone that was seen in AIMD simulations.

Polymeric carbohydrates serve as nutrition and energy 
source or as structural scaffolds. They can also be linked to 
proteins acting as recognition molecules and possibly play-
ing a role in protein folding. Most of the known carbohy-
drates are composed of around 20 different monosaccharide 
units connected to each other by what is called the glycosidic 
bond or linkage (see figure 2(B)). In contrast to the backbone 
of peptides or the backbone of nucleic acids, carbohydrates 
are not necessarily composed as a linear chain. The building 
blocks have one donor (the anomeric C) but multiple accep-
tors for glycosidic bonds, such that branched structures can 
be realized. In addition, due to chirality, glycosidic bonds can 
be formed in two chiral (enantiomeric) forms (α or β). These 
contributions result in a diversity of possible topologies of car-
bohydrates that surpasses the number of possible sequences in 
nucleic acids and peptides by orders of magnitude, even with 
relatively small numbers of building blocks [14]. The signifi-
cant conformational degrees of freedom are rotations around 
the single bonds of the glycosidic linkages and the conforma-
tion of the monosaccharide rings.

The main focus in this review will be on secondary struc-
ture stabilization and dynamics in peptides containing from a 
few to some tens of amino acids. These motifs are shown in 
figure 1. Briefly there are three main elements of secondary 
structure, namely, helices, pleated-sheets, and turns. The turns 
are regarded as non-periodic motifs, while helices and sheets 
are regarded as periodic, in the sense that a repeating unit can 
be defined, allowing for a characterization based on pairs of 
torsional angles. The nomenclature given to the helices depend 

on the hydrogen bonding pattern that arise from their consti-
tuting residues (amino acids). The most famous types, the α 
and the 310 helices are characterized by H-bonds between resi-
due i to i  +  4 and residue i to i  +  3, respectively. Sheets are 
also stabilized by backbone H bonds and can be characterized 
as parallel and anti-parallel depending on the relative orienta-
tion of their peptide chains. Finally, turns are necessary motifs 
to reverse the propagation of sheets and helices, so that com-
pact structures can be formed. It is not necessary for a H-bond 
to form in order for the motif to be characterized as a turn, but 
many do form through the formation of H-bonds. The most 
common type is known as the β turn. Turns cause a complete 
reversal of the direction of structure propogation.

1.2. Experimental techniques probing conformation and 
dynamics in the gas phase

The study of (bio)molecules in the gas phase has become 
more popular in the past decades mainly due to the devel-
opment of experimental techniques in the late eighties, that 
can gently transfer intact biomolecules to the gas phase, like 
MALDI (matrix-assisted laser-desorption ionization [15]) 
and ESI (electro-spray ionization [16]), in combination with 
high-accuracy mass spectrometers [17, 18] or in molecular 
beams [19].

When dealing with peptides, it is possible to isolate sec-
ondary structure motifs in the gas phase, so that their ‘unper-
turbed’ energy landscape and stabilizing intermolecular 
interactions can be carefully studied. The environmental 
effects can then be added in a controlled way, for example by 
the stepwise addition of water molecules to the polypeptide 
or by adding ions to the complexes. At the same time, these 
clean experiments in the gas phase allow to benchmark theo-
retical methods, at system sizes that can be treated in a fully 
first-principles manner. There is much debate as to how bio-
logically relevant the study of biomolecules in the gas phase 
actually is [20–22], since it is to be expected that due to the 
lack of solvent and hydrophobic/hydrophilic interactions one 

Figure 2. Schematic representations of (A) nucleic acids and (B) carbohydrates.
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can actually stabilize different conformations in the gas phase. 
From a more physical perspective, it is undeniable though that 
in these experiments much insight about the fundamental sta-
bilizing interactions can be gained, also encompassing what 
is the role of the protonation state and the first shells of sol-
vation, or the interaction with only ions, ions and water, etc. 
This understanding can be certainly transferred to the more 
complex biological environment.

There are several reviews about studies of biomolecules 
(peptides, proteins, sugars, etc) in the gas phase in the litera-
ture, from which we highlight only a few for the interested 
reader, namely [1–3, 6, 8, 9, 18, 20–25]. Below we give a brief 
overview of the main experimental techniques that yield quan-
tities which can be connected to theoretical calculations that 
we will review in the next sections.

1.2.1. Ion mobility-mass spectrometry. 
Mass spectrometry (MS) is a powerful gas-phase experimen-
tal technique that separates ionic clusters or molecular ions 
based on their mass-to-charge ratio (m/z). With ion mobility 
(IM), or gas chromatography, charged molecules and clusters 
can be separated according to their different mobility in a buf-
fer gas. Especially the combination of both techniques, ion 
mobility-mass spectrometry (IM-MS), first accomplished in 
1962, [26] can allow for the separation and characterization of 
mixtures of compounds or conformers that would otherwise 
not be distinguishable. In the context of this review, we focus 
especially on the ability of IM-MS to investigate structural 
and dynamical properties of peptides.

In IM-MS experiments, an electric field drags the ions 
through a drift tube of a certain length. This drift tube is filled 
with a buffer gas (often He or N2) and collisions between 
buffer gas and ions slow down the ions depending on their 
shape and size. As a result, an arrival-time distribution (ATD) 
of m/z selected ions is measured by a detector, as sketched in 
figure 3. The arrival times can be transformed into collision 
cross sections (CCSs) by the Mason–Schamp equation [27]

⎛
⎝⎜

⎞
⎠⎟

π
µ

= ze
N k T K

CCS
3
16

2 1
,

B

1
2

0

 (1)

where ze refers to the net charge of the system, µ is the reduced 
mass of the ion and the buffer-gas particles (usually He 
atoms), and kB is Boltzmann’s constant. The reduced mobility 
K0 is the proportionality constant that relates drift velocity vd 

and the electric field E of the apparatus following the relation 
=v K Ed 0 . The resulting CCS is a geometrical property of the 

molecule and it is ideally independent of the apparatus used.
A few examples of the use of IM-MS experiments to study 

structure and dynamics of peptides in the gas phase are

  Jarrold and coworkers have developed a high-temperature 
drift-tube instrument and studied polyalanine helices in 
the gas phase from room temperature to 725 K [28]. 
The surprising finding is that helical structures can 
be observed still at these high temperatures for the 
peptide Ac-Ala15-Lys(H+ ). Tkatchenko et al identified 
van der Waals (vdW) interactions as the crucial stabilizing 
contribution in DFT-based molecular dynamics simula-
tions [29], being essential to explain the high temperature 
stability of the helical structure observed in experiment.

  Based on ion-mobility measurements, Shelimov and 
Jarrold were able to show the unfolding and refolding 
of Cytochrome C in vacuum [30]. The folded versus 
unfolded state is linked to different charge states with a 
folded to unfolded transition between charge states  +5 
and  +7.

  By using a combination of IM-MS and MD simulation, 
von Helden and co-workers studied different combinations 
of cis/trans isomerization states of prolyl peptide bonds of 
ubiquitin [31]. CCS measurements and computations are 
sensitive enough to reveal the cis or trans conformation of 
a single peptide bond in a biological macromolecule.

  The group of Clemmer has played a leading role in 
devising drift-tube apparatus using them to investigate 
different kinetically-trapped conformations of, for 
example, Bradykinin [32, 33].

  Russel and co-workers have used a cryogenic drift tube 
at 80 K to investigate the structures of singly-protonated 
water clusters [34]. They were able to measure small 
(1–30 water molecules) and large clusters (31 up to about 
120 water molecules) and to assign changes of H bonding 
upon loss of single water molecules from the clusters.

1.2.2. Vibrational spectroscopy. The low concentration of 
molecules in the gas phase renders it difficult to obtain vibra-
tional spectra through absorption spectroscopy, the technique 
commonly used in the condensed phase. Instead, in what is 
called action spectroscopy, an intense tunable laser that acts on 
a comparably small number of molecules. When a resonance 

Figure 3. Schematic representation of an ion mobility spectrometry experiment.
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is encountered, due to the absorption of single or multiple 
photons, the sample dissociates or fragments and detection 
via mass spectrometry is possible. One can detect either the 
fragments or the depletion of the molecular beam. At this 
point, two types of action spectroscopy can be performed. 
One technique, commonly called infrared photo-dissociation 
IRPD (sketched in figure 4(A)), is usually performed at lower 
temperatures and uses inert tags (e.g. H2, Ar, Ne, etc) on the 
target molecule that are released after the absorption of one 
or very few photons, due to the low binding energy of the tag. 
Another technique, called infrared multiple-photon dissocia-
tion IRMPD (sketched in figure 4(B)) does not use any tag and 
simply measures the fragmentation of whole molecules due to 
the sequential absorption of at least a few tens of photons. For 
detailed reviews of the experimental techniques, we point the 
reader to [18, 23, 35, 36].

In both action spectroscopy techniques mentioned above, 
non-linear effects can arise due to the absorption of more 
than one photon. Therefore, different from absorption spec-
troscopy where the spectra can be safely approximated by 
a linear response theory, here it is not a priori clear that the 
vibrational spectra measured in this manner will allow a lin-
ear response modelling. Especially for IRMPD, where indeed 
many photons are absorbed sequentially, causing induced 
and spontaneous emission as well as energy redistribution 
among vibrational modes, it is clear that a linear response 
approximation may fail. It has been shown that while the line 
shape and intensity of the peaks can be strongly influenced by 
these non-linear absorption effects, the peak positions usu-
ally follow the ones calculated by linear response [37, 38] 
with slight red-shifts due to anharmonicities. In certain sys-
tems, it is found in particular, for lower frequencies below 
1200 cm−1, some peaks are transparent to IRMPD (but not 
to IRPD), as was shown by the group of Asmis for microhy-
drated nitrate-nitric acid clusters [39] and bisulfate/sulfuric 
acid/water clusters [40]. The reason they propose is that the 
absorption of photons disrupts the hydrogen bond network of 
these systems and causes the modes to go out of resonance 
with the frequency of the laser. More specific comparisons 
regarding theoretical modeling and experimental IR spectra 
will be given in section 4.2.

In the experimental studies, several different parts of the 
vibrational spectra can be probed, which are sensitive to dif-
ferent conformational properties: (i) The amide A/B regions, 
comprising localized CH and NH stretch vibrations above ≈

2500 cm−1, sensitive to the H-bonding pattern; (ii) the amide 
I (mainly collective CO stretch vibrations), amide II (mainly 
collective NH bend vibrations), and amide III (collective and 
localised CH and CN bend vibrations) regions between 2000 
and 800 cm−1, sensitive to backbone conformation; and (iii) 
the ‘far-infrared’ region, below 800 cm−1, which contains col-
lective vibrations and is also sensitive to backbone conforma-
tion. While much focus has been given to the amide A/B and 
amide I and II regions in most studies, attention has been called 
to the amide III region in mid-sized polypeptides [41, 42] and 
to the far-infrared region in small polypeptides [43] as regions 
that can be used to differentiate conformations, if anharmonici-
ties of the potential-energy surface are taken into account. As 
an illustration, we show these regions and the harmonic normal 
modes of vibrations calculated with the PBE exchange correla-
tion functional for the formamide molecule in figure 5.

Gas phase investigations can be used to study distinct 
aspects of protein secondary structure, peptide bond proper-
ties, and aspects of microsolvation. In the following we dis-
cuss a few outstanding examples:

  Tanabe et al have used UV/IR pump-probe experiments 
on clusters of acetanilide and water to investigate the 
motion of a single water molecule from the hydrogen 
bond acceptor (CO group) to the hydrogen bond donor 
(NH group) of a peptide bond [44].

  Gerhards and co-workers studied dimers of the short 
peptide Ac-Val-Tyr(Me)-NHMe in molecular beam 
experiments [45]. The combination of IR/UV double-
resonance spectroscopy and simulated vibrational spectra 
(harmonic, B3LYP/cc-pVDZ) identifies the formation of 
an anti-parallel β sheet-like structure. The study shows 
that sheet-formation can be regarded as an intrinsic trend 
of peptides that is not necessarily linked to aqueous  
solution.

  The group of Rizzo has a long-standing experience in UV/
IR experiments on helical peptides Ac-Phe-Alan-LysH+ 
with a C terminal protonated Lys and a Phe residue as 
UV chromophore [46]. The helical pattern has been 
elucidated with a 15N labeling technique. The C terminal 
capping motif that is present in the longer helices with 

⩾n 5 has recently been shown to be present also in short 
peptides with n  =  1 [47]. These results confirm predic-
tions about the helix onset made by Rossi et al for very 
related systems [48]. These systems with the aromatic 

Figure 4. Vibrational action-spectroscopy techniques.
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Phe side chain are a challenge to theory and will be dis-
cussed further on in this review.

  Besides strands/sheets and helices, turns are the third 
main secondary structure motif in proteins. The group of 
Mons studied peptides Ac-Phe-NH2, Ac-Phe-Pro-NH2, 
and Ac-Pro-Phe-NH2 from supersonic molecular beams 
wit UV/IR double resonance spectroscopy [49]. The 
authors assign various turn types and indicate the depend-
ence of Phe conformations on the neighboring residues.

  Johnson and his group have most elegantly shown how 
gas-phase infrared spectroscopy of cold ionic complexes 
can be used to elucidate not only molecular structure, but 
also the way two molecules interact with each other [50]. 
They use site-specifically placed 13C labels as conforma-
tional reporters. Difference spectra between the distinctly 
labeled systems allow for structural investigations of a 
single peptide ion and also complex formation through 
binding to sodium cations or with other molecules.

  In order to directly estimate the energy barriers between 
different conformers, Zwier and co-workers developed a 
double resonance conformer selective pump and dump 
technique that excites molecules to a higher electronic 
level and then relaxes them back into a specific vibrational 
ground state [51]. With this approach the authors were able 
to reconstruct the potential-energy surface of tryptamine.

  Compagnon and coworkers have carried out seminal work 
on the FELIX free electron laser on peptides in the gas-
phase, for example looking at backbone preferences [52], 

internal proton transfer that can stabilize zwitterionic 
structures in the gas-phase [53], and microsolvation of 
amino acids [54]. More recently they have been looking 
at sugars in the gas phase [55], focusing especially on the 
issue of ‘anharmonicities in vibrational modes’.

  The group of Lisy has a body of work based on IRPD 
regarding the influence of charge due to the interaction 
with ‘metal ions and temperature’ on the conformational 
preferences of small biomolecules [56, 57].

  Vaden, Snoek, and coworkers have measured IRMPD 
spectra of a variety of peptides in the gas phase, also 
performing extensive structural searches involving den-
sity functional theory. They have, for example, studied 
the AlanH+ , n  =  3, 4, 5, 7 series of peptides [58] in the 
amide A/B region concluding that these peptides form 
mostly globular structures at larger sizes, despite the high 
propensity of the Ala amino acid to for helices. They 
have also looked at peptide sequences relevant to amyloid 
formation, showing that even if the isolated structure of 
Ac-VQIVYK-NHMe is folded, the simple interaction 
with another monomer in the gas phase seems be ener-
getically favorable enough to trigger a conformational 
change and ‘β-sheet aggregation’ [59].

Vibrational spectroscopy techniques can also be com-
bined with ion mobility-mass spectrometry. A first example 
of, in that case, electronic spectroscopy of mobility selected 
peptides was published by Rizzo and coworkers [60]. They 

Figure 5. Gas phase spectrum and normal modes of vibrations calculated with DFT-PBE functional for the formamide molecule. Amides I, 
II, III, and A/B regions are marked on top.
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use a field asymmetric waveform ion mobility spectrometry 
(FAIMS) setup combined with UV photofragment spectros-
copy in order to decompose the electronic spectrum of dou-
bly-protonated bradykinin in a conformer-specific manner. 
Also Voronina and Rizzo demonstrate how to use a combi-
nation of ion-mobility selection and cold-ion spectroscopy 
to study kinetically trapped conformers of triply-protonated 
bradykinin [61]. von Helden, Pagel, and co-workers have used 
ion mobility in order to separate conformers of protonated 
benzocaine and to record vibrational spectra [62].

The spectral resolution can be improved by measuring 
vibrational spectra of cold species. This can, for example, 
be realized in cold traps that are utilized in IR/UV double 
resonance experiments where changes of UV fragmentation 
yield are recorded as a function of IR excitations [63, 64]. 
Alternatively, ions can be embedded in liquid He nanodrop-
lets [65] and therewith cooled to an equilibrium temperature 
of about 0.4 K. Employing such a setup, von Helden and co-
workers have measured vibrational spectra of the short pep-
tide leucine-enkephalin [66].

2. Potential-energy surfaces for peptides

2.1. Accuracy of the potential-energy surface

The potential-energy surface (PES) of a system is often 
defined as an energy function of the coordinates that tells 
how energy changes with respect to a change in any atomic 
position. This definition assumes an adiabatic separation of 
the electronic and nuclear degrees of freedom (known as the 
Born-Oppenheimer approximation). Moreover, it is usually 
(but not necessarily) also connected to the assumption that 
nuclei are classical particles. Even if both of these assump-
tions can break down in many situations (some of them dis-
cussed in the next sections), they are, in most cases, a good 
approximation or at least a good starting point to map the 
energy profile of a system.

When dealing with biomolecules in general, the challeng-
ing aspect is that the PES are often far from simple: due to 
the existence of several soft and anharmonic degrees of free-
dom these PES tend to have several different local minima—
all of which will contribute to the partition function and 
thus define the thermodynamical properties of the system. If 
this PES is not rigorously described also all thermodynamic 
properties and structural preferences of the system will not 
be reliable. Especially the amount of anharmonic degrees of 
freedom make most harmonic approximations fail for these 
systems.

Perhaps the most popular way of evaluating PES are the 
so-called force fields. Force fields are parametrized empiri-
cal energy functions that represent the energy of a given 
system in terms of the sum of qualitatively different interac-
tions. In the case of molecules (and especially peptides) the 
different contributions are separated into bonded interactions 
(e.g. potentials for bond lengths, bond angles, and torsions) 
and non-bonded interactions (e.g. van der Waals and electro-
statics). For all of these terms, the functional form is physi-
cally motivated but arbitrary, and the parameters are fitted to 

either experimental data or quantum chemistry methods. The 
advantages of such an approach is that energy evaluations are 
computationally cheap. Therefore, these methods (if used in 
combination with smart sampling techniques [67]) typically 
allow enough statistical sampling to enable the evaluation of 
thermodynamical properties and to treat system sizes that can 
bear more connection to biological size- and time-scales with 
respect to more accurate methods that are too computation-
ally expensive. If used with caution, these potentials can yield 
good physical insight on the structure and dynamics of bio-
molecules. However, it is becoming more clear that their per-
formance in many situations is far from optimal. Especially 
regarding polypeptides, recent literature has shown that force 
fields have several limitations when compared and bench-
marked against higher level quantum chemistry methods. 
Relative energies between different peptide conformations 
are not well reproduced [68–71] and differ quite drastically 
between different force fields. Regarding the interaction of 
peptides with ions, force fields have been shown to yield even 
poorer energetics with respect to high level theoretical bench-
mark data [72, 73], even when especially tailored parameters 
and polarizable potentials are used. More recently, a study has 
shown that kinetic models derived from converged simula-
tions based on different non-polarizable force fields largely 
disagree [74].

The desired solution would be to describe the potential-
energy surface (PES) at least as accurately as possible for the 
electronic degrees of freedom—which would mean to use 
methods like full configuration interaction (full CI), coupled 
cluster with a high enough order of excitations (e.g. with sin-
gle, double, and perturbative triple excitations CCSD(T)), or 
quantum Monte Carlo (QMC). These methods are considered 
the gold standard of quantum chemistry, and do indeed pro-
vide a very accurate description of potential energy surfaces, 
but of course, are very costly to compute. Even if they can be 
used for benchmarking purposes it is not computationally fea-
sible to routinely use them for PES exploration and the simu-
lation of other physical properties.

A good compromise can be found among the wave function 
based methods, for example with Møller-Plesset perturbation 
theory (MP2) or coupled-cluster methods with lower-order 
excitations, e.g. singles and doubles (CCSD). A promising 
route is to use approximations like the domain based local 
pair natural orbital coupled cluster method with single-, dou-
ble-, and perturbative triple excitations (DLPNO–CCSD(T)) 
[75]. The method is described as efficient enough to perform 
rather accurate coupled cluster calculations even for relatively 
large molecules with hundreds of atoms. However, some of 
the approximations must be carefully balanced [76]. It is typi-
cally computationally cheaper to use electronic density based 
methods like density-functional theory (DFT). DFT, with its 
approximate exchange correlation functionals, is arguably the 
best compromise between cost and accuracy in the market of 
electronic structure theory methods. Its advantage is that it 
allows one to treat molecules of sizes up to a few thousand 
atoms and reach time scales of hundreds of picoseconds in 
its most optimized implementations (Big-DFT [77], ONETEP 
[78], FHI-aims [79], CASTEP [80], CP2K [81], etc).

J. Phys.: Condens. Matter 27 (2015) 493002

75



Topical Review

8

It is well known that results from DFT can depend on the 
choice of exchange-correlation functional. However, since 
the theory itself is based on the first principles of quantum 
mechanics, it is possible to obtain accurate results as long as 
one ensures that the chosen functional can describe the rel-
evant physical properties of the system. For example, most 
standard DFT functionals lack, by construction, long range 
van der Waals (vdW) dispersion. It is, however, now widely 
accepted that these interactions have a critical impact on the 

structure [48, 69, 70, 72, 73, 83, 84] and dynamics [29, 83] 
of peptides, especially for the larger sizes. It becomes thus 
almost mandatory to include these interactions in the most 
accurate manner in DFT calculations of peptides in any type 
of environment, and several schemes for including these cor-
rections have been proposed in the last decade, which were 
nicely reviewed in [85]. Also, the inclusion of Hartree–Fock 
exchange can mitigate the self-interaction/delocalization 
problem of DFT and substantially change the strength of H 

Table 1. Mean absolute error and maximum error for the energy hierarchies of 16 conformers of Gly-Phe-Ala (GFA), 15 conformers of 
Gly-Gly-Phe (GGF), 15 conformers of Phe-Gly-Gly (FGG), and 27 conformers of Ac-Ala3-NMe, compared to CCSD(T) reference data 
from [70, 82].

PBE PBE  +  vdWTS PBE  +  MBD PBE0 PBE0  +  vdWTS PBE0  +  MBD

FGG
MAE 43(1.0) 37(0.8) 36(0.8) 35(0.8) 23(0.5) 23(0.5)
Max. 160(3.7) 59(1.4) 88(2.0) 132(3.0) 38(0.9) 59(1.4)
GFA
MAE 53(1.2) 32(0.7) 44(1.0) 40(0.9) 17(0.4) 25(0.6)
Max. 108(2.5) 88(2.0) 76(1.7) 89(2.0) 72(1.7) 61(1.4)
GGF
MAE 48(1.1) 36(0.8) 40(0.9) 38(0.9) 26(0.6) 28(0.6)
Max. 143(3.3) 99(2.3) 84(1.9) 119(2.7) 78(1.8) 66(1.5)
Ac-Ala3-NMe
MAE 55(1.3) 21(0.5) 22(0.5) 54(1.2) 18(0.4) 20(0.5)
Max. 131(3.0) 72(1.7) 66(1.5) 132(3.0) 47(1.1) 54(1.2)

OPLS-aa Amber99sb Charmm22 AmoebaPro04
Ac-Ala3-NMe
MAE 108(2.5) 42(1.0) 91(2.1) 53(1.2)
Max. 246(5.7) 86(2.0) 271(6.2) 112(2.6)
GGF
MAE 91(2.1)
Max. 606(14.0)

Note: Values for the mean-absolute errors (MAE) and maximal errors (Max.) are reported in meV (in parentheses: converted to kcal mol−1).

Figure 6. Conformers of the peptides Phe-Gly-Gly (FGG), Gly-Phe-Ala (GFA), Gly-Gly-Phe (GGF), and Ac-Ala3-NMe (AcA3NMe) used 
for energy benchmark calculations appearing in references [70] and [82].

J. Phys.: Condens. Matter 27 (2015) 493002

76



Topical Review

9

bonds, the description of polarizability, or barriers for confor-
mational dynamics. What is more prudent to avoid in DFT is 
to blindly use different types of functionals without any kind 
of physical reasoning or benchmarks.

As an example of the type of accuracy that can be reached 
with state-of-the-art DFT methods nowadays, we show in 
table 1 mean absolute errors and maximum errors on relative 
energies for three-residue peptides, shown in figure 6 (FGG, 
GFA, GGF, Ac-Ala3-NMe), of DFT functionals with respect to 
CCSD(T) reference benchmark data. We test a generalized gra-
dient exchange correlation functional (PBE [86]) and include 
both a pairwise van der Waals correction with C6 coefficients 
that depend on the electronic density [87] (vdWTS), and another 
that includes both electrostatic screening and many body 
effects up to infinite order through a coupled fluctuating dipole 
model [88, 89] (MBD@rsSCS, which we here call MBD). We 
also test a hybrid exchange correlation functional with these 
corrections, namely PBE0 [90]. For comparison, we also cal-
culate the same relative energies with popular non-polarizable 
force fields (OPLS-aa [91], Amber99sb [92], Charmm22 [93, 
94]) and the polarizable force field AmoebaPro04 [95, 96]. 
Augmenting DFT approaches with a correction for long-range 
van der Waals interactions leads to energy estimates that agree 
very well with CCSD(T) calculations, which is evident by low 
mean-absolute errors (MAE) and low maximal errors. For 
example PBE0  +  MBD yields MAEs of only up to 28 meV 
(0.6 kcal mol−1) and a maximal error of 66 meV (1.5 kcal 
mol−1). The force fields tested here and the bare functionals 
alike give higher MAE and also higher maximal errors that 
severely limit their predictive power.

In order to illustrate how such errors can impact larger poly-
peptides, the experimental benchmark helix-forming peptide 
Ac-Phe-Ala5-LysH+ is ideal. From very accurate conformer 
selective UV-IR double resonance experiments in the gas-phase 
by Stearns and coworkers [46], it was established that four con-
formers are present in the experimental beam, which have been 
satisfactorily assigned to helix-forming structures, based on the 
similarity of their harmonic IR spectra to the measured ones. A 
subsequent study [97] considered 19 density functionals, plus 

Hartree–Fock and MP2 methods, finding that the spread of the 
relative energies of these four conformers could vary by around 
0.15 eV for these methods. None of the functionals considered 
included long-range van der Waals interactions. Further studies 
on the same system by Rossi and coworkers [69] considered a 
larger pool of conformers coming from an extensive first-prin-
ciples scan of the PES of this peptide. Based on the benchmarks 
shown in figure 6, the authors found that when considering the 
energy hierarchies at the PBE0  +  MBD level and (harmonic) 
zero point energy contributions on this system, the four con-
formers observed in experiment are indeed predicted to be the 
ones with lowest energies. The spread of their energy differ-
ences is also consistent with what is estimated from experiment  
(≈50 meV), and within the estimated error bars, such that the 
detailed energy hierarchy between them cannot be safely pre-
dicted by any DFT method. Interestingly, [69] finds that the 
relative abundances for different conformers observed in exper-
iment are better explained by a kinetic trapping from higher 
temperatures.

Finally for even larger peptides, where the experimental 
data is also not so conclusive, small energy differences can 
be even more important as the conformational landscape can 
get more congested. We take as an example the 20-residue 
peptide Ac-Lys-Ala19-H+ , studied in [98] by Schubert, the 
author of this review, and coworkers. We show in figure  7 
(data reproduced from [98] and [99]) in panel (A) the com-
parison between the force field relative energies for thousands 
of conformers predicted by the OPLS-aa force field, and rela-
tive energies of the same conformers when further relaxed 
with PBE  +  vdWTS ‘light settings’ (smaller basis sets and 
integration grids in the FHI-aims [79] code) and ‘tight set-
tings’ (larger basis sets and integration grids). The scatter 
is huge, spanning up to 1.5 eV in DFT for conformers that 
were 0.5 eV apart in OPLS-aa. We also show in figures 7(B) 
and (C), for a set of selected conformers of this molecule the 
comparison between the energy hierarchies of PBE  +  vdWTS 
and the AmoebaPro13 force field [100], and the comparison 
between the different functionals and van der Waals correc-
tions discussed above. The energy differences between the 

Figure 7. Ac-Lys-Ala19-LysH+ reproduced and adapted from [98], copyright 2015 Royal Society of Chemistry and [99], with permission 
from F Schubert.
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functionals are much smaller than the difference comparing 
to AmoebaPro13. Many body van der Waals dispersion do 
indeed have an impact in molecules of this size, which in this 
case also improves agreement to experimental data, as dis-
cussed further in section 4.2.

2.2. Sampling the PES connecting to first-principles methods

The degrees of freedom (DOF) that define a PES are the posi-
tions of all atoms of the molecules expressed in, for example, 
Cartesian space, internal coordinates, etc. For molecules, 
one can often simplify that (reducing the number of DOF) 
by assuming a fixed configuration of the molecular system 
(basically assuming that covalent bonds do not break). As 
a consequence, an internal coordinate system consisting of 
bond lengths, bond angles, and torsion angles can be used 
to describe a molecule’s structural (conformational) space. 
Since bond lengths and bond angles typically vary around 
a single equilibrium value, torsion angles are often the most 
descriptive internal coordinates for a molecular system.  
An exploration of a molecule’s potential energy surface must 
sample the space defined by the combination of all its tor-
sional degrees of freedom. For a typical peptide molecule 
with three backbone torsion angles per residue and further 
torsions in the side chain, the problem easily gets too large 
for a systematic grid-based enumeration of possible points on 
the PES. A single alanine building block in a peptide chain 
has three torsional DOF. (See figure 8: the torsions φ and ψ 
represent rotations around single bonds and the peptide bond 
torsion angle ω adopts cis or trans conformations. Assuming 
a grid of 60 degrees for discretization of the single-bond rota-
tions yields × × =6 6 2 72 conformations to test for a single 
building block. For a chain of N building blocks this number 
virtually explodes already for short peptides with 72N. A vari-
ety of strategies has been developed and employed to explore 
these conformational spaces connecting to first principles 
methods. Below, we will give a rough definition and some 
examples of them.

  Systematic searches can be performed by discretization 
of the involved degrees of freedom with sufficiently 
fine grids. All combinations of torsion angles are either 
subject to a single point energy calculation or serve as 
starting point for local geometry optimizations. Such an 
approach is well applicable to small molecular systems, 
e.g. dipeptides. With a more ‘target-oriented’ objective, 
also bigger systems can be studied in a systematic way, if 
only a particular region of the search space is of interest. 
An example is the search for all possible helical struc-
tures in homologous peptides, i.e. peptides which have 

their backbones extended by methylene units. With the 
aim of finding such periodic and hydrogen bonded struc-
tures, the same combination of backbone torsion angles 
is applied to all subunits and only geometries that are (i) 
clash free and (ii) feature a backbone hydrogen-bonding 
pattern of interest are considered [101–103].

  Systematic searches can easily be performed for mono-
mers. The knowledge gained in this way can then be 
combined in the creation of starting structures for longer 
oligomers of the respective building block(s). This 
approach has been successfully employed for example 
to β-peptides, which are homologous peptides with an 
addition of one methylene unit. [103–106].

  Parallel-tempering or replica-exchange molecular dynamics 
(REMD) can substantially enhance the sampling of confor-
mational space in comparison to standard MD simulations 
[107–112]. REMD requires only limited human interaction 
and no definition of collective variable or alike. Robust 
protocols exist for a wide range of simulation programs. 
Several copies (a.k.a. replicas) are simulated in parallel 
by means of MD simulations at different temperatures. 
At predefined intervals, pairs of replicas with neighboring 
temperatures are eventually swapped based on a Metropolis 
criterion. The individual copies traverse a wide temperature 
range and can overcome barriers.

  Basin hopping [113] reduces the PES to attraction basins 
centered on local minima. In contrast to REMD, moves 
on the landscape do not follow realistic pathways. The 
basic algorithm starts with a structure guess and a local 
optimization to the next local minimum. A perturba-
tion of coordinates generates a new staring point for a 
geometry optimization that leads to the next minimum. 
This sequence of coordinate perturbation and local opti-
mization is repeated until a convergence criterion is met. 
Frequently used implementations are for example in the 
programs TINKER [114] or GMIN [113].

  Genetic algorithms (GAs) are frequently used for global 
structure search and optimization of chemical compounds 
[115–117]. They use a ‘survival of the fittest’ concept. 
Starting from a population of random solutions, genetic 
operations are applied and energy-optimal solutions are 
selected. GAs use the accumulated information to explore 
promising regions of conformational space. Examples are 
the program foldaway by Damsbo et al [118] and the pro-
gram Fafoom [119, 120] that can employ first-principles 
techniques.

A complete sweep of the potential-energy surface with any 
of the above mentioned methods is anything but trivial. All 
methods require parameter choices that have to be made by 
the respective user as well as a careful selection of the energy 
function to be used. While force fields offer low computational 
costs and therefore allow for a more exhaustive sampling of 
the PES, the results can suffer from the systematic energy 
errors that were discussed in the previous section. First-
principles methods offer a description of the energetics that 
is unbiased by empirical parameters, but that may demand far 
more computational resources. Clever combinations of search 

Figure 8. Backbone torsion angles of a prototypical amino acid 
building block embedded in a peptide chain.

J. Phys.: Condens. Matter 27 (2015) 493002

78



Topical Review

11

techniques and stepwise increase of accuracy can be a way out 
that, however, requires experience. In the next section, we will 
review some of these combination methods.

3. How can theory predict structure and dynamics?

As presented in the last sections, several benchmark works 
have shown that force fields may not be accurate enough 
to predict quantitative energy differences between pep-
tide conformations in the gas phase. However, as also men-
tioned in the previous section, the high dimensionality of the 
potential-energy surface renders the direct exploration with 

first-principles potentials an elusive task. Therefore, theoreti-
cal studies that aim to explore the PES of larger polypeptides 
(and biomolecules in general) with first principles methods 
tend to follow an overall similar work flow [48, 69, 72, 98, 
121–125].

The general aim is to balance a broad sampling of con-
formers and an accurate description of the energetics with 
the available computer power. We exemplify this work flow 
in general below, illustrating it by the technique followed in 
[98], which we believe to be among the largest current com-
putational efforts to study the conformational space of alanine 
based polypeptides from first principles. The work flow is also 
schematically represented in figure 9.

Figure 9. Typical steps followed by theoretical studies regarding structure search and prediction based on first principles methods.
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The first step involves a thorough enumeration of different 
conformers using a force field. These conformers are com-
monly local minima in the force field, found by different sam-
pling techniques, like basin hopping, replica exchange, genetic 
algorithms, or any other sampling method. The idea is to per-
form a global and thorough exploration of structure space. 
For example in [98] replica-exchange molecular dynamics 
(REMD) simulations were performed with the OPLS-aa force 
field [91, 126] with 16 replicas for a total of 500 ns per replica. 
From these simulations conformations at each 2 ps were con-
sidered to generate an overall set of conformations. The less 
reliable the PES is at this step, the more conformers will have 
to be considered in the second step.

The second step is choosing which conformers from the 
force field sampling will be considered for the treatment with 
higher level methods (e.g. density-functional theory or other 
quantum chemistry methods). The conformers can be ranked 
by energy from lowest to highest. As described above, there 
can be large possible errors related to the force fields. The dis-
crepancy between empirical and first principles descriptions 
is highlighted, for example, in figure 7(A). Many conformers 
(hundreds to thousands, depending on the system’s character-
istics) should be considered, otherwise low-energy conform-
ers may be completely missed. Alternatively, conformers can 
be sorted by structural criteria in order to generate a pool of 
candidate structures that is as diverse as possible for investi-
gation. Examples are clustering algorithms based on the root-
mean-square deviation (RMSD) of Cartesian coordinates (e.g. 
in [98]) or sorting of structures according to hydrogen-bond-
ing patterns (e.g. in [42, 101]). Other descriptors for structural 
similarity can, for example, be found by using machine learn-
ing methods similar to the ones presented in [127–129]. The 
chosen conformers are typically fully optimized with higher-
level methods. Especially the local geometry optimization of 
force field minima with first-principles methods can involve 
large conformational changes that may lead to new local min-
ima, which are not present in the force field. In [48, 69, 72, 
98, 122, 123] we could highlight the importance of consider-
ing a large pool of conformers: Considering only a couple of 
tens of conformers would have led to missing many of the 
relevant structures discussed in these papers. The discrepancy 
in relative energies from FF and DFT illustrated in figure 7(A) 
also raises the question if all relevant local minima can be 
located from simply re-relaxing the force-field conformers. As 
a means of ameliorating the situation, it is possible to intro-
duce a third step a local first-principles sampling. In [98], for 
example, ×16 20 ps ab initio REMD simulations were per-
formed and the most stable conformer (C2) of the study was 
only found in this refinement step.

After that step, one can continue increasing the accuracy 
for a subset of the conformers from the previous step. The 
conformers can again be clustered and a new smaller set can 
be chosen according to the same criteria as in the first step 
or others. The accuracy can be increased either by increas-
ing numerical settings of the calculations (basis sets, grids, 
etc) or by going to even higher level theoretical methods. In 
[98] both were done, by going to a higher numerical accuracy 
as well as using computationally more expensive (and often 

more accurate) hybrid DFT functionals, and many-body van 
der Waals dispersion corrections [88]. Other works have also 
used MP2 and CCSD(T) methods for smaller systems in this 
step [70].

In order to exemplify the range of computational costs of 
different methods, we present in figure 10 timings that were 
measured for a comparably small system, namely phenylala-
nine with a Ca2+ cation. Please note that the accuracy level 
of the DFT (really_tight settings mean a very large basis and 
very fine integration grid) and the wavefunction calculations 
(with 3–4 extrapolation to the complete basis-set limit) are 
chosen rather high compared to what one would perform as 
standard calculation. The specific timings for each method 
can vary considerably when using different (smaller or 
larger) basis sets, when using different codes, or when treat-
ing larger and denser systems. The nominal scaling with sys-
tem size N is for DFT N3, for MP2 N5, and for CCSD(T) 
N7. In all cases however, developments are ongoing to reduce 
the respective scaling by the use of smart algorithms [75, 
78, 131]. Nevertheless, the timings presented in figure  10 
are good guidelines for what to expect in computational cost 
when increasing accuracy.

Figure 10. Timings for typical single point calculations of 
conformers of phenylalanine with Zn2+ . Standard protein force 
fields (Amber 99 and Charmm22) were computed with Tinker 
[114]. DFT calculations in the generalized gradient approximation 
(PBE and BLYP) and with hybrid functionals (PBE0 and B3LYP) 
were done with FHI-aims [79] (including pairwise Tkatchenko-
Scheffler van der Waals correction and really_tight computational 
settings). Wavefunction-based calculations (MP2 and DLPNO-
CCSD(T) [75]) were performed with the Orca code [130] using 
Ahlrich’s basis sets for a 3–4 extrapolation to the complete-
basis-set limit. The timings for the DFT calculations include 
force evaluations. The timings for the wavefunction calculations 
include both steps, the triple- and quadruple-ζ calculations. If the 
calculations were running in parallel (DFT and wavefunction), 
the real timings were multiplied with the number of cores. Please 
note, the numbers are meant to give a rough qualitative idea about 
the range of timings that can be expected with different methods. 
Different codes, settings, systems, and computer infrastructures will 
result in quantitatively different timings.
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Having finished with a smaller subset of the most-likely 
structure candidates, it is desirable to connect to more physi-
cal quantities than a simple scan of the potential energy sur-
face. Free energies and thermodynamic properties at realistic/
experimental conditions can be explored at this step, either by 
performing anharmonic free energy evaluations with a method 
of choice (steered dynamics, metadynamics, umbrella sam-
pling, replica exchange, etc) or at least considering these con-
tributions in the harmonic approximation. If the system is too 
large, again it becomes unfeasible to calculate more accurate 
anharmonic quantities with a higher-level electronic-structure 
method, such that the harmonic approximation remains as the 
last resort. Its predictive power, though, has to be critically 
assessed for these soft and flexible systems.

With the low (free) energy conformers at hand, the connec-
tion to experiment can be established by computing experi-
mentally accessible observables. In the present work we focus 
especially on collision cross sections that are experimentally 
derived from IM-MS (see section  1.2.1) and on vibrational 
spectra (see section 1.2.2). Other possible quantities of inter-
est are electronic spectra, neutron scattering data, or any other 
experimental technique that is the most applicable to the envi-
ronment where the biomolecule is measured in experiment.

Another important application of first-principles based 
conformational searches are studies that compare properties 
across chemical space. An example is the search for essen-
tially all conformers of 20 proteinogenic amino acids alone 
and interacting with either of the cations Ca2+ , Ba2+ , Sr2+ , 
Cd2+ , Pb2+ , and Hg2+ [124]. As a result, one obtains com-
parable data for sets of compounds and/or complexes, gen-
erated on equal footing with respect to the search technique 
and the employed energy function. Based on such grounds, 
physical observables can be computed and compared across 
chemical compound space. The workflow employed by Ropo 
and coworkers [124] starts from a force field based structure 
search (Tinker scan [114] with the OPLS-AA force field [91]) 
and the relaxation with DFT-PBE  +  vdW. Again, it is neces-
sary to refine the search results with a local first-principles 
search step. The bias from the initial treatment with empirical 
potentials can only be compensated by ab initio REMD simu-
lations. The multi-step search procedure yielded an essentially 
unbiased first-principles data set of more than 45,000 station-
ary points on the PESs of the different molecular systems. The 
data can be used as a starting point for, e.g. the parameteri-
zation of empirical potentials, comparisons of properties like 
cation binding strength across chemical space, or as input for 
spectra calculations. The data is available from the website 
http://aminoaciddb.rz-berlin.mpg.de and from the NoMaD 
repository [132].

4. Theory-experiment comparison—computation  
of experimentally accessible observables

A major challenge when performing simulations is to match 
the experimental conditions in a simulation setup. An effort 
on both ends is needed. Experimental conditions should be 
well controlled and the data recorded precise and sharp and 

the system size and character that is considered in the simu-
lation should be as realistic as computationally feasible. The 
gas phase is an excellent environment in this respect, where it 
is possible to simulate physical observables on a very similar 
footing with experiments.

In the next section we focus on the calculation of collision 
cross sections and vibrational spectra. In addition, there are 
several optical spectroscopy techniques that can probe also 
electronic excitations and dynamics of excited states in the 
gas phase, connected to UV and visible probes. For exam-
ple, in the UV-IR pump-probe experiments mentioned above, 
the UV laser induces electronic excitations that can be used 
to select different conformers. Reviews and perspectives of 
such optical spectroscopies in the gas phase, applied to pep-
tides and other biomolecules can be found in [8, 9, 7, 133]. 
Antoine and Dugourd report the possibility of recording elec-
tron photo-detachment following electronic excitation in neg-
atively charged peptides to obtain gas-phase optical spectra 
for large systems (even proteins), since this process does not 
suffer from limitations brought by energy redistribution into 
vibrational modes with system size and is less congested than 
a vibrational spectrum for large systems [133]. Theoretical 
modelling of electronic excited states and the resulting pro-
cesses and dynamics is a major challenge, since it requires 
the use of time-dependent or explicitly correlated electronic 
structure techniques [134–136] that can treat excited states. 
These are very computationally expensive if compared to 
ground state techniques and have many further limitations 
included in the approximations, such that their application to 
large biomolecular systems is still limited, but growing fast.

4.1. Collision cross sections

From the Cartesian coordinates of conformers that result from 
a structure search for a particular molecular ion, it is possible 
to compute CCS values. The underlying collisions of the ion 
with the buffer-gas atoms (e.g. He) or molecules (e.g. N2) can 
be modeled including different levels of detail. We will review 
here the three most-commonly used methods, the projection 
approximation [137], the exact hard-sphere scattering [138], 
and the trajectory method [139].

The projection approximation, or in short PA [137], takes 
the shape of the molecule into account, modelling the inter-
action between ion and buffer-gas particles by means of 
Lennard-Jones and charge-dipole interactions. The averaged 
collision cross section  in the PA (CCSPA) is calculated by 
using the collision parameters θ, φ, and γ as well as the mini-
mal impact parameter bmin as follows:

     ∫ ∫ ∫
π

θ φ φ γ π=
π π π

bCCS
1

4
d d sin dPA 2 0

2

0 0

2

min
2 (2)

In practice, bmin is tabulated as atom-wise impact param-
eters, and in a simplified view they are stored as up-scaled 
atomic radii. The CCS value for a given molecular confor-
mation is computed numerically by: (i) projecting the atoms 
of the molecule onto a randomly chosen plane, (ii) drawing 
the collision radii around positions of the nuclei, and (iii) 
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repeatedly selecting random points within an area A enclos-
ing the projected molecule. Out of step (iii), a CCS value for 
a planar orientation N is computed following the formula 

( )= h t ACCS / *N , where h is the number of hits within the 
projected outline of the molecule and t is the number of over-
all tries. Steps (i) to (iii) are repeated for different planes and 
an average CCS value out of CCSN values is computed until 
convergence to a given threshold is reached. PA is shown to 
work well especially for largely convex molecules.

PA neglects scattering events as well as multiple colli-
sions between buffer-gas particles and the ion. However, such 
effects are especially pronounced for concave molecular sur-
faces where certain surface areas can be shielded by parts of 
the molecule, while in others multiple collisions may occur. 
The projection-superposition approximation (PSA) aims to 
compensate for this with a shape factor that accounts for the 
concavity of a molecule [140]. Alternatively, scattering and 
multiple-collision effects can be considered by regarding 
ion and buffer-gas particles as hard-spheres. The exact hard-
sphere scattering (EHSS) approach [138] explicitly follows 
the trajectory of a He atom that is shot at the molecule or 
cluster through all possible collisions until it leaves the mol-
ecule/cluster for good. Here, the scattering angle χ (the angle 
between the trajectories before and after a collision event 
between the molecular ion and a buffer-gas particle) is com-
puted as a function of the collision parameters θ, φ, and γ and 
the impact parameter b for multiple collision geometries and 
thus an average CCSEHSS can be obtained:

   

  (  [ ( )] )

∫ ∫ ∫

∫
π

θ φ φ γ

χ θ φ γ

=

× −

π π π
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b b b

CCS
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4
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(3)

The trajectory method (TM) models one extra bit of the 
physics defining the drift of an ion through a buffer gas, 
namely long-range interactions between the drifting ion and 
the buffer gas. The importance of this contribution depends 
on the polarizability of the buffer gas, which is for example 
stronger in N2 than in He, and on the charge distribution in 
the (molecular) ion. The charge(s) of the drifting ion induces 
dipoles in the buffer gas atoms altering its drift velocity with-
out ‘physical contact’ [139].
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In addition to the symbols explained above, the reduced mass 
µ and the relative velocity g are being used. The interaction 
between the ion and the buffer-gas particles is modeled by 
two terms: a Lennard–Jones 12–6 potential and a term that 
accounts for the interaction between the charge (distribution) 
of the ion and the charge-induced dipole of the buffer-gas par-
ticle. This treatment can consider differences in polarizability 
between buffer gases, for example between He and N2.

We note, though, that in principle all methods are designed 
to work with He as the buffer gas. When comparing to meas-
urements made with, for example, N2, parameters going into 
the calculations have to be adapted. An overview about spe-
cific contributions to the collision cross section can be found 
in a paper by Wyttenbach et al [141] where for a wide range of 
systems experimental and PSA-simulated CCS are compared. 
There are several programs described in the literature, which 
can be more or less straightforward to obtain. We list here 
only some of the more popular ones:

  MOBCAL is developed in the group of Jarrold and 
incorporates PA, EHSS, and TM. It can be downloaded at 
www.indiana.edu/nano/software.html.

  sigma is developed in the group of Bowers and it com-
putes CCSs according to the PA and EHSS method. It 
is available under this URL: bowers.chem.ucsb.edu/
theory_analysis/cross-sections/sigma.shtml.

  FHIsigma is a spin-off of sigma by Wesemann and von 
Helden and comes with a graphical user interface. The 
program is available at: sigma.fhi-berlin.mpg.de.

  IMPACT is intended for structural proteomics applica-
tions and claims to compute extremely fast PA-CCSs 
[142]. The software is available at: benesch.chem.ox.ac.
uk/resources.html.

The choice of method, for example between PA, PSA, 
EHSS, and TM, can be critical for the predictive power of 
the CCS calculation. Some examples are collected in table 2. 
Depending on the nature of the ionic cluster/complex or 
molecular ion under investigation, the alternative methods can 
agree, like in the case of two peptides from reference [123], 
where PA amd TM give virtually the same results. But there 
are also examples where the methods give qualitatively differ-
ent results. Different protonation states (protomers) of benzo-
caine exist that result in either the distribution of the positive 
charge over the molecule or in its localization at a protonated 
amino function [62]. In the experiment, both forms can be 
separated with a polarizable buffer gas (N2). In simulations, 
the CCSs computed with the PA are indistinguishable, while 

Table 2. CCS values computed with PA or PSA and TM for 
different conformers/protomers of three molecules compared to the 
respective experiment-derived CCS.

Structure CCSPA/PSA in Å
2

CCSTM in Å
2

CCSExp in Å
2

Ac-Ala6-Lys(H+ ) from [123]
α helix 180 181 180
Compact 172 171
Ac-β2hAla6-Lys(H+ ) from [123]
H12 203 204 190
H16 191 193
H20 182 182
Compact 183 182
Benzocaine from [62]
O-prot./trans 131 133 135
O-prot./gauche 132 133
N-prot./trans 133 144 155
N-prot./gauche 130 144
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TM predicts distinct values for the protomers and allows an 
interpretation of the experiment.

The interpretation of an experimental arrival-time distribu-
tion or of the derived CCS distribution is not unambiguous. 
The theoretical CCS of a single conformer represents a pro-
jection of the conformational degrees of freedom onto a single 
coordinate. As a consequence similar CCSs may still result 
from different structures. Also, in the experimental CCS, even 
a single sharp peak represents not only a projection of spa-
tial coordinates, but also of the dynamics of the molecular or 
cluster ion over the drift time. Consequently, measuring a sin-
gle sharp peak can mean that either (i) there is only a single 
conformational family present in the ion cloud, (ii) there are 
multiple (more than one) conformational families present in 
the ion cloud that have the same CCS, or even (iii) the time 
average over multiple interconverting conformers for a single 
molecule is converged during the drift time and the measured 
CCS basically represents a converged average over the CCSs 
of the different structures. An example was shown in [123], 
where IMS data of a β peptide is interpreted to represent the 
interconversion between related helix types. In a sense, ion-
mobility experiments, especially in conjunction with molecu-
lar simulations, can be used to deduce not only the structure of 
molecules, but also their dynamics.

4.2. Vibrational spectra

As mentioned in section 1.2.2, several experiments probe the 
vibrational spectra of biomolecules in the gas phase. These 
spectra contain more detailed structural information than CCS 
experiments and simulations. However, especially for larger 
and more anharmonic systems, a comparison to theoretical 
simulations is necessary in order to interpret the experimental 
signal. Good reviews on several types of theoretical spectros-
copy methods that can be used in connection to first principles 
potential-energy surfaces for biomolecules can be found, e.g. 
in [143, 144].

Theoretically, the ‘zeroth-order’ way to model the vibra-
tional properties of any system is the harmonic (or double 
harmonic) approximation. In this approximation a Taylor 
expansion of the Born-Oppenheimer potential with respect to 
displacements of nuclear coordinates is truncated on the sec-
ond (quadratic) order and harmonic frequencies of vibrations 
are calculated for the problem of coupled harmonic oscillators 
with force constants corresponding to the second derivative 
of the potential [145]. From Fermi’s golden rule, it is known 
that the IR intensities are proportional to the square of the 
matrix elements of dipole-allowed transitions. One can thus 
Taylor expand the dipole moment with respect to nuclear 
displacements, solve the quantum mechanical Hamiltonian 
in the harmonic approximation, and find the allowed transi-
tions. By truncating the expansion of the dipole moment at 
first order, one arrives at the expressions for the so called 
‘double harmonic’ approximation. Not only this approxima-
tion does not contain any anharmonicities, it also does not 
allow any other transition beyond the fundamental ones. For 
Raman spectra, similar expressions can be calculated for the 
harmonic approximation relying on the estimation of matrix 

elements of allowed transitions from the polarizability tensor 
[145]. This type of approximation is frequently used for a first 
comparison of structural properties in connection with scaling 
factors that compensate for the complete lack of anharmonici-
ties (both of the classical PES and connected to the quantum 
nature of the nuclei).

A fundamental problem with the harmonic approximation 
for the study of biomolecules is that these molecules can have 
very anharmonic potential-energy surfaces. A well known 
way to calculate IR transitions including anharmonicities is 
to relate Fermi’s Golden Rule to time correlation functions—
a derivation found in many textbooks (e.g. [146]). One finds 
that the IR absorption spectrum can be written as the prod-
uct of the frequency-dependent refractive index ( )ωn  and the 
Beer-Lambert absorption coefficient ( )α ω  as

( ) ( ) ( ) ( )ω α ω πω ω= −
µµ

β ω−

ε"

"
n

cV
I

1 e
3

,
0

 (5)

where β is the inverse temperature, V the volume, ε0 the 
dielectric permittivity of vacuum, c the speed of light and 

( )ωµµI  is the Fourier transform of the dipole auto-corre-
lation function, here defined in the canonical ensemble 

( ) [ ( ) ( )]µ µ=µµ
β−C t t ZTr e 0 /H , where the partition function 

[ ]= β−Z Tr e H  and ( )µ µ= ! !t e eHt Hti / i / . Since the correlation 
functions are usually approximated by classical (nuclei) or 
semi-classical dynamics, the correlation function that is in 
fact better approximated is the Kubo-transformed one, defined 
as ˜ ( )µµC t :

˜ ( ) ( )∫
β

λ=µµ µµ

β
λC t C t

1
d ,

0
 (6)

( ) [ ( )]( ) µ µ=µµ
λ β λ λ− − −C t t ZTr e e / .H H (7)

The Kubo transformed correlation has the same symme-
tries as a classical correlation function [147] and arises nat-
urally in several approximate quantum dynamics schemes 
[147, 148]. The Fourier transform of the Kubo transformed 
time correlation ˜ ( )ωµµI  and the one of the canonical time cor-
relation ( )ωµµI  are related by

( ) ˜ ( )ω β ω ω=
−

µµ µµβ ω−
!
!

I I
1 e

. (8)

Thus, the commonly coined ‘quantum correction factor’ 
[37, 149] arises naturally from the relationship of these two 
correlations. The expression that one usually calculates for IR 
absorption is

( ) ( ) ˜ ( ) ⟨ ( ) ( )⟩∫ µ µω α ω πβω ω πβω= =µµ
ω−

ε ε
n
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I

cV
t t

3 3
d e 0t

2

0

2

0

i

 (9)
where the brackets denote a time average, and ( )µ t  is generated 
by classical or approximate quantum dynamics for the nuclei. 
Similar expressions for Raman spectra can be found with respect 
to the autocorrelation functions of the polarizability tensor 
[150]. When classical dynamics (e.g. Born-Oppenheimer ab ini-
tio molecular dynamics) is employed to approximate these auto-
correlation functions only the anharmonicities of the underlying 
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(classical) potential-energy surface are taken into account. The 
remaining discrepancies when comparing to benchmark experi-
ments can be due to the lack of considering the quantum nature 
of the nuclei (which introduces what is sometimes referred to 
as quantum anharmonicities), the use of an approximate poten-
tial-energy surface, or sampling of the wrong (ensemble of) 
conformers—all of which can cause the spectra to change con-
siderably, as discussed in more detail below.

Other techniques to obtain anharmonic vibrational spectra 
are, e.g. vibrational self consistent field (VSCF) and second 
order vibrational perturbation theory (VPT2). These meth-
ods and their applications to biomolecules have been reviewd 
by Roy and Gerber [151], and Barone and coworkers [152] 
recently. In both of them the quantum nuclear Hamiltonian is 
approximately solved either in a mean field approximation or 
a perturbation theory one, thus including quantum anharmo-
nicities. However, the inclusion of temperature and explicit 
dynamics (where many conformations may be sampled) is not 
straightforward [153, 154], and the methods are expensive to 
treat very large molecules. An impressive recent work from a 
computational point of view was the application of VSCF-PT2 
with the B3LYP functional to the spectra of two conformers 
of Gramicidin S, comparing to cold gas-phase IR-UV double 
resonant spectra, obtaining satisfactory agreement [155].

Even though the evaluation of IR and other vibrational 
spectra from autocorrelation functions has been popular for 
decades especially for condensed phase systems and empiri-
cal potentials, Gaigeot and coworkers have pioneered its use in 
connection to first-principles (DFT) potential energy surfaces 
and applying it to isolated and solvated small polypeptides 
[24, 156–158]. It is remarkable how well the simulated spectra 
based on a linear absorption regime (see equation  (9)) agree 
with those measured with the IRMPD technique. Great exam-
ples are spectra for Ala2H+ , Ala3H+ that were derived from ab 
initio molecular dynamics simulations employing the BLYP 
functional [159, 160]. The authors observe that at room tem-
perature the peptides interconvert between a few different struc-
tures and that these dynamics are important for the comparison 
with the IRMPD spectra. This type of studies serves also as an 
indirect probe of the dynamics. They also reported sensitivity to 
different conformations in the amide III regions for polyalanine 
peptides [24], and good structure selectivity and comparison to 
IR-UV IRMPD spectra in the far-infrared region for Ac-Phe-
Gly-NH2 and Ac-Phe-Ala-NH2 [43]. This is very interesting, 
since vibrations in this lower wavenumber region are more clas-
sical in nature and can be more accurately represented by clas-
sical (ab initio) molecular dynamics, not requiring simulation 
techniques that incorporate quantum effects of the nuclei.

As an illustration of their work about the importance of 
anharmonicities in comparison to experiments, we highlight a 
larger peptide, Ala7H+ , for which IRMPD spectra were meas-
ured by Vaden and coworkers [58]. In that study, Vaden and 
coworkers also performed extensive structural searches start-
ing with a force field, then passing through a cascade of more 
accurate (standard) DFT functionals (until B3LYP), identi-
fying conformational families, and finally performing single 
point calculations with MP2 for the energetically most favored 
conformers and calculating harmonic vibrations at the B3LYP 

level. The most likely globular structures, and the compari-
son of their harmonic IR spectra at the B3LYP level with the 
measured room temperature IRMPD spectrum is shown in 
figures  11(A) and (B) (reproduced from [58]). Gaigeot and 
coworkers then took these structures and calculated IR spectra 
from ab initio molecular dynamics at the BLYP and level and 
T  =  350 K in [161]. The comparison between this anharmonic 
spectrum and the same experiment is shown in figure 11(C), 
reproduced from [161]. It is immediately apparent that even 
if the agreement is not perfect, anharmonicities in this NH 
and CH stretch regions are necessary to reproduce the experi-
mentally observed intensities below ≈3100 cm−1. The authors 
conclude that these structures adopt more globular conforma-
tions with the NH+3  group self solvated within CO groups of 
the molecule. As will be shown below, the exact placement of 
the position of the simulated peaks with respect to experiment 
in the anharmonic case may be a fortuitous cancellation of 
errors, since the inclusion of van der Waals interactions can 
change considerably the dynamics of the molecule and inclu-
sion of nuclear quantum effects cause large red shifts in this 
spectral region.

It is worth noting that intensities are typically not to be 
trusted when comparing theory and IRMPD experiments 
due to the strong non-linear effects expected in the multiple-
photon abosption process. Attempts have been made by Calvo 
and coworkers to model specifically IRMPD [162] with all 
relevant dynamical effects, which can yield good results for 
small molecules albeit relying on some empirical modelling. 
Comparisons to IRPD would be interesting, since it is less 
prone to to non-linearity in the lineshape and peak positions. 
However, the tag which is often used can also disturb the 
spectrum (as observed in Kr tagged gold clusters [163] and 
Ar tagged protonated water clusters [164]), and one is usually 
restrained to low temperatures due to the low binding energy 
of the tag. In most of the work present in the literature so far, 
it must be said, though, that the modelling of the IR spectra 
within linear response theory (including anharmonicity) has 
been able to provide important interpretations to vibrational 
signatures obtained from IRPD or IRMPD.

Blum and coworkers (including the authors of this review) 
have focused on the study of larger polypeptides, especially 
in the fundamental characterization of interactions governing 
structure formation and dynamics. For the benchmark series 
of helix-forming alanine based polypeptides Ac-Alan-LysH+ 
the authors have studied many different aspects related to sec-
ondary structure formation using DFT and ab initio molecular 
dynamics. Regarding the smaller members of this polypep-
tide series, n  =  4–8, the authors have reported that beyond 
the formation of stable H-bond chains with increasing n, an 
important contribution to helix stabilization comes from the 
vibrational entropy of very soft modes that are present in the 
helices but not in more compact structures [48]. Helices are 
predicted to be the most stable isolated structures in the gas 
phase starting at n  =  8, in agreement with experimental evi-
dence from IMMS measurements [165].

For a more direct structural characterization, Rossi and 
coworkers have also calculated the (classical-nuclei) anhar-
monic IR spectra of n  =  5, 10, and 15, and compared to 
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experimental IRMPD measurements at room temperature 
[42]. In general, the structural characterization of gas-phase 
peptides based on vibrational spectra requires an objective 
metric of agreement between simulation and experiment. To 
that end, Rossi and coworkers have employed the Pendry 
reliability factor RP [166] in an implementation that was 
distributed with [167]. Since, as it was already discussed, 
the IRMPD spectra could have peak intensities that are dis-
torted due to the absorption of many photons, a simple over-
all least squares fit for the intensities would not suffice for 
a comparison between theory and experiment. The Pendry 
R-factor, originally used in low energy electron diffraction 
experiments [166], addresses the need to match mainly peak 
positions, rather than the intensities. Given two continuous 
curves with intensities ( )ωIexp  and ( )ωIth , this R-factor com-
pares the renormalized logarithmic derivatives of the inten-
sities, given by:

( ) ( ) [ ( ) ]ω ω ω= +− −Y L L W/1 2 2 (10)

with ( ) ( ) ( )ω ω ω= ′L I I/ , and W approximately the half width 
of peaks in the spectra. The advantage is that the L functions 
have a sign inversion exactly where the maximum of the peak 
is, and if peaks are far enough apart, relative intensities are 
completely ignored, while if they are close together, ( )ωL  is 
moderately sensitive. However, the L functions would be too 
sensitive to zeroes in the intensity, since the logarithmic deriv-
atives would have singularities in this case. The Y function is 
a simple transformation of L, which avoids such singularities, 
by giving similar weights to maxima and zeroes in the intensi-
ties. The Pendry R-factor (RP) is then defined as:

( ) ( )∫ ω= − +R Y Y Y Yd / ,P th exp
2

th
2

exp
2 (11)

which leads in practice to values of =R 0P  for perfect 
agreement, =R 1P  for uncorrelated spectra, and =R 2P  for 

Figure 11. (A) and (B): Structures of Ala7H+ and their corresponding harmonic IR spectra with the B3LYP functional, compared to the 
measured IRMPD, reproduced from [58], copyright 2008 American Chemical Society. Anharmonic IR spectrum (classical nuclei) with the 
BLYP functional (red) for the same molecule, compared to the experimental IRMPD spectrum (black), reproduced from [161], copyright 
2011 Elsevier.
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complete anti-correlation. RP is always defined with respect to 
a rigid shift ∆ between the two curves considered. A python 
script for the calculation of this and other reliability factors is 
available from Github3.

We reproduce in figure  12(A) the theoretical IR spectra 
obtained with DFT-PBE adding pairwise van der Waals cor-
rections (PBE  +  vdW [87]) for helical structures of Ac-Ala10-
LysH+ and Ac-Ala15-LysH+ compared to experiment. For 
n  =  15 the comparison of the harmonic spectra of a helix 
containing mostly 310 helical H-bonds, another containing α-
helical H-bonds, and the anharmonic spectra obtained from 
equation  (9) from PBE  +  vdW molecular dynamics shows 
(quantitatively) how the agreement to experiment increases in 
the anharmonic case. A Pendry reliability factor RP of 0.32, 
obtained with respect to a rigid shift ∆ of the whole spectrum 
by 26 cm−1 is an indication that the structure of this molecule 
is indeed the α-helical one shown in figure 12(B), where the 
lysine residue is completely self-solvated in the backbone car-
bonyl groups. Also in panel B, we show the H-bond dynam-
ics of the molecule in the trajectory generating that spectrum, 
highlighting 310- and α-helical H bonds. Although fluctua-
tions are observed, the molecule maintains a mostly α-helical 
structure throughout. For Ac-Ala10-LysH+ we also find a good 

agreement between the theoretical (anharmonic) and experi-
mental IR spectrum for the α-helix. Examining the dynam-
ics of this molecule when switching off the vdW interactions, 
we can show in panel (C) that the structure becomes more 
extended, stabilizing a 310 helical motif, and worsening the 
agreement with experiment (shown only in [83]). This obser-
vation is also in line with a study of interplay between H-bond 
cooperativity and vdW contributions in polyalanine helices: 
H-bonds get systematically strengthened by vdW interac-
tions, and the high temperature stability of Ac-Ala15-LysH+ 
is increased, while at lower temperatures the lack of vdW 
interactions also stabilize a more extended 310-helical struc-
ture [29].

The effect of the location of the charge and the peptide 
sequence was also studied for even larger alanine-based poly-
peptides, namely Ac-Ala19-LysH+ and Ac-Lys-Ala19-H+ [98]. 
Ac-Ala19-LysH+ was seen to form helices, consistent with 
measured ion mobility cross sections. Ac-Lys-Ala19-H+ pre-
sented cross sections consistent with more compact, globular 
conformers (as expected due to the unfavorable interaction 
of the charge with the possible helix macrodipole), but its IR 
spectrum was very similar to helical structures. Theoretical 
calculations could solve this puzzle: even if of a compact/
globular nature, energetically favored conformers of Ac-Lys-
Ala19-H+ still retained a large helical content.

Figure 12. (A): Reproduced from [42], copyright 2010 American Chemical Society. Comparison between experimental (gray lines) and 
theoretical (red lines) (PBE  +  vdW functional) vibrational spectra, all normalized to 1 for the highest peak. ((a), (b)) Ac-Ala15-LysH+ : 
calculated spectra based on the harmonic approximation, for a 310-helical (a) and an α-helical (b) local minimum of the potential-energy 
surface. (c) Ac-Ala15-LysH+ : calculated spectrum from AIMD (including anharmonic effects), starting from an α-helix and α-helical in 
character throughout the simulation. (d) Same as panel (c), for Ac-Ala10-LysH+ . Pendry R-factors and rigid shifts ∆ between measured and 
calculated spectra are included in each graph (calculated spectra are shifted by ∆ for visual comparison). (B): Illustration of the hydrogen bond 
network evolution of Ac-Ala15-LysH+ during a PBE  +  vdW microcanonical simulation. On the right side of the plot, the ratios of α-helical 
and 310-helical bonds observed during the simulation for each oxygen, labeled from N to C-terminus is shown. (C): Illustration of the hydrogen 
bond network evolution of Ac-Ala10-LysH+ during a PBE  +  vdWTS and a PBE microcanonical simulation (labels are the same as in (B)).

3 https://github.com/mahrossi/r-factors
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Here we take the opportunity to address a commonly 
adopted approximation in these simulations, namely that of 
performing dynamics considering classical nuclei. Hydrogen 
atoms, ubiquitous in these molecules, are quite quantum enti-
ties even at temperatures as high as room temperature. These 
effects are known to affect the structure and dynamics of 
condensed phase systems (especially water) [169, 170] and 
hydrogen bonds [171, 172]. A simulation technique that has 
been progressively gaining more attention to include nuclear 
quantum effects (NQE) beyond the harmonic approximation 
at least in non time-dependent observables is path integral 
molecular dynamics (PIMD). This technique exploits an exact 
isomorphism between the statistical properties of a quantum 
system and that of a classical ring polymer, where each bead 
is a repetition of the original system, connected to each other 
by harmonic springs. A detailed explanation of this technique 
is beyond the scope of this manuscript, but good descriptions 
can be found in [173, 174]. This technique is especially suited 
to massively parallel architectures, since the replicas of the 
system can be run in parallel given that there are enough CPUs 
available. For time-dependent observables, e.g. time correla-
tion functions, the situation is much trickier, due to the diffi-
culties of modelling true quantum dynamics. Also within path 
integral molecular dynamics there are a few approximations 
to time correlation functions that have been proposed, namely 
centroid molecular dynamics [175], ring polymer molecular 
dynamics [147], and thermostatted ring polymer molecular 
dynamics (TRPMD) [168]. Albeit approximate these meth-
ods can give reliable results especially for larger systems and/
or extended systems [176], and are the only methods so far 
that can be applied on a more routine basis to realistic multi-
dimensional systems. At room temperature, even for the most 
efficient of these methods, one must use several tens of repli-
cas of the system, making these simulations still substantially 
more costly than their classical-nuclei counterparts.

We used TRPMD to calculate the IR spectrum of 
Ac-Ala10LysH+ , shown in figure 13. We used the FHI-aims 
program package [79] in connection to the i-PI program 
[177] in order to perform the dynamics. We simulated 20 ps 
of TRPMD dynamics, starting from the thermalized α-helical 
structure, a time step of 0.5 fs for the integration, 16 replicas 
of the system (beads), and light settings in FHI-aims for the 

PBE  +  vdW force evaluation. In figure 13 we compare the IR 
spectrum thus obtained with the AIMD-PBE  +  vdW spectrum 
(tight settings, without any shifts applied) and the IRMPD 
room temperature experimental spectrum already published in 
[42]. We observe that while for very low frequency modes the 
classical and quantum nuclei simulations agree pretty well, 
above 1000 cm−1 most of the modes are softened (red-shifted) 
in the quantum case, something that becomes progressively 
more pronounced for all modes above 2500 cm−1. This obser-
vation is in line with the fact that higher frequency modes 
are more quantum in nature. Even if TRPMD is known to 
over-broaden the line-shapes [168], the red-shifts should be 
reliable, modulo the limitations of the DFT functional itself 
(lower barriers, softer H-bonds). As also shown in figure 13, 
this effect goes in the opposite direction of the experimental 
data, which is already slightly blue shifted from the classical 
nuclei simulation. This is an indication that the PBE  +  vdW 
functional itself is here at fault. In these systems, when cal-
culating harmonic frequencies of vibration with, e.g. the 
PBE0  +  vdW functional, they are all blue shifted with respect 
to PBE  +  vdW. The over-softening of the modes is one more 
manifestation of the self-interaction problem. It seems, thus, 
that in order to get better agreement of peak positions with 
experiment in a fully anharmonic picture, one should perform 
a simulation with van der Waals corrected hybrid functionals 
(which are, unfortunately, considerably more expensive than 
standard generalized gradient ones) and include nuclear quan-
tum effects.

So far, only studies of polypeptides in isolation have been 
discussed. As mentioned in the introduction, the gas phase is 
ideal not only due to its ‘clean room’ conditions, but also to 
the fact that it is straightforward to control the gradual inclu-
sion of ‘external agents’, as for example ions, metal cations 
and small metallic clusters, and solvent molecules, for exam-
ple water. We dedicate a following section  to the discussion 
of microsolvation. Here we briefly review the interaction with 
ions. Since the early 2000s, IMS experiments have pointed 
to the role of cations stabilizing helical structures in poly-
alanine peptides [178], and more recently evidence for helix 
stabilization has been established based on the measurement 
of gas phase IRMPD spectra in the Amide A/B range of sodi-
ated polyalanine peptides of various sizes [179]. Through 

Figure 13. Infrared absorption spectra of Ac-Ala10-LysH+ calculated with ab initio molecular dynamics (AIMD-PBE  +  vdW) at 300 K, 
with ab initio thermostatted ring polymer molecular dynamics [168] (TRPMD-PBE  +  vdW) at 300 K, and the experimental IRMPD  
room-temperature spectrum from [42].
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measurement of IR spectra, also the role of metal cations to 
stabilize the zwitterionic form of some amino acids in the gas 
phase has been studied [18].

We had a detailed look at the effect of small cations (Li+ 
and Na+ ) on the structure of prototypical turn-forming pep-
tides Ac-Ala-Ala-Pro-Ala-NMe and Ac-Ala-Asp-Pro-Ala-
NMe [72]. The different systems were investigated by means 
of theoretical and experimental vibrational spectroscopy. 
First of all it was evident that in the gas phase, the interaction 
of the peptide carbonyl groups with the strong positive charge 
of the cations enforces conformations on the backbone that 
would not be possible for the peptide alone. Furthermore, 
the preferred conformations differ depending on the cation. 
The comparison between experimental and simulated spec-
tra revealed that multiple conformers co-exist and probably 
interconvert in the gas phase. Consequently, the computed 
spectra for individual conformers have to be mixed in order 
to match the spectra recorded in the experiments, but a good 
agreement is reached. One can raise the question of how rel-
evant are these results in solution. Hints come from short 
ab initio MD simulations that were performed on energeti-
cally stable conformations of peptide-cation systems with 
a few dozens of waters. Within the time scales accessible, 
the interactions between the cation and the peptide backbone 
remained preferred over direct solvation of the cation by the 
water molecules.

4.3. Towards first-principles free energies

Even if the PES is really the basis for all thermodynamic 
quantities, the sole knowledge of the PES does not allow a 
direct connection with real-world physics. For equilibrium 
properties, what is really needed is a good estimate of the par-
tition function from statistical mechanics and all thermody-
namic quantities that can be derived from it, most importantly, 
free energies.

Unfortunately, estimating free energy values for biomol-
ecules is not an easy task. The harmonic approximation for 
the free energy (discussed in many textbooks, e.g. [146]), 
is the most common approximation. The reason is that it is 
the only one feasible with more costly (e.g. first principles) 
potentials and for larger molecular sizes. Due to the anhar-
monic nature of these molecules, it is not guaranteed though 
that this approximation will be plausible even at relatively low 
temperatures.

In order to get vibrational contributions to the free energy 
it is possible to use, for example, the VSCF and VPT2 meth-
ods, already discussed in the last section. For small molecules, 
Basire and coworkers have developed a technique which relies 
on the estimation of microcanonical densities of states and par-
tition functions, that gives access to temperature effects and 
relative populations connected to a second order vibrational 
perturbation theory [153, 154] approach. However for higher 
dimensional and flexible systems this technique becomes very 
challenging. Quasi-harmonic analysis, in which dynamics can 
be decomposed into principal components and entropies cal-
culated from this decomposition can be used as an approxi-
mation, provided there is enough sampling, but again, they 

rely on a quasi-harmonic picture that is likely to fail in many 
situations.

We have shown in the previous sections  that it is possible 
to extract, for example, vibrational spectra from first-principles 
molecular dynamics (MD) simulations. However, the estimation 
of (relative) free energies requires a sampling of the conforma-
tional space that can currently only be realized for rather small 
molecular systems with few well defined degrees of freedom 
[180]. For larger systems, with hundreds of atoms, it is a much 
larger (and close to impossible) effort to gather the required sta-
tistical sampling of conformational space in order to estimate 
these free energies. It is worth noting though that with smart 
algorithms and optimized codes these quantities are becoming 
accessible [181]. There are two main points do be addressed 
[182]: (i) The simulation has to be long enough to ensure that the 
time-average of the simulations resembles the ensemble average 
of the system and (ii) free energies from MD simulations require 
the definition of collective variables, that are not trivial to define. 
In the field of biomolecular simulations a variety of MD-based 
simulation techniques are being used to solve point (i), we only 
summarize some frequently used types here:

  A straightforward approach is the computation of long 
(µs to ms time-scale) trajectories. This idea brought to 
the extreme is the construction of dedicated hardware like 
the molecular-dynamics supercomputer Anton [183] that 
provides access to the kinetics and thermodynamics of, 
for example, protein folding [184, 185].

  Alternatively, many short MD trajectories can be com-
bined by using Markov-chain models [186–190]. This 
approach is striking because it is inherently parallel and 
allows the use of distributed computational resources 
[191, 192].

  The necessity of either very long or large numbers of 
independent shorter MD simulations comes from the 
nature of the transitions between the different meta-stable 
states on the free-energy landscape of a given system. 
These transition are often rare events and in order to 
obtain converged values, these events have to be observed 
sufficiently often. In order to enhance sampling and 
therewith shorten the required simulation times, multiple 
methods are available: replica-exchange MD, umbrella 
sampling [193–196], metadynamics [197, 198], etc.

One or several collective variables are needed as degrees 
of freedom (DOF) that define the free-energy surface. In case 
of, e.g. umbrella sampling or meta-dynamics, these collective 
variables have to be known a priori, while they can be defined 
a posteriori in non-biased MD simulations. Overall, it would 
be interesting to pursue methods that can be even more effi-
cient in sampling, or methods that can reach convergence with 
a small amount of statistics.

5. Challenges towards solvation

A biomolecule immersed in a solvent presents three different 
qualitative types of interactions that need to be described. These 
are the intramolecular interactions, the biomolecule-solvent 
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interactions, and the intra- and inter-molecular interactions of 
the solvent. The interactions between the biomolecule and the 
solvent and the influence of the collective interactions of the 
solvent on the biomolecule are the ones that will ultimately 
define the solvated state. It is important to note that the solvent 
is often not a simple homogeneous environment, but includes 
ions and other inhomogeneities that also need to be accurately 
captured. Studying biomolecules directly in solution has the 
drawback that the resulting measurements are quite congested 
by the amount of different interactions that play a role. It is 
thus desirable to build up the solvated state step by step, so 
that theory and experiment can work in synergy towards a con-
sistent and reliable description of these molecules in solution.

Experimentally, regarding the solute–solvent and solvent–
solvent interactions, perhaps the most detailed characteriza-
tions of physical properties are connected to mass spectrometry 
(MS), where it is possible perform thermochemical equilib-
rium measurements [199] and, if connected to spectroscopy 
techniques, to measure also more detailed structural informa-
tion. In these experiments, solvation with water molecules or 
ions (or both) can be investigated in a stepwise manner, such 
that the physical properties of the very first stages of solvation 
can be identified. For example, it is possible to measure equi-
librium constants, binding enthalpies, and vibrational spectra 
that can be directly connected to calculations.

Using only IM-MS, thermochemical equilibrium proper-
ties and overall geometric information have been gathered for 
a range of biomolecules and the first stages of their interaction 
with the solvent (microsolvation) [3, 178, 200–203]. A review 
in this area can be found in [3]. More recently, also the meas-
urement of vibrational spectra of mass selected species in the 
gas phase were able to probe more detailed conformational 
properties of clusters of solvent molecules [164, 204–207, 208] 
or the first stages solvation especially of peptides [209], and 
sugars [6, 210, 211]. We highlight here two recent experimental 
works dealing with peptides to illustrate the state of the field. 
Impressive results have been reported by Nagornova and cow-
orkers [209] on the microsolvation of Gramicidin S cooled to 
12 K. By performing conformer selective double resonance 
IR-UV spectroscopy they were able to connect IR features to 
structural changes caused by the absorption of 1–15 water mol-
ecules. Another work by Warnke and coworkers [200] instead 
used ion mobility-mass spectrometry to show how crown-ethers 
can micro-solvate charged Lys side chains in cytochrome-C and 
other proteins. The authors were able to decompose the effects 
responsible for the unfolding of highly-charged states in the gas 
phase into Coulomb repulsion and side chain to backbone inter-
actions that interrupt backbone hydrogen bonding.

Experiments nowadays are able to provide more and more 
accurate data on thermochemical and structural properties 
of (micro)solvated biomolecules, but without the support of 
theoretical calculations, the understanding of the results is 
limited. It is not straightforward to obtain quantitative data for 
these systems from simulations, though. The difficulties are at 
least two fold: (i) One still has the high conformational free-
dom of the biomolecule itself, but now further complicated 
by the presence of ions and solvent which introduce an extra 
range of qualitatively different interactions to be modeled; (ii) 

It is known to be difficult to simulate even the solvent in isola-
tion, with most quantum chemical methods failing to correctly 
describe overall structural properties like radial distribution 
functions, or diffusion coefficients [212–218], or the correct 
relative energies of hydrogen bonded structures [219, 220].

The main challenge is to correctly and thoroughly explore 
the potential energy surface (PES) and the entropic contribu-
tions to the free energy—even more important when related 
to the solvent. These simulations must involve an accurate 
evaluation of the potential energy and span a long time scale 
(or a huge volume of phase space). Unfortunately nowadays 
one can have either one or the other: an accurate evaluation 
of points in the PES can be achieved by the highest-level 
quantum chemistry methods but these are too computation-
ally expensive to allow a thorough sampling of the PES, while 
empirical potentials allow a thorough sampling of the PES 
but do not provide quantitative estimates. It is also important 
to note that only describing the electronic structure of these 
systems is not enough—especially in connection with the sol-
vent, the inclusion of nuclear quantum effects beyond the har-
monic approximation is necessary [170, 221–225].

Nevertheless some successes from theory have been 
achieved for the microsolvation of model peptides, for exam-
ple the Ac-Alan-LysH+ series already mentioned in this review. 
The groups of Bowers [203] as well as of Jarrold [165] per-
formed IM-MS experiments for the monohydrated structures 
of a few conformers (different sizes) of this peptide series. In 
these experiments, they had access to equilibrium constants of 
the monohydration reaction, derived from the ratio between 
the intensity of the peaks corresponding to the bare and the 
monohydrated structures. Based on previous observations that 
more globular/compact structures had a lower propensity to 
adsorb one water molecule than helical ones, they concluded 
that the shortest helical member of this series would happen 
at n  =  8—without thorough theoretical support, it is difficult 
though to understand what is the atomistic mechanism for this 
difference in water adsorption propensity. In [122], Chutia and 
coworkers have performed extensive first principles conforma-
tional scans of n  =  5 and n  =  8 microsolvated by up to 5 water 
molecules. One conclusion is that the intramolecular hydrogen 
bonds of the self-solvated ammonium group, in both cases, are 
the most stable hydration sites. For one water molecule the 
most stable conformers are shown in figure 14, together with 
the calculated standard (Gibbs free) energy of formation ∆G0 
of the reaction. The agreement with experimental values is 
pretty good (also at other temperatures, shown in [122]). From 
the theoretical work, the authors concluded that the decrease in 
water adsorption propensity is not due to a radically different 
binding site, but instead only to modified internal free energy 
contributions (harmonic vibrational free energy) in the specific 
H2O adsorption site at the LysH+ termination, in an example 
of how theory can help to gather a deeper understanding of 
experimental data. However, it is still a challenge for theory 
to be able to give even more reliable results for larger peptides 
surrounded by more solvent molecules. In this respect, theo-
retical advances as proposed by Gaigeot et al [226] that allow 
a separation of solute and solvent vibrational spectra in simula-
tions are of great importance.
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It is thus pressing to build a tighter relationship between the 
quantum and the empirical world. While for water there is an 
appreciable effort to build better and more accurate potentials 
based on quantum mechanical calculations [221, 227–229], 
for the solvent-biomolecule (or ion-biomolecule) interaction 
these efforts are much less pronounced. An improvement in 
this area can be achieved precisely by performing these the-
ory-experiment benchmarks of the stepwise build-up of sol-
vation, and modifying empirical potentials according to this 
data.

6. Conclusions

The aim of this review was to give an overview on the inter-
play of experiment and simulation regarding the structure and 
dynamics of biomolecules in the gas phase. Given the scientific 
fields of the authors, the focus was clearly on first-principles 
calculations on peptides towards the computation of physical 
observables like vibrational spectra and collision cross sec-
tions. For flexible molecular systems, for which biomolecules 
are a prime example, a thorough search of the accessible con-
formational space is crucial before any attempt to compare 
simulated properties with their experimental counterpart.

A typical work flow is outlined in the following (and in 
figure 9):

 (i) The exact chemical structure (connectivity of the atoms) 
of the molecular system has to be known. This includes 
knowledge about possible alternative protonation states 
(protomers). In cases where, for example, cations like H+ 
or Na+ are involved, their presence and location relative 
to the molecule has to be considered as well.

 (ii) An initial enumeration of structural candidates can be 
performed by the sampling of a computationally-cheap 
potential-energy surface (PES), for example of an empir-
ical force field.

 (iii) As we have outlined in this review, the limited accuracy 
of force-field methods requires a refinement at the level 
of electronic-structure theory. This can be facilitated 
by using density-functional theory (DFT) methods or 

quantum-chemistry methods like Møller–Plesset pertur-
bation theory (MP2). Higher-level methods, like coupled 
cluster, quantum Monte Carlo, or full configuration 
interaction, are computationally very demanding and thus 
normally limited to small systems and benchmark-type 
calculations.

 (iv) In order to remove a possible bias from the initial sam-
pling of the force-field based PES, further exploration 
of the first-principles PES in the proximity of already 
located low-energy structures is advisable. This can be 
facilitated by, for example, (replica-exchange) ab initio 
molecular dynamics simulations.

 (v) Free-energy estimations in the harmonic approximation 
should be considered, not the least because they also offer 
a first glimpse at the vibrational spectrum of the molecular 
system. Further MD-based sampling can potentially be 
used to obtain more accurate thermodynamical observa-
bles (free energies, enthalpies, etc). However, the size of 
structure space and the computational cost of the required 
converged simulations again restrict such approaches to 
either rather small or rigid molecular systems.

 (vi) The comparison to experiment serves as (i) validation of 
the method (search strategy and energy function) and (ii) 
as a way to add structural resolution to the experiment. 
Both can be achieved by the computation of physical 
observables, e.g. collision cross sections, vibrational 
spectra, optical spectra, etc.

Each simulation represents an approximation to reality 
and inherently produces errors. The gas phase is a clean-room 
environment and gas-phase experiments can produce accurate 
and sharp data that represents a challenge to theory and simu-
lation. We would dare to say that the higher signal-to-noise 
ratio that is present in condensed-phase experiments might 
actually cover some of the involved systematic errors in the 
theoretical description. This highlights the importance of the 
gas phase as an ideal environment for validating energy func-
tions and simulation techniques.

An important point that we can conclude is that it is not 
sufficient to focus on a single or a few structures, given the 
complex dynamics observed in the gas phase (and even more 

Figure 14. Calculated ( )∆G T0  (in eV, and corresponding to a reference pressure of = ×p 1.01325 100
5 Pa  =  760 Torr) for monohydration 

of Ac-Ala5-LysH+ and Ac-Ala8-LysH+ compared to literature data. Also shown, the most stable conformations of monohydrated Ac-Ala5-
LysH+ and Ac-Ala8-LysH+ from theory (PBE  +  vdW). Values and structures from [122].

Monohydrated 
peptide Method G0(eV),  T=0K G0(eV), T=223K

Ac-Ala5-LysH+ Theory/PBE+vdW -0.53 -0.24

Ac-Ala8-LysH+ Theory/PBE+vdW -0.51 -0.20

Ac-Ala5-LysH+ Expt.a - -0.20 ± 0.02

Ac-Ala8-LysH+ Expt.a - -0.15

K

a Kohtani and Jarrold, JACS 126, 8454 (2004), values converted from K1

equilibrium constants that were read from Figure 2. Error bars from our estimate.

Ac-Ala5-LysH+ H2O Ac-Ala8-LysH+ H2O
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so in solution). Most of the larger sources of uncertainties in 
the theoretical treatment have to do with an insufficient or still 
inaccurate treatment of dynamics. If an accurate free-energy 
surface could be accessed and sampled, most of the remaining 
problems would be solved. This would allow, for example, the 
correct prediction of the conformational ensembles observed 
in ion-mobility measurements (CCS/ATD) or in vibrational 
spectroscopy. In addition, it would give access to reliable bar-
riers and a natural inclusion of anharmonic effects in vibra-
tional spectra. In order to reach this goal, we need to compute 
potential energies and forces including the correct physics, 
which then need to be sampled faster and for long time scales. 
We note that the correct physics may go even beyond just 
grasping the physics of the electronic structure but also the 
quantum nature of the nuclei, which can cause much stronger 
anharmonicities (as shown in this review) and change consid-
erably effective barrier heights. Going even further, for these 
highly anharmonic and high-dimensional systems, in many 
situations the dynamics of nuclei and electrons are coupled. 
These non-adiabatic effects are truly difficult to treat from a 
theoretical point of view in these structures.

The efficient exploration of conformational space for high-
dimensional flexible systems in an accurate manner thus poses 
one of the most pressing issues in this field. For it to be solved, 
either the accuracy of force fields must be improved, or the 
computational limitations of first-principles methods, when it 
comes to larger length scales and longer time scales, needs to 
be lifted. Possible routes that can be followed in methodologi-
cal developments involve, for example, better parametrization 
of force fields based on the increasing number of first-princi-
ples data present in the literature, development of smarter free 
energy evaluation methods that can deal with fewer statistical 
sampling, and/or even better scaling of first-principles codes 
in massively parallel architectures. As these issues are already 
recognized by the community, several efforts in all fronts are 
paving the way to treat larger systems with state-of-the-art 
accuracy (e.g. [75, 98, 183, 230–234] and many others).

Nevertheless, as it has been shown in this review, both the 
time and length scale currently accessible to first-principles 
methods already allow an accurate treatment of systems with 
hundreds of atoms in simulations. On the experimental side, it 
is routinely possible to transfer large biomolecules, e.g. large 
proteins and even complexes, to the gas phase by electrospray 
ionization and to study them by mass spectrometry and ion 
mobility-mass spectrometry (IM-MS) [11]. However, with the 
size of the molecular systems, vibrational spectroscopy inves-
tigations get hindered by more and more congested spectra. 
A promising route that is currently being followed to circum-
vent this problem is to measure conformer selective spectra 
by either using (i) UV/IR double-resonance techniques and 
(ii) pre-selecting conformers by using IM-MS. A way to get 
sharper spectra is to measure them at low temperatures for 
example by using either cold-ion traps [63, 64] or helium 
droplets [65, 66]. Conformational selection and cold-ion spec-
troscopy can also be combined.

The investigation of biomolecules in the gas phase is a 
dynamically growing field and a constant challenge to experi-
mentalists and theorists alike. The constant developments and 

improvements of experimental techniques trigger the use of 
more and more sophisticated simulations and vice versa. As 
such this line of research pushes our understanding of the 
very basics of biomolecular structure formation and dynam-
ics. For the development of simulation methods, the precise 
data that can be obtained from gas-phase experiments is ideal 
to develop and test new methodologies that will also have an 
impact in condensed-phase simulation.
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In the natural peptides, helices are stabilized by hydrogen bonds that point backward along the

sequence direction. Until now, there is only little evidence for the existence of analogous structures

in oligomers of conformationally unrestricted b amino acids. We specifically designed the b peptide

Ac-(b2hAla)6-LysH+ to form native like helical structures in the gas phase. The design follows the known

properties of the peptide Ac-Ala6-LysH+ that forms a a helix in isolation. We perform ion-mobility mass-

spectrometry and vibrational spectroscopy in the gas phase, combined with state-of-the-art density-

functional theory simulations of these molecular systems in order to characterize their structure. We can

show that the straightforward exchange of alanine residues for the homologous b amino acids

generates a system that is generally capable of adopting native like helices with backward oriented

H-bonds. By pushing the limits of theory and experiments, we show that one cannot assign a single

preferred structure type due to the densely populated energy landscape and present an interpretation of

the data that suggests an equilibrium of three helical structures.

1 Introduction
Proteins – the polymers of a amino acids – play an essential role
in virtually all biochemical processes. Their often highly specific
function is directly correlated to their distinctive ability to fold
into a well-defined, three-dimensional structure, in which func-
tional groups are spatially arranged to form reaction centers,
binding sites, etc. Utilizing the toolbox of organic synthesis,
chemists have long sought to mimic these folding characteristics
using polymers that contain non-natural amino acids – so-called
‘‘peptide foldamers’’.1 The advantage here is that peptide bonds
involving non-natural building blocks are less prone to proteo-
lytic cleavage and, as such, of enormous interest for drug
development.2–4

The first step toward successful foldamer design is the
identification of polymeric backbones which fold into a well-
defined structure that is ideally native-like. In this context,
much effort has been spent to design peptide foldamers that
imitate the characteristics of the most prominent secondary
structure element – the a helix.5–15 A promising route to achieve
this goal is backbone homologation, i.e. the extension of the
amino acid’s backbone by methylene units.5 The first homologs
of natural a amino acids are b amino acids (Fig. 1a), followed
by g amino acids, d amino acids, etc. In particular, b peptides
were found to form secondary structures, which are similar
in shape to a helices, and some of them have been used to
design modulators for native protein–protein interactions.3,16–18

Surprisingly, none of these structures directly resembles the
periodically repeating backbone H-bonding pattern of a helices.
The characteristic a helical i ’ (i + 4) H-bonding pattern19 is
depicted in Fig. 1b: H-bonds form between the NH of residue
(i + 4) and the backbone carbonyl group of residue i. As a result
pseudocycles of 13 atoms are formed. The alternative H-bonding
patterns in Fig. 1b are either tighter wound (i ’ (i + 3)) and
characterize the 310 helix with 10-membered pseudocycles or feature
the wider 16-membered H-bonded pseudocycles (i ’ (i + 5)) of
the p helix. The interconversion between these helices is possible
by tightening or widening the helix, that is by changing the
H-bonding pattern from i ’ (i + 3) to i ’ (i + 4) to i ’ (i + 5) and
back. By this mechanism, transitions will always happen from or
to (via) the a helix.20,21 In experimental and theoretical structural
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studies, mainly the a helix is found. This is not only due to
enthalpy, e.g. H-bond cooperativity, but also due to a significant
vibrational entropic stabilization that sets helices apart from
competing compact conformers at room temperature.22

It is well established that polyalanine sequences form a helices
in the gas-phase, especially in the presence of a protonated lysine
residue at the C terminus.22–29 These prototypical peptides
follow the sequence Ac-Alan-LysH+; members of this series have
been extensively studied by ion mobility-mass spectrometry
(IM-MS),23–25 gas-phase vibrational spectroscopy,26,28 and density-
functional theory (DFT).22,26–29 The placement of a positive charge
at the C-terminus stabilizes the helix via coordination of dangling
backbone carbonyls and favorable interaction with the helix
macro-dipole. As an example for these polyalanine systems, we
study here the peptide Ac-Ala6-LysH+, for which the formation of
an a helical structure at room temperature has been predicted.22

b Peptides have been demonstrated to form various helices
with H bonds pointing in forward (from N to C terminus), in
backward (from C to N terminus), or in alternating direction
(‘‘mixed’’ helices) along the sequence.5–10,30–32 We are here
however specifically interested in helix types that resemble
the a helix, i.e. with H bonds that point backward relative to
the sequences direction (from C to N terminus), as indicated in
the H bonding scheme in Fig. 1b. The resulting helices are
characterized by H bonds that form pseudo cycles with 12, 16,
or 20 atoms and are therefore consistently named H12, H16,
and H20, respectively. An illustrative example for the helix H16
is shown in Fig. 1b along with its a peptide equivalent, the
a helix. Both feature H bonds with the same i ’(i + 4) pattern
as depicted in Fig. 1b. According to the H-bonding patterns,

H12, H16, and H20 are related to the 310, a, and p helix motifs
of the a peptides.10,33 The H12 helix was first described by
Gellman and co-workers. Its formation, however, required
cyclic b amino acids that are sterically restricted.34–36 The
a helix equivalent H16 helix has been proposed theoretically
by Hartree–Fock calculations,10 but to date there has been only
limited experimental evidence for its existence, most of it
stemming from diffraction patterns of Nylon-3 polymers,37,38

which have the same backbone structure as their oligomeric
b peptide relatives.

In order to study the formation of helices with native like H
bonds in backward direction along the sequence (see Fig. 1b
and c), we employed the above-described design principle of
Ac-Ala6-LysH+.22–29 To obtain a b peptide, we replaced the
alanine residues by (R)-b-aminoisobutyric acid (b2hAla) – an
alanine derivative with an extended backbone (Fig. 1a). The
resulting foldamer Ac-(b2hAla)6-LysH+ was investigated by gas-
phase experiments and simulations.

2 Methods
2.1 Ion mobility-mass spectrometry

IM-MS experiments to determine collision cross sections (CCSs)
were performed using an in-house built drift-tube instrument
following a design described previously.39 Briefly, ions are
formed in a nano-electrospray ionization source (nESI) and
transferred into the vacuum. An electrodynamic ion funnel
collects and pulses ions into the drift region where they move
through a buffer gas (He) under the influence of a weak electric
field. At the end of the drift-tube, a second electrodynamic ion
funnel guides the ions into a quadrupole mass spectrometer,
which separates the ions according to their mass-to-charge
ratio (m/z). By measuring the time-dependent ion current of
m/z selected ions, characteristic arrival time distributions
(ATDs) can be obtained. From these ATDs, absolute CCSs of a
particular ion species can be determined.40

2.2 Gas-phase vibrational spectroscopy

The experiments were performed at the free-electron laser facility
FELIX41 (Nieuwegein, the Netherlands) using a Fourier-transform
ion cyclotron (FT-ICR) mass spectrometer.42 For ionization a nESI
source (MS Vision, Almere, NL) and capillaries prepared in-house
were used. Ions were accumulated in a hexapole ion trap and
transferred into a home-built FT-ICR mass spectrometer that is
optically accessible via a KRS-5 window at the back end. The ions
were irradiated by IR photons of the free electron laser FELIX.
Resonance of the IR light with an IR active vibrational mode in the
molecule results in the absorption of multiple photons, which
causes the dissociation of the ions. Monitoring the depletion of
the individual parent ion signals as a function of IR wavelength
leads to the IR spectra.

2.3 Simulation details

The conformational search for the peptide Ac-Ala6-LysH+

was described previously by Rossi et al.22 For the b-peptide

Fig. 1 Structure of a and b amino acids and their oligomers. (a) a Amino
acids and b amino acids are homologs that differ by a single backbone CH2

group. (b) In a peptides, –(CH2)1–, and b peptides, –(CH2)2–, different
backbone H-bonding patterns may lead to helical structures with H-bonds
pointing in backward direction along the sequence, for example, the
a helix and the H16 helix (see c).
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Ac-(b2hAla)6-LysH+ an extensive sampling of the potential
energy surface (PES) of the OPLS-AA force field43 has been
performed independently by two approaches. We employed the
basin hopping algorithm that is implemented in Tinker.44,45

Furthermore, we employed replica-exchange molecular dynamics
(REMD) simulations with the Gromacs program.46 The simula-
tions yielded an overall sampling time of 8 ms distributed over
16 replicas, finally, snapshots in 2 ps intervals were extracted from
the 300 K trajectory and clustered.47

Altogether, basin hopping and REMD simulations yielded
13 119 structures that were then relaxed by density-functional
theory (DFT) calculations employing the PBE functional48

that was corrected for long-range dispersion interactions49

(PBE + vdW). Electronic structure theory calculations, including
geometry optimizations, harmonic vibrational frequencies from
finite differences, AIMD simulations, and replica-exchange AIMD
simulations, were performed with the FHI-aims program package
which employs numeric atom-centered orbitals as basis sets.50 In
order to reduce the bias of the empirical force field and following
our focus on helical structures, we further sampled the local
conformational space by means of replica-exchange AIMD simu-
lations starting from representative structures of the H12, H16,
and H20 helices that were obtained in the OPLS structure search
(schemes for i ’ (i + 3), i ’ (i + 4), and i ’ (i + 5) in Fig. 1b). The
total sampling times were 486 ps, 576 ps, and 558 ps, respectively,
each of them distributed over 18 replicas in a temperature range
between 300 K and 687 K. We used a time step of 1 fs and swaps
between replicas were attempted every 100 fs. Structure snapshots
of all replicas were taken after each ps and post-relaxed with
PBE + vdW. In summary, 14 739 PBE + vdW relaxations of
candidate structures of the b-peptide Ac-(b2hAla)6-LysH+ were
performed. A free-energy correction that includes vibrational
free energies in the harmonic approximation and rotational
contributions in the rigid-rotor approximation, both computed
with PBE + vdW at T = 300 K, was applied. Additionally, we
tested modifications of the theory towards a higher-level func-
tional, PBE0,51 and with the improved many-body description
of the long-range dispersion,52 similar to a recent study of the
validity of exchange–correlation functionals and dispersion
corrections for the prediction of peptide secondary structures.53

The infrared spectra were calculated from the Fourier trans-
form of the dipole time derivative autocorrelation function27,28

obtained from micro-canonical AIMD simulations of 25 ps length
(after at least 5 ps equilibration at 300 K). Some anharmonicity
effects will be missing in the spectra, because averages from
classical trajectories were used for the dipole–dipole time correla-
tion instead of exact quantum mechanical averages. However, this
approach is currently at the limit of what is computationally
feasible. To account for experimental broadening, the simulated
spectra were convoluted with a Gaussian function with a variable
width of 0.5% of the wavenumber. For a quantitative comparison
we employed the Pendry reliability factor,54 which has been
successfully used in the context of IR spectroscopy before.28,55

Perfect agreement yields RP = 0 while no correlation between
the spectra yields RP = 1. An optimal fit between two spectra
(based on RP) is achieved by rigid shifts along x and y axes.

3 Results
3.1 Ion mobility-mass spectrometry

In an IM-MS experiment a package of ions is injected into a cell
filled with an inert neutral buffer gas (in this work: helium).
Aided by a weak electric field, the ions traverse the cell where
they undergo many low energy collisions with buffer-gas mole-
cules. Compact ions undergo fewer collisions and therefore
traverse the cell faster than ions with a more extended con-
formation, which allows the separation of species with identical
mass and charge but different size and shape. Moreover, the
recorded drift or arrival times can be converted into collision
cross sections, which are universally comparable values that
can be calculated theoretically on the basis of molecular
models. The typical arrival time distribution (ATD) depends
on the shape of the ions and can be converted into a collision
cross section (CCS) via the Mason-Shamp equation.40 CCS values
are independent of a specific experimental setup (machine,
experimental conditions). An ATD of Ac-Ala6-LysH+ is shown in
the upper plot of Fig. 2a. The a-peptide ion cloud arrives at a drift
time of 12 ms with a full-width half maximum (FWHMexp.) of
0.38 ms. Fig. 2b shows the ATD for the b peptide Ac-(b2hAla)6-
LysH+. The backbone extension from a to b amino acid building
blocks results in a longer drift time of about 13 ms and a peak
width of FWHMexp. = 0.38 ms.

For each of the two systems, the a-peptide and the b-peptide,
single and narrow peaks are observed in the ATD. If one
assumes only a single type of conformation to be present in
the drifting ion cloud, the peak width depends entirely on the
initial pulse width and the broadening due to diffusion. This
flux-based broadening of the ATD can be calculated by:40

FðtÞ

¼
ð
dt 0

Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt! t 0Þ

p vdþ
L

ðt! t 0Þ

# $
exp

! L!vDðt! t 0Þð Þ2

4Dðt! t 0Þ

% &
Pðt 0Þ

( )

;

(1)

where P(t0) is a function describing the shape of the ion cloud
as it enters the drift region, for which we assume a rectangle
pulse of 100 ms length in this case. C is a constant and D is the

diffusion coefficient given by the Einstein relation D ¼ vDkBT

Eze
,

where ze is the charge of the ion, E is the applied electric field,
and vD is the average drift velocity. L denotes the length of the
drift tube. The resulting theoretical flux-based broadening of
the experimental ATD peak is plotted as dashed lines in Fig. 2.
The experimentally observed FWHMexp. are only slightly
broader than the theoretical FWHMflux values (see Fig. 2).

However, a narrow peak is not necessarily linked to a single
conformer. The ion cloud traverses the drift tube in a time of
12 ms or 13 ms, respectively; within such a time scale, a
molecular system may adopt numerous different conforma-
tional states if the barriers that separate them on the free
energy surface are not too high. Assuming such a scenario,
the width of the peak now provides information whether the
interconversion between multiple minima is fast enough to
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average out over the drift time. In other words, a narrow peak
may also indicate that each individual ion in the cloud has
reached conformational equilibrium, namely the time average
over all accessible conformers. The conformer distribution in
the ensemble equals the conformer distribution in the time
average of the individual ion due to the relatively long drift
time. The relatively narrow peaks we observe by comparing
FWHMexp. and FWHMflux indicate that all ions drift with the
same average velocity and thus: (i) belong to a single conforma-
tional family, or (ii) belong to multiple conformational families
with the same drift time, or (iii) interconvert between multiple
conformers and reach equilibrium within the drift time of 12 or
13 ms, respectively.

3.2 Tackling the conformational problem by simulation

We narrow down the conformational problem for the a-peptide
and the b-peptide applying a two-step procedure. First, the
conformational space defined by an empirical force field is

sampled in order to generate input for the subsequent first-
principles relaxations. In a second step, a local refinement is
performed that employs density-functional theory at the PBE +
vdW level48,49 Finally, free energies at 300 K (DF300K) were
estimated by including harmonic vibrations and rotational
contributions in the rigid rotor approximation.

Fig. 3a shows the free energy hierarchy at 300 K (in the
harmonic oscillator and rigid rotor approximation) and the two
lowest free-energy structures of Ac-Ala6-LysH+ that were identified
by a recent first-principles (PBE + vdW) based conformational
search by Rossi et al.22 Vibrational free energy contributions
particularly stabilize helical structures with respect to more
compact structures.22 This can be seen in the qualitative
changes from the potential energy hierarchy to the free energy
hierarchy as displayed in Fig. 3a for the a peptide. Consistently,
the a helix is the preferred conformation for Ac-Ala6-LysH+

confirmed by harmonic free energies at T = 300 K with the
PBE + vdW approach. From the Cartesian coordinates of the
conformers, theoretical CCSs can be calculated and compared
to their experimental counterparts. For this, we employ the
projection approximation (PA) method,56 which is known to
yield reliable values for ions with less than 200 atoms.57 The
theoretical CCS of the a-helical conformer of Ac-Ala6-LysH+

agrees best with the experimental peak of the distribution of
CCSs derived from experiment (Fig. 2a).

The b peptide Ac-(b2hAla)6-LysH+ is expected to be structu-
rally more flexible than the a peptide due to the additional
methylene group per residue. In order to sample the larger
structure space of the b peptide system, a far more extensive
first-principles guided conformational search had to be per-
formed. The multi-step search protocol that is described in
the methods section yielded approximately 14 000 optimized
geometries at the PBE + vdW level within a relative energy
window of 156 kJ mol!1. Re-relaxations of all minima within a
relative energy window of 38.6 kJ mol!1 with tight computa-
tional settings and harmonic free-energy calculations were
performed. Harmonic free-energy contributions favor helical
structures over more compact structures in Ac-(b2hAla)6-LysH+ –
an effect observed before for the Ac-Alan-LysH+ systems.22 The
high density of structures of Ac-(b2hAla)6-LysH+ with low
harmonic free energies is remarkable (see Fig. 3b). However,
the comparison to the hierarchy of the a peptide22 might
be misleading. The conformational search strategies differ,
especially in the local refinement step of the search results
for the b peptide by means of replica exchange AIMD simula-
tions. The three lowest free-energy conformers of Ac-(b2hAla)6-
LysH+ at 300 K are the helix H12, a compact structure, and
the helix H20 (Fig. 3b), all within a free-energy window of
about 3 kJ mol!1. The a helix equivalent H16 helix is about
10 kJ mol!1 above the global minimum in free energy, among
a total of 16 conformers that are present within this narrow
energy window. Helix types with forward oriented H bond
patterns along the sequence10 were not found. This is due to
the, by design of the peptides, selective stabilization of back-
ward oriented H bonded structures via favorable charge dipole
interactions.

Fig. 2 Ion-mobility mass-spectrometry (IM-MS) of peptides Ac-Ala6-LysH+

(a) and Ac-(b2hAla)6-LysH+ (b). The experimental arrival-time distributions
(ATDs, black lines in the two plots on top) were converted into collision cross
sections (CCSs, black lines in the two plots at the bottom). In the plots of the
ATDs, a flux-based estimate of the peak width is given as dashed line, the full-
width at half-maximum (FWHM) peak width for experiment and flux-based
model are given. Vertical bars in the CCS plots indicate CCSs calculated for
predicted conformers shown in Fig. 3.
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For all these b peptide conformers depicted in Fig. 3b
theoretical CCSs based on the PA method were computed.56

Simulation and experiment are compared in Fig. 2b. We get a
perfect match between the calculated CCS of H16 and the
experimental peak position with a negligible deviation of about
1.5%. The computed CCS values for H12 and H20 as well as for
the compact conformer clearly deviate from the CCS value of
the experimental peak.

3.3 Gas-phase vibrational spectroscopy

The experimental spectra for the a-peptide Ac-Ala6-LysH+ and the
b-peptide Ac-(b2hAla)6-LysH+ were measured at room temperature

and are shown in the upper plots in Fig. 4a and b. At a first glance,
the experimental vibrational spectrum of the b peptide (Fig. 4b)
shares many features with that of the helical a-peptide (Fig. 4b),
with the amide-I (CQO stretch mode, approximately 1679 cm!1)
and amide-II (N–H bending mode, approximately 1510 cm!1)
resonances being the most prominent peaks. A comparison of
both spectra, however, shows characteristic differences in band
position, width, and intensity, especially in the region between
1000 and 1400 cm!1. This region is sensitive to the main chemical
difference between both peptides, the additional methylene units
in the backbone of the b-amino acid building blocks. At the other
end of the spectrum (around 1760 cm!1), both experimental
spectra feature a vibrational mode of low intensity that hints to
a free terminal CQO group. The experimental spectra were each
averaged over four individual recordings and the background level
was determined multiple times throughout each wavelength scan;
the peak is real and not noise. The un-smoothed spectra are
shown, together with error bars, in Fig. S1 of the ESI.†

For the a peptide, constant-energy AIMD simulations (with
hTi = 300 K) were performed for the two lowest-free energy
conformers, the a helix and the compact conformer. From this
data, theoretical vibrational spectra were derived and compared
to the experimental spectrum. A quantitative comparison is
crucial here and can be achieved by employing the Pendry
reliability factor54 that was previously introduced to the field of
peptide vibrational spectroscopy.28 Simulated spectra are
rigidly shifted in x and y direction in order to yield the optimal
RP with respect to the experiment, values Dx and Dy are given in
Fig. 4. The shift along the x-axis accounts for a mode softening
(redshift) in the simulated spectra that probably results from
the approximations made. This can for instance be due to the
use of the exchange–correlation functional approximation
(PBE) to DFT or the classical propagation of the AIMD trajec-
tories that neglects quantum nuclear effects.27,28 The intensity
shift (along the y-axis) accounts for offsets in the experiment.
The theoretical spectrum of the a helical conformer fits better
to the experimental spectrum (RP = 0.31) than the compact
structure with RP = 0.46 (Fig. 4a). Theoretical and experimental
vibrational spectroscopy strongly support the interpretation of
only the a helix being present in the gas phase and at room
temperature for the a-peptide Ac-Ala6-LysH+.

For the b peptide Ac-(b2hAla)6-LysH+ we follow the same
approach and select the low free energy conformers H12,
compact, and H20 (see Fig. 3) as starting points for AIMD
simulations. Even though the H16 conformer is higher in free
energy, we still consider it here, as it is the direct analog of the
a helix. The computational cost of such simulations is sub-
stantial and can only be performed for selected conformers.
The individual simulated spectra are again compared to the
experimental spectrum. The compact structure as well as the
H12 helical structure agree only poorly based on the RP criterion
that rationalizes mismatches in the peak positions. The theore-
tical spectra of H16 and H20 have a slightly better agreement
with experiment based on the RP criterion, but still much worse
than the RP of 0.31 that we saw with the assignment above for the
a peptide. Another possible criterion is the diagnostic peak that

Fig. 3 Free energy hierarchy and examples of conformation of peptides
Ac-Ala6-LysH+ (a) and Ac-(b2hAla)6-LysH+ (b). (a) A first-principles-based
conformational search by Rossi et al.22 yielded a compact (grey) and an
a-helical (red) structure as the two most likely conformations of a-peptide
Ac-Ala6-LysH+ at room temperature. (b) A compact conformation (grey) as
well as the helices H12 (blue), H16 (red), and H20 (green) are displayed
along with a plot of the free energy hierarchy. The displayed structures are
highlighted in the hierarchy with their assigned color.
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was found in the high wavenumber region (around 1760 cm!1).
This diagnostic feature results from the C-terminal carboxyl
group not being involved in H bonds and is consequently only
reproduced in the simulated spectra of the H12 and H16 helices.
However, it is evident that we do not reach a clear conclusion
from gas-phase vibrational spectroscopy of the b peptide

Ac-(b2hAla)6-LysH+, but there might be slight hints that point
towards the H16 helix as possible dominant conformer for the
b peptide in the gas phase.

4 Discussion
The data for the a peptide Ac-Ala6-LysH+ points to one clear and
obvious solution: the expected dominance of the a-helix in the
gas phase. Contrarily, the data from gas-phase experiments and
first-principles simulations for the b-peptide Ac-(b2hAla)6-LysH+

is less clear, even contradictory. The simulation results, speci-
fically the harmonic free energy hierarchy at T = 300 K, point
towards the H12 helix as being most stable in the gas phase,
next in line are a compact conformer and the helical structure
H20, all within a DF300K range of about 3 kJ mol!1. The a-helix
like conformer H16 is about 10 kJ mol!1 higher in this free
energy scale. However, the IM-MS measurements find a narrow
drift peak with a CCS distribution that agrees very well with the
shape of this H16 helix. The vibrational spectroscopy experi-
ments reveal no particularly reliable agreement with any of the
theoretically predicted spectra, but might weakly hint towards
the H16 helix. In the following, we will discuss in detail two
possible interpretations that could help explain the situation.

We then also assess the applicability and accuracy of the
applied method by comparing two different density functionals
in combination with two different corrections for long-range
dispersion.

4.1 A step back

In order to critically assess a possible assignment of the H16
helix as most-likely conformer to be present in the gas phase,
we take a step back and evaluate the full pool of structures for
which we calculated the harmonic free energy. For each of the
163 low free-energy conformers (up to DF300K = 38.5 kJ mol!1)
we have a data point that envelopes three values:
& the free energy at 300 K in the harmonic oscillator and

rigid rotor approximation,
& the agreement between the experimental and the predicted

vibrational spectrum measured by RP,54 and
& the agreement between the calculated (PA) and measured

CCS expressed by the difference DCCS.
The vibrational spectra derived from AIMD simulations are

computationally too costly to be routinely computed for a large
number of conformers, consequently we can only use harmonic
vibrational spectra for this number of conformers. Fig. 5 shows
again the conformational free-energy hierarchy in the harmo-
nic approximation at 300 K. When considering the full con-
formational pool up to 38.5 kJ mol!1 for plotting RP and DCCS
of each conformer (see Fig. 5a), it is hard to draw a conclusion.
However, it is obvious that there are conformations for which a
good agreement with the experimental observables is predicted
(low RP and DCCS close to 0). Fortunately, there is a third
dimension to be considered, the computed free energy. Step-
wise lowering the cut-off DF300K for plotting (see Fig. 5b and c),
the conformer H16 appears more and more isolated in the plots

Fig. 4 Gas-phase vibrational spectroscopy of (a) the a-peptide Ac-Ala6-LysH+

and (b) the b-peptide Ac-(b2hAla)6-LysH+ at room temperature. The plots
show the experimental spectra (black lines) and the show simulated spectra
(colored lines) from AIMD calculations. Experimental IR spectra were
smoothed, see ESI† for the raw data. Vibrational spectra were simulated
for the conformers shown in Fig. 3a. A magnification is shown for the
wavenumber region from 1000 to 1400 cm!1. Theoretical vibrational
spectra were uniformly shifted, not scaled, by Dx and Dy along the wave-
number and intensity axes to best fit the experiment.28
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and suggests itself as a likely conformer to be present in the
experiment, especially due to the perfect agreement of experi-
mentally observed and calculated CCS. However, further low-
ering the energy cut-off will remove the H16 structure from the
candidate list.

Another problem with a structure assignment based on RP is
illustrated in Fig. 5c, where also the RP values for the four
spectra (H12, H16, H20, compact) derived from AIMD simula-
tions are plotted as open squares. The MD derived spectra are
in better agreement with the experiment than the respective
ones calculated in the harmonic approximation as it is indi-
cated by the lower RP value. However, the improvement is not
uniform; while there is, for instance, only minor improvement
for H16, the improvement from the harmonic to the MD
treatment for H20 is substantial. This limits the applicability
of the harmonic vibrational spectra for structure assignment.

Overall, a reliable structure assignment seems impossible with
the theory-experiment agreement achieved here.

4.2 Equilibrium

In isolation, structural changes that involve the rearrangement
of H bonds can be hindered due to the lack of compensation by
transient interactions with water molecules. However, the
structural interconversion between the helix types shown in
Fig. 1b can happen via tightening or loosening the helical twist
and the intermediate formation of bifurcated H bonds in some
sort of ‘‘breathing’’ motion.20,21 The path of this interconver-
sion always features the H16 helix as an intermediate as it lies
in between its relatives H12 and H20 when considering a
meaningful reaction coordinate like helical twist, the diameter
vs. length ratio, or the here used CCSs of the structures. Again,
structural transitions between these helices would always be
H12 " H16 " H20 if we exclude the possibility of full
unfolding and the refolding to an alternative helix type. The
same concept in turn also holds for the possible helices of the
a peptide, where transitions 310 " a " p would occur.
Combining this view with the relative free energies DF300 that
were calculated yields the two differing pictures shown in Fig. 6.
Please note, the free-energy and CCS values for the helical
conformers stem from actual calculations, but the gray lines
are only an illustrative representation of a possible free-energy
surface (FES). In fact we do not have knowledge about barriers
(yet). The interpretation of the illustrative a peptide FES is
straightforward, the a helix is the most stable structure and the
barriers to the neighboring helical structures must be high, as
even the respective minima of the 310 and p are above the
energy window used in the representation in Fig. 6. Conse-
quently, the experimental CCS distribution only features one
peak that fits best the theoretical CCS of the a helix. Also the
experimental CCS distribution of the b peptide fits best to the
a helix-like H16 structure. However, here the H16 is least stable
of three alternative helical structures. How to bring these
seemingly contradictory findings in line? First of all, the drift
time of 13 ms has to be considered. All individual ions of the
ion cloud should be in structural equilibrium and have visited
the possible states on our FES, the H12, H16, and H20 minima,
several times. As a consequence, the experimental CCS distri-
bution represents an average of the visited states that matches
the CCS value predicted for the H16 structure that is located
between the two lower free-energy conformers H12 and H20.
This interpretation brings at least the free-energy prediction
and the IM-MS measurements in line. The reasons for the
disagreement between the experimental IR spectrum and the
four simulated spectra from AIMD simulations remain to be
investigated. Straightforward mixing of the four individual
spectra with the target function of reducing the RP to the
experiment does not yield satisfying agreement. The RP values
for the helical conformers H12, H16, and H20 of the b peptide
are 0.64, 0.49, and 0.47, respectively (see also Fig. 4). The best
combination of the three spectra, to which H16 and H20
contribute equally and H12 does not contribute at all, has
an RP of 0.42.

Fig. 5 The conformational free-energy hierarchy of the b peptide Ac-
(b2hAla)6-LysH+ (right panel) and the RP (harmonic spectra) versus DCCS
plots (left panel). The the filled circles in the three plots represent all
predicted structures up to a relative free-energy threshold of (a) 38.5 kJ
mol!1, (b) 16.5 kJ mol!1, and (c) 10.2 kJ mol!1, respectively. The compact
conformer and the helices H12, H16, H20 are highlighted in gray, blue, red,
and green, respectively. In plot (c), also the RP values for the vibrational
spectra of compact, H12, H16, and H20 derived from AIMD simulation are
shown as open squares, connected by a straight line to the respective
value for the harmonic spectrum.
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4.3 Exact exchange and many-body dispersion

The conformational free energy hierarchy shown in Fig. 3 is sensitive
to the various approximations that we employ. In one of our recent
studies53 we assessed the accuracy of pairwise (vdW)49 and many-
body dispersion corrections (MBD*)52 in combination with the
density functionals PBE (generalized-gradient approximation)48

and PBE0 (with Hartree–Fock like exchange)51 for the description
of the conformational energy hierarchy of peptides in the gas phase.
In the same spirit we have tested how PBE + MBD*, PBE0 + vdW,
and PBE0 + MBD*, treat the low energy regime of the b peptide
Ac-(b2hAla)6-LysH+ predicted at the PBE + vdW level of theory.
The energies of conformers of the b peptide with a relative free
energy below 11.2 kJ mol!1 were recalculated. The resulting
potential energies were then combined with the harmonic
vibrational free energy corrections computed with PBE + vdW.
The results are summarized in Fig. 7. The change from PBE +
vdW to PBE0 + MBD* stabilizes H16, while H12 is slightly
destabilized. Furthermore, two additional compact conformers,

highlighted as A and B in Fig. 7, are ranked more stable. At the
PBE0 + MBD* level, four conformers, namely A, compact, B, and
H12, have to be considered within the narrow free energy
window of only 1 kJ mol!1. However, for none of them the
match between experimental CCS value and computed value is
as good as for the H16 conformer (see ESI,† Table S2).

We discuss here a free energy range of about 10 kJ mol!1 for
the considerably large b-peptide with its 108 atoms. This
translates to roughly 0.1 kJ mol!1 per atom, in other units:
0.02 kcal mol!1 or 1 meV. The comparison of relative energy
hierarchies of 27 conformers of Ac-Ala3-NMe reproduced with
PBE + vdW and PBE + MBD*53 to a CCSD(T) reference hierarchy58

shows mean absolute errors of only the potential energy descrip-
tion of 0.05 kJ mol!1 per atom (in other units: 0.01 kcal mol!1 or
0.5 meV). Consequently, the minuscule energy differences that
we are discussing here are within the uncertainties of the applied
approximations to potential energy (e.g. PBE + vdW or PBE0 +
MBD*) and free energy (harmonic approximation). Despite
these uncertainties, we can identify a group of likely confor-
mers with the error between different functionals being at most
10 kJ mol!1. Within that group making a distinction becomes
difficult and we need experimental data to compare with. So it
is not only the potential energy description that limits us here,
but especially also the conformational and entropic contribu-
tions that are of course substantial at 300 K.

5 Conclusion
With this study on the conformational properties of the b-peptide
Ac-(b2hAla)6-LysH+, we have clearly pushed the current limits of
what is possible in gas-phase experiments and simulation. With
respect to the experimental results, the IM-MS experiments give us
the simplest, if not even over-simplified answer. The rather narrow
peak does, according to our interpretation, not represent a single
conformer type but more likely a conformational equilibrium.
The gas-phase vibrational spectroscopy on the other hand
ideally gives far more structural information that is, however,
hard to access, e.g., due to the broadness of the bands in the

Fig. 6 The predicted CCS can be used as a reduced coordinate together
with the computed free energies to draw a free-energy profile that relates the
helical structures to each other. Please note, the gray lines are illustrative and
do not represent results from simulation. For the a peptide Ac-Ala6-LysH+ (a),
the a helix is the only helical conformer within the considered free energy
range. Consequently, we would assume a deep potential well to flank the
a helical minimum. For the b peptide Ac-(b2hAla)6-LysH+ (b), three helices
are present in the considered energy range of about 12 kJ mol!1. CCS as a
conformational coordinate places H16 right between the two alternative
helices H12 and H20 like a barrier that has to be overcome whenever the
helices interconvert. The CCS plots from Fig. 2 are shown again to illustrate
how two very different (hypothetical) energy landscapes can potentially
result in a very similar IM-MS signal.

Fig. 7 The potential energy of selected conformers with a relative free
energy (PBE + vdW) of 11.2 kJ mol!1 was recalculated with PBE + MBD*,
PBE0 + vdW, and PBE0 + MBD*. The relative free energies contain the
potential energy calculated at the given level and the harmonic free energy
contribution computed at the PBE + vdW level. The energy levels of
selected conformers are highlighted.

Paper PCCP

106



experimental spectrum. Furthermore, we here focus recording
of spectra to the 1000 to 1800 cm!1 region. The flanking
wavenumber regions apparently also offer a lot of information
as it is evident from the simulated spectra of the b peptide
shown in Fig. S2 of the ESI.†

Still we can show that a b peptide that consists of open
chain building blocks (not sterically constrained) is generally
capable of adopting native like helices with backward oriented
H bonds (cf. Fig. 1b), similar to the types observed for the natural
a peptides. We derive an explanation how these structures
can interconvert in isolation that will be investigated in future
experiments and simulations.

The density of conformers of the b peptide at low energies is
clearly a challenge for the traditional, single-point plus harmonic
free energy approach at 300 K, and this is where future work
must focus. The interconversion between helices that we discuss
here can be described with plausible conformational coordinates
and then be studied with techniques like metadynamics59 in
combination with DFT. Low-temperature experiments on the
other hand might yield sharper IR bands or, with a cooled drift
tube, allow the separation of different conformers by hindering
the interconversion between structures.
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Galán, J. Aymami, J. Lloveras, J. A. Subirana, E. Giraltand
and M. Ptak, Macromolecules, 1987, 20, 62.
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3.3 How cations change peptide structure
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Introduction

As early as 1912, Paul Pfeiffer systematically studied the
crystallization of short Ala- and Gly-containing peptides
from aqueous solution in the presence of alkali salts[1] and
postulated that Li+ exhibits a higher affinity (“Additionsf!-
higkeit”) for peptides than Na+ and K+ .[2] Indeed, calori-
metric studies revealed high interaction enthalpies for the
interactions of a series of peptides with Li+ ,[3] values that
were in the range of solvation enthalpies of peptides. These
strong interactions are in practice used to increase the pro-
portion of cis prolyl peptide bonds from 10 % to 70 %
through the addition of Li salts in biochemical activity
assays of peptidyl prolyl cis–trans isomerases.[4] NMR studies

of cyclic peptide cyclosporine A (CysA) in organic solvents
revealed that Li+ inhibits the formation of hydrogen bonds
and induces unusual backbone conformations.[5,6] One hun-
dred years after Pfeiffer"s work, Garand et al.[7] studied the
noncovalent interactions of a non-natural peptide-based cat-
alyst by means of gas-phase infrared (IR) spectroscopy.
When protonated, the polyamide backbone of the molecule
forms intramolecular hydrogen bonds; however, when it is
sodiated, there is an apparent complete absence of hydrogen
bonds owing to the presence of interactions between the car-
bonyl groups and Na+ . Both CysA[5,6] and the peptide-based
catalyst[7] form narrow turn-like backbone loops, which are
well suited to accommodate a cation. Such turns are normal-
ly at the outside of globular proteins, where they are ex-
posed to the surrounding medium. Herein, we investigate
the atomistic and electronic basis of cation–peptide interac-
tions in turn-forming peptides. The focus of the study is on
proline-containing peptides, in which such interactions are
expected to have pronounced conformational effects owing
to the possible cis and trans states of the prolyl-peptide
bond.[8] This study is based on accurate conformational pre-
dictions by using first principles (density-functional theory)
in a synergistic combination with gas-phase IR spectroscopy
to validate the results.

Structure formation and dynamics in proteins can be pri-
marily attributed to the rotation of the N!Ca and Ca!C
bonds, represented by the backbone torsion angles f and y,
respectively (Figure 1 A). This conformational f/y space is
well described by a Ramachandran diagram,[9] which is used,
for example, in the statistical evaluation of high-resolution
X-ray data (Figure 1 B).[10] The shaded areas are referred to
as allowed conformational regions and can be associated
with characteristic secondary structure types (Figure 1 B).
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The double-bond character of the peptide bond hinders
free rotation and allows for two distinct conformations. In
general, the trans conformation is almost exclusively ob-
served with an apparent high barrier for its conversion into
the cis form.[11,12] A significant fraction of cis conformation
is only observed for the prolyl peptide bond.[13] In proline,
the cis and trans forms (Figure 1 C) are close in energy be-
cause the Cb of the preceding residue encounters a carbon
atom of proline (Ca or Cd) in both states. A cis peptide
bond, usually preceding a proline residue, is a feature of so-
called type b-VI turns (Figure 1 D).[14,15] This notation dates
back to work of Venkatachalam, according to which b turns
share the feature of a hydrogen bond between residues i+3
and i and are further classified by the backbone torsion
angles f and y of the residues i+ 1 and i+2.[16] The b turns
of the protein backbone allow for a 1808 reversal of the di-
rection of structure propagation within four consecutive res-
idues of a polypeptide chain. Similarly, Hutchinson and
Thornton classify b turns according to ranges of values for
the backbone torsion angles f and y, thus giving eight well-
defined classes (I, I’, II, II’, VIa1, VIa2, VIb, and VIII) and
a miscellaneous type IV.[17,18] Very prominent are the
common (type I) and glycine (type II) turn and their inverse
counterparts, I’ and II’. The special b-turn types VIa and
VIb have a cis peptide bond between central residues i+ 1
and i+ 2; these b-turn types frequently feature proline in
position i+2.[14,15]

In this study, we make use of the characteristic of proline-
containing peptides that allows for the formation of cis and
trans peptide bonds as a potential strong “conformational
signal” triggered by the peptide–cation interaction. Indeed,

Seebach and co-workers reported ion-induced conforma-
tional effects on peptide structure to be especially pro-
nounced in the proximity of proline.[8] Kunz et al. investigat-
ed a systematic series of proline-containing peptides using
NMR spectroscopy and found that peptides containing an
Asp–Pro sequence exhibit cis/trans ratios that are in opposi-
tion to those of all other sequences studied.[19] Therefore, we
investigated the sequence, AXPA (Figure 1 D), where P is
the single letter code for proline and X is either alanine (A)
or aspartate (D), thus allowing us to differentiate the contri-
bution of pure cation–backbone interactions and cation–
side-chain interactions to the peptide backbone conforma-
tion. Peptides were designed so as to avoid structure-per-
turbing labels and the peptide termini were protected with
acetyl and aminomethyl groups (Figure 1 D) to embed the
sequence in a protein-like chain structure, thus avoiding
end-group effects, that is, zwitterion formation.

Results and Discussion

We used a combination of exhaustive conformational
searches from first principles and both theoretical and ex-
perimental gas-phase IR spectroscopy. Such investigations
of isolated peptides in the gas phase offer an unbiased view
of structure-formation trends intrinsic to the molecule, a
strategy that is successful for charged and uncharged amino
acids and peptides.[20–30] By the stepwise addition of perturb-
ing contributions, in this case, the presence of cations, we
aim to determine the main contributions to protein secon-
dary structure formation in a bottom-up approach. The suc-
cess of such an approach is critically linked to the quality of
the description of the potential-energy surface of the system
under investigation. We employ density-functional theory
(DFT) in the generalized-gradient approximation with the
Perdew–Burke–Ernzerhof (PBE) functional.[31] Van der
Waals dispersion interactions are included through a pair-
wise C6R

!6 term for which the C6 coefficients are derived
from the self-consistent electron density, referred to as
PBE+ vdW.[32] Our use of rather accurate, but computation-
ally efficient approximate DFT is justified by the high-level
benchmarks we present in the Computational Methods Sec-
tion.

Conformational analysis : The theoretical conformational
analysis of the short peptide AAPA (Figure 1 D) is challeng-
ing. Hypothetically, discretizing the backbone torsion angles
with a 30-degree grid and assuming two possible states (cis
and trans) for the peptide bonds would formally result in
roughly 35 million conformations for evaluation. To deal
with such a large conformational space, we resort to a ex-
haustive basin-hopping search of the potential-energy surfa-
ces (PES) of conventional protein force fields (either OPLS-
AA[33] or AMBER99[34]). We employ the TINKER 5 scan
routine[35] in an in-house parallelized version. To achieve a
reliable and parameter-free description, we then follow up
with a large set (700 to 1800 per peptide–cation system) of

Figure 1. (A) The backbone torsion angles, f and y, of the residues of a
polypeptide chain. (B) Backbone torsion angles illustrated by a Rama-
chandran plot, based on data from ref. [10]; labels highlight characteristic
secondary-structure types: the b region in the 2nd quadrant, the 310 and
the a-helical region in the 3rd quadrant, and the left-handed a and the
bII" region in the 1st and 4th quadrants, respectively. (C) The cis and
trans state of the prolyl-peptide bond. (D) The model peptides, AAPA
and ADPA, shown in a schematic bVI-turn conformation.
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PBE+ vdW post-relaxation calculations as a second compu-
tational step.

Figure 2 shows our results for AAPA in isolation. The
lowest-energy structure of the PES, a bVI turn with a cis
prolyl peptide bond, also has the lowest free energy in the
harmonic approximation. Two alternative bVI turns are 4.5
and 8.3 kJ mol!1 higher in DF300K. The most stable conformer

with a trans peptide bond is a bII’ turn with DE=
2.8 kJ mol!1. Harmonic free-energy contributions add a fur-
ther penalty to the structure, yielding DF300K =8.8 kJ mol!1.
In these cases, the maximum number of four backbone hy-
drogen bonds is formed. In a DFT study of Ac-Ala-Pro-
NMe, Byun et al. also predicted a bVI turn as the most
stable conformer in the gas phase.[36] A comparable bII’ turn

Figure 2. Low free-energy ensembles for AAPA in isolation and in the presence of Li+ and Na+ , as obtained using exhaustive conformational searches.
Potential energies (DE, in kJ mol!1) and harmonic free energies (DF300 K, in kJ mol!1) are given. The criterion applied to select the structures shown is
lowest free energy, except for conformer 0-1-2-4(II), which was selected because of its relationship with 0-1-2-4(I): both conformers can be interconvert-
ed by a backbone crankshaft movement. Cis and trans conformers are indicated using a red and blue background, respectively. The simulated IR spectra
are shown as continuous lines for the individual conformers as well as for the assumed ensemble of conformers (lowest row); the experimental IR spec-
tra are shown as dashed lines. The tables show the relative proportion of each conformer within the respective mixed simulated spectra. Simulated spec-
tra were shifted along the energy axis by a value D for an optimal Pendry reliability factor, RP. The atom colors: C is gray, N is blue, O is red, H is white,
Li is green, and Na is orange. Hydrogen atoms are omitted for clarity except where they form part of a hydrogen bond.
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was not among the lower-energy conformers of this shorter
peptide. The lowest minima of the PES of ADPA (up to
0.7 kJ mol!1) are again bVI turns (Figure 3); the next lowest
in energy are two other conformers with relative potential
energies of 2 and 4 kJ mol!1. For the conformer that is
4 kJ mol!1 higher than the lowest energy conformer, the Asp
side chain forms hydrogen bonds with the NH and C=O
groups of residue Ala4; this conformer resembles the shape
of a b turn, hence we refer to it as SC-b. For the ADPA–

cation systems, we confirmed by mass spectrometry (for the
ADPA–cation systems) that the Asp side chain is protonat-
ed in our experimental setup. Consequently, the Asp side
chain is modeled in the protonated neutral state. Harmonic
free-energy contributions make SC-b the preferred structure
type by approximately 2 kJ mol!1. Notably, the lowest free-
energy structure of AAPA features a cis prolyl peptide
bond, whereas the respective bond in the lowest free-energy
structure of ADPA is trans configured (Figures 2 and 3).

Figure 3. Low free-energy conformers of peptide ADPA in isolation and in the presence of Li+ and Na+ . Potential energies (DE, in kJ mol!1) and har-
monic free energies (DF300 K, in kJ mol!1) are given. Cis and trans conformers are indicated using a red and blue background, respectively. The experimen-
tal and simulated IR spectra are shown as dashed and continuous lines, respectively. The simulated spectra were mixed to account for a conformational
ensemble (lowest row). The tables show the relative proportion of the conformers within the mixed spectra. Simulated spectra were shifted by a value D
along the energy axis for an optimal Pendry reliability factor, RP. The atom colors: C is gray, N is blue, O is red, H is white, Li is green, and Na is orange.
Hydrogen atoms are omitted for clarity except where they form part of a hydrogen bond.
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The attraction between backbone carbonyl groups and
either Li+ or Na+ induces structures that differ substantially
from the conformers in the absence of such cations: The hy-
drogen-bonding networks in the low-energy conformers are
disrupted (Figures 2 and 3) and the backbone conformations
deviate from those of the isolated peptide. This finding is in
line with the above-mentioned results for CysA in apolar Li
salt solutions[5,6] and the sodiated peptide-based catalyst in
the gas phase.[7] For isolated peptides AAPA and ADPA,
the backbone torsion angles f and y of the low free-energy
conformers (DF300K<6 kJ mol!1) are within the allowed re-
gions of the Ramachandran plot (Figure 4). The single outli-

er in the fourth quadrant of the plot for ADPA represents
the C-terminal residue, Ala4, of a conformer with DF300K =
4.8 kJ mol!1. The different possible rotameric states of the
Asp side chain prefer different backbone conformations.
This leads to more possible backbone conformations (data
points) compared to AAPA. The cation–peptide interaction
imprints f/y combinations (backbone conformations) that
differ substantially from those of the unperturbed peptides.
Some of them with still low relative free-energy values
(0.9 kJ mol!1 for AAPA +Li+ to 2.6 kJ mol!1 for AAPA +
Na+) are even located outside of the allowed regions of the
Ramachandran plot (Figure 4). These outliers do not repre-
sent residues at the termini but rather central residues Ala2
or Asp2, which govern the overall structure of the peptides.
Interestingly, the cation effects on the two peptides differ.
The conformational ensembles of AAPA with Li+ and Na+

are different (Figures 2 and 4), whereas those of lithiated
and sodiated ADPA are very similar (Figures 3 and 4).

A canonical turn structure, type bII’ (not shown), is the
lowest PES minimum of AAPA+ Li+ . The second most
stable minimum, with DE= 0.2 kJ mol!1, is an a turn
(Figure 2). Here, the consideration of harmonic free-energy
contributions changes the picture dramatically and unusual
backbone conformations become dominant. In the lowest
free-energy conformer, the Li+ ion is coordinated by three
backbone carbonyl groups of residues 0, 2, and 4 (Figure 2).
The conformers resulting form the peptide–cation interac-
tions are named according to the numbers of the interacting
oxygen atoms; for example, 0-2-4. In cases of multiple con-
formations with the same interaction pattern, these are dis-
tinguished by roman numerals, which increase in line with
the free energy of the conformers. Up to four out of a possi-
ble of five binding partners (backbone carbonyl groups) are
sterically possible (conformers 0-1-2-4 with DF300K =0.9 or
2.2 kJ mol!1). Although the search for minima does not yield
information on the actual barriers connecting different con-
formers, their high structural similarity suggests dynamic in-
terconversion at a finite temperature. For AAPA+ Li+ , the
preferred conformation of the prolyl-peptide bond changes
from cis to trans.

Na+ binding to AAPA results in a similar behavior: can-
onical structure types (bVI, bII’, a) are lowest in potential
energy whereas structures with both unusual backbone con-
formations and carbonyl groups pointing towards Na+ are
most stable when harmonic free-energy contributions are
considered. However, there are substantial differences be-
tween the Na+ and Li+ adducts: the low free-energy ensem-
ble of the former is more diverse and the central peptide
bond of the lowest free-energy conformer 0-1-3-4 is cis. In
the case of AAPA+Na+ , the second lowest free energy
conformer (A1661, DF300K =2.6 kJ mol!1) is not shown in
Figure 2. This conformer was ruled out because it was
proven unstable in the subsequent AIMD simulations for
IR spectra (see section below). Please refer to the Support-
ing Information for all calculated free energies. Instead, we
consider 0-1-2-4(II) as fourth conformer, which is much
higher in free energy. Interestingly, these two conformers of
AAPA +Na+ , 0-1-2-4(I) and 0-1-2-4(II), are almost identical
other than the orientation of the peptide bond between
Pro3 and Ala4 (Figure 2). This peptide bond is not involved
in any interactions and can thus rotate by a concerted
motion of adjacent torsion angles y and f, a so-called back-
bone crankshaft rotation.[37, 38] During the equilibration
AIMD simulations at 300 K, which were carried out in prep-
aration for the simulations to obtain IR spectra, this inter-
conversion between 0-1-2-4(I) and 0-1-2-4(II) was indeed
observed within the 10 ps simulation time. The subsequent
evaluation of IR spectra also suggests the presence of 0-1-2-
4(II) in the experimentally observed conformational ensem-
ble.

In ADPA, the dominant interaction pattern is the com-
plexation of either Li+ or Na+ by the backbone oxygen
atoms 0, 2, 4 and the Asp side-chain carboxyl group. All
conformers in the low-energy range are highly similar and
feature no cis prolyl peptide bonds (Figure 3). As discussed

Figure 4. The backbone torsion angles, f and y, of the low free-energy
conformers (DF300 K<6 kJ mol!1) for AAPA and ADPA in isolation
(light-gray squares), with Li+ (dark-gray triangles), and with Na+ (white
triangles) were plotted on top of an empirical contour plot (ref. [10]).
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above on the basis of the Ramachandran plot (Figure 4), the
effects of the cations on AAPA and ADPA differ. Li+ en-
forces a trans conformation of the prolyl peptide bond of
AAPA whereas Na+ enforces the cis conformation
(Figure 2). For ADPA, no such selectivity for the cation is
observed. With either Li+ or Na+ attached, similar structure
types with trans prolyl peptide bonds are preferred (Fig-
ures 3 and 4).

Infrared spectroscopy: To corroborate our structural find-
ings, we obtained gas-phase infrared multi-photon dissocia-
tion (IRMPD) spectra, which reflect the same clean-room
conditions as used in our simulations. Spectra were recorded
from 1000 to 1800 cm!1 at the free electron laser facility
FELIX[39] using a Fourier-transform ion cyclotron (FT-ICR)
mass spectrometer.[40] The experimentally obtained spectra
for lithiated and sodiated AAPA and ADPA are shown in
Figure 2 and Figure 3. For AAPA, significantly different
spectral signatures were obtained for the Li+ and Na+ com-
plexed forms, a result that is in line with the results of the
conformational analysis described in the previous section.
On the other hand, for ADPA, very similar spectra were re-
corded for both cation complexes.

To allow for a quantitative theory–experiment compari-
son, IR spectra including anharmonic effects were computed
from Born–Oppenheimer ab initio molecular dynamics
(AIMD) simulations. The systems were equilibrated using
10 ps of AIMD simulations at 300 K. Subsequently, the mi-
crocanonical ensemble was sampled using up to 40 ps long
AIMD simulations at constant energy from which IR spec-
tra were derived.[41, 27] IR spectra of polyamides feature char-
acteristic bands of high intensity (like the amide I and II re-
gions, 1400–1700 cm!1) but also regions with low intensity
(below 1400 cm!1) and fingerprint characteristics. Visual in-
spection does not allow for a quantitative assessment and is,
similar to a simple square of intensity comparison, easily
biased by the high-intensity peaks. For a quantitative com-
parison between the calculated and experimental spectra,
we employed the reliability factor RP, which was introduced
by Pendry to the field of low-energy electron diffraction,[42]

and an implementation described by Blum and Heinz.[43] For
RP, peak positions are more important than peak intensities,
a characteristic that fits the requirements we face herein, es-
pecially because we are comparing experimental action
spectra and theoretical absorption spectra. Values for RP

range from 0 (perfect agreement) via 1 (no correlation) to 2
(perfect anti correlation). Intensities of the spectra were
normalized to 1 and rigidly shifted (not scaled) with a value
D along the energy axis to account for deviations owing to a
systematic mode softening by the density functional we
use.[44,27] When comparing the calculated IR spectra of
single conformations to the experimental IR spectra we ob-
serve only modest agreement (see individual spectra in Fig-
ures 2 and 3). Previous studies have shown similar behavior
owing to conformational ensembles for peptides in the gas
phase at finite temperature.[22–27] Furthermore, the energy
differences of the low free-energy conformers lie within the

uncertainty of the employed method, as discussed in the sec-
tion called %Benchmarks" below. Consequently, an ensemble
of conformations is assumed. By mixing the individual theo-
retical spectra in 5 % steps, the RP for the respective experi-
mental spectrum is optimized. This results in a much better
agreement of simulated and experimental spectra of the
peptides AAPA and ADPA in complex with single Li+ or
Na+ ions (Figures 2 and 3). The agreement between predict-
ed and experimental spectra of AAPA+Li+ and ADPA+
Li+ and between those of the corresponding complexes of
Na+ , especially regarding the fine structure below
1400 cm!1, is gratifying. We note for completeness that the
spectra for the protonated peptides (not shown) are rather
different in appearance, suggesting very different structural
effects compared to those induced by the presence of heavi-
er cations.

In a naive way, a correlation between the free-energy esti-
mates in the harmonic approximation and the abundances
of the individual spectra in the resulting mixed spectrum
could be expected. However, this would be too much to
expect for several reasons:

(1) The PBE+ vdW method we use is rather accurate as il-
lustrated by the benchmark calculation presented
below; however, the systems under investigation here
are also large (56 to 60 atoms). The lowest free-energy
minima discussed herein are still within the range of un-
certainty in the values of the relative (free) energies.

(2) The experimental data base which we are comparing to
multiple theoretical spectra is relatively small; fitting
many parameters to a small data set has well known
limitations.[42] The use of multiple spectra, therefore, is
strictly only a consistency check. The spectra of just a
single conformer are not sufficient to explain the ob-
served IR spectra. In contrast, the use of spectra of mul-
tiple conformers yield a much more consistent descrip-
tion of the spectra, in line with several conformers of
similar free energy. This is the primary qualitative state-
ment that we can derive from the experiment–theory
comparison.

(3) The here employed free-energy model neglects anhar-
monicity as well as the entropic effects of a possibly
greater accessible conformational space (dynamic inter-
conversion in the case of low barriers) of specific con-
formers. That the latter can be of special importance is
illustrated by the crankshaft rotation discussed above
for the two conformers, 0-1-2-4(I) and 0-1-2-4(II) of
AAPA +Na+ . That both conformers can interconvert
shows the extent to which the anharmonic nature of the
potential-energy surface can play a role. In fact, in the
combination of the four individual spectra that shows
the best agreement with the experimental spectrum
(Figure 2), 0-1-2-4(II) is the predominant conformer
with 45 % of the total population of the species. Again,
conformer 0-1-2-4(II) is structurally and dynamically
closely related to the 0-1-2-4(I) conformer with the
lowest harmonic free energy. This result illustrates the

Chem. Eur. J. 2013, 19, 11224 – 11234 $ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.chemeurj.org 11229

FULL PAPERHow Cations Change Peptide Structure

116



limits of the harmonic free-energy assignment to poten-
tial-energy minima at room temperature, which neglects
such conformational and dynamical effects. The result
furthermore illustrates the limitations of interpreting IR
spectra by using a combination of individual and isolat-
ed conformers.

Overall, on the one hand, the accuracy of the harmonic
approximation to the free energy is limited by the dynamic
character of such molecular systems at finite temperature;
on the other hand, the IRMPD spectroscopy setup we use
here is limited in its resolution, especially regarding the sep-
aration of individual conformers. However, we can unambig-
uously predict minima by first-principles theory and validate
the results by room-temperature IR spectroscopy (keeping
the differences of static harmonic free-energy minima and
actual room-temperature molecules in mind). The observed
cation–peptide effects were certainly qualitatively corrobo-
rated by both approaches.

Microsolvation of a peptide–cation complex : In the intro-
duction, we mentioned the presence of turn sequences,
which are mainly located at the surface of proteins and thus
exposed to the aqueous environment. In this section, a qual-
itative picture of how the interaction between the peptide
backbone and the cation can compete with solvation of the
cation is given. AIMD simulations were performed for
AAPA +Li+ alone and with a few water molecules. For the
setup of the latter system, 18 water molecules were accom-
modated within a sphere of radius 4.5 & around the Li+ ion.
For comparison, Li+ embedded within both 4 and 10 water
molecules was also studied. We
characterized the interaction
between the Li+ ion and either
the respective oxygen atoms of
the peptide backbone or of
first-solvation-shell water mole-
cules by the Li+!O distance
and by the O!Li+!O angle
(Figure 5). Previous ab initio
studies predict a coordination
number of 4 for Li+ in
water.[23,45,46] Consistent with
these studies, the cation is com-
plexed by 4 backbone carbonyl
groups in, for example, con-
former 0-1-2-4(I). During a
100 ps AIMD trajectory at
330 K (Nos'–Hoover thermo-
stat), the Li+!O distance fluc-
tuates around 1.9 &, the O-Li+

-O angle distribution is broad,
thus indicating the nonideal tet-
rahedron formed by the inter-
acting carbonyl oxygen atoms.
The microsolvation of AAPA+
Li+ within 18 water molecules

results in a slight change of the binding site within a few pi-
coseconds: a water oxygen atom substitutes for the back-
bone C=O group of Ala1. The cation interacts with the
three backbone carbonyl oxygen atoms of AAPA and the
same water molecule (Figure 5) for the whole 90 ps of re-
maining AIMD simulation time. As a result, a virtually ideal
binding site is formed, characterized by an almost symmetric
distribution of the O-Li+-O angle around the ideal tetrahe-
dral angle of 109.58. For Li+ immersed within a small water
cluster (either 4 or 10 water molecules), the Li+!O distance
distribution peaks around 2.0 &. Remarkably, the distribu-
tion of the tetrahedron angles O-Li+-O is multimodal again,
accounting for alternative (and less populated) geometries
of the Li+ complex involving 3 or, in the case of the 10
water molecules with Li+ cluster, even 5 water molecules in
the first solvation shell. For now, we can at least qualitative-
ly say that AAPA is able to form an ideal interaction shell
that seems to be able to compete with water solvation. A
fully correct answer could be given on the basis of free-
energy differences from simulations with fully solvated sys-
tems. Such simulations are standard for force-field ap-
proaches, yet they are computationally very demanding at
the level of theory we employ here. A rigorous assessment
is thus beyond the scope of this article.

Conclusion

Starting from the isolated peptides that adopt either canoni-
cal turn structures (AAPA) or turn-like conformations with
hydrogen bonds between the side chains and the backbones

Figure 5. The first solvation shell around a Li+ ion. Interactions are formed with the oxygen atoms of water
molecules or those of backbone carbonyl groups. The histograms were derived from AIMD simulation of dif-
ferent length (20 to 100 ps) and the counts were normalized to 1.
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(ADPA), we show the drastic effect of cations on the local
secondary structure of peptides: the cation interacts with
most of the backbone carbonyl groups and, as a result, com-
pletely breaks the local hydrogen-bonding network. This
leads to distortions of the peptide backbone and results in
conformations with backbone torsion angles f and y that
are, in part, outside of the allowed regions of the Rama-
chandran plot (Figure 4). Consequently the question of the
range of such ion-induced disruptions arises. Ohanessian
and co-workers studied[47,48] polyglycines with a chain length
of 2 to 8 residues in complex with Na+ by simulation and
gas-phase IR spectroscopy: for sequences of up to 7 glycine
residues, the contact number between the cation and back-
bone C=O groups is maximized and no hydrogen bonding
was observed. With the Gly8 peptide, backbone hydrogen
bonding appeared again in the form of g- and b turns. Gly-
cine, owing to the lack of a side chain, is a very special case
among the canonical amino acids. As a contrast, the helical
secondary structure of sodiated polyalanine (8–12 residues)
is not broken in the gas phase. Here, the Na+ ion is attached
to the C terminus.[49,50] The importance of considering the
effect of side-chain functionalities is highlighted by the se-
quence dependence of the cation effects we observe. The
conformational preferences of AAPA with either Li+ or
Na+ differ drastically in the trans/cis state of the central
prolyl peptide bond. Noskov and Roux investigated the se-
lectivity of the ion-coupled transporter LeuT. Two Na+

binding sites (NA1 and NA2) show differences in the Li+

/Na+ selectivity: NA1 appears to be rather flexible and ex-
hibits no selectivity for one cation over the other as it
adapts to the different ionic radii ; for NA2, a limited selec-
tivity is apparently induced by a “snug-fit” mechanism (the
rigid NA2 interaction site is unable to adapt to different
ionic radii).[51] Similarly, lowest free-energy structure 0-1-3-4
of AAPA +Na+ may be too rigid to adapt to the Li+ cation,
because only backbone carbonyl groups can be involved in
the interaction. With ADPA, the Asp side chain prevents
such conformation selectivity.

Our findings might even help to understand a basic bio-
chemical principle: in 1888, Hofmeister published an arti-
cle[52] that laid the basis for a sorting of cations and anions
according to their effect on the solubility of biomolecules,
colloids, and functional polymers. Although it was believed
that the underlying effects can be explained solely by bulk
properties stemming from the solvent–ion interactions,[53]

evidence was found that most effects of ions on water struc-
ture are limited to the first solvation shell[54] and that specif-
ic ion–solute interactions can be expected to contribute sub-
stantially.[55] These effects are especially clear at high salt
concentrations as shown by Dzubiella and co-workers, who
employed classical MD simulations,[56–58] and later, experi-
mental approaches.[59] They demonstrated that the perturb-
ing effect of ions on peptide structure results from the
breaking of secondary-structure-specific hydrogen bonds in
the backbone. Our own findings point to a similar direction,
as we have shown here how cations can substantially change
the backbone structure of a (bio)polymer. These interac-

tions are not necessarily stable over a very long time range,
but our exploratory AIMD simulations suggest time ranges
at least in the tens to hundreds of picoseconds. Dzubiella de-
scribed long-lived loop conformations that are stable over
10 to 20 ns in classical MD trajectories.[56] Similar to the spe-
cific interactions between anions and the amide-bond-con-
taining polymers of N-isopropylacrylamide described by
Cremer and co-workers,[60] we show here the possible inter-
actions between small monovalent cations and peptides and
highlight their significant effect on local peptide structure.
These effects could be one of the drivers behind the Hof-
meister salt effects on proteins.

Computational methods

Scans of the PES were performed with an exhaustive basin-hopping
search and conventional protein force fields (either OPLS-AA[33] or
AMBER99[34]). We employ the TINKER 5 scan routine[35] in an in-house
parallelized version. The required methods to perform DFT-based simu-
lations, including geometry optimization, computation of harmonic vibra-
tions, and ab initio Born–Oppenheimer molecular dynamics (AIMD), are
incorporated in the FHI-aims code, which provides an efficient and accu-
rate all-electron description based on numeric atom-centered orbitals.[61]

We discuss fully relaxed conformations at the PBE+vdW level and their
relative potential energies (DE) and relative harmonic free energies at
300 K (DF300 K), all computed with tight convergence settings and an accu-
rate tier-2 basis set.[61] High-level quantum-chemical benchmark calcula-
tions, that is, relaxations at the MP2 level of theory and coupled-cluster
calculations with singles, doubles, and perturbative triples (CCSD(T)),
were performed with the ORCA quantum-chemistry program;[62]

CCSD(T) energies extrapolated to the complete basis-set limit (CBS)
were obtained by a method described by Truhlar,[63] employing the Dun-
ning basis sets cc-pVDZ and cc-pVTZ.[64]

Benchmarks : We assessed the predictive power of the DFT approxima-
tions applied here by benchmarks in two directions with respect to the
approximation level: we compare these approximations to high-level
quantum-chemistry calculations at the CCSD(T) level of theory extrapo-
lated to the complete basis-set limit. On the other hand, we assess the
quality of the force-field description of cation–peptide interactions in
comparison to approximate DFT at the PBE +vdW and PBE0 +vdW
levels.

Comparing electronic-structure theory methods : There have been several
assessments of the accuracy of the PBE +vdW level of theory applied to
a variety of systems, such as peptides,[65] weakly bound metal–phtalocya-
nine systems,[66] and ionic and semiconductor solids.[67] A previous assess-
ment of the accuracy of PBE +vdW level of theory for peptide systems,
for the conformational-energy hierarchy of Ace-Ala-NMe and Ace-Ala3-
NMe, shows mean absolute errors (MAE) below 2 kJ mol!1 in compari-
son to CCSD(T) energies.[65] Herein, we investigate cation–peptide sys-
tems and thus reassess the accuracy of our DFT-based predictions. We
employ high-level quantum chemical theory on the conformational-
energy hierarchy of Ac-Ala-NMe +Li+ . A conformational analysis iden-
tified five local minima (Figure 6) within a potential-energy range of
35 kJ mol!1 at the MP2/cc-pVTZ level of theory.[64, 68] The cation closes a
7-membered pseudocycle through interaction with the oxygen atoms of
the backbone carbonyl groups. The orientation of the methyl groups rela-
tive to the pseudocycle plane defines them as either equatorial (Figure 6;
1, 3, 5) or axial (Figure 6; 2, 4). In addition, an important characteristic
of our actual systems of interest (AAPA and ADPA) is present here as
well: in lower-energy conformers 1 and 2, the C-terminal peptide bond is
trans configured, which is in contrast to the other conformers with a C-
terminal cis peptide bond.

Relative energies at the CCSD(T), PBE +vdW, and PBE0 +vdW levels
of theory were compared by estimating the mean absolute error
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(MAE ¼ 1
n

Pn
i¼1 fi ! yij j). As an additional method, we also include the

frequently used B3LYP method (no vdW correction). For much larger
systems, the missing description of dispersion effects represents a defi-
ciency in the description of conformational-energy hierarchies. The DFT
methods give low uncertainties (see Table 1), well within the often
stressed “chemical accuracy” of 1 kcal mol!1 (4.2 kJ mol!1). The confor-
mational changes upon relaxation with DFT are negligible, as indicated
by the low maximal RMSD value of 0.38 & (Table 1). We note that only
small contributions of the van der Waals correction can be expected for
molecular systems of this size. Of the tested DFT approaches, PBE0 +

vdW gives the best agreement with the benchmark calculations, as it is
obvious from the MAE and the average RMSD (see Table 1). However,

for a large-scale conformational screening and the extensive molecular
dynamics simulations we undertake in this study, PBE +vdW strikes a
perfect balance between computational cost and accuracy.

Standard protein force fields versus electronic structure theory : When
comparing the results of different standard protein force fields and DFT,
we observe dramatic discrepancies in the conformational hierarchies.
Such force fields were parameterized for the solvated state, whereas our
assessment was based in the gas phase. Nonetheless, these force fields are
also frequently used for conformational investigations irrespective of the
environment. Consequently, their performance in vacuo is of interest. As
a reference, we employ the conformational-energy hierarchy of AAPA+
Li+ at the PBE +vdW level. In line with the results of the above compar-
ison, PBE[31] and the hybrid density functional, PBE0,[69] (both vdW cor-
rected)[32] give very similar results, illustrated by the low mean absolute
(MAE) and maximal errors (Emax) listed in Table 2. Both approaches
without the vdW correction give higher values for MAE and Emax. The
widely used protein force fields, Amber99,[34] Charmm22,[70] and OPLS-
AA,[33] give MAE values that are at least approximately 15 times larger
and very large Emax values (see Table 2). The relative energies can be
found in the Supporting Information. The main characteristic of the
system is apparently the cation–peptide interaction. The effect on the
partial charges appears to be better described by the polarizable FF
Amoeba,[71] illustrated by a MAE value of about 10 kJ mol!1. The remov-
al of the cation leads to reduced MAE values for the FF methods (see
Table 2); also, the energy hierarchies themselves appear more consistent
among the different methods. This is apparent either when comparing
the two plots (in the presence and absence of Li+) in Figure 7 or when
studying the maximal error values, as given in Table 2. The calculations
(single point) were repeated for the same AAPA conformers (fixed geo-
metries) but without the cation. The MAE values obtained using the
force-field approaches are consistently much larger than those obtained
using the DFT techniques, with significant errors in the energetic hierar-
chy of the conformers. Apparently, the large errors of the force fields can
mainly be attributed to the ill-described cation–peptide interaction. In
short, DFT-based approaches for cation–peptide systems appear to be su-
perior to standard force field based approaches tested here.

Experimental methods

Synthesis : Peptides were synthesized by solid-phase assembly using a
Multi-Syntech Syro XP peptide synthesizer (MultisynTech GmbH,
Witten, Germany) and an Fmoc strategy on Fmoc-Ala-OWang resin
(0.5 mmol g!1). The peptides were cleaved from the resin by reaction
with 2 mL of a solution containing 10% (w/v) triisopropylsilane, 1% (w/
v) water, and 89 % (w/v) trifluoroacetic acid (TFA). The crude peptides
were purified by reversed-phase HPLC on a Knauer smartline manager
5000 system (Knauer, Berlin, Germany) equipped with a C8 (10 mm)
LUNATM Phenomenex column (Phenomenex, Torrance, CA, USA).
Peptides were eluted with a linear gradient of acetonitrile/water/0.1 %

TFA and identified on an Agilent 6210
ESI-TOF mass spectrometer. Peptide
purity was determined by analytical
HPLC on a Merck LaChrom system
(Merck KGaA, Darmstadt, Germany)
equipped with a C8 (10 mm)
LUNATM Phenomenex column (Phe-
nomenex, Torrance, CA, USA). The
gradient used was similar to those
used for the preparative HPLC.

Infrared spectroscopy: The gas-phase
IR experiments were performed at the
free electron laser facility FELIX[39]

(Nieuwegein, The Netherlands) using
the Fourier-transform ion cyclotron
(FT-ICR) mass spectrometer[40] which
was temporarily equipped with a nano
electrospray ionization (nESI) source

Figure 6. Lowest-energy conformers of Ace-Ala-NHMe +Li+ , fully re-
laxed at the MP2/cc-pVTZ level of ab initio theory. Hydrogen atoms
were omitted for clarity; dashed black lines show the oxygen–lithium in-
teractions.

Table 1. Relative energies and RMSD values of the conformers depicted in Figure 6.[a]

E (MP2 geometries) RMSD to MP2
Conf. CCSD(T) PBE +vdW PBE0 +vdW B3LYP PBE +vdW PBE0 +vdW B3LYP

1 0.0 0.0 0.0 0.0 0.03 0.03 0.03
2 6.7 4.4 5.0 5.7 0.03 0.03 0.03
3 20.2 17.1 18.2 22.3 0.38 0.16 0.33
4 23.1 22.0 23.1 27.1 0.12 0.08 0.18
5 33.8 34.2 34.8 38.0 0.04 0.02 0.04

MAE/RMSD 1.4 0.9 2.3 0.12 0.06 0.12

[a] Left columns: CCSD(T), PBE +vdW, PBE0 +vdW, and B3LYP relative energies were calculated for MP2/
cc-pVTZ geometries. The MAE of the DFT relative-energy hierarchies to CCSD(T) is also given. Right col-
umns: the conformers were also relaxed with the respective DFT methods. With respect to the MP2 geome-
tries, RMSD values for the individual conformers and average RMSD values are given. Relative energies and
the mean absolute error (MAE) values are given in kJ mol!1; RMSD values are given in &.
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(MS Vision, Almere, The Netherlands). Typically, 5 mL of a solution con-
taining 1 mm peptide, 50% water, 50 % methanol and, where needed,
10 mm LiCl or NaCl, were placed in gold-coated off-line emitters pre-
pared in-house. To obtain a stable spray, a small backing pressure of ap-
proximately 0.5 bar and a relatively low capillary voltage of approximate-
ly 850 V was applied to the needle. The nESI-generated ions were accu-
mulated in a hexapole ion trap and subsequently transferred into the FT-
ICR mass spectrometer that is optically accessible through a KRS-5
window at the back end. After trapping and SWIFT mass isolation inside
the ICR cell, the ions were irradiated by IR photons of the free electron
laser FELIX.[72] The light provided by FELIX consists of macropulses of
about 5 ms length at a repetition rate of 10 Hz, which contain 0.3 to 5 ps
long micropulses with a micropulse spacing of 1 ns. The wavelength is
continuously tunable over a range of 40 to 2000 cm!1. Here, typically

wavelengths from 500 to 1850 cm!1 were scanned. When the
IR light is resonant with an IR-active vibrational mode in the
molecule, this results in the absorption of many photons, thus
causing dissociation of the ion (IRMPD). Monitoring of the
fragmentation yield as a function of IR wavelength leads to
the IR spectra.
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Molecular docking is a simulation technique that aims to predict the binding pose between a ligand and a
receptor. The resulting multidimensional continuous optimization problem is practically unsolvable in an
exact way. One possible approach is the combination of an optimization algorithm and an objective function
that describes the interaction. The software PARADOCKS is designed to hold different optimization algorithms
and objective functions. At the current stage, an adapted particle-swarm optimizer (PSO) is implemented.
Available objective functions are (i) the empirical objective function p-Score and (ii) an adapted version of
the knowledge-based potential PMF04. We tested the docking accuracy in terms of reproducing known
crystal structures from the PDBbind core set. For 73% of the test instances the native binding mode was
found with an rmsd below 2 Å. The virtual screening efficiency was tested with a subset of 13 targets and
the respective ligands and decoys from the directory of useful decoys (DUD). PARADOCKS with PMF04
shows a superior early enrichment. The here presented approach can be employed for molecular docking
experiments and virtual screenings of large compound libraries in academia as well as in industrial research
and development. The performance in terms of accuracy and enrichment is close to the results of commercial
software solutions.

INTRODUCTION

Molecular interactions define all manifestations of life.
Accordingly, knowledge of such processes is of paramount
importance to current life science research and development
in fields as diverse as medicine, biotechnology, and crop
science. Upcoming challenges like fast-evolving infectious
diseases, personalization of medicine, development of tailor-
made enzymes or substrates, as well as the development of
crop protective agents mark the need for rapid approaches
that feature computational techniques.

Already since the late 1990s, computational approaches
have gained considerable attention in the area of drug
design.1,2 In silico techniques from computational chemistry,
bioinformatics, and systems biology apparently offer the
chance to tackle these problems and to respond faster and
in a more resource-conserving way than classical, pure wet-
lab approaches. Molecular docking plays a key-role among
the variety of approaches and techniques because it offers the
chance to gain knowledge on the actual binding pose, the
situation at atomic level that defines binding and function.

The three-dimensional structure of the complex formed
by protein and ligand is key to the prediction of activities
based on physicochemical models that describe the spatial
and energetical properties of binding. Still, the high dimen-
sionality and the complicated nature of the problem result
in complex energy landscapes with many local minima.
These features prohibit an analytic approach to molecular
docking and thus, search strategies are employed to find the
native pose of ligand and receptor. Most docking approaches
generate a large number of complexes and evaluate their
quality in terms of binding. Molecular docking thus means
the generation and evaluation of molecular complexes to
predict binding poses of protein ligand complexes. A way
to categorize docking approaches follows the treatment of
this high dimensionality:

• The ligand can be subdivided into rigid fragments. These
are subsequently reassembled within the binding pocket.
Such fragment-based techniques are used by FLEXX,3

SURFLEX,4 and eHiTS.5

• The docking of ensembles of rigid ligand conformations
results in high speed, but has its drawback in the fact
that the biologically active conformation of a compound
has to be part of the precalculated conformational
ensemble. Examples are FRED6 and early versions of
DOCK.7,8

• Heuristics-based techniques aim for the global minimum
of an objective function, assuming this optimum is the
effective complex. The search space of the algorithm is
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defined by the degrees of freedom of ligand and protein.
Population-based metaheuristics, mainly genetic algo-
rithms (GA), are used by programs like GOLD9 and
AUTODOCK.10

Following the line of heuristic-based approaches, alternative
search strategies have been proposed. The recently introduced
docking program PLANTS11,12 uses ant-colony optimization
(ACO). Based on the AUTODOCK software, a number of
particle-swarm optimization (PSO) approaches were pre-
sented: AUTODOCK with ClustMPSO,13 SODOCK,14 and
PSO@AUTODOCK.15 PSO is inspired by social behavior of
animals, for example, bird flocking or fish schooling and was
first suggested by Eberhart and Kennedy.16 Intuitively, the
PSO appears perfectly suited to tackle the continuous search
space of protein ligand interaction within the molecular
docking problem. This assumption is well supported by the
performance and success of the published docking method-
ologies employing PSO variants. Of special interest is the
easy adaptability of PSO, and other population-based me-
taheuristics, for parallel approaches, especially with the
current rise of multicore CPU architectures.

The interaction between ligand and protein is described
by a mathematical model, the objective or energy function.
Important terms are the solvation energies of the protein,
the ligand, and their complex ∆Gsol

prot, ∆Gsol
lig, and ∆Gsol

complex,
the change in entropy ∆S between bound and unbound
state, the interaction energy ∆Gint, and the energy change
in ligand and protein while the interaction is formed ∆λ.
All these terms contribute to the binding free energy
according to eq 117

Practical considerations prohibit the correct estimation of
∆Gbind: (i) the large numbers of the individual contributions
have to be balanced to avoid errors in the small values of
the binding energy, especially with some contributions being
only roughly estimated like entropy, and (ii) exact calculation
demands a complete sampling of the conformational space
for the ligand in the binding pocket, a very time-consuming
task that is not feasible for high-throughput molecular
docking of compound libraries.17,18 Thus, a variety of
approaches has been introduced that try to correctly rank of
protein ligand poses toward the global optimum, the native
state. In a test case, this means the reproduction of the X-ray
structure. The available approaches can be categorized as
follows:

• Force field-derived objective functions are based on the
description of nonbonded interactions of established
force fields. The terms used are based on physical laws
and are accurate representations of the enthalpic con-
tributions. DOCK7,8 describes the nonbonded interactions
partially with terms from the AMBER19 force field. Within
GOLD, the contributions of van der Waals-type interac-
tions (vdW) are estimated by soft 8-4-Lennard-Jones
potentials.9

• Empirically derived objective functions consist of a
number of physics-inspired terms that describe, for
example, hydrogen-bonds, ionic interactions, hydropho-
bic effects, entropy, π-stacking, or π-cation-interactions.
These functions are trained to reproduce representative

test sets. An advantage of empirical objective functions
is their usually fast computational evaluation. GoldScore
is in parts an empirically derived scoring function,9

further examples are SCORE120 and X-SCORE.21

• Knowledge-based potentials stem from statistical evalu-
ations of large data sets, for example, Protein Database.
In contrast to the above-mentioned approaches, there is
no limitation to the specifically described interactions
because knowledge-based approaches try not to model
individual interaction types. Rather, potentials intrinsi-
cally include all effects that can be extracted from
experimentally derived structures. Well-accepted ex-
amples are BLEEP,22,23 PMF24 and PMF04,25 and
DRUGSCORE.26

Obviously, there is a multitude of energy functions and
optimization algorithms available and many new develop-
ments can be expected in the future. To us, this clearly
renders the need for a platform that allows the convenient
incorporation of existing and new approaches either to
describe ligand-receptor interaction or to search for the
native pose. Even though a wide variety of programs to solve
the molecular docking problem exists, there are disadvan-
tages:

• Closed source distributions cover the approaches used
for computations for the interaction, as well as for
sampling and for energy estimation. This makes results
and approaches not comparable and limits progress.

• Restricted licensing policies hinder the redistribution of
self-developed code.

• Monolithic code and outdated programing standards
limit the extension and further development of several
existing approaches.

Our newly developed docking software has the chance to
avoid these issues and to satisfy the needs of users and
developers from industry and academia. The development
of the Parallel Docking Suite (PARADOCKS) software follows
these rules:

• PARADOCKS will be distributed as open source code
under a nonrestrictive license (GPL).

• Design and implementation should result in an as far as
possible platform and operating system independent
software.

• If actively maintained programs or libraries are available
for certain problems, they will be used.

• Parallel computer systems, compute clusters, and mul-
ticore workstations become more and more widespread,
thus parallel data processing is a major goal of PARA-
DOCKS.

• The program should be usable with automated pipelines
for virtual screening and drug design.

Within this article we will describe the PARADOCKS frame-
work for molecular docking. The Materials and Methods
section will introduce basic design principles and their
implementation and will cover specifics regarding the
implementation of optimization algorithms and objective
functions. The latter two will be illustrated by example
implementations of a PSO, as well as the p-Score and
PMF0425 objective function. The Results section deals with
the assessment of the docking accuracy as well as testing
the applicability for virtual screening of PARADOCKS.

∆Gbind ) ∆Gsol
complex - ∆Gsol

prot - ∆Gsol
lig + ∆Gint - T∆S + ∆λ

(1)
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MATERIALS AND METHODS

Problem Description. We approximate the ligand as a
flexible molecule and the receptor as rigid. The interaction
between ligand and receptor is described by an objective
function that depends on three types of degrees of freedom:
(i) The position of the ligand molecule is described by three
values x, y, z in Cartesian coordinate space. (ii) The rotational
degrees of freedom are modeled as a quaternion H ) x1 +
x2i + x3j + x4k. This representation overcomes the gimbal
lock problem of Euler angles which, under special conditions,
results in the loss of one degree of freedom. Unit quaternions
are a non singular representation of rotations and widely used
in the field of three-dimensional computer graphics.27 (iii)
The flexibility of the ligand is accounted for by free rotation
of torsion angles (single bonds) of the ligand. This results
in a variable number of degrees of freedom that depends on
the size and topology of a molecule, meaning conformers
of a molecular conjugation. The resulting dimensionality of
the continuous search space is therefore 7 + T (with T being
the torsion number). The goal of a molecular docking
simulation is the prediction of the native bound structure of
a ligand in the binding site of its receptor, which is assumed
to be the global optimum of the search space. It is an
accepted approach to solve this molecular docking problem,
namely the finding of the native pose, using an optimization
algorithm.

Framework Design. The PARADOCKS software is written
in C/C++ and consists of modular functional units. Com-
munication is realized via interfaces (cf. Figure 1). Parallel
data processing is implemented via the Message Passing
Interface (MPI). The input files are in XML format for
simulation setup and in MOL2 format28 for ligand and
receptor coordinates. Subsequently, a molecular graph is
created for the ligand. Information on position, orientation,
and conformation of the ligand is stored in a 7 + T-
dimensional vector. The information is passed to the objec-
tive function for energy evaluation. The energy value (fitness
of the solution) is passed back to the metaheuristic and a
new iteration starts with the generation of new solutions.
PARADOCKS can hold different objective functions and
optimization algorithms. In addition, basic paradigms can
be changed; this includes an increase of the number of
degrees of freedom (e.g., by receptor flexibility), the linking
to external programs for energy evaluation, or even the
employment of multiobjective optimization.

Our aim is to present well working and robust software
for molecular docking. Beyond that, we want to invite other
scientists to participate in a joint development effort to

improve the program and to expand its functionalities. To
enable that we publish the source code of PARADOCKS under
the GNU General Public License (GPLv2)29 to ensure its
free use, the freedom to modify the underlying code, and
the redistribution. All parts of the program are as generic as
possible and should at least be fit for all metaheuristics-based
docking approaches. Implementation of new approaches,
namely, energy functions or search strategies is therewith
limited to the respective core functionalities, generic com-
ponents need only little to no modification. All public classes
and functions as well as the application programming
interface (API) are documented by the documentation system
Doxygen.30 We supply an advanced algorithm for the atom
type deduction based on topology subgraph matching similar
to the SMARTS31 system. The parsing of MOL2 files is
performed by a robust algorithm based on an Extended
Backus-Naur Form32 grammar. To allow easy testing of self-
implemented approaches, we provide an rmsd calculation
program for small molecules which takes molecular sym-
metry into account.

Optimization Algorithm. By design, PARADOCKS is able
to be used with different optimization algorithms. Based
on promising results by others,13–15 we decided to use
particle swarm optimization as an exemplary optimizer
implementation. The algorithm implemented here follows
PSO as introduced by Eberhart and Kennedy.16 Optimiza-
tion starts with a population of random solutions; the
search for optima is facilitated by updating generations,
making the swarm virtually fly through the search space.
The best position in search space so far (best solution
achieved) is tracked for the individual particle as well as
for the whole swarm. With the change of generations of
the swarm, the particles are accelerated toward these best
solutions. These accelerations are weighted by random
terms. The algorithm is shown in Algorithm 1 and features
two modifications to the original algorithm: (i) an inertia
weight c0 decreasing linearly over time33 and (ii) the
reinitialization with random position and velocity of
particles leaving the area of interest (the proximity of the
binding pocket). Initialization distributes the particles
equally in the search space. After evaluation of the
objective function, positions of each particle get adjusted
toward the best configuration in the particle’s history as
well as toward the configuration of the current best particle
of the swarm. The linearly decreasing inertia weight c0

in our implementation is intended to force exploration of
the search space and convergence to the global minimum
(exploitation).

Algorithm 1: Particle Swarm Optimization
for every particle P do

PX W random_ position ()
PV W random_velocity ()
PBX W PX
PBF W f(PX)

end for
i W 0
while i < maximum iterations do

for every particle P do
if molecule not in binding pocket then

PX W random_position ()
end if
N W neighborhood_best (P)

Figure 1. PARADOCKS design scheme. Boxes represent classes and
arrows represent the interfaces.
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PV ⇐ (c0 - i
maximum iterations)PV +

c1r1(PBX - PX) + c2r2(NBX - PX)

PX W PX + PV
F* W f(PX)
if F* better PBF then

PBF W F*
PBX W PX

end if
end for

end while

LEGEND: PX ) particle position; PV ) particle velocity;
PBX ) best position of the particle; PBF ) best fitness of
the particle; f(x) ) fitness function; c0 ) inertia weight;
c1 ) cognitive weight; c2 ) social weight.

Objective Functions. p-Score. The p-Score objective
function is an empirically derived energy function. The
docking energy Edock is dissected into

The van der Waals (vdW)-type interactions are modeled
by a Lennard-Jones potential calculated for pairs of the ligand
L and protein P atoms

The optimal vdW distance d0ij between atoms i and j is the
sum of the vdW radii of atom i and atom j. dij is the actual
distance between atoms i and j. The 8-4 form of the potential
is “softer”.34 The resulting reduced penalty for close contacts
accounts for a limited flexibility of the receptor without
explicitly modeling receptor flexibility.35 Einternal is defined as
an 8-4 potential of the same form as EvdW. But with the
difference that only destabilizing positive values contribute to
Edock. Einternal acts solely as penalty for internal vdW clashes.

The second contribution to the p-Score docking energy
describes electrostatic interactions. This type of interaction is
crucial for a correct description of specificity and affinity and
hence crucial for molecular docking. The strength of the
interaction depends on orientation and distance and thus Eestat

is calculated by an angle- and distance-dependent potential

In all cases, the energy contribution depends on the
distance dij of the atom pairs i and j. The function terms
f(θ1ij) and f(θ2ij) are not needed (set to 1) for ionic interactions
as there is no angle dependency for this type (cf., Figure
2a), whereas lone-pair or hydrogen bond interactions demand
modeling of the angle dependency. The description distin-
guishes between potentials for ionic interactions and hydro-
gen bonding with freely rotatable or frozen donor and
acceptor atoms. A donor or acceptor atom is considered to
be frozen if it is within a chain of heavy atoms, otherwise,
if it is the terminal of a chain of heavy atoms, its lone pair
or hydrogen can rotate freely. In the case of a freely rotatable
hydrogen or lone pair θ1ij and θ2ij are calculated between

the heavy atoms of the hydrogen bond as shown for atom j
in Figure 2b and atom i in Figure 2c. For frozen donor and
acceptor atoms the angles θ1ij and θ2ij correspond to the angle
between the hydrogen or lone pair, respectively, and the two
heavy atoms of the hydrogen bond as shown in Figure 2d.
The linear potentials follow the formulas

The last term of eq 2, Einternal, evaluates the ligand
conformation for vdW-clashes by using an 8-4-Lennard-
Jones potential for all ligand atoms i and j which have at
least 4 bonds distance

PMF04. PMF04 is a knowledge-based objective function.
This allows the exploitation of the vast amount of experi-
mentally determined protein-ligand structures as a basis for
molecular docking. Muegge et al. have shown the capability
of statistical potentials for molecular docking by implement-
ing PMF scoring24 into the DOCK4 program.36 We imple-
mented the statistical potential PMF0425 for molecular
docking with PARADOCKS. PMF04 is derived from 6611
protein ligand complexes and describes the interactions of
17 protein atom types with 34 ligand atom types in form of
pairwise potentials

with gij(dij) the density of the atom pair ij in distance dij and
gref the average density of atom pair ij. For a detailed
description, we point to the original publication.25 We will
continue with the necessary adaptations to use PMF04 as
an objective function for molecular docking with PARA-
DOCKS. The original close distance penalty of 3 kcal/mol is
far too low for use with molecular docking, since its use
results in overlapping of the ligand with receptor atoms after
optimization. To circumvent this, the repulsion part of an
8-4 Lennard-Jones-potential has been added as the close
distance penalty of PMF04. The Lennard-Jones-potential
Einternal (cf., eq 8) describes the conformation of the ligand.
The docking energy Edock is calculated as follows:

with

Edock ) EvdW + Eestate + Einternal (2)

Evdw ) ∑
i∈P

∑
j∈L

[(d0ij

dij
)8

- 2(d0ij

dij
)4] (3)

Eestat ) ∑
i∈P

∑
j∈L

f(dij)f(θ1ij)f(θ2ij) (4)

f(dij) ) {1 dij e (d0ij - k1)
(1/k1) · (d0ij - dij) (d0ij - k1) < dij e d0ij

0 dij > d0ij
(5)

f(θ1) ) {(1/k2) · (k2 - |θ1 - ki|) 0 e |θ1 - ki| e k2

0 |θ1 - ki| > k2
(6)

f(θ2) ) {(1/k3) · (k3 - |θ2 - kj|) 0 e |θ2 - kj| e k3

0 |θ2 - kj| > k3
(7)

Einternal ) ∑
i∈L

∑
j∈L

[(d0ij

dij
)8

- 2(d0ij

dij
)4] (8)

Wij(dij) ) -ln
gij(dij)

gref
(9)

Edock ) EPMF04 + a · Einternal (10)

EPMF04 ) ∑
i∈P

∑
j∈L

Wij(dij) (11)
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RESULTS AND DISCUSSION

Parameter selection for the PSO and the objective func-
tions, as well as the benchmarking for docking accuracy and
virtual screening performance of PARADOCKS, were per-
formed under the following paradigm: a useful molecular
docking setup has to distinguish the quality of different poses
of a receptor-ligand pair, as well as the quality of different
potential ligands with respect to a receptor. The actual
performance was compared to GOLD;9 for further compari-
son, we point the reader to recent articles that feature
extensive performance analysis of docking algorithms.15,37–39

Parameter selection was performed on the (Astex DiVerse
Set40). For the evaluation of the docking accuracy, the
PDBbind core set41 was used; for assessing the virtual
screening performance the directory of useful decoys
(DUD)42) was employed. For all docking setups, identical
initial coordinates of the ligand and the receptor were used.
Where necessary, hydrogens were added to the crystal
structures with the MOE program.43 The initial conforma-
tions and orientations of all ligands were randomized.

Parameter Selection. Particle Swarm Optimizer. We
found a limit of 150 000 iterations and a number of 20
particles to be sufficient for a good sampling and robust
results. The search efficency is best with a cognitive weight
c1 ) 1.0, a social weight c2 ) 3.4, and a constricting inertia
weight c0 ranging from 1.0 to 0.2. These parameters were
selected in systematic tests of parameter combinations. The
complex of the HIV-1 reverse transcriptase and its inhibitor
TNK-651 (PDB 1JLA)44 served as a typical example with 7
rotatable bonds and therefore average dimensionality. Be-
cause of its nondeterministic nature, every molecular docking
experiment was repeated 400 times to generate comparable
average results (this computation takes about four hours on
a single 2.53 GHz Intel Xeon CPU). The average of the
optimized score was compared and the parameter combina-
tion with the best average score is listed above.

p-Score. The parameters for p-Score were derived based
on the assumption that an energy function for molecular
docking has to evaluate the X-ray structures of a training
set always better than alternative structures. The p-Score
parameters to be optimized were the optimal vdW distances
d0ij as used in eqs 3 and 8 and k1, k2, and k3 as in eqs 5-7.

The Astex Diverse Set,40 a collection of high resolution
(<2.5 Å) crystal structures of proteins and their drug-like
ligands, was used as training set. For each protein ligand
pair of the test set, 50 ligand conformations (decoys) with
an rmsd relative to the X-ray structure above 2 Å and at
least 22 decoys with an rmsd < 2 Å were generated. All
decoys differed with an rmsd > 2 Å from each other. In the
following, each of the up to 80 decoys per protein ligand

pair was evaluated with an parameter set for the p-Score
objective function. To indicate the quality of a parameter
set, the ratio between decoys evaluated better or worse than
the crystal structure was estimated

An initial set of parameters was taken from X-SCORE21 and
improved by means of a randomized local search minimizing
QP until no substantial changes of QP were observed
anymore. The parameter optimization result was QP ) 0.051,
meaning that in more than 95% of all cases the crystal
structure scores better than the decoys. The quality of the
resulting vdW parameters can be seen in the fact that for
89% of all ligands in the PDBbind core set41 we find at least
one generated conformation which has an rmsd of less than
2 Å to the X-ray structure. The resulting vdW distances d0ij

and the electrostatic parameters k1, k2, and k3 for the p-Score
function can be found in the Supporting Information.

PMF04. Factor a ) 0.25 of eq 10 was found by an
exhaustive search with the objective of accumulating docking
poses from the Astex diverse set that have an rmsd below 2
Å to the X-ray structure.

Docking Accuracy. The PDBbind core set41 contains 210
protein ligand pairs in 70 groups. Each group consists of
proteins whose sequences are highly similar but that are
complexed with ligands of low, medium, or high affinity,
respectively. PARADOCKS runs were repeated 50 times per
complex, and default parameters for the PSO were used.
GOLD was used with automatic parameter settings with a
selected search efficiency of 100%. The results of the docking
simulations were clustered with a 2 Å rmsd cutoff and
compared to the respective X-ray structures. A histogram
plot of the results is shown in Figure 3, and numerical values
are given in Table 1. 58% of the PMF04 dockings and 63%
of the p-Score dockings found the native pose (GOLD 69%)
within the three highest-ranking clusters.

We observe a significant decrease of the docking accuracy
with the increase of the number of freely rotatable bonds;
this effect is also observed for GOLD, but to a lesser extent
than for PARADOCKS (cf., Figure 4a). There are two possible
reasons for this effect: (i) The simple description of the
ligand’s conformation in p-Score and in our implementation
of PMF04 might lead to the observed decrease in docking
accuracy for ligands with more than 10 rotatable bonds. (ii)
The same increase of torsional degrees of freedom leads as
well to a substantially larger search space to sample. The
simplified description of the ligand by avoiding van der
Waals clashes is sufficient to predict meaningful ligand
conformations. After fitting of the ligand conformations to

Figure 2. p-Score differentiates between multiple possibilities for electrostatic interactions, for example, (a) ionic interactions, (b) cation-lone
pair interactions, (c) frozen acceptor and rotatable donor, and (d) frozen acceptor and donor.

QP ) number of decoys scored better than crystal structure
number of decoys scored worse than crystal structure
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the X-ray structure, for 89% of all ligands in the PDBbind
core set,41 we find at least one conformer with an rmsd below
2 Å. The suggested standard settings for the optimization
work well on average-sized problems. For ligands with more
than ten torsional degrees of freedom, adapted docking
settings should be used.

However, 75% of the substances listed in the world drug
index (WDI)45 have less than ten freely rotatable bonds (cf.
Figure 4(b)). The general characteristics of drug molecules,
as summarized, among others, by Lipinsky et al.46 or Veber
et al.47 point toward smaller molecules with less than ten
rotatable bonds as well.

Virtual Screening Performance. In virtual screening
experiments, molecular docking is employed to find potent
lead structures from large compound libraries. Thus it is of
paramount importance to avoid false positive solutions. To
thoroughly analyze the virtual screening performance of
ParaDockS we selected a subset of 13 targets from the
directory of useful decoys (DUD)42 as described by Cheeseri-
ght et al.,48 with at least 15 clusters of active compounds
for each target. The 13 targets are: angiotensin-converting

enzyme (ace), acetylcholinesterase (ache), cyclin-dependent
kinase 2 (cdk2), epidermal growth factor receptor (egfr),
factor Xa (fxa), HIV reverse transcriptase (hivrt), enoyl-acyl
carrier protein reductase (inha), P38 mitogen-activated
protein (p38), phosphodiesterase 5 (pde5), platelet-derived
growth factor receptor kinase (pdgfrb), src tyrosine kinase
(src) and vascular endothelial growth factor receptor (vegfr2).
The data sets were downloaded from DUD in mol2 file
format.49 For PARADOCKS we used the default PSO settings
with 30 repeats per instance with PMF04 and p-Score, in
addition, the results of the p-Score dockings were rescored
with PMF04. For GOLD the genetic algorithm with ten
repeats was used with each of the three available energy
functions GoldScore, ChemScore, and the Astex Statistical
Potential (ASP). The virtual screening perfomance is now
assessed by the ability to distinguish known-active com-
pounds (P) from the selected decoys (N). For each compound
in the sorted row, the true positive rate (TPR) and the false
positive rate (FPR) were calculated. Solutions that score
better or equal than that particular compound are defined as
positive solutions. Active compounds within the range of
positive solutions are true positives (TP) and decoys within
the range of defined positive solutions are false positives
(FP). TPR and FPR are calculated according to

and

The receiver operator characteristic (ROC) diagrams
resulting from plotting the TPR and FPR values are shown
in Figure 5. Ideally, ROC curves show a steep early ascent,
almost parallel to the y -axis and then, close to the maximal
value for y, continue parallel to the x -axis. Such a behavior
can be exemplary seen for PARADOCKS with p-Score/PMF04
on the hivrt data set and for GOLD with GoldScore on the
cox2 data set. However, most of the curves exhibit an
sigmoidal shape. A good metric to assess the overall quality
of a screening approach is the area under the ROC curve
(AUC). The AUC gives the probability that a randomly
chosen active is ranked higher than a randomly chosen
inactive by the respective method. In Table 2 the AUC values
are given, the methods exhibit similar perfomance. GOLD
with ChemScore50 and the Astex statistical potential (ASP)51

Figure 3. Comparison of the docking accuracy of PARADOCKS with
p-Score and PMF with GOLD on the PDBbind core set. The data
is plotted as an additive histogram for the highest ranked three
clusters.

Table 1. Docking Quality of PARADOCKS with the Scoring
Functions p-Score and PMF04 in Comparison to GOLDa

native pose in clusters

docking approach 1 1 and 2 1, 2, and 3

PARADOCKS/PMF04 47% 52% 58%
PARADOCKS/p-Score 52% 61% 63%
GOLD 62% 69% 69%
a The threshold for the native pose is a rmsd of 2 Å.

Figure 4. (a) The fraction of successful dockings (rmsd of 2 Å or better) of the PDBbind core set for PARADOCKS with p-Score and PMF,
respectively, and with GOLD as a function of the number of rotatable bonds of the ligand. (b) Distribution of compounds in the WDI45

with respect to the number of rotatable bonds.

TPR ) TP
P

(12)

FPR ) FP
N

(13)
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Figure 5. ROC curves to compare the performance of the different VS methods in PARADOCKS and GOLD. The lines are colored as
follows: PARADOCKS with PMF04 in blue, PARADOCKS with p-Score in cyan, PARADOCKS docked with p-Score and rescored with PMF04
in green, GOLD with GoldScore in red, GOLD with ChemScore in orange, GOLD with ASP in purple.

Table 2. AUC Values for the ROC Curvesa

target PMF04 p-Score p-Score/PMF04 GoldScore ChemScore ASP DOCK

ace 0.49 0.49 0.49 0.46 0.44 0.34 0.68
ache 0.60 0.54 0.58 0.47 0.69 0.57 0.68
cdk2 0.56 0.59 0.54 0.68 0.63 0.68 0.57
cox2 0.46 0.42 0.48 0.87 0.80 0.71 0.82
egfr 0.52 0.50 0.47 0.36 0.46 0.37 0.57
fxa 0.71 0.51 0.68 0.69 0.72 0.78 0.73
hivrt 0.68 0.47 0.78 0.41 0.59 0.55 0.68
inha 0.58 0.50 0.60 0.29 0.70 0.56 0.27
p38 0.56 0.57 0.60 0.45 0.63 0.64 0.42
pde5 0.61 0.61 0.56 0.69 0.73 0.90 0.56
pdgfrb 0.45 0.51 0.42 0.39 0.63 0.49 0.36
src 0.51 0.66 0.48 0.44 0.67 0.76 0.48
vegfr2 0.49 0.54 0.45 0.39 0.70 0.73 0.38
Average 0.56 0.53 0.55 0.51 0.65 0.62 0.55

a The highest AUC value for each test set is highlighted in bold numbers. The screening method is abbreviated by the scoring method in use.
Results for DOCK were taken from ref 48.
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show average values above 0.6, DOCK averages at 0.55, and
PARADOCKS reaches 0.56 with PMF04, 0.53 with p-Score,
and 0.55 with PMF04-rescored p-Score results. It is worth
mentioning that PARADOCKS is hardly producing strong
outliers with AUC values significantly below 0.5.

For practical reasons, the enrichment within the few top-
ranking solutions is of great interest; economic demands
allow only the processing of a limited number of compounds.
ROC enrichment52 is defined as the ratio of TPR to FPR for
a given range of decoys and gives a good measure for the
“early” enrichment in a virtual screening experiment. The
advantage of ROC enrichment values is their independence
from the composition of the test set. Most of the ROC curves
in Figure 5 are sigmoidal, where it is striking that PARA-
DOCKS with PMF04 produces mainly very steep ascending
ROC curves. The magnification in Figure 6 puts the focus
on the top-ranking 5% of solutions and highlights the high
early enrichment. Especially for the very early enrichment

(upper 1%) in Table 3, the superiority of PARADOCKS is clear,
especially in combination with the PMF04 objective function.
At 5% ROC enrichment (cf., Table 4) the advantage of
PARADOCKS is still significant.

In Figure 7, exemplary docking results of two active
compounds to the HIV reverse transcriptase are shown. The
binding pocket of HIV-RT is narrow, and the shown docking
results in Figure 7 are correct. Although the deviations of
the predicted structures from the crystal structure are small,
the ranking is not necessarily good. The ligand emivirine in
Figure 7a is ranked sixth of 1437 by PMF04-rescoring of
p-Score results but on position 1310 by GoldScore. The
ligand nevirapine in Figure 7b is ranked on position 98 by
PMF04, on position 286 by GoldScore, and on position 1012
by p-Score.

Timings and Parallel Efficiency. The computing time is
of innate importance for the application of molecular docking
techniques especially when performing virtual screenings

Figure 6. The first 5% of the ROC curves enlarged to compare the early enrichment of the different VS methods in PARADOCKS and GOLD. The
lines are colored as follows: PARADOCKS with PMF04 in blue, PARADOCKS with p-Score in cyan, PARADOCKS docked with p-Score and rescored
with PMF04 in green, GOLD with GoldScore in red, GOLD with ChemScore in orange, GOLD with ASP in purple.
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with large libraries of compounds. To compare the timings,
a docking simulation with 50 consecutive runs of a test
instance (PDB 1JLA, HIV-1 reverse transcriptase and TNK-
652)44 was performed on an HP server (2.53 GHz Intel Xeon
CPUs). PARADOCKS with p-Score finishes after about one
hour. With PMF04 the timing is almost the same, the
advantage of the simpler energy function is reduced due to
the all-atom description. GOLD solves the given problem
in slightly less than half an hour.

Parallel computing offers a chance for speed-up and is of
special interest as there is a clear trend toward multicore
CPUs in servers and workstations. In initial studies on

parallel efficiency with artificial molecular docking setups
we observed almost linearly scaling parallel efficiency with
up to 512 CPU cores.53 However, in the current version the
amount of computing time needed to evaluate the interaction
was greatly reduced compared to these initial tests. The
current parallel implementation suffers from communication
overheads; neither the optimization algorithm nor the objec-
tive functions are, at the current stage, optimized toward
parallel processing. PARADOCKS with 4 CPU cores reaches
the speed of GOLD with 1 CPU core. While the amount of
simultaneous processes for many commercial solutions is
limited by the number of licenses purchased, PARADOCKS
is free software and not limited in the number of processes.
This allows to overcome the current speed limitations by
data parallel computation. Further details on timings and
parallel performance can be found in the Supporting Infor-
mation.

CONCLUSIONS

In the previous sections, we have introduced the molecular
docking software PARADOCKS. The main feature, the open
and easy extendable design, offers the possibility to imple-
ment one’s own approaches. In addition, the sofware is
equipped with a robust particle swarm optimizer and the two
objective functions PMF04 and p-Score. PARADOCKS does
not need extensive preprocessing of the input data. Input and
output of structures as well as parameters and results is

Table 3. ROC Enrichment Values at 1% for PARADOCKS, GOLD, and DOCK (from ref 48) across the 13 Selected DUD Targetsa

target PMF04 p-Score p-Score/PMF04 GoldScore ChemScore ASP DOCK

ace 44.1 35.2 17.6 4.4 2.1 2.1 8.7
ache 1.9 6.4 4.0 0.0 4.0 6.4 0.0
cdk2 61.0 32.0 39.5 16.4 16.4 16.4 10.6
cox2 6.6 0.9 16.1 23.4 21.9 58.5 16.9
egfr 24.7 5.6 16.6 0.0 0.8 0.0 4.1
fxa 11.7 0.7 11.7 2.2 3.7 20.1 9.5
hivrt 24.0 5.5 31.4 0.0 5.5 0.0 6.2
inha 45.9 45.9 91.2 0.0 40.5 6.6 0.0
p38 24.2 6.8 18.1 0.4 3.3 1.2 0.0
pde5 39.4 25.8 20.7 12.7 16.4 31.9 7.7
pdgfrb 47.2 35.8 35.8 3.4 4.9 1.3 0.0
src 48.9 10.3 20.1 2.7 5.8 11.4 1.0
vegfr2 55.2 23.1 30.9 1.3 35.7 7.8 2.1

a The screening method is abbreviated by the scoring method in use. The highest ROC enrichment value for each test set is highlighted in
bold numbers.

Table 4. ROC Enrichment Values at 5% for PARADOCKS, GOLD, and DOCK (from 48) across the 13 Selected DUD Targetsa

target PMF04 p-Score p-Score/PMF04 GoldScore ChemScore ASP DOCK

ace 7.1 8.3 5.0 3.0 2.1 0.4 3.9
ache 2.2 3.0 2.8 0.0 4.4 3.0 1.6
cdk2 6.4 6.9 6.9 4.3 7.5 4.8 3.0
cox2 2.0 0.5 3.3 12.3 8.6 9.0 10.0
egfr 6.9 2.5 4.9 0.5 0.5 0.2 3.5
fxa 5.5 0.8 5.5 2.5 3.8 7.0 5.1
hivrt 5.6 3.2 8.4 0.5 4.4 0.5 3.1
inha 8.9 7.5 8.9 0.0 7.8 5.0 0.0
p38 5.8 3.2 4.9 0.6 2.8 1.4 0.4
pde5 7.9 5.3 3.8 3.3 5.8 10.4 6.2
pdgfrb 6.1 6.8 4.8 1.0 1.3 0.5 0.2
src 7.7 5.6 4.8 1.7 3.7 5.6 0.4
vegfr2 6.5 5.1 5.1 1.1 8.0 3.8 0.8

a The screening method is abbreviated by the scoring method in use. The highest ROC enrichment value for each test set is highlighted in
bold numbers.

Figure 7. Visualization of example docking results from the virtual
screening experiments: (a) the ligand binding domain of the HIV
reverse transcriptase (PDB 1RT1) in complex with Emivirine
(green) and the docking results with p-Score (magenta), and
GoldScore (brown) and (b) the ligand binding domain of the HIV
reverse transcriptase (PDB 1VRT) in complex with Nevirapine
(green) and the docking results with PMF04 (yellow), p-Score
(magenta), and GoldScore (brown).
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organized in a way that makes the inclusion into existing
virtual screening pipelines easy. The code is well structured
and is documented by an automatic documentation system
to allow easy familiarization. Furthermore, developers of
optimization algorithms and scoring approaches will find the
open and modular design of the PARADOCKS framework
tailored for easy implementation and testing.

The performance was evaluated for three issues critical
for molecular docking and virtual screening: accuracy,
screening performance, and speed. In all three disciplines
PARADOCKS is reaching very promising results. The docking
accuracy, tested on reproducing the PDBbind core set,
reaches up to 73% with p-Score. To assess the virtual
screening performance, extensive testing with 13 targets of
the DUD was performed. The early enrichment performance
of PARADOCKS with the PMF04 objective function is superior
to all other tested approaches. Summarizing, p-Score appears
well suited for more accurate evaluations, while PMF04 is
apparently well suited for rapid evaluations and high enrich-
ment in virtual high throughput screenings. The particle
swarm optimizer performs well and is robust. It offers a
straightforward way for parallelization, but with current
objective functions the communication overhead is high.

Although PARADOCKS is ready for production use, the
software is under constant development. This first status
report would be incomplete without an outlook on upcoming
improvements and future development directions:

• Improvements of the description of the ligand conforma-
tion for the p-Score and PMF04 objective function are
planned.

• The receptor flexibility will be accounted for by an
explicit modeling of side chain flexibility.

• Further optimization techniques, for example, differential
evolution, will be implemented and their performance
analyzed.

• Improved load balancing and reduced communication
will increase the parallel efficiency. The use of compu-
tationally more demanding objective functions will
increase the parallel efficiency as well.

• The output of resulting structures will be changed to a
trajectory-like format.

PARADOCKS is free software and published under the GNU
General Public License (GPLv2).29

DOWNLOAD

Please refer to http://www.paradocks.org to download the
PARADOCKS source code and to find additional information.
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Current virtual screening tools are fast, but reliable scoring is elusive.

Here, we present the ‘SQM/COSMO filter’, a novel scoring function

featuring a quantitative semiempirical quantum mechanical (SQM)

description of all types of noncovalent interactions coupled

with implicit COSMO solvation. We show unequivocally that it

outperforms eight widely used scoring functions. The accuracy

and chemical generality of the SQM/COSMO filter make it a perfect

tool for late stages of virtual screening.

Despite the enormous advances in method development for
structure-based in silico drug design, reliable predictions of the
structures (docking) and affinities (scoring) of protein–ligand
(P–L) complexes still remain an unsolved task.1 A plethora of
scoring functions (SFs) have been devised by utilising experi-
mental data for regression analyses, by constructing knowledge-
based potentials, or based on physical laws.2,3 As none of the SFs
is general enough to perform equally strongly for a diverse set of
P–L complexes, utilising several SFs at once (consensus scoring)
holds promise.4 Regression analysis and knowledge-based
approaches to scoring are trained on a set of P–L complexes
and rely on variable master equation terms. Their validity is
limited to complexes similar to the training set. In principle,
this problem has been overcome in physics-based methods.
Because of computational cost, preference has been given to
molecular mechanics (MM) methods, such as the combination
of MM interaction energies with implicit solvation free energy
terms (generalised Born, GB, or Poisson–Boltzmann, PB) to

estimate affinities.2 Additionally, the wide coverage of organic
chemical space in the GAFF (general AMBER force field)5 has
made the parameterisation of ligands for MM straightforward.
However, an explicit description of quantum mechanical (QM)
effects in P–L interactions, such as charge transfer, polarisa-
tion, covalent-bond formation or s-hole bonding, was missing.
QM methods, which describe these effects qualitatively better
than the energy functions used in MM-based SFs, were thus
introduced into computational drug design.6,7 Recent develop-
ments in QM methods and algorithms as well as the availability
of a powerful computing infrastructure have paved the way to
apply them for P–L complexes in numerous setups: linear scaling or
efficient parallelisation of semi-empirical QM (SQM) methods,7–10

QM/MM,7,8,11,12 DFT-D3 on truncated P–L complexes13 or various
fragmentation methods.11,14 Specifically, AM1, RM1, PM6 or DF–TB
SQM methods have been used7–9,12,15 as such or with empirical
corrections for dispersion, hydrogen- and halogen-bonding16 to
describe the P–L noncovalent interactions. Merz et al. pioneered
this area by introducing a QM-based SF (QMScore), a combi-
nation of the AM1 SQM method with an empirical dispersion (D)
and the PB implicit solvent [eqn (1)].17 The method was useful for
describing metalloprotein–ligand binding, but further corrections
were needed, especially for a quantitative treatment of dispersion
and hydrogen bonding.10

Score = DEint + DDGsolv + DG0wconf ! TDS (1)

The above equation is a general physics-based SF. The terms
are the gas-phase interaction energy (DEint), the change of
solvation free energy upon complex formation (DDGsolv), the
change of conformational ‘free’ energy (DG0wconf) and the change
of entropy upon ligand binding (!TDS).

Our approach is systematic. Using accurate calculations in
small model systems as a benchmark, we developed corrections
for SQM methods that provide reliable and accurate description
of a wide range of noncovalent interactions including disper-
sion, hydrogen- and halogen-bonding.16 Coupled with the
PM6 SQM method,18 the resulting PM6-D3H4X approach is
applicable to a wide chemical space and does not require any
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system-specific parameterisation. We use it here to calculate the
DEint term. Subsequently, we compared MM-based (PB or GB) and
QM-based (COSMO19 or SMD) implicit solvent models and found
the latter group to be more accurate.20 These are therefore used for
the DDGsolv term. These two dominant terms, DEint and DDGsolv, are
at the heart of our SQM-based SF.15 We have demonstrated its
generality in various noncovalent P–L complexes, such as aldose
reductase or carbonic anhydrase and moreover extended it to treat
covalent inhibitor binding (ref. 15, 21 and 22).

In this work, we adapt our SQM-based SF to make it usable
in virtual screening on the basis of our previous experience. By
taking the two dominant terms only, DEint and DDGsolv, we define
the ‘SQM/COSMO filter’ energy. Its performance is tested here
against eight widely used SFs. GlideScore XP (GlideXP),23 PLANTS
PLP (PLP),24 AutoDock Vina (Vina),25 Chemscore (CS),26 Goldscore
(GS)27 and ChemPLP24 are empirical, regression-based functions
which use different terms to describe vdW contacts, lipophilic
surface coverage, hydrogen bonding, ligand strain, and desolvation.
The Astex Statistical Potential (ASP)28 is a knowledge-based
potential. The classical physics-based AMBER/GB SF combines
the ff03-GAFF MM force fields with the GB implicit solvent.5,29

The goal is ‘cognate docking’,30 i.e. the ability to identify
sharply the known native X-ray P–L binding pose from a set of
decoy structures generated by docking (Fig. 1). To understand
our results in detail, we have not opted for treating them in a
statistical manner31 as in the pose decoy test sets available.32

Instead we cautiously selected four unrelated difficult-to-handle
P–L systems, which comply with strict criteria for the selection of
crystallographic structures for docking (details in the ESI†).33

These systems are acetylcholine esterase (AChE, PDB: 1E66),34

TNF-a converting enzyme (TACE, PDB: 3B92),35 aldose reductase
(AR, PDB: 2IKJ)36 and HIV-1 protease (HIV PR; PDB: 1NH0).37 For
the latter, the protonation of the active site is inferred from ultra-
high resolution X-ray crystallography. Based on these P–L crystal
structures, we have created a set of non-redundant poses (2865
in total) by docking with four popular docking programs (Glide,
PLANTS, AutoDock Vina and GOLD) coupled to seven widely
used SFs23–28 (Fig. 1, Table S2, ESI†).

All the poses were re-scored by all nine SFs. For the seven
regression- and knowledge-based SFs, we used the recommended
protocols. For the two physics-based SFs, only hydrogen atoms
and close contacts were relaxed by the AMBER/GB method. RMSD
values of the poses relative to the crystal were measured (details in
S1.6, ESI†). The scores were normalised and are shown relative to
the score of the crystal pose.

The identification of the X-ray pose as the minimum-free-
energy structure is an unambiguous criterion for the perfor-
mance of any SF. The ideal behaviour of such a score vs. RMSD
curve (Fig. 2) is characterised by the positive values of energies
for the decoy poses. Small deviations (negative energies for very
small RMSD values) are acceptable and might be explained by
inaccuracies of the crystal structure. These conditions are met
by the SQM/COSMO filter, unlike the other SFs (Fig. 2). The
numbers of false-positive solutions as well as the maximum
RMSD (RMSDmax) from the X-ray pose within a defined interval
of the normalised score quantify the virtually ideal behaviour of
the SQM/COSMO filter in comparison to the other SFs.

The number of false-positives is lowest for the SQM/COSMO
filter, even zero for three P–L systems (Table 1). CS and ASP
perform slightly worse. AMBER/GB performs satisfyingly well
for three systems but yields 171 false-positives for TACE.
For AChE, all the SFs perform satisfyingly well. For AR and
HIV PR, GlideXP generates the highest number of false-positive
solutions and also shape-wise the free energy landscape looks
ill-defined (Fig. 2). In the case of AR, a plateau of negative
relative scores is observed for GlideXP. The hardest case is the
TACE metalloprotein. Here, all the SFs produce false-positive
solutions but to a different extent. The SQM/COSMO filter
performs best, followed by CS. This example in particular shows
the strength of an electronic-structure theory description of P–L
binding. The presence of the metal cation in this protein and
the associated charge-transfer effects between the ligand and
the cation are not adequately described by classical force-fields

Fig. 2 The plots of normalised scores against RMSD values for all four P–L
systems.

Fig. 1 The ligand poses generated by the four docking programs. Ligand
poses are color-coded by RMSD.
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or statistical potentials, but they are well represented by the
SQM/COSMO filter.

The second criterion, RMSDmax, is shown for the interval of
the normalised relative scores below 5 (Table 2). The SQM/
COSMO filter shows the lowest RMSDmax of 0.88 Å on average.
CS follows with 1.28 Å on average. ASP and AMBER/GB satisfy
the conditions of an averaged RMSDmax up to 2 Å. AMBER/GB,
however, fails in the difficult case of TACE with RMSDmax of
4.76 Å. Analogous analyses at greater intervals have revealed a
similar ordering of the SFs (Table S4, ESI†).

The SQM/COSMO filter enables us not only to recognise the
correct binding pose (RMSD below 2 Å) but also to go beyond
this limit and evaluate even small changes in the geometry of
the ligand binding.

The price for such a high accuracy is the increased computa-
tional time requirements. The SQM/COSMO filter is ca. 100-times
slower than the statistics- and knowledge-based SFs and about
10-times slower than the classical physics-based AMBER/GB.
However, compared to the standard SQM-based SF, it is ca. 100-times
faster. The speed can be further enhanced by parallelisation.

To summarise, we have pushed the limits of the accuracy of
SFs to judge the energetics of P–L noncovalent interactions.
Based on our development and the extensive experience with
SQM-based scoring functions,3,21 the SQM/COSMO filter has
been introduced. It features two dominant terms to describe
P–L interaction, namely the DEint term at the PM6-D3H4X level
for gas-phase noncovalent interactions and the DDGsolv term at
the COSMO level for implicit solvation. We showed previously that
both these methods are very accurate at a reasonable speed.16,20

The SQM/COSMO energy is calculated in four unrelated P–L
complexes. The SQM/COSMO filter is compared to eight widely
used SFs, which are statistics-, knowledge- or force-field-based.
The SQM/COSMO scheme exhibits a superior performance as

judged by two criteria, the number of false positives and
RMSDmax. In contrast to standard SFs, no fitting against data
sets has been involved. Furthermore, it offers generality and
comparability across the chemical space and no system-specific
parameterisations have to be performed. The time require-
ments allow for calculations of thousands of docking poses
as we have demonstrated in this pilot study. We propose the
SQM/COSMO filter as a tool for accurate medium-throughput
refinement in later stages of virtual screening or as a reference
method for judging the performance of other scoring functions.
The proof of concept that reliable QM calculations can now be
performed for tens of thousands of large biochemical entities
opens a way to progress in closely related disciplines such as
materials design.
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ABSTRACT: The identification of low-energy conformers for
a given molecule is a fundamental problem in computational
chemistry and cheminformatics. We assess here a conformer
search that employs a genetic algorithm for sampling the low-
energy segment of the conformation space of molecules. The
algorithm is designed to work with first-principles methods,
facilitated by the incorporation of local optimization and
blacklisting conformers to prevent repeated evaluations of very
similar solutions. The aim of the search is not only to find the
global minimum but to predict all conformers within an energy
window above the global minimum. The performance of the search strategy is (i) evaluated for a reference data set extracted
from a database with amino acid dipeptide conformers obtained by an extensive combined force field and first-principles search
and (ii) compared to the performance of a systematic search and a random conformer generator for the example of a drug-like
ligand with 43 atoms, 8 rotatable bonds, and 1 cis/trans bond.

■ INTRODUCTION
One of the fundamental problems in cheminformatics and
computational chemistry is the identification of three-dimen-
sional (3D) conformers that are energetically favorable and
likely to be encountered in experiment at given external
conditions.1 Conventionally, these conformers are often
characterized by specific, fixed sets of nuclear coordinates or
ensembles thereof, and their potential energy is given by the
electronic degrees of freedom in a Born−Oppenheimer picture
of the chemical bond. A variety of conformations can be
adopted by flexible organic molecules as the multidimensional
potential-energy surface (PES) usually contains multiple local
minima, with a global minimum among them. Only when the
relevant conformers are known, one can predict and evaluate
chemical and physical properties of the molecules (e.g.,
reactivity, catalytic activity, or optical properties). In many
practical applications, the PES minima are taken as starting
points to explore the free-energy surface (FES). Generating
conformers is an integral part of methods such as protein−
ligand docking2−5 or 3D pharmacophore modeling.6 The
propensity to adopt a certain conformation strongly depends
on the environment and possible interactions with other
compounds. It has been shown that the bioactive conformation
of drug-like molecules can be higher in energy than the
respective global minimum7 and that different 3D conforma-
tions may be induced by specific interactions with other
molecules.8 Thus, it is crucial to focus not just on a single,
global minimum of the PES, but instead to provide a good
coverage of the accessible conformational space of a molecule
yielding diverse low-energy conformers.
The exploration of a high-dimensional PES is challenging. A

selection of popular sampling approaches utilized in conformer

generation is summarized in Table 1. We focus specifically on
genetic algorithms (GAs),29−31 a sub-group of the evolutionary
algorithms (EAs), that are frequently used for global structure
optimization of chemical compounds.3,4,32−56 GAs for chemical
structure searches implement a “survival of the fittest” concept
and adopt evolutionary principles starting from a population of,
most commonly, random solutions. GAs use the accumulated
information to explore the most promising regions of the
conformational space. With this, the number of unhelpful
evaluations of physically implausible high-energy solutions can
be reduced. Examples of GA-based structure prediction
applications include the following: (i) conformational searches
for molecules like of unbranched alkanes36 or polypeptide
folding;37 (ii) molecular design;38,39 (iii) protein−ligand
docking;3,4 (iv) cluster optimization;40−49 (v) predictions of
crystal structures;50−53 (vi) structure and phase diagram
predictions.54 Further, Neiss and Schoos55 proposed a GA
including experimental information into the global search
process by combining the energy with the experimental data in
the objective function. Since GAs typically rely on internal,
algorithmic parameters that control the efficiency of a search, a
meta-GA for optimization of a GA search for conformer
searches was proposed by Brain and Addicoat.56

Aside from the search algorithm itself, the choice of the
mathematical model for the PES is critical to ensure results that
reliably reflect the experimental reality. Among the available
atomistic simulation approaches, “molecular mechanics”
models, i.e., so-called force fields, are especially fast from a
computational point of view and therefore often employed.
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However, the resulting predictions depend on the initial
parametrization of a particular force field and can lead to
considerable rearrangements of the true PES for molecules that
were not included in the parametrization procedure.57−59 On
the other end of the spectrum of approaches, the PES can be
faithfully represented based on the “first-principles” of quantum
mechanics. Indeed, benchmark quality approaches such as
coupled cluster theory at the level of singles, doubles and
perturbative triples (CCSD(T)) are almost completely trust-
worthy for closed-shell molecules, but still prohibitively
expensive toward larger systems and/or large-scale screening
of energies of many conformers. Density-functional theory
(DFT) approximations are an attractive alternative to balance
accuracy and computational cost. The choice of the
approximation is critical when using first-principles methods
like DFT. It has been shown that it is necessary to incorporate
dispersion effects for (bio)organic molecules and their
complexes.57,60−62 The challenge of including long-range
interactions has been met for example by the dispersion
correction schemes described by Grimme63,64 or by Scheffler
and Tkatchenko,65−67 but validating the DFT approximation
employed is critical. In fact, subtle energy balances of
competing conformers can require relatively high-level DFT
approximations for reliable predictions.58,68

The aim of our work is to develop and test an approach to
sample the PES of small to medium sized (bio)organic
molecules without relying on empirical force fields, utilizing
instead electronic-structure methods for the entire search. With
the molecular structure problem in mind, we define the
following requirements for the search strategy and implemen-
tation:

• Global search based on user-curated torsional degrees of
freedom (bond rotations).

• Local optimization based on full relaxation of Cartesian
coordinates and avoidance of recomputing too similar
structures to ensure both efficient sampling and
economic use of a computationally demanding energy
function.

• Design of the program in a way to use an external and
easily exchangeable electronic structure code (in our case
FHI-aims69,70).

• Simple input of molecules (composition and config-
uration) by means of SMILES codes.71

• A robust and simple metaheuristic that ideally identifies
the complete ensemble of low-energy conformers.

• Free availability with a flexible open-source license
model.

• Support for parallel architectures.

Based on these requirements, we present in this work a
conformational search strategy based on a genetic algorithm.
We provide a detailed description of our approach and a
software implementation Fafoom (flexible algorithm for
optimization of molecules) that is available under an open-
source license (GNU Lesser General Public License72) for use
by others. For simplicity, we abbreviate “potential energy” with
energy and “minima of the potential-energy surface” with
energy minima.

■ METHODS
In the following, we first motivate and explain assumptions that
we met for handling 3D structures of molecules. Further, we
outline the algorithm’s implementation and describe its
technical details. Finally we introduce a data set that we use
as a reference for evaluating the performance of our
implementation. Our work focuses on both the ability to
reliably predict the global minimum and to provide a good
conformational coverage with a computationally feasible
approach. To achieve that, we formulate some specific
algorithmic choices at the outset: (i) only sterically feasible
conformations are accepted for local optimization; (ii) a
geometry optimization to the next local minimum is performed
for every generated conformation; (iii) an already evaluated
conformation will not be evaluated again.

Choice of Coordinates. In computational chemistry, at
least two ways of representing a molecule’s 3D structure are
commonly used, either Cartesian or internal coordinates. The
simplest internal coordinates are based on the “Z-matrix
coordinates”, which include bond lengths, bond angles and
dihedral angles (torsions) and can also be referred to as
“primitive internal coordinates”. These coordinates reflect the
actual connectivity of the atoms and are well suited for
representing curvilinear motions such as rotations around single
bonds.73 Bond lengths and bond angles possess usually only
one rigid minimum, i.e. the energy increases rapidly if these
parameters deviate from equilibrium. In contrast, torsions can
change in value by an appreciable amount without a dramatic
change in energy. Similar to the work of Damsbo et al.,37 we
use Cartesian coordinates for the local geometry optimizations
while internal coordinates, in this work only torsional degrees
of freedom (TDOFs), i.e. freely rotatable bonds and, if present,
cis/trans bonds, are used for the global search. We consider
only single, non-ring bonds between non-terminal atoms to be
rotatable bonds after excluding bonds that are attached to
methyl groups that carry three identical substituents. Further
we allow for treating selected bonds in a cis/trans mode, i.e.
allowing only for two different relative positions of the
substituents. In cases in which the substituents are oriented
in the same direction we refer to it as to cis, whereas, when the

Table 1. Popular Sampling Approachesa

method description implemented, e.g., in

grid-based based on grids of selected Cartesian or internal coordinates (e.g., grids of different
torsional angle values of a molecule)

CAESAR,9 Open Babel,10 Confab,11 MacroModel,12
MOE13

rule/knowledge-based use known (e.g., from experiments) structural preferences of compounds ALFA,14 CONFECT,15 CORINA and ROTATE,16,17
COSMOS,18,19 OMEGA20

population-based
metaheuristic

improve candidate solutions in a guided search Balloon,21 Cyndi22

distance geometry based on a matrix with permitted distances between pairs of atoms RDKit23

basin-hopping24/
minima hopping25

based on moves across the PES combined with local relaxation ASE,26 GMIN,27 TINKER SCAN28

aNames of freely available programs are highlighted in boldface.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00243
J. Chem. Inf. Model. 2015, 55, 2338−2348

2339148



substituents are oriented in opposite directions, we refer to it as
to trans.
Handling of Molecular Structures. Figure 1 shows

different chemical representations of a molecule, here for the

example of 3,4-dimethylhex-3-ene. Figure 1A and B depict the
standard 3D and 2D representation of the compound together
with marked cis/trans and rotatable bonds. A SMILES
(simplified molecular-input line-entry system) string is shown
in Figure 1C. A SMILES representation71 of a chemical
compound encodes the composition, connectivity, and bond
order (single, double, triple), as well as stereochemical
information in a one-line notation. Finally, a vector
representation (Figure 1D) can be created if the locations of
cis/trans and rotatable bonds are known. The vector will store
the corresponding torsion angle values. Our implementation
takes as input a SMILES representation of a molecule, while
vectors of angles are used to internally encode different
structures in the genetic algorithm below.
Frequently Used Terms. Several terms need to be defined

prior to describing the structure of the algorithm. In the
following, the parameters of the search are highlighted in
boldface. These parameters are input parameters to the
algorithm and need to be defined in the input file.
A sensible geometry meets two constraints. First, the atoms are

kept apart, i.e. none of the distances between nonbonded atoms
can be shorter than a defined threshold (distance_cutoff_1,
default = 1.3 Å). Second, it is fully connected, i.e., none of the
distances between bonded atoms can be longer than a defined
threshold (distance_cutoff_2, default = 2.15 Å). The attribute
sensible can be used further to describe any operation that
outputs sensible geometries.
The blacklist stores all structures that (i) were starting

structures for the local optimization and (ii) resulted from local
optimization, as they may have changed significantly during the
optimization. In case of achiral molecules (chiral, default =
False) also the corresponding mirror images are created and
stored.
A structure is unique if none of the root-mean-square

deviation (RMSD) values calculated for the structure paired
with any of the structures stored in the blacklist is lower than a
defined threshold (rmsd_cutoff_uniq, default = 0.2 Å). We
consider only non-hydrogen atoms for the calculation of the
RMSD.
Basic Outline of the Search Algorithm. We imple-

mented the genetic algorithm (GA) using the Python language

(version 2.7) and employ the RDKit library.23 An overview is
presented in Algorithm 1.

Initialization of the Population. First, a random 3D
structure is generated with RDKit directly from the SMILES
code. This structure serves as a template for the upcoming
geometries. Next, two lists of random values are generated: one
for the rotatable bonds and one for the cis/trans values. If the
resulting 3D geometry is sensible, the structure is then
subjected to local optimization. To generate an initial
population of size N (popsize), N sensible geometries with
randomly assigned values for torsion angles need to be built
and locally optimized. The optimized geometries constitute the
initial population. Due to the fact that the geometries are
created one after another, all randomly built structures can but
do not have to be made unique in order to increase the
diversity of the initial population.

Iteration of the GA. Our GA follows the established
generation-based approach, i.e., the population evolves over
subsequent generations. After completion of the initialization,
the first iteration can be performed. For this purpose, the
population is sorted and ranked based on the total energy
values Ei of the different conformers i = 1, ..., N. For each
individual the fitness Fi is being calculated according to

= −
−F

E E
E Ei

imax

max min (1)

Emax is the highest energy and Emin is the lowest energy among
the energies of the conformers belonging to the current
population. As a result, F = 1 for the “best” conformer and F =
0 for the “worst” conformer. In the case of a population with
low variance in energy values (Emax − Emin < energy_var,
default = 0.001 eV), all individuals are assigned a fitness of 1.0.

Selection. Two individuals need to be selected prior to the
genetic operations. We implemented three mechanisms for the
selection.
(i) In the (energy-based) roulette wheel,31 the probability pi

for selection of a conformer i is given by

=
∑ =

p
F

Fi
i

n
N

i1 (2)

Figure 1. Different chemical representations of 3,4-dimethylhex-3-ene.
(A) 3D structure with rotatable bonds marked in red and the cis/trans
bond marked with double arrows. (B) 2D structure. (C) SMILES
string. (D) Vector representation of the molecule. The first value
encodes the torsion angle value for the cis/trans bond and the two
remaining position store the torsion angle values of the rotatable
bonds.
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With this, the probabilities of the conformers are mapped
to segments of a line of length one. Next, two random
numbers between zero and one are generated and the
conformers whose segments contain these random
numbers are selected. In the case when the sum of the
fitness values is lower than a defined threshold near one
(fitness_sum_limit, default = 1.2) the best and a
random individual are selected.

(ii) The reverse roulette wheel proceeds similarly to the
roulette wheel mechanism with the difference that the
fitness values are swapped, i.e. new fitness Fi* is assigned
to each conformer:

* = + −F Fi N i1 (3)

Analogously, the probability pi for selection of a
conformer i is given by

=
*

∑ *=
p

F
Fi

i

n
N

i1 (4)

(iii) In the random selection mechanism all individuals have
the same chance to be selected.

In all selection mechanisms the selected individuals must be
different from each other so that the crossing-over has a chance
to produce unique conformers.
Crossing-over. Crossing-over is considered to be the main

feature distinguishing evolutionary algorithms from Monte
Carlo techniques where only a single solution can evolve.
Crossing-over allows the algorithm to take big steps in
exploration of the search space.37 In our algorithm, a
crossing-over step is performed if a generated random number
(between zero and one) is lower than a defined threshold
(prob_for_crossing, default = 0.95). Between the selected
individuals, parts of the representing vectors are then
exchanged. To that end, the vectors characterizing the structure
of both individuals are “cut” at the same single position
(determined at random). The first part of the first individual is
then combined with the second part of the second, and vice
versa (a scheme explaining the crossing-over procedure is

provided in Figure S1). Crossing-over is successful only when
the resulting vectors can be used for generating sensible
geometries. Otherwise the crossing-over is repeated until
sensible geometries are generated or a maximum number of
attempts (cross_trial, default = 20) is exceeded. In the latter
case, exact copies of the selected conformers are used for the
following step.
Mutations are performed independently for the values of cis/

trans bonds and of the rotatable bonds and if randomly
generated numbers exceed corresponding thresholds (prob_-
for_mut_cistrans, default = 0.5; prob_for_mut_rot, default =
0.5). For each, the number of mutation events is determined by
a randomly picked integer number not higher than the user-
defined maximal number of allowed mutations (max_muta-
tions_cistrans and max_mutations_torsions). For each
mutation, a random position of the vector is determined and
the mutation is chosen to affect the value of that variable. In
case of cis/trans bonds, the selected value is changed to 0° if it
was above 90° or below −90°, else it is changed to 180°. A
selected rotatable bond is changed to a random integer between
−179° and 180°. A mutation step is only successful if the
geometry built after the mutation of the vector is sensible and
unique. Otherwise the entire set of mutations in a mutation
step is repeated until a sensible and unique structure is
generated or a maximum number of attempts (mut_trial,
default = 100) is exceeded. In this case, the algorithm
terminates. The mutation is performed for both vectors
generated via crossing-over.

Local Optimization and Update. As the computational cost
of the local optimization is significantly higher than all of the
other operations,54,74 only unique and sensible structures are
subject to local optimization. The structures are transferred to
an external program for local geometry optimization (here:
FHI-aims,69,70 see section DFT Calculations). The application
of local optimization was shown to facilitate the search for
minima by reducing the space the GA has to search.24,43 Thus,
the implemented GA is closer to Lamarckian than to Darwinian
evolution, as the individuals evolve and pass on acquired and
not inherited characteristics. Afterward, the population is
extended by the newly optimized structures and, after ranking,

Table 2. GA Parameters for Isoleucine Dipeptide

parameter value

molecule SMILES CC(O)N[C@H](C(O)NC)[C@H](CC)C
distance_cutoff_1 1.2 Å
distance_cutoff_2 2.0 Å
rmsd_cutoff_uniq 0.2 Å
chiral true

run settings max_iter 10
iter_limit_conv 10
energy_diff_conv 0.001 eV

GA settings popsize 5
energy_var 0.001 eV
selection roulette wheel
fitness_sum_limit 1.2
prob_for_crossing 0.95
cross_trial 20
prob_for_mut_cistrans 0.5
prob_for_mut_rot 0.5
max_mutations_cistrans 1
max_mutations_torsions 2
mut_trial 100
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the two individuals with highest energy are removed in order to
keep the population size constant.
Termination of the algorithm is reached if one of the

convergence criteria is met: (i) the lowest energy has not
changed more than a defined threshold (energy_diff_conv,
default = 0.001 eV) during a defined number of iterations
(iter_limit_conv, default = 10), (ii) the lowest energy has
reached a defined value (energy_wanted), or (iii) the maximal
number of iterations (max_iter, default = 10) has been
reached. The convergence criteria are checked only after a
defined number of iterations (iter_limit_conv, default = 10).
We are interested not only in finding the global minimum

but also in finding low-energy local minima as many of them
may be relevant. Thus, all of the generated conformers are
saved and are available for final analysis even if only a subset of
them constitutes the final population. Table 2 summarizes
practical GA parameters that were employed for one of the
reference systems (isoleucine dipeptide).
The parameters listed in Table 2 can be taken as indicative of

settings that will work for many small to midsize molecules. A
few exceptions apply. Specifically, the max_iter and the
popsize parameters are set to low values in Table 2, covering
only a small set of structures within an individual GA run. This
choice would be appropriate for an ensemble of many short
independent GA runs to generate a broad structural ensemble
with a bias toward the low-energy solution space. For larger and
more complex molecules, and/or for runs designed to identify
the global minimum in a single shot, max_iter could be
increased significantly, and popsize could be increased
somewhat (to 10−20 individuals) as well. Likewise, the
mutation probabilities prob_for_mut_cistrans and prob_-
for_mut_rot are here set to relatively high values of 0.5,
instilling a signicant amount of randomness into the search
process. For a more ”deterministic” search process, somewhat
smaller values (e.g., 0.2) might be chosen. Finally, the
distance_cutoff criteria are chosen to be appropriate for light
elements (first and second row); adjustments may be
appropriate if heavier covalently bonded atoms are included
in the search.
DFT Calculations. For the tests presented below, all DFT

calculations are performed with the FHI-aims code.69,70 We
employed the PBE functional75 with a correction for van der
Waals interactions (pairwise65 for the amino acid dipeptides
calculations and MBD67 for the drug-like ligands) and with light
computational settings and tier1 basis set.69 For the local
optimization, we use a trust radius enhanced version of the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm76 ini-
tialized by the model Hessian matrix of Lindh.77 This is the
default choice in the FHI-aims code and was implemented by
Jürgen Wieferink. The local optimization is set to terminate
when the maximum residual force component per atom is equal
to 5 × 10−3 eV/ Å. Density functional, basis set, and numerical
settings (e.g., integration grids) are user choices of the
underlying density-functional theory code and must be set
appropriately outside of Fafoom. The settings for numerical
convergence (including basis set) must be chosen converged
enough to not introduce artifacts in the landscape of minima
found. The choice of the density-functional approximation
(DFA) to the exact Born−Oppenheimer potential-energy
surface needs to reproduce the local energy minima of the
PES faithfully, as discussed in the Introduction. We here only
note that costs for different electronic structure approximation
can vary by orders of magnitude. In practice, and strictly
speaking, the scope of our algorithm is to find the PES minima
for a given DFT functional, while the physical choice of the
“right” DFA is not the focus of this paper. We do show,
however, that we can use our algorithm in practice with one
specific functional, the PBE functional with a correction for van
der Waals interactions, that has yielded very reliable results in
the past.

Parallelization. Parallel computational resources can be
utilized in two ways in order to speed up the computation.
First, multiple GA runs can be started in parallel and the
blacklist can be shared between different and subsequent runs.
Sharing the blacklist increases diversity of solutions with already
a few GA runs. Second, the time needed for the individual
energy evaluations can be decreased if the molecular simulation
package allows calculations across distributed nodes and is
efficiently parallelized (e.g., in FHI-aims78). Our code supports
both modes of computation.

Availability of the Code. The code is distributed as a python
package named Fafoom (flexible algorithm for optimization of
molecules) under the GNU Lesser General Public License.72 It
is available from following Web sites:

• https://aimsclub.fhi-berlin.mpg.de/aims_tools.php
• https://github.com/adrianasupady/fafoom

Although designed for usage with a first-principles method
(e.g., FHI-aims, NWChem79), Fafoom can also be used with a
force field (MMFF94,80 accessed within RDKit23,81) for testing
purposes. It is in principle possible to use any molecular
simulation package which outputs optimized geometries
together with their energies. Nevertheless, this requires

Figure 2. Chemical structures of the amino acid dipeptides. Rotatable bonds are single, nonring bonds between nonterminal atoms that are not
attached to methyl groups that carry three identical substituents and are marked in red. Double arrows mark the cis/trans bonds.
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adjusting a part of the program to the specific needs of the used
software. Details are provided with the program’s documenta-
tion.
Reference Data. In order to evaluate the several aspects of

the performance of the implemented algorithm we use two sets
of reference data. The first reference data set (Amino acid
dipeptides) was extracted from a database of computational
data for the amino acid dipeptides. The second reference data
set (Mycophenolic acid) contains conformers of a drug-like
ligand that were obtained with three different search
techniques.
Amino Acid Dipeptides. The first reference data set contains

conformers of seven amino acid dipeptides82 (Figure 2) and
was extracted from a large database for amino acid dipeptide
structures generated in a combined basin-hopping/multi-
tempering based search. In that search (published in detail in
ref 83), the framework of the reference search can be divided
into a global search step and a refinement step. In the global
search, the basin hopping search technique together with an
empirical force field OPLS-AA was employed to perform the
initial scan of the PES. The identified energy minima were
relaxed at the PBE+vdW level with light computational settings
in FHI-aims. In the refinement step, ab initio replica-exchange
molecular dynamics runs were performed to locally explore the
conformational space and to alleviate a potential bias of the
initial search of a force field PES. The resulting minima were
again optimized at the PBE+vdW level with tight computational
settings and with the tier 2 basis set.69 In order to compare to
our data, they were reoptimized with the same functional with
light computational settings, and the tier 1 basis set.69 After this
procedure, duplicates were removed from the set used for the
comparison with the GA results. For benchmarking the
performance of our search strategy for conformers predictions,
we consider all structures with a relative energy up to 0.4 eV.
These conformers define the reference energy hierarchy for
each of the selected dipeptides. We summarize some
characteristics and the number of conformers that were
considered in Table 3.

Mycophenolic Acid. From the Astex Diverse Set,84 a
collection of X-ray crystal structures of complexes containing
ligands from the Protein Data Bank (PDB), one example for a
drug-like ligand was selected. This molecule, mycophenolic acid
(target protein: 1MEH) has 43 atoms, 8 rotatable bonds, and 1
cis/trans bond (Figure 3).
Mycophenolic acid is a very flexible molecule. Even a coarse

systematic search with a grid of only 60° for the freely rotatable
torsions and 2 values (cis/trans) for the double bond and the
X−X−O−H torsions yields already 66 × 2 × 2 × 2 = 373 248
conformations to test. This makes this molecule a challenging

example to test the performance of three search techniques
(A−C below) in combination with first-principles methods.

(A) Genetic Algorithm. 50 independent GA runs with
following settings, max_iter = 30, iter_limit_conv = 20, and
popsize = 10, were performed with Fafoom. A total of 3208
structures were generated.

(B) Random Search. 3200 random and clash-free structures
were generated with Fafoom and further relaxed with DFT.

(C) Systematic Search with Confab.11 First, 293 conformers
were generated with Confab (assessed via Open Babel, used
settings: RMSD cutoff = 0.65 and Energy cutoff = 15 kcal/
mol). In order to account for two different values for the cis/
trans bond and the X−X−O−H torsions (0° and 180°), eight
starting structures per each of the conformers generated with
Confab were considered. This procedure yields overall 2344
structures. After removing geometries with clashes, 2094
structures were subjected to DFT optimization.
Finally, all DFT optimized structures were merged to a

common pool and the duplicates were removed. For this, a
two-step criterion was used. First, the compared structures need
to have a torsional RMSD (tRMSD) lower than 0.1π rad.85

Second, the energy difference between the compared structures
cannot exceed 10 meV. If both criteria are met, the structure
that is higher in energy is labeled as “duplicate” and is removed
from the pool. In total, 1436 unique structures were found.
Table S1 shows the number of the obtained unique structures
depending on the applied energy cutoff.

■ RESULTS AND DISCUSSION
The performance of the GA search is evaluated by the ability to
reproduce the reference energy hierarchies and to find the
global minimum. We performed multiple GA runs for the test
systems to test the impact of varying search settings.

Amino Acid Dipeptides. For each of the amino acid
dipeptides we performed 50 independent GA runs with 10
iterations (max_iter) each and a population size of 5
(popsize). One GA run with such settings requires popsize
+ 2 × iterations = 25 geometry optimizations at the PBE+vdW
level and yields 25 conformers.

Finding the Global Minimum. First we assess the
probability to find the global minimum (known from the
reference energy hierarchy) among them. We check how many
of the GA runs succeed in finding the global minimum and
subsequently calculate the probability for finding the global
minimum in one GA run and present the results in Table 4.
Table 4 illustrates how the magnitude of the sampling

problem does not only depend on the dimensionality, i.e. here
the number of TDOFs, but also on the chemical structure.
Phenylalanine and isoleucine are two interesting cases, both
have the same number of TDOFs and are of similar size, but
the probability of finding the global minimum with a single run
drops dramatically. The drop in probability is, of course,

Table 3. Reference Data Set: Seven Amino Acid Dipeptides

amino acid
dipeptide abbr

no. of
atoms

no. of rotatable
bonds + no. of cis/

trans bonds

no. of conformers
(below 0.4 eV ≈
38.6 kJ/mol)

glycine Gly 19 2 + 2 15 (15)
alanine Ala 22 2 + 2 28 (17)
phenylalanine Phe 32 4 + 2 64 (37)
valine Val 28 3 + 2 60 (40)
tryptophan Trp 36 4 + 2 141 (77)
leucine Leu 31 4 + 2 183 (103)
isoleucine Ile 31 4 + 2 176 (107)

Figure 3. Chemical structure of the selected ligand together with the
PDB-ID of the respective X-ray structure of the target protein.
Rotatable bonds are marked in red and the cis/trans bond is marked
with double arrows.
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correlated with the overall number of conformers listed in
Table 3.
Conformational Coverage. A key point in our approach is

to reproduce the known energy hierarchies of the reference
systems. For each of the investigated compounds, we randomly
choose 5, 10, 15, 20, and 25 runs (from the pool of 50 runs),
merge the results, and check how many structures have been
found. We repeat this procedure 10 000 times and present the
results in Figure 4.

It is evident that for dipeptides with a small number of
reference minima (alanine and glycine) we obtain very good
results, i.e. a very good coverage of conformational space,
already with five repeats of the GA runs. For dipeptides with a
slightly higher number of minima (phenylalanine and valine) at
least 10 runs of the GA are needed to obtain a good result. For
the remaining dipeptides, the GA is not able to find all of the
reference minima, even with 25 GA runs. However, the
coverage of the reference hierarchy with 20 GA runs is always
higher than 80%. We next inspect in more detail which of the
amino acid dipeptides’ reference minima were missed. To this
end we investigate the actual difference between the reference
hierarchy and the hierarchy obtained from the 50 GA runs; see
Figure 5. Although our search strategy misses a few of the
reference structures even when 50 repeats of the GA search are
performed, the first missed structure has a relative energy
higher than 0.2 eV. This in turn means that no low-energy
structures are being missed. Furthermore, there are multiple
newly predicted structures that were not present in the
reference data set (Figure 5). It should be noted that,

considering the fact that the investigated GA runs are rather
short, the random component of the search (randomly
initialized populations) contributes to the good results of the
search.

Parameter Sensitivity. In order to check the robustness of
the default run parameters, several alternative settings were
tested for the isoleucine dipeptide. The tested parameters
include (i) the impact of the selection mechanism (roulette
wheel, reverse roulette wheel, random), (ii) the effect of
decreasing the cutoff for blacklisting from the default value of
0.2 to 0.05 Å, and (iii) the increase of the maximal number of
iterations from the default 10 to 15, 20, and 25. For cases (i)
and (ii), 100 GA runs were performed for each of the settings.
In order to assess the effect of the number of iterations, 100
runs with a maximal number of iterations equal to 25 have been
performed and subsequently only considered up to a maximum
of 15, 20, and 25 maximum iterations. Additionally, 50 GA runs
with a maximal number of iterations equal to 100 were
performed. In all mentioned cases convergence criteria were
evaluated after each iteration, starting from the iter_limit_conv
= 10th iteration.
We find that none of the three selection mechanisms has a

distinct impact on the probability for finding the global
minimum or quality of the conformational coverage. Similarly,
no substantial change was observed upon the decrease of the
blacklisting cutoff. The probability value for finding the global
minimum as well as the number of found reference minima
increases with increased number of iterations. This is simply
due to the increased number of trials for sampling the
conformational space. Table 5 summarizes the probability to
find the global minimum in one run with different settings.
Detailed data about the conformational coverage is given in
Figure S2.

Evaluation of the Computational Performance. The
accuracy of a search/sampling strategy is its most crucial
feature. Nevertheless, its computational cost plays a significant

Table 4. Average (from 50 GA Runs) Probability for Finding
the Energy Global Minimum in a Given Run with 25 Locally
Optimized Conformers

molecule Gly Ala Phe Val Trp Leu Ile

TDOFs 4 4 6 5 6 6 6
probability for
global
minimum (/1
run)

0.82 0.79 0.53 0.60 0.22 0.20 0.10

Figure 4. Number of minima found by the GA for seven amino acid
dipeptides. The horizontal lines depict the total number of minima for
the given compound as predicted by Ropo et al.83 From a total of 50
GA runs, 5, 10, 15, 20, and 25 GA runs were randomly selected and
the found structures were counted. This procedure was repeated
10 000 times and the resulting distributions are summarized in box
plots. The line inside the box is the median, and the bottom and the
top of the box are given by the lower (Q0.25) and upper (Q0.75)
quartile. The length of the whisker is given by 1.5 × (Q0.75 − Q0.25).
Outliers (any data not included between the whiskers) are plotted as a
cross.

Figure 5. Difference hierarchies for the amino acid dipeptides. Red
lines depict structures from the reference data set that were not found
by the GA. Green lines depict structures found by the GA that were
absent in the reference data set. Gray lines depict structures from the
reference data set that were found by the GA. The results from all 50
GA runs for each dipeptide were taken into account.
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role in practical applications. To this end, we quantify the total
cost of the GA runs in terms of force evaluations required in the
local geometry optimizations. The number of force evaluations,
i.e. most expensive steps in the algorithm, is a suitable measure
for the computational cost. One force evaluation requires
approximately between 1 (glycine) to 3 (tryptophan) CPU
minutes. We quantify the number of force evaluations required
by the GA for reproducing 85% of the reference hierarchy and
present the results in Table 6. The table also includes the

number of force evaluations required only in the replica-
exchange MD refinement step of the reference search (the
number of force evaluations required for the geometry
optimizations is not even included).
Mycophenolic Acid. In the following we utilize as

reference a set of structures that is a result of merging all
structures found by three techniques: 3208 structures from 50
GA runs, 3200 random structures, and 2094 structures
generated with Confab. We define the following subsets: (i)
“GA” is a random selection of 25 GA runs (approximately 1600
structures); (ii) “SYS (CONFAB)” is a set of all 2094 structures
generated in the systematic search; and (iii) “RANDOM” is a
random selection of 1600 structures generated in the random
search. For the performance evaluation we count how many of
the reference structures can be found by the respective search
technique. This procedure was repeated 1000 times for each of
the energy cutoffs. The results are shown in Figure 6. More
details can be found in Table S1.
All of the search techniques found the same global minimum

several times. In case if no energy cutoff is applied, none of the
searches is able to find all local minima in the conformational
space (i.e., more calculation would be needed). With a
decreasing energy cutoff, an improved coverage of the

conformational space can be observed. The fact that the GA
is a global optimization techniques is clearly visible as it
performs better in the low-energy (<0.2 eV) region, whereas
the random and systematic search perform uniformly but not
perfectly independent of the energy cutoff used for the
evaluation.
In order to show the wide and routine applicability of our

first-principles structure search approach, we have performed
short exploratory structure searches (only three GA runs each)
to eight drug-like ligands from the Astex Diverse Set, which is
widely utilized to assess the performance of, for example,
conformer generators. The molecules vary in the size (15−32
heavy atoms) and number of rotatable bonds (6−13). A
detailed analysis of this study is shown in the Supporting
Information. In brief we find that in all eight instances a diverse
pool of conformers can be generated. In each case, a conformer
is found that is similar to the protein-bound ligand from the X-
ray structure with an RMSD of 1.5 Å. In six of the eight
instances, they are similar to RMSD values of less than 0.9 Å.
Exploratory first-principles structure searches have a potential
application in in silico protein−ligand studies:59 the compar-
ison of the structural space of the isolated ligand and the
structure realized by the protein-bound ligand might reveal
details about the binding process, for example whether the
binding mechanism follows more the conformational-selection
or induced-fit type. In contrast to many of the quicker (but
simpler) established conformer generators, the first-principles
energetics that we obtain here are not dependent on initial
parametrizations and thus the method is in principle applicable
throughout chemical space. It is important to note that, in this
test, our goal was not to provide a converged GA search for

Table 5. Probability of Finding the Global Minimum of
Isoleucine in One Run for Different Setupsa

setup
probability of finding the global

minimum (per run)

default 0.17
selection
mechanism

roulette wheel
reverse

0.18

random 0.13
max. number of
iterations

15 (13) 0.20
20 (15) 0.25
25 (16) 0.25
100 (22) 0.46

cutoff for
blacklisting

0.05 Å 0.14

aThe default settings include roulette wheel selection mechanism, 0.2
Å cut-off for the blacklisting and maximal number of iteration equal to
10. The numbers in brackets denote the mean number of iterations
needed for convergence.

Table 6. Comparison of the Computational Cost: Amino
Acid Dipeptidesa

total number of force evaluations [× 103]

Gly Ala Phe Val Trp Leu Ile

GA (at least 85%
reproduction of
the reference
hierarchy)

11 12 29 24 60 68 61

reference 380 400 480 440 500 460 460
aThe cost is given in the total number of force evaluations [× 103].

Figure 6. Share of the reference number of structures found by three
search techniques: GA (blue circles), random search (red squares),
and systematic search with Confab (black triangles) as a function of
the applied energy cutoff. Energy values are given in electronvolts and,
in parentheses, also in kilojoules per mole.
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each molecule but rather to explore the GA’s potential to
provide approximate conformational coverage with a fixed
computational budget. Our investigation of mycophenolic acid
indicates that searches for each of these molecule could be
reliably converged albeit at significantly higher computational
expense.
Literature Context. In order to put the algorithm’s

parameters into perspective, we compare it to four selected
applications of EA or GA to the conformational search of
molecules in the following. In all considered algorithms, the
initial populations are generated randomly and the conforma-
tional space of the respective molecules is represented and
sampled (by mutation and crossing-over) by means of torsion
angles, i.e. rotations around bonds. Table 7 summarizes a few
parameters that illustrate the range over which the parameters
that are characteristic to these kinds of evolutionary or genetic
algorithms can vary. The approaches differ in the energy
functions that are employed: Damsbo et al.37 employ the
CHARMM force field; Vainio and Johnson21 use the torsional
and the vdW term of the MMFF94 force field separately in a
multiobjective genetic algorithm (MO-GA), while Nair and
Goodman36 use the MM2* force field. The study on
optimizing the GA parameters for molecular search with a
meta-GA, presented by Brain and Addicoat,56 uses, similar to
our work, a first-principles energy functions. Two choices in the
algorithm highlight the difference between theirs and our aim:
in order “to reliably find the already known a priori correct
answer with minimum computational resources”, the selection
criterion “rank” focuses on the generation’s best solution.
Furthermore, crossing-over is considered as not helpful. In
contrast, the aim of our work is to provide a GA
implementation that ensures broad conformational coverage,
i.e. the prediction of an energy hierarchy and not only the
reproduction of a global optimum. For that we found it useful
to employ random or roulette-wheel selection that also accepts
less-optimal structures for genetic operations and a high
probability for crossing-over. Both choices (accompanied by
blacklisting) can be interpreted as means to increase diversity
during the search.

■ CONCLUSIONS
We aimed at designing a user-friendly framework with an
implementation of the genetic algorithm for searches in
molecular conformational space that is particularly suitable
for flexible organic compounds. A SMILES code for the
selected molecule is the only required input for the algorithm.
Furthermore, a wide selection of parameters (e.g., torsion
definition, blacklist cutoff) allows for customizing the search.
With minor changes, the code can be interfaced to external
packages for molecular simulations that output optimized
geometries together with corresponding energies. Besides its
adaptability and ease of use, a further advantage of the
implementation is the fact that it allows for using first-principles

methods. With this, a potential bias resulting from the
parametrization of a particular force-field can be avoided and
makes the search applicable to a broad selection of problems.
We examined the performance of the implementation in terms
of efficiency and accuracy of the sampling. The algorithm is
capable of reproducing the reference data with a high accuracy.
For a set of amino acid dipeptides, we show that this
conformational coverage is achieved much more efficiently
than in an earlier, ab initio replica-exchange MD based search in
our group. For a larger molecule (mycophenolic acid), we show
that the low-energy conformational space coverage of the GA
surpasses the coverage of two competing methods significantly
at similar effort.
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First-principles data set of 45,892
isolated and cation-coordinated
conformers of 20 proteinogenic
amino acids
Matti Ropo1,2,3, Markus Schneider1, Carsten Baldauf1 & Volker Blum1,4

We present a structural data set of the 20 proteinogenic amino acids and their amino-methylated and
acetylated (capped) dipeptides. Different protonation states of the backbone (uncharged and zwitterionic)
were considered for the amino acids as well as varied side chain protonation states. Furthermore, we
studied amino acids and dipeptides in complex with divalent cations (Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+).
The database covers the conformational hierarchies of 280 systems in a wide relative energy range of up to
4 eV (390 kJ/mol), summing up to a total of 45,892 stationary points on the respective potential-energy
surfaces. All systems were calculated on equal first-principles footing, applying density-functional theory in
the generalized gradient approximation corrected for long-range van der Waals interactions. We show good
agreement to available experimental data for gas-phase ion affinities. Our curated data can be utilized, for
example, for a wide comparison across chemical space of the building blocks of life, for the parametrization
of protein force fields, and for the calculation of reference spectra for biophysical applications.
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Background & Summary
Proteins are the machinery of life. We here present a first-principles study of the conformational
preferences of their basic building blocks—specifically, as summarized in Fig. 1: 20 proteinogenic amino
acids and dipeptides, with different possible protonation states, and the conformational space changes
resulting from attaching six divalent cations, i.e., Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+. In past studies, a
wide range of different approximate electronic structure methods has been applied to some of these
proteinogenic amino acids—see, for example, references1–59. These studies have deepened our
understanding of the conformational basics of individual building blocks, but a systematic comparison
of properties of the different building blocks is complicated when relying on data from different sources.
On the one hand this is due to the molecular models that may differ in protonation states and backbone
capping. On the other, the simulations can differ in several ways:

● Different sampling strategies or methods to generate conformers may have been used.
Search-dependent settings, like energy cut-offs, can also have a significant impact on the results.

● The levels of theory that have been applied range from semi-empirical to Hartree-Fock (HF) to
density-functional theory (DFT) up to coupled-cluster calculations1–59.

● Numerical settings, e.g., basis sets, can differ substantially and might lead to different results.

A further point that limits a quantitative comparison is the accessibility of the data from different
studies. Energies, for example, often have to be extracted from table footnotes and/or the structural data is
not always accessible in the Supplementary Information of the respective articles, sometimes even only
accessible as figures in the manuscript. The data set presented here overcomes such limitations by
covering a comprehensive segment of chemical space exhaustively, using a large scale computational
effort. This study treats 20 proteinogenic amino acids, their dipeptides and their interactions with the
divalent cations Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+ (see Fig. 1 for an overview) on the same theoretical
footing. The importance of peptide cation interactions may be highlighted by the fact that about 40%
of all proteins bind cations60–62. Especially Ca2+ is important in a multitude of functions, ranging,

Figure 1. Molecular systems covered in this study. Top left and center: Schematic depiction of the backbone
conformations of uncharged, zwitterionic, and dipeptide forms of the aminoacids considered in this work.
Side chains are indicated by the letter R. Top right: Divalent ions considered for complexation with the
20 proteinogenic amino acids. Lower five rows: Side chains, including different protonation states where
applicable, of the 20 proteinogenic amino acids considered in this work.
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for example, from blood clotting63 to cell signaling to bone growth64. Such calcium mediated functions
can be disturbed by the presence of alternative divalent heavy metal cations like Pb2+, Cd2+,
and Hg2+ (refs 62,65,66).

The conformations and total energies of each molecular system are calculated from first principles
in the framework of density-functional theory (DFT)67,68 using the PBE generalized-gradient
exchange-correlation functional69. Energies are corrected for van der Waals interactions using the
Tkatchenko-Scheffler formalism70. In this formalism, pairwise C6[n]/r

6 terms are computed and summed
up for all pairs of atoms. r is the interatomic distance, a cut-off for short interatomic distances is applied,
and C6[n] coefficients are obtained from the self-consistent electron density. The combined approach is
referred to as ‘PBE+vdW’ throughout this work. This level of theory is robust for potential-energy surface
(PES) sampling of peptide systems71–78. The curated data is provided as basis for comparative studies
across chemical space to reveal conformational trends and energetic preferences. It can, for example,
further be used for force-field development, theoretical studies at higher levels of theory, and as a starting
point for theoretical calculations of spectra for biophysical applications.

Methods
Molecular models
This study covers a total of 280 molecular systems (summarized in Fig. 1). The number is the product of
the following chemical degrees of freedom that were considered in our study:

20 proteinogenic amino acids. In case of (de)protonatable side chains, all protomers (different
protonations states) were considered as well.

2 different backbone types, either free termini (considered in uncharged or zwitterionic form) or
capped (N-terminally acetylated or C-terminally amino-methylated).

7 reflecting that the respective amino acid or dipeptide was considered either in isolation or with one
of six different cation additions: Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, or Hg2+.

Conformational search and energy functions
For the initial scan of the PES, the empirical force field OPLS-AA79 was employed, followed by
DFT-PBE+vdW relaxations of the energy minima identified in the force field. The identified set of
structures was then subjected to a further first-principles refinement step, ab initio replica-exchange
molecular dynamics (REMD). An overview of the procedure is given in Fig. 2 and the steps are described
in more detail below.

Force-field based (OPLS-AA)79 global conformational searches (Step 1) were performed for all
dipeptides and amino acids (i) without a coordinating cation and (ii) with Ca2+. These searches employed
a basin hopping search strategy80,81 as implemented in the tool ‘scan’, distributed with the TINKER
molecular simulation package82,83. We here use an in-house parallelized version of the TINKER scan
utility that was first used in reference74. In this search strategy, input structures for relaxations are
generated by projecting along normal modes starting from a local minimum. The number of search
directions from a local minimum was set to 20. Conformers were accepted within a relative energy
window of 100 kcal/mol and if they differ in energy from already found minima by at least 10− 4 kcal/mol.
The search terminates when the relaxations of input structures do not result in new minima.

After that, PBE+vdW relaxations (Step 2) were performed with the program FHI-aims84–86.
FHI-aims employs numeric atom-centered orbital basis sets as described in reference 84 to discretize the
Kohn-Sham orbitals. Different levels of computational defaults are available, distinguished by choice of
the basis set, integration grids, and the order of the multipole expansion of the electrostatic (Hartree)
potential of the electron density. For the chemical elements relevant to this work, ‘light’ settings include
the so-called tier1 basis sets and were used for initial relaxations. ‘Tight’ settings include the larger tier2
basis sets and ensure converged conformational energy differences at a level of few meV (ref. 84). Unless
noted otherwise, all energies discussed here are results of PBE+vdW calculations with a tier2 basis and
‘tight’ settings. Relativistic effects were taken into account by the so-called atomic zero-order regular
approximation (atomic ZORA)87,88 as described in reference84. Previous comparisons to high-level
quantum chemistry benchmark calculations at the coupled-cluster level, CCSD(T), demonstrated the
reliability of this approach for polyalanine systems72,76, alanine, phenylalanine, and glycine containing
tripeptides76, and alanine dipeptides with Li+ (ref. 73). Further benchmarks at the MP2 level of theory are
reported below in the section Technical Validation.

The refinement (Step 3) by ab initio REMD89,90 is intended to alleviate the potential effects of
conformational energy landscape differences between the force field and the DFT method. In REMD,
multiple molecular dynamics trajectories of the same system are independently initialized and run in a
range of different temperatures. Based on a Metropolis criterion, configurations are swapped between
trajectories of neighboring temperatures. Thus, the simulations can overcome barriers and provide an
enhanced conformational sampling in comparison to classical molecular dynamics (MD)90,91. The
simulations were carried out employing a script-based REMD scheme that is provided with FHI-aims and
that was first used in reference92. Computations were performed at the PBE+vdW level with ‘light’
computational settings. The run time for each REMD simulation was 20 ps with an integration time
step of 1 fs. The frequent exchange attempts (every 0.04 or 0.1 ps) ensure efficient sampling of the
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potential-energy surface as shown by Sindhikara et al.93. The velocity-rescaling approach by Bussi et al.94

was used to sample the canonical distribution. Starting geometries for the replicas were taken from the
lowest energy conformers resulting from the PBE+vdW relaxations in Step 2. REMD parameters for the
individual systems, i.e. the number of replicas, acceptance rates for exchanges between replicas, the
frequency for exchange attempts, and the temperature range, are summarized in Supplementary Table S1
of the Supplementary Information. Conformations were extracted from the REMD trajectories every 10th
step, i.e. every 10 fs of simulation time. In order to generate a set of representative conformers, these
structures were clustered using a k-means clustering algorithm95 with a cluster radius of 0.3 Å as provided
by the MMSTB package96. The resulting arithmetic-mean structures from each cluster were then relaxed
using PBE+vdW with ‘light’ computational settings. The obtained conformers were again clustered and
cluster representatives were relaxed with PBE+vdW (‘tight’ computational settings) to obtain the final
conformation hierarchies. The refinement step by REMD is essential, as shown in Fig. 3, which separately
identifies the number of distinct conformers found in Step 2 and, subsequently, the number of additional
conformers found in Step 3.

After step 2, a total of 17,381 stationary points was found for the amino acids and dipeptides in
isolation and in complex with Ca2+. The refinement procedure in Step 3 increases this number to a total
of 21,259 structures. Initial structures for the Ba2+, Cd2+, Hg2+, Pb2+ and Sr2+ binding amino acid and
dipeptide systems were then obtained by replacing the Ca2+ cation in the amino acid and dipeptide
structures binding a Ca2+ cation. These structures were subsequently relaxed with PBE+vdW employing
‘tight’ computational settings and a tier-2 basis set. This procedure results in 24,633 further conformers
with bound cations. Altogether, we thus provide information on 45,892 stationary points of the
PBE+vdW PES for all systems studied in this work.

The numbers of conformers identified in the searches are also given in Supplementary Table S2 of the
Supplementary Information. Supplementary Tables S3 and S4 provide detailed accounts of how many
structures were found for which amino acid/dipeptide in isolation or with attached cations.

Figure 2. Schematic representation of the workflow employed to locate stationary points on the potential-
energy surfaces of the respective molecular systems.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160009 | DOI: 10.1038/sdata.2016.9 4
164



Data Records
The curated data, consisting of the Cartesian coordinates of 45,892 stationary point geometries of the PBE
+vdW PES (the main outcome of our work) and their potential energies computed at the ‘tight’/tier-2
level of accuracy in the FHI-aims code, is provided as plain text files sorted in directories (see Fig. 4). The
PBE+vdW total energies are included since they are an integral part of the construction of our geometry
data sets. Importantly, the stationary point geometries could be used as starting points to refine the total
energy accuracy by higher-level methods, e.g., those discussed in ‘Technical Validation’ below. The folder
structure is hierarchic and straightforward. The naming scheme is explained in the following:

Description of the file types:

conformer.(...).xyz coordinates in standard xyz format in Å, readable by a wide range of molecule
viewers, e.g. VMD97, Jmol (http://www.jmol.org/), etc.

conformer.(...).fhiaims coordinate file in FHI-aims geometry input format: for each atom of the
particular system, the Cartesian coordinates are given in Å (atom [x] [y] [z] [element]). The
electronic total energy (in eV) at the PBE+vdW level is given there as a comment.

control.in FHI-aims input file with technical parameters for the calculations. Please note that these
files also include the exact specifications of the ‘tight’ numerical settings for all included elements.

Figure 3. Numbers of stationary points of the PBE+vdW potential-energy surface (PES) at the ‘tight’/tier-2
level of accuracy that were found for the different a) uncapped amino acids or b) dipeptides in isolation (‘bare’)
or with a Ca2+ cation. Blue segments of the bars and blue shaded numbers give the number of stationary points
(‘conformers’) located in Step 2 of the search procedure detailed in Fig. 2. Red bar segments and red shading
highlight the number of conformers that were additionally found during Step 3 of the search. The total number
of conformers found for each system is the sum of the numbers found in steps two and steps three.
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hierarchy_PBE+vdW_tier-2.dat in each final subfolder, contains three columns: number of the
conformer, total energy (in eV, PBE+vdW, tier-2 basis set, ‘tight’ numerical settings, computed with
FHI-aims version 031011), and relative energy (in eV, relative to the respective global minimum).

The curated data is publicly available from two sources:

1. A website dedicated to this data set has been set up (http://aminoaciddb.rz-berlin.mpg.de) and allows
users to browse and download the data and to visualize molecular structures online.

2. From the NOMAD repository (http://nomad-repository.eu) the data is available via the DOI
10.17172/NOMAD/20150526220502 [Data citation 1].

Technical Validation
The conformational coverage for the amino acid alanine is validated by comparing to a recent study by
Maul et al.12. In that reference10, low energy conformers of alanine were reported, spanning an energy
range of approximately 0.26 eV between the reported lowest and highest energy conformers. The level of
theory used by Maul et al. was DFT in the generalized gradient approximation by means of the
Perdew-Wang 1991 functional98. In our case, the force field based search step with subsequent PBE+vdW
relaxations yields 5 conformers. The following ab initio REMD simulations increase the number of
conformers to 15 within an energy range of 0.43 eV. The respective conformational energy hierarchies

AA-Dataset
Ala
Arg
ArgH
Asn
Asp
AspH
Cys

uncapped
dipeptide

bare
Ba
Ca

hierarchy_PBE+vdW_tier-2.dat
control.in
conformer.0001.fhiaims
conformer.(...).fhiaims
conformer.0001.xyz
conformer.(...).xyz

Cd
Hg
Pb
Sr

Gln
Glu
GluH
Gly
HisD
HisE
HisH
Ile
Met
Leu
Lys
LysH
Phe
Pro
Ser
Thr
Trp
Tyr
Val

Figure 4. Schematic representation of folder organization of the data. Each folder, as exemplified for the
Ca2+-coordinated cysteine dipeptide, contains coordinate files in two formats (standard XYZ and FHI-aims
input), the computational settings file for FHI-aims (control.in), and the energy hierarchies (PBE+vdW,
‘tight’/tier-2 level) per system.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160009 | DOI: 10.1038/sdata.2016.9 6
166



after global search and after REMD-refinement are shown in Fig. 5a. The results of our search (with the
refinement step) are in good agreement with the data from reference12 that is also shown in Fig. 5a.
Structures are shown in Fig. 5b. Nine of the ten conformers identified by Maul et al. can be confirmed.
The single conformer that is missing (highlighted by an X in Fig. 5a) is not a stationary point of the
PBE+vdW potential energy surface. Conformers 14 and 15 are classified as saddle points by analysis of
the vibrational modes.

In order to further quantify the reliability of the DFT-PBE+vdW level of theory for peptides, beyond
earlier benchmark work72,73,76 and especially with divalent cations, benchmark calculations were
performed at the level of Møller-Plesset second-order perturbation theory (MP2)99,100 using the
electronic structure program package ORCA101. Single-point energy calculations were performed for all
fixed stationary-point DFT-PBE+vdW geometries in our data base for the amino acids alanine (Ala) and
phenylalanine (Phe) with neutral N and C termini in isolation as well as in complex with a Ca2+ cation.
Phe was selected to represent a ‘difficult’ example, i.e., the interaction of the cation with a larger aromatic
side chain. The MP2 calculations did not include any frozen-core treatment (including semicore states is
essential for Ca2+) and were performed using Dunning's correlation-consistent polarized core-valence
basis sets (cc-pCVnZ), with n=T/Q/5 denoting the triple-zeta, quadruple-zeta, and quintuple-zeta basis
sets respectively102. The calculated SCF (Hartree-Fock) and MP2 correlation energies were then
individually extrapolated to the complete basis set (CBS) limit as follows: For SCF energies, we used the
extrapolation strategy proposed by Karton and Martin103:

En
SCF ¼ ECBS

SCF þ Ae - α
ffiffi
n
p
: ð1Þ

A, α, and the CBS-extrapolated energy ECBS
SCF are parameters determined from a least-squares fitting

algorithm applied individually for each conformer. For the MP2 correlation energies, an extrapolation
scheme proposed by Truhlar104 was applied:

En
corr ¼ ECBS

corr þ Bn - β: ð2Þ
Again, B, β, and the CBS-extrapolated energy ECBS

corr are parameters determined from a least-squares fitting
algorithm as before. A detailed account of all numbers is given in the Supplementary Information
(Supplementary Table S5). Mean absolute errors between the density-functional approximation (DFA)
relative energies and the basis-set extrapolated MP2 relative energies were calculated as follows:

MAE ¼ 1
N

XN

i¼1
ΔEDFA

i -ΔEMP2
i þ c

"" ""; ð3Þ

where the index i runs over all N conformations of a given data set. ΔEi in principle denotes the energy

Figure 5. Comparison of search strategies. (a) The conformational energy hierarchies for alanine after the
global search and the local refinement together with the reference hierarchy at the DFT-PW91 level that was
published by Maul et al.12. Conformers indicated by black lines were found in the global search, the conformers
in red were located only after the local refinement step. The blue line in the reference conformational hierarchy
represents a minimum not found in our search and not present at the PBE+vdW level. (b) Conformations of
the alanine molecule. Conformers marked with an asterisk (*) were found in the local refinement step of our
search strategy. Atoms are color-coded as follows: Cyan (C), blue (N), red (O), white (H). The conformer
labeled with X was found by Maul et al. in PW91 calculations12 but is unstable at the PBE+vdW level.
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difference between conformer i and the lowest-energy conformer of the set. The adjustable parameter c is
used to shift the MP2 and DFA conformational hierarchies versus one another to obtain the lowest
possible MAE, rendering the reported MAE value independent of the choice of any reference structure.
Fig. 6a shows the corresponding obtained mean absolute errors (MAE) and maximal errors
(maxi|ΔEiDFA− ΔEiMP2+c|) of different DFA calculations—performed with the FHI-aims code—with
respect to benchmarks on the MP2 level obtained as described above. Within FHI-aims, the accuracy of
integration grids and of the electrostatic potential was also verified by comparing ‘tight’ and ‘really_tight’
numerical settings, giving virtually identical results. The DFA level of theory of PBE+vdW shows a MAE
well within chemical accuracy of % 1 kcal=mol& 43 meV for both structural sets of Ala and Phe; for Phe,
the maximal error is % 2 kcal=mol. We next applied a different long-range dispersion treatment, a recent

Figure 6. Comparison of different DFAs to MP2 energies. Mean absolute error (MAE) and maximal error
(in meV) between different relative energies at the DFA (PBE+vdW, PBE+MBD*, and PBE0+MBD*) and MP2
level of theory, using structures of obtained minima at the PBE+vdW level from the database for the systems of
Ala and Phe with neutral end caps, both (a) in isolation and (b) in complex with a Ca2+ cation. Computational
details are given in the text. Exact numbers are summarized in Table 1.

System MAE [meV] Maximal error [meV]

Ala

PBE+vdW 24 (0.5) 44 (1.0)

PBE+MBD* 23 (0.5) 44 (1.0)

PBE0+MBD* 13 (0.3) 28 (0.6)

Phe

PBE+vdW 25 (0.6) 78 (1.8)

PBE+MBD* 26 (0.6) 77 (1.8)

PBE0+MBD* 16 (0.4) 57 (1.3)

Ala+Ca2+

PBE+vdW 17 (0.4) 23 (0.5)

PBE+MBD* 15 (0.3) 22 (0.5)

PBE0+MBD* 9 (0.2) 15 (0.3)

Phe+Ca2+

PBE+vdW 105 (2.4) 225 (5.2)

PBE+MBD* 61 (1.4) 146 (3.4)

PBE0+MBD* 50 (1.2) 104 (2.4)

Table 1. Mean absolute error (MAE) and maximal error (in meV; in parentheses: in kcal/mol) between
different relative energies at the DFA (PBE+vdW, PBE+MBD*, and PBE0+MBD*) and MP2 level of
theory, using structures of obtained minima at the PBE+vdW level from the database for the systems of
Ala and Phe with neutral end caps, both in isolation and in complex with a Ca2+ cation. Computational
details are given in the text.
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many-body dispersion model based on interacting quantum harmonic oscillators denoted as MBD*105,
showing no significant improvement for the isolated amino acids. In line with ref. 76, applying the more
expensive PBE0 (ref. 105) hybrid exchange correlation functional reduces the maximum deviation for
Phe to ~57 meV, i.e., 1.3 kcal/mol. For Ala and Phe with neutral end caps in complex with a Ca2+ cation,
Fig. 6b compares the same set of DFAs to MP2 benchmark energy hierarchies. However, obtaining
basis-set converged total energies of the same accuracy as for the isolated peptides by straightforward CBS
extrapolation proved remarkably more difficult when Ca2+ was involved. The reason is traced to the
significant and slow-converging correlation contribution of the Ca2+ semicore electrons, which leads to
large and conformation dependent basis set superposition errors (BSSE). This problem was verified for
MP2 calculations in the FHI-aims and ORCA codes, with several different basis set prescriptions107, and
for CCSD(T) calculations. Standard DFAs, if sufficiently accurate, have a significant advantage in this
respect since they are not subject to comparable numerical convergence problems. To yet arrive at reliable
CBS-extrapolated MP2 conformational energy differences, we thus subjected the SCF and correlation
energies of each Ca2+ coordinated conformation to a counterpoise correction108,109 to minimize the effect
of BSSE on the Ca2+ correlation energy contribution, prior to performing CBS extrapolation as described
above. For the example of Ala+Ca2+ and assuming rigid conformers, the BSSE is estimated as:

EBSSE ¼ EBSSE Alað Þ þ EBSSE Ca2þð Þ; with
EBSSE Alað Þ ¼ EAlaþCa2þ Alað Þ - EAla Alað Þ; and
EBSSE Ca2þð Þ ¼ EAlaþCa2þ Ca2þð Þ - ECa2þ Ca2þð Þ:

ð4Þ

EAlaþCa2þ (Ala) represents the energy of Ala evaluated in the union of the basis sets on Ala and Ca2+,
EAla(Ala) represents the energy of Ala evaluated in the basis set on Ala, etc. The individual BSSE errors
are then subtracted from the SCF and correlation energy respectively. Phe+Ca2+ is treated equivalently.
Complete numerical details are given in the Supplementary Information (Supplementary Table S6).
Following this procedure, the MAE and maximal error values of various DFAs compared to MP2 are well
within 1 kcal/mol for Ala+Ca2+. The PBE+vdW MAE for Phe+Ca2+ amounts to just above ~2 kcal/mol.
The contributions from both the many-body dispersion and the hybrid PBE0 functional improve the
MAE to just above 1 kcal/mol at to PBE0+MBD* level of theory. The maximum errors in the energy
hierarchies between individual conformers are correspondingly larger. Overall, this assessment shows
that our data base of conformer geometries constitutes, e.g., an excellent starting point for more
exhaustive future benchmark work of new electronic structure methods for cation-peptide systems. For
example, it would be very interesting to explore how F12 approaches, which address the correlation
energy convergence problem explicitly, fare for a broad range of different Ca2+ containing conformations
of our peptides.

As a final validation, we compare the correlation of calculated gas-phase amino acid-Ca2+ binding
energies to the binding energy hierarchy found experimentally in a study by Ho et al.110. We calculate

Figure 7. Comparison of the gas-phase binding energies of Ca2+ to different amino acids calculated in this
work (y axis) to the experimentally inferred hierarchy of gas-phase binding energies of Ca2+ to different amino
acids by Ho et al.110 The amino acids are ordered along the x axis from the highest to lowest experimental Ca2+

binding energy. Protonated and deprotonated Asp and Glu are not included among the experimental data and
are here shown as predictions. Ebinding is high for deprotonated Asp and Glu since these forms of the amino
acid would carry a negative charge.
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binding energy at the PES level as

Ebinding ¼ Eamino acid þ Ecation - Ecomplex: ð5Þ
Energies E denote the PBE+vdW Born-Oppenheimer potential energies, including Eamino acid of the
lowest-energy conformers of the isolated amino acid and Ecomplex of the same amino acid in complex with
a Ca2+ ion. Experimentally110, the gas-phase Ca2+ affinities of 18 proteinogenic amino acids were
determined by fragmenting Ca2+ complexes with a combinatoric library of tripeptides at T≈ 330 K,
recording the mass spectrometric peak intensities of different fragmentation products. Quantitative
average relative binding energies of Ca2+ to different amino acids were thus inferred and can be compared
to our findings, albeit with several important experiment-theory differences: (i) Entropy effects73,75,111

should affect the specific complexes probed experimentally but cannot be included into the calculated
numbers in the exact same way, (ii) structural differences (e.g., protonation, dimerized amino acids)
between the fragments recorded in experiment and the amino acids covered here, (iii) experimental Ca2+

affinities are not given for Asp and Glu because their gas-phase acidities, needed for data conversion, are
not known. Fig. 7 compares the experimentally and theoretically inferred Ca2+ binding affinities
qualitatively. The x-axis reflects the experimental binding affinity energy hierarchy, arranging amino
acids from left to right in order of decreasing binding affinity. The y axis shows calculated binding
energies according to equation (5). Perfect correlation of the experimental and calculated hierarchies
would imply a strictly monotonic decrease of calculated Ebinding values from left to right. This monotonic
trend is not obeyed exactly; however, in view of the significant differences (i) and (ii) above, the
qualitative agreement is quite striking. Normalized correlation coefficients between the experimental (1)
and calculated (2) binding affinity data were calculated following the formula:

r12 ¼ s12= s1s2ð Þ; ð6Þ
with s12 being the covariance of data sets and si being the standard deviations of data sets i= 1,2. The
result, correlation coefficients of r12= 0.979 or 0.909 for uncapped amino acids or dipeptides, respectively,
also point to an overall remarkably good agreement. Finally, Fig. 7 also gives predicted Ebinding values for
protonated (overall system charge +2) and deprotonated (overall system charge +1) Asp and Glu,
reflecting the significant electrostatic attraction between cations and negatively charged (deprotonated)
Asp and Glu side chains. The binding energy data sets are included as Supplementary Table S5.

Usage Notes
The present data contains stationary-point geometries (mainly minima, but also saddle points since no
routine normal-mode analysis was performed) on the potential energy surface of the 20 proteinogenic
amino acids and dipeptides, either isolated or in complex with a divalent cation (Ca2+, Ba2+, Sr2+, Cd2+,
Pb2+, Hg2+). The users of this dataset may find openbabel112 (www.openbabel.org) to be a useful tool to
convert FHI-aims and xyz files to other common file formats in chemistry.
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