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the detailed definition of the overlapping atom-centered integration formalism used in this work to obtain
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1. Introduction

Density-functional theory (DFT) enjoys high popularity as an
ab initio formalism to compute the ground state electron density
and energy of molecules, clusters, and solids. As formalized in the
Hellmann-Feynman theorem and generalized in the 2n 4+ 1 the-
orem [1], the so-called atomic forces, i.e., the derivatives of the
Born-Oppenheimer potential-energy surface with respect to the
nuclear coordinates, can be derived as analytical expressions. Care
must be taken since correction terms can arise, e.g., Pulay terms [2]
if the basis functions move with the atoms. The atomic forces en-
able efficient DFT-based structure optimization algorithms that
allow to determine the local minima of the potential-energy sur-
face associated with the electronic ground state. By these means,
one can identify the stable and metastable geometries at zero
Kelvin, which in turn provide the founding for further compu-
tational investigations, e.g., via first-principles atomistic thermo-
dynamics [3]. To apply such structure optimization methods to
materials modeled as periodic solids, one must additionally take
into account the lattice degrees of freedom and the respective
derivatives of the energy with respect to strain, i.e., the stress.

The strain tensor ¢ describes the elastic deformation of a crystal
relative to a reference state. This corresponds to a transformation
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of all real space coordinates and its derived quantities, e.g., the
atomic positions R

Ra(€) =Y (8up + £ap)Rp(0) (1)
B

with respect to the zero strain reference R(0). o, 8 = 1, 2, 3 de-
note the Cartesian components. In general, Greek indices stand for
the three Cartesian components throughout this paper. For a unit
cell with volume V, the stress tensor o is defined [4,5] as the first
order change in the total (Born-Oppenheimer) energy of the unit
cell Ey,; under a symmetrical, infinitesimal strain deformation ¢

1 9E
Oy = — .
e |4 ag}\ﬂ =0

(2)

Given that only symmetric strain deformations are used in the def-
inition of the stress tensor, the stress tensor is symmetric as well
and thus consists of six independent entries. Although this defi-
nition is unique, a practical implementation of these derivatives
depends very much on the numerical details chosen for the DFT
formalism, e.g., on the basis set type.

Nielsen and Martin [6,7] first demonstrated that the stress can
indeed be efficiently and accurately assessed in a DFT framework.
For this purpose, they employed a plane wave basis set expansion
(together with norm-conserving pseudopotentials) and the local-
density approximation. Later works extended the stress tensor im-
plementation for plane waves to ultra-soft pseudopotentials [8]
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including the contributions of the generalized orthonormality con-
dition. Thonhauser and coworkers [9] as well as Nagasako and
coworkers [5] summarized the strain derivatives for the linearized
augmented plane wave method. The former derived a surface term
due to the discontinuities at the boundaries between muffin tins
and interstitial region and the latter presented a correction because
the number of plane waves in the interstitial region changes under
strain. Kresse and coworkers [10] as well as Torrent and cowork-
ers [11] derived the stress tensor for the projector augmented-
wave (PAW) method and discussed the additional terms arising
from the compensating charges of the PAW method. Kudin and
coworkers [12] discussed the implementation of the stress ten-
sor for Gaussian-type orbitals (GTO) while evaluating the electro-
static contributions entirely in real space using a fast multipole
method. Doll and coworkers [13,14] employed GTOs, too, includ-
ing the strain derivatives for Hartree-Fock calculations. Further-
more, Soler and coworkers [ 15] presented the strain derivatives for
numeric atom-centered orbitals with norm-conserving pseudopo-
tentials calculating the electrostatics by fast Fourier transforms.

In this paper, we derive the strain derivatives, i.e., the ana-
lytic stress tensor components, in an all-electron, numeric atom-
centered orbital based density-functional formalism. We discuss
our implementation of these formulae in the electronic struc-
ture theory code FHI-aims [16] including strain derivatives of hy-
brid functionals and the van der Waals (vdW) correction scheme
of Tkatchenko and Scheffler [17]. Hereby, all electrostatic contri-
butions are evaluated in real space using a multipole expansion
including Ewald’s method [ 18] together with corrections. Further-
more, we account for Pulay terms due to our atom-centered basis
functions.

The remainder of the paper is organized as follows: In Section 2,
the general mathematical formalism of DFT and of the analytical
stress tensor are presented. Section 3 gives a detailed derivation
of the various contributions that arise in a numeric atom-
centered orbital based DFT formalism. Details of the numerical
implementation are discussed in Section 4. Finally in Section 5, we
investigate the accuracy and the efficiency of our implementation
by comparing our analytical stress tensor components to strain
derivatives computed via finite differences. We compare these
two quantities for a wide range of systems that range from
metals via semiconductors and insulators to organic crystals to
demonstrate the general validity of our implementation across the
periodic table. Furthermore, we also study the behavior of our
implementation for different exchange-correlation functionals,
basis set sizes, system sizes, and integration grids to investigate
the convergence behavior of the analytical stress tensor. The
computational performance of our implementation is discussed in
Section 5 as well. For the sake of completeness, Section 6 gives an
overview on how the stress tensor can be used to optimize the
unit cell of a crystal (i.e., finding energy minima) under external
pressure.

2. Formalism
2.1. Total energy in DFT

In Kohn-Sham (KS) DFT, the total energy of a system at given
nuclear configuration reads [19,20]

Etor = EKS[nO] + Enuc (3)

with the ground state electron density ng, the nuclear-nuclear
energy Ey, and the Kohn-Sham energy functional

Exs[n] = Tg[n] + Eexc[n] + Ey[n] + Exc[n]. (4)

Ts is the kinetic energy functional of non-interacting electrons,
Eex: the electron-nuclear energy, Ey the Hartree energy, and Eyc

the exchange-correlation energy functional. For clarity, we avoid
an explicitly spin-polarized notation, a formal generalization to
collinear (scalar) spin-DFT is straightforward and in fact included
in the implementation. Also, it is important to note that the
formally correct separation of the electrostatic interactions in Ejyc,
Eext, and Ey is computationally not possible in periodic systems, as
discussed in more detail in Section 3.4.

The ground state electron density for fixed nuclear coordinates
is obtained by solving the variational equation for the electron
density n,

5[El<s[n] - u(/ dr n(r) —Ne)} =0, (5)

with the chemical potential u = §Exs/én and the number of elec-
trons Ne. This yields the Kohn-Sham single particle equation [20],

his| i) = €il i), (6)

the solution of which yields the Kohn-Sham orbitals ; and the
corresponding eigenvalues ¢;. The electron density is

n(r) = mef(r)ﬁ 7)

in which f; denotes the occupation number of the orbitals. Further-
more,

hKS = i:s + ﬁext + ﬁH[n] + i}xc[n] (8)
is the Kohn-Sham Hamiltonian. f, is the kinetic operator, Dey the
electron-nuclear potential, vy the Hartree potential, and vy, the
exchange-correlation potential.

In practice, Eq. (6) is solved by expanding the Kohn-Sham
orbitals v; in a given basis set

vir) =) cigi(r) 9
J

with the expansion coefficients ¢; and the basis functions ¢;(r),
which leads to a generalized eigenvalue problem of the form

D oilhslgder = e Y (ilg)e. (10)
j j

Here, (.|.) denotes the usual bra-ket notation for the inner product

in Hilbert space (integral in real space). In the case of FHI-aims,

the basis functions are real-valued atom-centered orbitals, i.e., they

depend on the position of the atoms, and the basis set expansion

takes the following explicit form

Vi) =Yg — Ry). (11)
JJ

The sum runs over all atoms J and basis functions j which are as-
sociated with atom J, and R; denotes the position of atom J. Ac-
cordingly, the density is a function of the expansion coefficients
and thus Eq. (5) translates into a minimization of Exs with respect
to the expansion coefficients under the constraint of orthonormal-
ized orbitals,

Exs[nol = T{Tgi?[fks - Zﬁfi((wihﬂi) - 1)] (12)

2.2. Fundamental formulae for strain derivatives

2.2.1. Properties of strain derivatives
The total energy derivative in Eq. (2) can be written as

8Etot

88A;L

_ Z OEw o (u;) Ou;

£=0 7 3Lli BSML

e=0
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where we use the chain rule and the sum runs over all parameters
u; that enter the total energy and change under a strain transfor-
mation. For specified numerical and computational settings (basis
set, integration grids, and exchange-correlation-functional), the
total energy solely depends on the chemical species (mass, nuclear
charge, and electronic configuration) and the positions of the indi-
vidual atoms. Under periodic boundary conditions, the latter also
includes the lattice vectors a,, since the periodic images of an atom
with coordinate vector R; are given by R = R;+)_, M,a, with M,
being integer numbers. Accordingly, the atomic positions, lattice
vectors, basis set orbitals, and integration grid' are the only quan-
tities changing under a strain transformation; the respective strain
derivatives of the first two quantities are derived below. However,
some contributions to the total energy do not depend directly on
this set of parameters. Instead, they depend on derived quantities.
These are the volume of the system and the reciprocal lattice
G-vectors. To achieve a more concise formalism later in this paper,
the strain derivatives for these quantities are derived as well.

2.2.2. Strain derivative of position vectors
With Eq. (1), the strain derivative of a general position vector is

0Ty

= 8asBpuls = Surly. (14)
B

a&‘m =0

In many cases, we will encounter terms f (r43) that do not depend
on the absolute position, but on position differences rag = 14 — 1.
With the chain rule, we get

of (rap) _ of (rap) r of (rap) r
88)\#, =0 arA.)\ A BTB’}‘ B
a
= M(TA,M—I'B’M). (15)
BrA,;\

Since the function f (43) depends only on the difference r, — 13,

the derivative in the second summand could be changed from Grz "
) :

ara "

to —

2.2.3. Lattice vectors and strain derivative of volume
Under a strain transformation, the lattice vectors a, of the
crystal transform in the same way as the position vectors (Eq. (1))

Gan(&) = D (Bup + £ap)ap(0). (16)
B

If we write the lattice vectors a, as the columns of a matrix A =
[a,a,as3] then the volume of the unit cell is given by

V = |detA|. (17)
With help of Eq. (16), we obtain the strained volume

V(e) = |detA(e)|

|det(1 + )|V (0)

Z(l + Saa)

In the last step, the determinant was expanded up to first order in
the strain. Taking the strain derivative of Eq. (18) leads to

aV

88Ap.

V(0). (18)

= SurbarV =81V (19)

e=0 o

1 The atom-centered orbitals and the real space grid used for the electronic
degrees of freedom move with the respective nuclear degrees of freedom so that
their contributions to the strain derivatives need to be accounted for as well.

2.2.4. Strain derivative of reciprocal lattice vectors

The unit vectors of the reciprocal lattice b, can be written as
the columns of a matrix B = [b1b,b3] and are related to the lattice
vectors by

B=2m(A") . (20)

Using the expression Eq. (16) for the strain transformation of lattice
vectors, we get

B(e) =27 (1+¢") "' (A7) " = (1 —£")B(0), (21)
where we expanded the matrix inverse up to first order in the
strain. For a unit vector of the reciprocal lattice b,,, the component-
wise notation of Eq. (21) is

ban(€) = D (8pa — £pa)bpn(0) (22)
B
and thus we get the strain derivative
ab,
Dl == 8p8aubpn = —Saubin. (23)
& | o—g B

A general reciprocal lattice vector G is a linear combination of
the three unit reciprocal lattice vectors

G = S]b] + Szbz + S3b3 (24)
with s, s3, S3 being integer numbers. Applying the result from
Eq. (23) gives

Gy

o = —Sau(slbm + S2bs2 +S3bx3) = —8auGy- (25)
s

e=0

Hence, for a quantity f (G) that depends on the G-vector, the strain
derivative becomes

of (G) _ af (G) _ of (G)
0 oo Xa: 3Gy BanCn = 3G, G (26)

e=

2.2.5. Strain derivative of integrals over the unit cell volume

In the case of periodic boundary conditions, Bloch-like gener-
alized basis functions x;(r) are defined. They are derived from
the atom-centered basis function residing in different unit cells M,
oim(T) = @i(r — R — T(M)). Here, T(M) = M - A yields the
translation vector to a unit cell with M = (M;, M, M3) a vector
with integer numbers and A the matrix of the lattice vectors as in-
troduced before. The generalized basis functions are (see Eq. (22)
in Ref. [16])

Xiae(r) =Y exp(ik - T(M))gim(r). (27)
M

Therefore, matrix elements like h; = (¢i|ﬁK5|¢j) from Eq. (10)

become k-dependent,

hi(k) = (ks | 3 1)- (28)

For calculations, the matrix elements per unit cell are needed,
denoted with h;(k). Inserting Eq. (27) into Eq. (28) leads to two
sums over the unit cells. Because of periodicity, they reduce to one
sum for the matrix elements per unit cell,

hij(k) = > exp(ik - T(M)) (g0l sl @y.m). (29)
M

with the index 0 denoting the central unit cell. The sum over the
unit cells M is finite because all basis functions have a finite exten-
sion since they are bounded by a confinement potential [ 16].
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Integral over whole space Integral over central unit cell

central §
unit cell]

©i,0 ‘Di M

Fig. 1. Illustration of two ways to calculate the integrals (blue stripes) between
basis function ¢; ¢ (red, solid) centered at the corner of the central unit cell (black
frame) and one of its periodic images ¢;y (pink, dashed). The straightforward
approach is to integrate both functions over the whole space to obtain the overlap
integral as shown in the left picture. The integration can be separated into pieces
lying inside individual unit cells which can be mapped into the central unit cell
yielding the picture on the right hand side. There, the overlap integral is calculated
by an integration over the central unit cell by considering those periodic images of
the basis functions that extend into the central unit cell.

The matrix elements in Eq. (29) are integrals over the whole
space. However, it is more convenient to integrate them in separate
pieces with integrals over just one specific unit cell and then add
up all contributions. Due to periodicity, all integrations can be
performed in the central unit cell such that

M

> tgiolhwslgim) =Y / @i () s (1) (30)
M,N YV

with V the volume of the central unit cell. The sum _,, y runs
only over those units cell that contain basis functions that have a
non-zero contribution in the central unit cell. Fig. 1 illustrates the
location of these integration volumes. With Eq. (30), Eq. (29) reads

Ry = > exp(ik - [T(N) — T(M)]) / oin (Mhesom@)  (31)

M.N v

incorporating the Bloch phase factors.

As a consequence, the individual integral pieces of Eq. (31)
change under strain since their boundary V changes under strain,
see Section 2.2.3, and this has to be accounted for. Let us consider
the integral of an arbitrary function f over the unit cell volume V

(V) = / drf(r). (32)
\%4

In order to take the strain derivative of this expression, we need to
change the integration variable to fractional coordinates s and use
the transformation theorem for integrals. The change of integration
variables yields

1
I(v) = v/ dsf(s) (33)
0

and the integration limits symbolize that the three components of
the fractional coordinates lie in the range from O to 1. Taking the
strain derivative of this transformed integral results in

(V) 5 I(V) + / dr of (r)

88)LM 1% 88)41,

(34)

e=0 e=0
The first term arises due to the finite integration limits (which
change under strain) and we will call it Jacobian term from here

on.
3. Strain derivative of total energy
For the remainder of this paper, the notation is simplified by

leaving out the explicit notation that the derivative is evaluated at
the point ¢ = 0.

3.1. Kohn-Sham orbitals

The strain derivative of the Kohn-Sham orbitals ¥;(r) can be
calculated using Eqs. (11) and (15)
AYi(r) dg;i(r — Ry)
—_— = c,'ji(RJ, - ) (35)

BSAM ; 8R],)~ " H

where the sum runs over all atoms J and basis functions j which
are associated with atom J. The strain derivative of the gradient of
an orbital can be done analogously

) 2. (pr —
o s Peem) %)

Cij
88)\# 8RK,U Il HRMZ)RK,,,
which means that the Hessian of the basis functions is required for
this strain derivative.

3.2. Normalization factor

The strain derivative of the normalization factor of Eq. (12)
yields

9Fnorm _ —8iu Zﬁ(lﬂdéz’h//i) —2 Zﬁ(;&

88)%

€ilyi). (37)

The inner product of the two Kohn-Sham orbitals yields two terms
according to Eq. (34).

3.3. Kinetic energy

3.3.1. Kinetic energy of non-interacting electrons
The kinetic energy of non-interacting electrons in the non-
relativistic case is

T, = Zﬁwfsw,-) (38)

with the kinetic energy operator f; = —%A. It is important that
we consider the change of the Laplace operator under a strain
transformation. The change of a position vector r under such
a transformation is given by Eq. (1) and the respective inverse
relation (up to first order in the strain) is r,(0) = Zﬁ (Bap —
eqp)Tp (). Accordingly, the derivative with respect to positions
transforms as

R Ly 1 () N A 9
Ira(e) Xﬂ: 3y (e) 0rg(0) 314 (0) Xﬁ:g"ﬁarﬂ(oy (39)

The Laplace operator thus becomes (up to first order in the strain)

3 2
Are) = Z( i (8))

2
ad ] B
= Z -2 Z N ) (40)
—\ 314 (0) 7 01y (0) drg(0)
Hence, the strain derivative of the Laplace operator is
] a 9
— Ay =—2——, (41)
38}»# 81’)\ 8rﬂ

the evaluation of which requires the Hessian of the orbitals.
The strain derivative of the non-relativistic kinetic energy is an
inner product of Kohn-Sham orbitals, so that we eventually obtain

9T 0w
e, =T +2 Zfl <8€M

Ely) + D fildilan o W) (42)
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3.3.2. Scalar relativistic kinetic energy

In FHI-aims, relativity is taken into account in a scalar rela-
tivistic approximation. Specifically, the kinetic energy operator is
modified according to the “atomic ZORA” (zeroth order regular ap-
proximation with on-site free-atom potentials) [16] to approxi-
mately capture the relativistic effects. In this approximation, the
kinetic energy has the following form

1 N ~
1 = 2 3 feyeul altazomlen) + (ouliaczomlon)] (43)
ijkJK
with the corresponding operator
. 2
tarzoral@j) = =V - ———V|g)). (44)
) ' 2¢2 — Ul{ree '

Here, vfree is the on-site free-atom potential of atom J with the
associated basis function j.

Given that the derivative of the full expression Eat.ZORA|(pj> with
respect to atomic coordinates is known in this formalism [16], we

obtain the strain derivative
aTrel

=34 MTrel +2 Zfzcuczk [<3 Eat.ZORA|‘.0k>
BSAM s ik 2 Enp
+ (rl 52 (Enzomale) | (45)

that includes a Jacobi term. The last derivative can be expressed in
real space as

—— (faczora@j(r — R))) = (fat 20rA% (1 — R)) (Ry 0 — 7).

ae A/L

3.4. Electrostatics

The electrostatic energy is described by three terms: the elec-
tron-electron interaction (Hartree term) Ey, the electron-nuclei
interaction E.y, and the nuclei-nuclei interaction E, .. These three
terms cannot be treated separately in a numerical approach given
that - individually - Ey and E,,. diverge under periodic bound-
ary conditions even per unit cell. This problem can be avoided by
treating the electrostatic contributions from electrons and nuclei
together by defining a total electrostatic energy, Ees = Eyy + Eext +
Eouc [16]. Then, only energy contributions arising from electrostati-
cally neutral subsystems are handled, leading to numerically much
more readily converging terms.

To achieve a rapid and accurate description of the electrostatic
interactions, FHI-aims follows a recipe that was proposed by
Delley [21] and that has its roots in a strategy developed by Becke
etal.[22].In this formalism, the electron density n(r) is partitioned
into contributions n; (r — R;) associated with the individual atoms I

(e = &) = [ dr i) (47)
by means of the partition function p;(r) defined as
&(r)
pi(r) = , (48)
T Yy
J

with g;(r) an in principle arbitrary function that is strongly peaked
at atom I. See Section 5.4 for a more in-depth discussion of the par-
tition function and functional forms of g; used in FHI-aims.

The Hartree potential vy(r) is

nl(T —R)

vn(r) = va —R) = Z/ ] (49)

and the external potential, here created by the nuclear charges Z;,
is

Vet (1) = Z v (r —R) = Z |r = R - (50)
Together, these two potentials define the total electrostatic poten-
tial, ves(r) = vy(r) 4 vex:(r). Accordingly, the total electrostatic
energy, which includes the electron-electron, electron-nuclear,
and nuclear-nuclear interaction, becomes [ 16]

Ees = %/dr N(1) ves (1)

+5 Zz,[vaHZvéS(R, R»] (51)

J#

In practice, the total electrostatic potential is calculated in two
steps: First, the electron density associated to the superposition of
free atoms nl..(r — Ry) is used to define the difference density

sn(r) =n(r) = Y np(r —Ry) (52)
I

with respect to the total density n(r) (Eq. (7)). Second, this dif-
ference density §n(r) is partitioned according to Eq. (47) and ex-
panded in a multipole expansion §nyp(r) (see Eq. (32) in Ref. [ 16]).
This expansion yields an approximate description of the electron
density n(r), the so-called multipole density

up(r) = Y nfeo (1 — Rp) + Snyp(r), (53)
1

which is used for the construction of the total electrostatic poten-
tial ves ().

In periodic boundary conditions, the zero level of the electro-
static potential is not well defined [16]. To achieve consistency
across systems, the zero of the electrostatic potential is manually
set to the spatial average of the potential §ves(r) pertaining to the
difference density §nyp(r)

1

Vavg = — / dr Sves(r). (54)
VJv

Accordingly, the total electrostatic potential consists of three terms

Ves() = D Vpree (= RY) + 80e5(F) — Vayg. (55)
1

Here, the potentials v}, (r) of the free atoms are calculated as
a cubic spline function on dense logarithmic grids, while the
potential §ves (1) is split up into three contributions:

Sues(r) = Y[k = R) + vl = R) + vlgr = R)|.  (56)
1

This potential is calculated with the help of the Ewald summation
for multipole charges [ 18]. The first term is the numerical potential
v&u(r — R;) which solves the electrostatic potential explicitly for
short ranges d; = |r — R| < rip Where the partitioned difference
density of atom I is non-zero, see Fig. 2. This is done by Green’s
function for Poisson’s equation of multipoles from classical elec-
trostatics (see Eq. (33) in Ref. [16]). Please note, that v{w(r —R)
depends only on positions vectors. The other terms are the Ewald
short range potential [ 18]

véR(r _ RI) — Z QI,lmElme(Im)(|r Rll) (df)X‘m (dy)YIm (dz)zlm
Im

(57)
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atom [

Fig. 2. One dimensional sketch of the different contributions and used radii for
the calculation of the electrostatic potential in FHI-aims. The abscissa shows the
distance d to atom I and the partitioned difference density §n of atom I is depicted
(blue). For distances less than ry, where dn is non-zero the potential vyy (red,
solid) is obtained by explicitly solving Poisson’s equation. Outside the density, the
potential is determined by the Ewald short range term vsg (red, solid) which extends
up to roye. Any long range tails of the potential are attributed by the Ewald long range
term vy (red, dotted). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

which extends up to a specific distance r, from atom I, see Fig. 2,
and the Ewald long range potential [18]

. exp 2
Ve —R) = 7” 3 (024)5’ (G) exp(iGr) (58)
G

with

S1(6) = > QuinGim exp(—iGR)I’m (Gy) ™ (G,)™" (G,) ™. (59)
ILm

Thereby, Ejn, Gim, the exponents A, Bim, Cim, Dimy Xims Yim, Zim, and
the function FP™ are expressions that only depend on the orbital
() and magnetic (m) quantum numbers. The exact form of these
terms is not relevant in this context but can be looked up in the
publication by Delley [18]. The Q; i, are the atomic multipoles and
k is the Ewald parameter.

To reduce the respective error in the total electrostatic energy
expression to quadratic order with respect to the maximal angular
momentum used in the expansion [23], the first term in Eq. (51)
becomes

1/dr n(r)ves(r) — /dr [n(r) — 1n,\,[p(r)}ves(r). (60)
2 Jy v 2

For a more detailed derivation, see the FHI-aims publication [16]
and the references therein.

Taking the strain derivative of the total electrostatic energy
(Egs. (51) and (60)) results in many different terms that cannot be
simplified

1
= 8)»11 / dr [n(r) — zﬂmp(r)]ves(r)
\'4

+ / dr [n(r) - 1nMp(r>]3”“(”
v 2

88M
an(r 1 onyp(r
+/dr[ ™ 1 Mp(>]ves(r)
1% 88,\# 2 BSML
1 duls(R
- Z, es( 1). (6])
21’];&1 asw

The term fv dr ggiﬂ Ves (1) can be again rewritten as an inner prod-
"

uct of Kohn-Sham orbitals, namely 2 ) fi(% |Des|1i). The strain
derivative of nyp(r) can be evaluated by using the partitioning of

the multipole density into single atom contributions n{v“,(r —R)
(Eq. (47))

3TlMP(T) _ 31’1:\/[13(1’ — RI)
88)44 i ag}»/_l,
anl (r —R))
=> S (1 — Riy)- (62)
T 8rk

The strain derivative of the on-site term (the atom interacts
with its own electrons) Zv!,(0) that appears in Eq. (51) vanishes,
since the atom and its electron density transform equally under a
strain deformation. A rigorous mathematical proof can be found in
Appendix A.1.

In Eq. (61), the strain derivative of the total electrostatic
potential ves (1) requires some more work. We have to calculate the
individual strain derivatives of Egs. (54), (55), and (56). The terms
vl (r —Ry), v, (r —Ry), and vl (r — R;) depend only on position
vectors, thus, their derivatives are simply

avgree(r —R) _ avéree(r —R)

Ry, —r 63

88)# (()R[JL ( b M) ( )
vy —R) vk, (r —Ry)

= Ri,—r 64

88)4,“ 8R1’)L ( lu #) ( )
dul(r —R) vk (r —Ry)

= Ry —14). 65

88M BRM ( b ru) ( )

The most complicated term is v/, (r — R;) because it depends on
volume, position and G-vectors. Using Eq. (13) yields

up(r —Ry) _ vip(r — R) dvjr(r —Ry)
W or, " oRy,

_ dvjr(r —Ry) G\ + dvp(r — Ry
3G, 1%

Evaluating the individual derivatives results in the final expression

Ri

SuV.  (66)

Jujp(r —Ry) _ 4 Z EXP(_K24GZ>

9ens v 2 o exp(iGr)
X [SI(G)AA/L (6) + GAH,M(G)} (67)
with
2 K?
M (G) = =6, + (a + 7)616,1 (68)
1.u(6) =Y QumGim exp(—iGR)"my, " (G) (69)
I,m
b
ylim (G) = a I:(Gx)Alm (Gy)Blm (GZ)CIm:I' (70)

For an explicit derivation of the individual derivatives of v’LR (r—R)),
see Appendix A.2. The strain derivative of the average potential
Vavg (Eq. (54)) introduces nothing new and only already calculated
derivatives appear (the ones of Jves(r)). Please note that no
Jacobian term appears here due to the prefactor 1/V of vayg.

3.5. Exchange-correlation energy
3.5.1. LDA

For exchange-correlation functionals at the level of the local-
density approximation (LDA) [24-26] the exchange-correlation
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energy per particle €. is a smooth function of the electronic den-
sity n(r), so that the exchange-correlation energy has the follow-
ing form

ERPA — / drn(r)e? (n(r)). (71)
Vv

Its strain derivative can be derived using the chain rule and the
definition of the exchange-correlation potential v:>*(n) for LDA
functionals:

aE)];CDA LDA an ( ) LDA LDA( )
e = S /vdr denp |: W+ e an(r) :|
= BB+ 2 3 A (G B2, (72)

We obtain again two terms because we integrate over the unit cell
volume. The integral over the strain derivative of the electronic
density was rewritten as a sum of inner products between the
Kohn-Sham orbitals and their respective strain derivatives accord-
ing to Eq. (7).

3.5.2. GGA

In the generalized gradient approximation (GGA), e.g., the
PBE [27] and BLYP [28,29] functional, the exchange-correlation
energy has the same overall form as in the LDA case

ESh = / dr n(r)eg (n(r), Vn(r)), (73)
v

but in addition, the exchange-correlation energy per particle

€2%A(n(r), Vn(r)) now depends on the density gradient Vn, which

glves rise to an additional term in the strain derivative of €SCA:

9EGGA n(r 9eCoA
xc _S}LMEGGA_’_/dr ()|:GGA+n() €x ]
88M 1% aglu an(r)
AV 9eSCh
Z/drn(r) (Vn) - . (74)
v dex, ) A1Vn|?

The term in parentheses in the last line corresponds to a scalar
product of vectors. We define a local exchange-correlation poten-
tial for GGA which includes only the partial derivative with respect

.GGA
ton, dech. = ext +n 9" and the last line can be expanded by
using Eq. (7) and the product rule for derivatives

8E§CGA _s EGGA +2 Z f i
&y o —1\ 9%
1

Dectoc M ¥3)

8V1/fl

+4Zﬁfdr (Vn)-[al//' Vi + wl]. (75)
i 4

ML

3.5.3. Hybrid functionals

In hybrid exchange-correlation functionals, semi-local GGA
exchange-correlation is mixed with the non-local Hartree-Fock
(HF) like exchange [30,31], the so-called exact exchange and various
hybrid functionals exist in the literature. In the simplest one
parameter case,” a fraction « of the GGA exchange is replaced by HF
exchange and the respective exchange-correlation energy takes
the following form

EpY° = EgM + a(EfF — EJOM). (76)

2 Qur derivations are easily extended to functionals with more than one param-
eter since the individual ingredients are solely the exchange and/or correlation of
LDA, GGA, or HF which are all covered in this paper.

The corner cases with « equals 1 or O correspond to a pure
Hartree-Fock or pure GGA calculation, respectively. In the case of
the PBEO functional [32], « = 1/4 and the GGA-PBE exchange
and correlation are used in the definition (76). Furthermore, it is
possible to introduce a range separation: For instance, the Coulomb
interaction of the HF exchange is screened in the case of the HSE
family of functionals [33-35] and the exchange-correlation energy
is of the form

EY’ = EP + o (EFF M (o) — E)P R (), (77)

where w is the screening parameter (the higher w, the stronger
the screening). @ = 0 corresponds to the PBEO functional (with
o = 1/4)and w — oo to the PBE function. The modification
of the exchange-correlation energy implicates a change of the
exchange-correlation potential in Eq. (8), too, such that

phvb ccA+a(2 (@) —

XC

IR (D)) (78)

with £, the exact-exchange potential.

Here, we only concisely describe how the exact-exchange
energy is actually calculated following the notation of paper [36],
in which more detailed derivations can be found. For a given basis
set expansion as defined in Eq. (9), the exact-exchange energy is
defined as

1
B =—2 > DuDuiflk, (79)
ijkl
where the indices i, j, k, [ run over all basis functions. Here, Dy, =
Zm fmCmjCmk 1S the one-particle density matrix for the occupation
numbers f, and the expansions coefficients c¢,,; introduced before.
The expression (ij|kl) represents the four-center two-electron
Coulomb integral

(ilil) = / / dr dF o) — Feu® i) (80)

with the Coulomb kernel v(|r|). Please note, that no complex con-
jugate quantities appear since the basis functions are chosen to
be real valued in FHI-aims. For HF and PBEO the Coulomb ker-
nel is simply the Coulomb potential 1/|r|, for HSE06 v(|r|)
erfc(w|r|)/|r| such that only the short-range part of the Coulomb
potential is included.

With help of the resolution of identity (RI) [37], one can expand
the product ¢;(r)¢;(r) of two atomic orbitals (centered at atom |
and J, respectively) in an auxiliary, product basis set Py, (r)

Pir)g(r) ~ Y Py (r). (81)

m

Accordingly, the exact-exchange energy can be rewritten as

. ZDJle, [c vmnc,(,] (82)

ijkl
mn

with the Coulomb matrix V,,, = (m|n). In the so-called RI-V for-
malism, the error in the four-center Coulomb integrals that stems
from the product basis expansion is minimized [38] by choosing
the expansion coefficients according to

Z(uln) (83)

Within negligible losses in the accuracy, the computational
effort can be reduced drastically by using a locally restricted
expansion in the so-called RI-LVL formalism [39,40]

Qi) ~ Y CFPu(r) (84)

meP (IJ)
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with 2(IJ) = £I) U £(J). The set of all auxiliary basis functions
that are centered at atom I is denoted with & (I). Consequently, the
expansion coefficients become

> (i, form e 2 (1))
Gi' = {nerm) (85)
0 else

with [V = (VU)71 the inverse of the Coulomb matrix including
only auxiliary basis functions centered at atom I or J.

The strain derivative of the exact-exchange energy in the
LVL-scheme is

QEHF Vi 1o .
T ; Djknl,[ 7 5, c,{, +2. - Vi ,] (86)
munePf)

In this case, no Jacobian terms arise, since the integration domains
of the Coulomb integrals range over the whole space.

In the following, we will use the notation i(I) to indicate that
the basis function i is centered on atom I. The strain derivative of
the Coulomb matrix then becomes

av, aV, av,
m(Dn()) — m(Dn()) Rl.u + m(Dn()) R],/t
381# 8R,,,\ BRM
Vmnn()
= —— (R, —R..). 87
R, ( L J,u) (87)
For the expansion coefficients, we get an analogous result
m(M) m(MN) m(M)
3CI(I)J(/) — aCl(l)J(/) R, + d l(I)J(I)R
88)4,“ BR, A H 3R A hib
acm(fm)
= — PP (R — Ry ), (88)
BRM ’

where M1 is either atom I or J. A detailed proof of Egs. (87) and (88)
can be found in Appendix B.

Using the relations derived above and in Section 3.5.2, the strain
derivative of the hybrid exchange-correlation functional is

OE"  9ESCA  QESCA
88)44 38)# 38)\,1
o
-3 > DuDu(Riy — Ryu)
m.nzl;l’(lj)
x [ aten Gl + 25 Vi G (89)

where the current center of the basis functions i, j, k, [ and of the
auxiliary basis functions m, n is atom I or J.

3.5.4. Van der Waals correction

Commonly used exchange-correlation functionals such as LDA,
GGA, and hybrids lack the long range tail of van der Waals
interactions. In order to incorporate these long range contributions
in our DFT calculation, we employ the correction scheme proposed
by Tkatchenko and Scheffler [17]. Like in many other methods
[41-43], a pairwise interatomic correction term (E,qw) is added to
the exchange-correlation energy of the GGA functionals such that
ESSA — ES“M 4 Eqw. (90)

The term for the long range tail of van der Waals interactions is
given by

EvdW . Zfdamp(RI]) (91)
lj

with Ry the distance between atom I and J and the corresponding
Ceyy coefficient which is determined from the ground-state electron
density. The onset distance of the vdW correction is controlled by
the damping function

1
1+ exp[—d( T~ 1)]
i

fdamp (le) = (92)

in which d and s; are tabulated parameters. R = R + Re is
the sum of the effective vdW radii, which are determined from the
ground-state electron density [17]. With the help of Eq. (15), the
strain derivative of the vdW correction is

JE Cey | O R R
vdw — _72 SU[ fdamp( I]) _6 UA]RUM (93)

BS)LM TJ Rl] BR,] A R2

Here, we neglected the change of the Cs coefficients and the damp-
ening function under strain since they seem to be negligible in
practice [44].

3.6. Summary of terms—the stress tensor

We will now collect all contributions to the stress tensor we
have derived in the previous sections. Additionally, we will replace
€; in the first term of Eq. (37) by the Hamiltonian of Eq. (8) such that
some terms cancel. Hence, the stress tensor is

O = o™+ ol + o+ o+ oM ol o (94)
with
il
o =~ A a v (%5)
I 1 _ i
gfinnon-re Z f (éw £l i) + Zﬁ Vilge i W) (96)
i

i 1 PYSITN
A v Z fiCijCikR% tat.zora |9k}
ijkde K "
okl (R = 1) s (B zomal )| (97)
1 v
eln _ 1 0ves (Rp)
O‘Mt - 2V ”Z;;IZI EEW (98)
o = fo[ (| Bestid + (ol S )| (99)

1
UAEL’MP = —SAuﬁ/dT 1mp (1) Ves (1)

_ L Z/ dr 3”:\/1[:)(:;"”(

Ty — Rl,u)ves(r)

_7\/dr nMP(r)ag;iE:) (100)
XA _ (ELDA Zf (Wil DA ) )
A - i\Vi i

i ALDA

Ty Zf"<am Vi) (101)
G;(;’GGA — (EGGA Zf w,|AGGA|Iﬂ, )

+ ;Zﬁ(ag;‘ i

4 i avy;
+V2i:fi /V dr (vn) - [ 2wy + 28y (102)
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2
,hyb ,GGA GGA
W= ol — a0t s, OB
o
— 5 Z DjkDil(Rl,//. - R],M)
m, nzl;’l’(l])
[ 2ency + 228 v,y (103
1 « ] R R
A p—— G’JRM Lam"( ) _gRua) (104)
o 2V RS Ry > R}

The strain derivative of the total electrostatic potential has been
calculated before

0Ves(T) _ Z[Bvﬁee(r —Ry) + vl (r — Ry)
88)\” T agk#, agku
N vl (r —R) vl (r — R,)]  Qvayg (105)
P 0 e

and the individual derivatives can be looked up in Egs. (63), (64),
(65), and (67) together with the definition of v,y in Eq. (54). The
strain derivatives of the orbitals y; and their gradients are given in
Egs. (35) and (36), respectively.

For an actual computation, it is advisable to compute terms
with the same bra and ket together to reduce the numerical
effort. Furthermore, this practice avoids taking differences of
large numbers and therefore leads to a reduction of numerical
errors. In detail, this grouping means that the terms of the
form (g ... @) of Egs. (96)/(97), (99), and (101)/(102)/(103)
are computed together as one integral. The same is done for
terms of the form <82fil |...|ek) of Egs. (95), (96)/(97), (99), and

(101)/(102)/(103).

4. Numerical implementation

4.1. Finite differences stress tensor

In order to check the accuracy of the implemented analytical
stress tensor, we calculate the stress tensor also numerically via
finite differences of the total energies of distorted structures.
Without accounting for space group symmetry, this requires the
total energy calculation of twelve slightly distorted structures,
i.e., two strain transformations ¢, = Ah and ¢, = —Ah for
each of the six independent components of the stress tensor. The
numerical derivative is then given by

lEtot(SAu = Ah) — Eyt(&3p = —Ah)
4 2Ah

On the one hand, the displacement Ah must be small enough to
ensure that the use of a two-point numerical derivative is justified.
On the other hand, Ah must not be too small at the same time.
Otherwise, the differences become too small which leads to large
numerical rounding errors. The convergence analysis with respect
to the displacement Ah shows that the value of Ah = 10™4 chosen
for all calculations presented in this paper is reasonable. With
this choice, we are in agreement with the literature [45], which
proposes Ah < 1072,

+ O(AR?).

O = (106)

4.2. Correction for sparse integration grids

The calculation of the stress tensor involves integrals of quan-
tities f; and g; and their derivatives that are centered on the same
atom I, i.e., f dr df’ (') S g;(r). The integrands of these on-site terms
are typically multlple orders of magnitude larger than those of off-
site terms, especially for heavy elements. Accordingly, even minute

Silicon — 8 atoms, LDA

T T L"I‘~£ T T T T T
8)(1073 _." \.\\ —
— ‘\‘ ‘\l i
r;\t 3 *-e- Ik "*l\ -m |
> 6x10° [~ ‘\‘\“
2 -o--
é’ - @ —@ light: kinetic ®--g-
8 4x10° |~ ©—© tight: kinetic |
'% I m-—# light: electrostatic |
5 2% 1073 | -1 tight: electrostatic |
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Omag}m _m_@@@*¢$
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Fig. 3. Absolute value of kinetic (circles) and electrostatic (squares) on-site terms
at different lattice parameters. These terms are analytically zero but might be
not in an actual numerical calculation and therefore, we omit them, see text.
For light integration grids (filled symbols), the on-site terms are clearly non-zero
whereas they become significantly smaller for tight grids (open symbols). A denser
integration grid (going from light to tight) captures more accurately the overlap
of the wave functions centered at the same atom. For more details about the used
integration grid see Appendix D.1. The calculations were performed for a diamond
unit cell of silicon (8 atoms) with the LDA functional.

relative numerical inaccuracies, e.g., due to relatively sparse inte-
gration grids used at light settings (see Appendix D.1) or in the
derivatives of the spherical harmonics, can result in notable abso-
lute numerical inaccuracies for the stress tensor — even for a single
on-site term. In the next two sections, we will point out the prob-
lematic terms and how we circumvent these issues.

4.2.1. Kinetic on-site correction

The term (v;|ts|y;) of the non-relativistic kinetic energy
(Eq. (38)) can be numerically inaccurate for sparse integration
grids. This inaccuracy stems from the on-site terms, i.e., the inner
products of basis functions j and j' located on the same atom J,
namely

T =Y ficiicy (9lEslgy ).
LN

Analytically, the strain derivative of this term should be zero
since only quantities centered on one atom appear. Numerically,
however, this is not always the case: Since both basis functions
are located on the same atom, they have a huge overlap, and small
numerical inaccuracies in such a huge term can effectively prevent
these terms from vanishing as explained above. See Fig. 3 for a
comparison between different integrations grids for the on-site
term. To correct for this erroneous behavior, we omit the on-site
term (Eq. (107)) from Eq. (42) so that we get

T,
@ =68uTs +Uzkficijcik [ <38

J#K

(107)

Klg) + (@il 7l | - (108)

Here, | and K specifies the atoms the basis function j and k are
associated with, respectively, and it is enforced that atom J is
different from atom K.

4.2.2. Electrostatic on-site correction

A similar problem occurs for the electrostatics. In Eq. (51),
special care has to be taken for the strain derivative of the integral
involving the term nyp(r)ves (). One part of the total electrostatic
potential includes the sum of the potentials of the free atoms
> Uﬁee (r—Ry) (Eq.(55)) and the multipole density is build up from
the sum of the electron density of the free atoms )" nf...(r — Ry)
and a residual part (Eq. (53)). Hence, the total electrostatic energy
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Silicon — 8 atoms, PBE+vdW
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Fig. 4. Comparison between numerical (black squares) and analytical (red circles)
stress for a silicon crystal at different lattice parameters. The top figure shows the
resulting stress for both types and the bottom one the difference between the two.
The non-relativistic calculations were performed for a diamond unit cell of silicon
(8 atoms) with tight settings, the PBE functional, and vdW corrections.

in Eq. (51) involves a term that corresponds to the sum of the
Hartree energy of the isolated, free atoms

1
Ees,free = _5 Z/ dr n?ree(r - Rl)vgree(r —R). (109)
I Vv

Analytically, the strain derivative of this term is zero since it in-
cludes only contributions of free atoms. For the exact same rea-
sons detailed above, however, numerical inaccuracies can prevent
this term from vanishing, especially for sparse integration grids.
See Fig. 3 for a comparison between different integrations grids for
this on-site term. To correct for this erroneous behavior, we explic-
itly leave out the strain derivative of the on-site term (Eq. (109)),
which is

0Fes f 1
Zes.iree (S}LMEes,free - 5 Z/ dr (RI’/" - r“)
T \

asw

d Uéree (r—Ry)

I
I anfree(riRI) 1
X [nﬁee(r —R) 5R

Ry . Ufree(r - Rl)il»
during the calculation of electrostatic contributions. Together with
the correction for the kinetic energy in the previous section, this al-
lows us to reduce the numerical inaccuracies by roughly one order
of magnitude.

(110)

5. Validation

In this section, we perform an extensive comparison between
the stress from finite differences (Section 4.1), in short numerical
stress, and the stress obtained from analytical gradients, in short
analytical stress, for a large variety of crystal systems (Section 5.1).
Thereby, we mainly compare the diagonal elements but we
consider the off-diagonal elements, too. In the following sections,

Ammonia — 16 atoms, a = 5.1 A, HSEO6+vdW
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Fig. 5. Off-diagonal stress for a distorted cubic unit cell with lattice vectors
(a, 0, Aa), (0, a,0), and (Aa, 0, a). Blue, filled triangles: Difference between the
off-diagonal elements of numerical (oy;,,) and analytical (oy; ) stress. Green,
open triangles: Difference between the off-diagonal elements of upper (oy; 4) and
lower (04 q) triangle of the analytical stress. The calculations were performed for a
unit cell of ammonia (16 atoms) with the HSEO6 functional and vdW corrections at
a lattice parameter of 5.1A.

we do further numerical tests by investigating the results for
different exchange-correlation functionals (Section 5.2) and the
consistency of the analytical stress with respect to the basis set
and unit cell size (Section 5.3). Additionally, the performance of
the implementation is examined (Section 5.5).

Unless noted otherwise, all calculations of the analytical stress
tensor are performed with a partition table for the integrations that
is build up from atom-centered partition functions following the
recipe proposed by Delley [21]. The effect of this type of integration
grid and another one, the so-called Stratmann partitioning [46], on
the stress tensor is discussed below (Section 5.4).

5.1. Different crystal systems

We test our analytical implementation with various different
crystal systems and computational settings. At different lattice
parameters around the equilibrium geometry, the numerical and
analytical stress are computed by single point calculations. A
plot of such calculations can be seen in Fig. 4 for silicon. If the
crystal system has more than one lattice parameter, we vary each
one separately while keeping the others fixed. The differences
between the numerical and analytical stress are then evaluated by
calculating the mean of these differences as well as the maximum
of the absolute differences and the standard deviation.

In Table 1, the results for a broad range of crystal systems and
computational settings are listed. We find that our analytical im-
plementation is very accurate compared to the numerical stress
for all tested crystal systems and exchange-correlation function-
als. The mean difference, maximum absolute difference, and stan-
dard deviation of the difference between these two quantities is

always in the range of meV/A3 or below, i.e., in the order of mag-
nitude of the numerical error. This is substantiated by the fact that
no constant offset, systematic variation, or regular pattern could be
found in the respective deviations.

So far, we looked only at the diagonal elements of the stress
tensor. We next address the off-diagonal elements at a exemplary
system. In general, it suffices to calculate the upper (lower)
triangle of the stress tensor since it is symmetric by definition.
However, to test the numerical accuracy of our implementation,
we calculate the full stress tensor in this section and compare the
off-diagonal elements. Fig. 5 shows that the off-diagonal elements
of the analytical stress are very accurate, too. Additionally, the
figure demonstrates that the difference between upper and lower
triangle is vanishingly small.
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Table 1

43

Mean difference, maximum absolute difference, and standard deviation of the difference between numerical and analytical stress for different crystal systems. All
values are given in units of meV/A3. For the listed systems, the crystal and the total number of atoms in the unit cell is given. Under computational settings, the used
exchange-correlation functional is noted as well as if a relativistic treatment was chosen (no entry means non-relativistic). Additionally, a collinear spin treatment was used
for iron. It is also listed which lattice parameter is varied and which corresponding stress component is evaluated.

Crystal #Atoms Computational settings Latt. par. Stress comp. Mean diff. Max. diff. Std. dev.
Aluminum (fcc) 4 PBE a XX 0.6 3.1 13
Ammonia (cubic) 16 HSE06 + vdW a XX —-0.3 0.4 0.1
Benzene (orthorhombic) 48 HSE06 + vdW a XX —0.4 0.9 0.5
b yy —14 1.8 0.4
c 72z —0.1 0.6 0.5
Carbon dioxide (cubic) 12 HSE06 + vdW a XX —0.5 0.6 0.1
Gold (fcc) 4 PBE, rel. a XX 0.6 2.2 0.7
Graphite (hexagonal) 4 PBE + vdW a XX —4.1 6.7 1.5
c 2z —-09 1.3 0.2
Hexamine (bcc) 22 HSEO06 + vdW a XX —0.2 0.2 0.0
Iron (bcc) 1 PBE, rel., coll. spin a XX 0.0 0.3 0.1
PBEQO, rel., coll. spin a XX —-0.5 6.5 3.0
Naphthalene (monoclinic) 36 HSE06 + vdW a XX —0.1 0.4 0.3
b yy -1.1 1.8 0.7
c 72z -19 23 0.3
Sodium (bcc) 2 PBE a XX —0.1 0.3 0.1
Sodium chloride (rock salt) 2 PBE a XX 0.3 0.6 0.2
Silicon (diamond) 8 LDA a XX 0.8 1.8 0.7
PBE + vdW a XX 0.7 2.7 1.1
PBEO a XX 1.0 2.7 0.9
HSE06 a XX 1.0 2.7 0.9
Silicon carbide (wurtzite) 4 PBE a XX 1.8 25 0.8
c 2z 0.2 0.8 0.5
Urea (tetragonal) 16 HSEO06 + vdW a XX —0.2 0.4 0.1
c 7z —14 1.7 0.3

Table 2

Difference between numerical and analytical stress in units of meV//:'\3 for different exchange-correlation functionals. The calculations were performed for a diamond unit

cell of silicon (8 atoms) at a lattice parameter of 5.2 A.

AMO5  B3LYP BLYP HF  HSEO6  PBE  PBEO  PBEint  PBEsol PBEsol0 PW-LDA PZ-LDA revPBE  RPBE
Diff. 14 19 18 18 18 1.8 18 1.4 1.8 1.8 15 1.4 1.7 17
5.2. Different functionals B Silicon — 8 atoms, a = 5.2 A, PBEO
2.5x10 T 1T T T ™ T ™ T " ]
As a further test, calculations with all LDA, GGA and hybrid
exchange-correlation functionals available within FHI-aims were fz - -
performed. The resulting difference between the numerical and =
analytical stress for a silicon crystal is listed in Table 2. The % R
results show that our implementation is consistent across all tested bﬁ 2.0x107 [~ .
functionals. |
Additionally, for hybrid exchange correlation functionals, the Z | i
fraction « of exact-exchange from Eq. (76) can be varied to check ©
the accuracy of the analytical stress. For a silicon crystal, the
difference to the numerical stress stays almost constant, see Fig. 6, Isspol——L 1 1 v 1
and scales only weakly with « showing that we have a consistent 0 02 04 0.6 0.8 1

implementation.

5.3. Basis set and unit cell size

In this section, we demonstrate the consistency of the analytical
stress with respect to the basis set and unit cell size. The difference
between numerical and analytical stress stays almost constant
when the basis set size is increased, see Fig. 7. Fig. 8 shows that the
analytical stress stays constant within numerical limitations when
the size of the unit cell is increased.

5.4. Partition functions for integration

In FHI-aims, the numerical integrations are performed by
partitioning the integrand with the help of atom-centered partition
functions [21,22,46], similarly to the partitioning of the electronic
density as described in Section 3.4. With this, an integral can be

Fraction o of exact-exchange

Fig. 6. Difference between numerical (oy ) and analytical (oyq) stress for
different fractions o of exact-exchange. The calculations were performed for a
diamond unit cell of silicon (8 atoms) with the PBEO functional at a lattice parameter
of 5.2 A.

rewritten in the following way

[arsm =3 [armwra.
1

where the atom-centered partition functions p; (r) are defined as

(111)

g(r)

72@(1‘)’ (112)
J

pi(r) =

and g;(r) is an in principle arbitrary function that is strongly
peaked at atom I. In general, these functions change under strain,
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Silicon — 8 atoms, a=15.2 A, PBE
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Fig. 7. Difference between numerical (oy,) and analytical (oy ) stress for
increasing basis set size. The higher the tier in FHI-aims, the more basis functions
are included. For more details about the used basis set see Appendix D.2. The
calculations were performed for a diamond unit cell of silicon (8 atoms) with the
PBE functional at a lattice parameter of 5.2 A.

Gold —a=4.0 A, PBE, relativistic
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Fig. 8. Change of the analytical stress for increasing unit cell sizes relative to a
1 x 1 x 1 unit cell (1 atom). The calculations were performed for fcc unit cells
of gold with the PBE functional and relativistic treatment at a lattice parameter of
4.0A.

Silicon — 8 atoms, a = 5.2 A, LDA
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Fig. 9. Change of the analytical stress for increasing integration grid densities
relative to the densest used grid. The behavior for two different integration partition
functions is shown, see text. Increasing the radial multiplier increases the number
of spherical integration shells around every atom, and therefore, leading to a denser
integration grid. For more details about the used integration grid see Appendix D.1.
The calculations were performed for a diamond unit cell of silicon (8 atoms) with
the LDA functional at a lattice parameter of 5.2 A.

and therefore, contribute to the stress tensor. However, in the
limit of an infinitively dense integration grid, this additional con-
tribution vanishes since such a grid stays constant under a strain
transformation.

Silicon — 8 atoms, LDA
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Fig. 10. Difference between numerical (oy ) and analytical (o q) stress for two
different integration partition functions, see text. The calculations were performed
for a diamond unit cell of silicon (8 atoms) with the LDA functional.

The n/r?-type partition function by Delley [21] uses g;(r) =
nife(r)/|r|? and ni™¢(r) is the electron density of the free atom I.>
For such a partition function the contribution to the stress tensor
will be small because the partition functions move equally with
the atoms under a strain transformation and certain integrands
are built up from atom-centered quantities. Fig. 9 shows that
the contribution of the integration grid for a n/r?-type partition

function is considerably below meV//"\3 (thus, below the numerical
accuracy) and the analytical stress converges rapidly towards a
certain value by increasing the grid density.

We expect to get bigger contributions to the stress tensor
compared to the n/r?-type partition function, if the partition
function depends on the position of the atoms with respect to each
other. For instance, this is the case for a Stratmann partitioning
scheme [46], a modified version of which has been implemented
in FHI-aims (see Appendix C). However, Fig. 9 shows that the
contribution of the “modified Stratmann” partition function is on
the same order as for the n/r?-type partition function. The only
difference is that the analytical stress converges more slowly with
increasing integration grid density, which is insignificant since the
differences are below the target numerical accuracy required for
practical calculations.

In summary, the contribution of the integration grid to the

stress tensor are very small (considerably below meV/AB), and we
therefore neglect this contribution. Also, using a Stratmann parti-
tion function does not lead to larger deviations in the difference
between numerical and analytical stress compared to a n/r?-type
partition function if we do calculations for different lattice param-
eters (Fig. 10).

5.5. Timings

In this section, the efficiency of our analytical stress imple-
mentation is estimated. The exact numbers are specific to our im-
plementation but can be seen as a guidance. In order to test the
performance of the computation of the analytical stress, we com-
pare the computing time for total energy, forces, analytical stress,
and numerical stress. For this purpose, we measure how much ad-
ditional time the computation takes relative to the time for a total
energy computation. For LDA and PBE, the computation of the an-
alytical stress including forces takes roughly double the time of a
total energy computation, see Fig. 11. The time in addition to a to-
tal energy computation is only doubled compared to the computa-
tion of forces. This is a very good result if one considers that three

3 In the case of FHI-aims, the confined free atom electron density given by the
confining potential v, of Eq. (9) in Ref. [16] is used for the partition function and
electrostatics.
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Silicon — 8 atoms, a= 5.2 A

forces
forces + ana. stress
forces + num. stress

) / Ttot.energy
S~

tot.energy

(T-T
(3]

LDA PBE

HSE06
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Fig. 11. Comparison between the computing time for forces, forces + analytical
stress, and forces 4+ numerical stress for different exchange-correlation functionals.
We take the difference between the time Ty energy fOr a total energy calculation and
time T for a calculation of one of the quantities listed before. Then, the value relative
t0 Tiot.energy iS plotted. The calculations were performed for a diamond unit cell of
silicon (8 atoms) at a lattice parameter of 5.2 A.

derivatives have to be calculated for the forces, however, for the
analytical stress including forces, nine derivatives (three for forces
and six for stress) are needed. The additional cost for the compu-
tation of the analytical stress including forces is significantly lower
for hybrid functionals since several terms of the exact-exchange
energy computation can be reused (compare Eqgs. (82) and (89))
and the evaluation of the exact-exchange part dominates the over-
all computing time.

The additional time for the computation of the numerical stress
including forces is roughly five to six times the time for a total
energy calculation for all tested exchange correlation functionals,
see Fig. 11. While this might be still computationally feasible for
LDA and GGA functionals, it is definitely a heavy burden for unit
cell optimizations with hybrid functionals.

Fig. 12 exemplifies the typical computational performance and
scaling of the electrostatic potential and of its strain derivatives
as function of the system size. In agreement with previous studies
[16,18], we find almost linear scaling @ (N'-3) with respect to the
number of atoms N for the total electrostatic potential, in spite
of the fact that the terms that are computed in reciprocal space
scale almost quadratically @ (N'®). Formally, we expect such a
scaling since in addition to the operations on the real space grid
which scale as @(N) [16] a sum over the G-vectors occurs in Eq.
(58). In turn, this sum scales linearly with the volume of the unit
cell/the number of atoms N. Due to the minute prefactor, however,
the reciprocal term does not dominate the scaling for system
sizes studied here (below ~200 atoms, not shown in Fig. 12) so
that we find approximately @ (N) scaling as originally discussed
by Delley [18]. Fig. 12(b) shows that the calculation of analytical
gradients (forces and stress) only affects the prefactors, but not
the overall scaling behavior with respect to system size (O (N!3)
for all electrostatic terms and @ (N?1) for the terms computed in
reciprocal space). As a consequence, even for large systems (N =
125, not shown in Fig. 12) the computation of the electrostatics
together with its gradients only takes up a fraction (<16 %) of the
total computational time of a full self-consistent field (SCF) cycle.

6. Unit cell optimization and pressure

For the sake of completeness, we sketch briefly how the stress
tensor can be used to optimize the unit cell of a crystal structure.

Aluminum —a = 3.8 A, LDA
100 g7 I T E

@—@ Total es. potential

Avg. time per SCF inter. [s]

0.01 B—@ Reciprocal part

Add. time for gradients [s]

i
3
3
001 E | | E

1 8 27
Number of atoms

=
N

Fig. 12. Average wall clock time (per SCF iteration on 36 CPU cores, fcc aluminum,
LDA, lattice constant 3.8 A) for the computation of the total electrostatic potential
(black) and of the reciprocal part (red) as function of the system size. To guide
the eye, the dashed blue lines exemplify an ideal linear scaling. The upper plot (a)
shows the wall time needed to evaluate all terms required to compute the total
electrostatic energy, whereas the lower plot (b) shows the additional wall time
required to compute the respective gradients (forces and stress).

For this, the forces acting on the lattice vectors a, are needed which
we define as the negative derivative of the total energy E, with
respect to the lattice vectors

_ aEtot

lat
F" =
" da,

(113)

Since the stress tensor depends only on the atom positions and the
lattice vectors, Eq. (13) reads as

0E ot 9E ot
Vo = 2 g 2
, n

(114)

where the strain derivatives have already been evaluated accord-
ing to Section 2.2. The derivatives of the total energy with respect
to the atom positions are the atomic forces, F; , = — gg"; .Here, F; ;.
is component A of the force acting on atom I. Solving Eq. (114) for
the lattice vector derivative yields the forces acting on the lattice

vectors, namely,

Fai=—>" Voru(AT),, — ZFLARLM(A_])W
w

w1

(115)

with A the matrix of the lattice vectors, see Section 2.2.3. F2! is
component A of the force acting on lattice vector a,,.

Together with the atomic forces, the lattice vector forces can
be used to optimize the structure of the unit cell and the position
of the atoms of a crystal. In order to treat atoms and lattice vec-
tors on equal footing, we define a generalized coordinate vector,
X = {ax1,0ay1,...,0:3,Rix Ry, ..., Ry}, containing the lattice
vectors and atom positions. In addition, we can write the cor-
responding generalized force vector as F = {F{", K, ..., F},
Fix, F1y, ..., Fy .}, containing the lattice vector forces and atomic
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Table 3

Required optimization steps for the relaxation of monoclinic naphthalene (PBE +
vdW) for different choices of the initial Hessians (see text) for the lattice vectors,
the atoms, and the cross-terms. For case (a), the initial geometry corresponds to an
uniformly 25 % increased equilibrium unit cell. For case (b), the monoclinic angle
was increase by 16° and one lattice vector was shortened by 10 % with respect to
equilibrium.

Latt. vec. Atoms Cross-terms (a) Volume (b) Angle
Diag. Lindh 0 76 117
FD Lindh 0 69 111
FD BFGS 0 64 69
BFGS BFGS 0 77 78
BFGS BFGS BFGS 18 45

" This is the standard Hessian of FHI-aims.

forces. Together with Ey, X and F can be used as an input for an
optimization scheme to obtain the local minimum of the crystal
structure.

For the optimization an initial guess for the Hessian is needed.
In the case of FHI-aims, the Lindh model matrix [47] is used to
initialize the Hessian between all atomic coordinates. Since we did
notimplement the Lindh method for periodic boundary conditions,
we set all the Hessian rows and columns associated with the lattice
vector degrees of freedom to be diagonal. The diagonal entries are

chosen to have a conservative value of 25 eV/AZ.

With the analytical stress tensor and the finite difference
infrastructure described above at hand, it is alternatively possible
to determine the Hessian of the lattice vectors by finite differences
(FD). This requires 18 (three lattice vectors, three coordinates, two
distortions for central finite difference) separate analytical stress
calculations, if the Hessian is determined by using finite differences
of the forces acting on the lattice vectors. Quite surprisingly,
using this FD Hessian of the lattice vectors as an input for the
relaxation does not reduce the number of required optimization
steps considerably, as Table 3 shows for two representative test
cases. We could trace back this finding to the fact that the cross-
terms, i.e., the entries of the Hessian that are mixed derivatives
with respect to lattice and atomic degrees of freedom, are still
zero, as substantiated in Table 3 with the following strategy:
During the geometry optimization, the Hessian matrix is updated
at each step according to the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) formula [48], as a consequence of which an approximate
Hessian at the local minimum is known at the end of the
optimization. We now use parts of this BFGS Hessian obtained by a
previous optimization to investigate which terms (lattice, atoms,
or cross-terms) influence the performance of the optimization
most.* Obviously, the optimization is sped up greatly if the full
BFGS Hessian is presented to the relaxation algorithm from the
beginning (last line in Table 3). A brute force numerical calculation
of the full Hessian for both lattice and atomic degrees of freedom
with finite differences requires 6(N + 3) separate calculations of
the gradients (forces and stress) with N the number of atoms and
is thus not particularly useful in practice. However, also feeding
only parts of this BFGS Hessian to the relaxation algorithm without
the cross terms has no considerable impact on the number of
relaxation steps. In summary, these investigations show that
(a) a more accurate estimate of the lattice vector Hessian is not
generally required (but might be useful in corner cases) and (b) that
more educated guesses (in the spirit of [47]) for the full Hessian
that must include the cross-terms have the potential to speed up
combined volume/geometry relaxations considerably.

The above described method to optimize crystal structures can
be extended to the case where external pressure is acting on the

4 Evidently, this strategy is not useful in practice since it requires knowledge of
the equilibrium geometry that is actually sought after.

crystal. When we apply external hydrostatic pressure pex to the
crystal, then, we have to minimize the enthalpy H(S, p) instead
of the total (inner) energy E(S, V) of the underlying system. The
enthalpy is given by

H(Sv 13) = Etot(sy V) + pextv

with V the volume of the system. We see immediately that the
atomic forces are not affected by the external pressure, however,
we get an additional contribution to the stress tensor since the
unit cell volume depends on the strain. Therefore, the total stress
is given by

(116)

U)E?} =0+ (Skupexta (117)

where o;,, is given in Section 3.6 and the contribution of the
external pressure was evaluated according to Eq. (19).

Finding the local minimum under pressure works exactly as
described above, only o3, in Eq. (115) has to replaced by o;%
from Eq. (117). Then, H, X, and F can be used for the optimization
scheme.

7. Conclusions

In this paper, we have derived the stress tensor in an all-
electron, numeric atom-centered orbital based density-functional
formalism. We have presented all relevant contributions to
the stress including those from hybrid exchange-correlation
functionals and from a pairwise van der Waals correction scheme.
Furthermore, we have given details about corrections for the
numerical calculations in order to obtain more accurate results.
We have validated that our implementation in the electronic
structure theory code FHI-aims works and produces consistent
results at different levels of theory and accuracy, e.g., for various
exchange-correlation functionals, basis set sizes, system sizes, and
integration grids. The resulting accuracy has been investigated for
a wide range of crystal systems. Thereby, the difference between
the stress tensor calculated via our analytical derivatives and the
one calculated via finite differences is always in the range of
meV//f\3 or below which is comparable to the magnitude of the
numerical error. This holds even true for the lowest computational
settings (light) which employ a rather sparse integration grid.
In comparison to the finite difference method, the calculation of
the stress tensor with our implementation allows a speedup of
at least a factor three up to five for hybrid exchange-correlation
functionals. Therefore, our method allows us to perform accurate
and rapid optimization of crystal structures under pressure.
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Appendix A. Strain derivatives of electrostatics

A.1. Strain derivative of on-site Hartree term

We want to show that the strain derivative of the Hartree po-
tential v{_, (r — Ry) vanishes for r = R;. Starting with the definition
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from Eq. (49) and using Egs. (15) and (34), we get

vl (r —R))
ST = s~ R)
Al
- on@F —R) 1
+ [ dr (fy —Ri,) — ~
/v S T Y
1
dF (7, — F—R —_— Al
+/V (Fu — r)my (F I)ar,\lr—rl (A1)

Next, we use integration by parts on the third term and the bound-
ary term vanishes on the surface of the unit cell. Together with the
product rule of derivatives, we obtain

1
dr (f, — r—R T
/\; r(ru rp.)nl(r ')81' |r_r|
- o 8“1(F—R1) 1
=-3 v'(r—R)—/dr(r—r) E 5
A PH ! v " " ar;, r —r|

We see that the two delta terms cancel each other. In the case
r = R, the two integrals cancel each other, too, and the strain
derivative vanishes.

. (A2)

A.2. Strain derivative of Ewald long range term

Here, we show the individual derivatives of the Ewald long
range term, see Eq. (66). The derivatives with respect to the
position vectors are

«2G?
viR(r —R) 47 . exp(— 4 )
78rk r, = v Xc:lcﬂ‘ui
X §;(G) exp(iGr), (A.3)
I exp( — ¢
vir(r —Ryp) _ 4n . T4 )
SR R =~y > iGRy, =
. G
X S;(G) exp(iGr), (A4)
and the volume derivative is
Jugr—R) 1
—_— r —R)). A5
8V V LR( l) ( )
For the G-vector, we need the following derivatives
951(G) .
"% = 17,,(6) — iR ,.S5i(G) (AB)
G,
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0 exp(—#) exp(— K24GZ ) 2 k?
— | ——F )= =+ = |G.. A7
3G, G [ (62 2 ) o (AT)

The definitions of S;(G) and I ,(G) are given in Egs. (59) and (69),
respectively. With this, the derivative of the Ewald long range term
with respect to the G-vector is

22
av{R(r—R,)G 4 5 exp(—Kf )
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(A8)

Since for the strain derivative of v g (r) the negative of the G-vector
derivative is needed (Eq. (66)), the terms of the position vectors
derivative cancel completely with the third and fourth term of
Eq. (A.8).

Appendix B. Strain derivatives of exact exchange

B.1. Strain derivative of Coulomb matrix

We want to show that the derivative of the Coulomb matrix can
be changed from R to —% We will use the notation m(I) to

indicate that the auxiliary basis function m is centered on atom I. In
addition, we will employ integration by parts (IP) and the boundary
terms vanish for the Coulomb integral since the basis functions are
zero at infinity:

W%w = // dr dr Muﬂr —)P,(F —R))
- // dr dr %{R’)v(lr —F))P,(r —R)
// dr dr P, (r — R,)%Pn(F —Ry)
= _//drdfpm(r R)2U=TP, (7 — Ry)
// dr di P,y (r — R)u(|r — 7)) 25—
—// dr di Po(r — R)v(|r — r|)"’”“;,;”"’)
WVammn)

= —-—". B.1
OR; 5 (B1)

I

1=

B.2. Strain derivative of expansion coefficients

We want to show that the derlvatlve of the expansion coeffi-
cients can be changed from 5— to We will use the notation
i(I) to indicate that the ba51s functlon i 15 centered onatom /. In ad-
dition, we will employ integration by parts (IP) and the boundary
terms vanish for the Coulomb integrals since the basis functions
are zero at infinity.

First, we will separately show that the derivative for each of the
two factors (ij|n) and L"{m of Eq. (85) can be changed and we begin
with the Coulomb integral for the case that n is centered on atom I

AN In(D))
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81(|r ) — 3v(\r )

We have used that . From this result, we can
derive the same relatlon ifnis centered on atom ] by swapping i(I)
with j(J) in the Coulomb integral which changes nothing per def-
inition (Eq. (80)) and then substituting the variable name I with J
and J with I, respectively, and the same for the variables i and j.
Hence, we obtain

AAMIPIngG) _ DD ()
R, o Ry '

(B.3)

Next we consider the inverse Coulomb matrix LV. The deriva-
tive ax of an inverse matrix A~! is given by ""3—71 = —A"! g—QA”.
Additionally, we will need that the derivatives of the on-site terms
of the Coulomb matrix vanish, i.e., %ﬁ’:“) = 0, which can be eas-

ily shown by using again integration by parts. However, this is not
true for the inverse Coulomb matrix and it does not matter for the
following derivation on which atom the auxiliary basis functions
m and n are centered. With this said, the derivative of the inverse
Coulomb matrix becomes
i
o), g VY
R, L gt
I cocr ) I
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_ Z Ll 8Vr(l)s(l) o Z 4l aVt(l)s(l) Llj
- ne 8R ‘sm ne BR
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r,s€P(I])
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= T (B.4)
Ry

where we have used Eq. (B.1).
Now, we have all the necessary relations and we can tend to the
expansion coefficients using Egs. (B.2), (B.3), and (B.4)
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For the inverse Coulomb matrix LY, the change of the derivative
does not depend on which atom the auxiliary basis functions m
and n are centered. For the Coulomb integral (ij|n), there are only
two possibilities, either n is centered on atom I or J. Both cases are

covered by Egs. (B.2) and (B.3) and we can change the derivative.

Appendix C. “Modified Stratmann” partition function

Here, the partition function for integrals proposed by Stratmann
and coworkers [46] is briefly reviewed and the modification of this
approach that is implemented in FHI-aims is presented.

The goal is to find an expression for the function g (r) in
Eq. (111) that is strongly peaked around atom I which allows fast
and accurate numerical integration. For this purpose, confocal el-
liptical coordinates juy; () between pairs of atoms are defined [46],

[r —Ry| — |r — Ry|
IR; — Ry|

where R; and R; are the positions of atom I and atom J, respectively.
The range of py is limited to —1 < puy(r) < 1. Next a piecewise
function h is defined,

1, uy < —
h(py, @) = {k(uy, @), —a < uy(r) <a (C2)
-1, uy = a,

using the threshold a. In practice, an empirically determined value
of a = 0.64 is used. The function k is required to be continuously
differentiable at ;y = =a. The proposed form of Stratmann and
coworkers for k is

Ky, @ = [35(22) = 35(%2)" +21(%2)" = 5(42)]. (€3)

This defines the so-called cell function,

S(,U/U, a) = %[] - h(/"l/l]! a)]’ (C.4)

the values of which are in the range between 0 and 1. The function
g/ (r) is then given by

=[5y, 0. (C5)
J#

Despite the threshold a in Eq. (C.2), the distance up to which
an atom contributes to the cell function can be very large. This
poses a problem for periodic systems because it would lead to large
integration volumes. In order to solve this problem, the partition
function by Stratmann et al. as described above has been modified
inside FHI-aims. Only atoms which are closer to the integration
point r than the maximal extend of their associated basis functions
are allowed to contribute. In the case of the numeric atom-centered
orbitals of FHI-aims, the maximal extend is given by the cut-off
radius re, of the confining potential v (see Eq. (9) in Ref. [16]).
A typical value of 1.y is 6 A. To avoid discontinuities, the following
interpolation scheme for the cell function s of Eq. (C.4) is employed:

g(r)

Smod (g (1), @) = (1 — wy (1)) + wy (1)s(uy (r), a) (C6)
with
1, d] = brgut
wr) = Jy@), bri" <d <rly (C7)
0, d] = réut
and
1 1 rl
v,(r)=2+2cos|: d]/]citb } (c8)

Here, d; = |r — Ry| is the distance between integration point r and
atom J. The transition threshold b has been chosen as b = 0.8. In
summary, this modification allows to use the Stratmann partition
function together with a restricted atom list without introducing
any discontinuities.

Appendix D. Numerical settings

D.1. Integration grid

FHI-aims performs the numerical integration on overlapping,
atom-centered grids (details are described in Ref. [16]). Each
integrand is divided into localized atom-centered pieces (see
Eq. (111)) and each of these pieces is then integrated on its own
grid. An atom-centered grid consists of N, spherical integration
shells r(s) (s = 1, ..., N;) which are centered around the corre-
sponding atom and extend up to an outermost shell at distance
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Fig. D.13. Number of angular integration points for silicon in dependence of the
radial distance from the nucleus. For the tight integration grid (red, dashed), the
number of points increases faster with increasing distance and is overall larger in
the most distant region in comparison to the light integration grid (black, solid). The
number of integration points stays constant beyond 2 A. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. D.14. Spherical integration shells for silicon. The position of these shells
around an atom is shown and they are determined by Eq. (D.1). The light integration
grid (black, bottom) uses a radial multiplier ny,,r = 1and an extension of the shells
Touter = 5 A. For the tight integration grid (red, top) the values are npy: = 2 and
Touter = 7A-

Touter from the nucleus. As proposed by Baker et al. [49], the po-
sitions of the integration shells are determined by

log[1— (s/(N: + 1)?)]
log[1— (N;/(N: + 1)2)]

Angular integration points are distributed on each shell such that
spherical harmonics up to a certain order are integrated exactly.
This kind of grid is called Lebedev grid and a version proposed
by Delley [50] is employed. More angular integration points are
needed for far away shells than for those close to the nucleus.
Fig. D.13 shows exemplarily the number of points as a function of
the radial distance for silicon. Adding up the angular integration
points of all shells, gives the total number of grid points per atom
Niot atom- The accuracy of the grid can be increased uniformly by
placing additional shells at integer fractions of the original grid. The
radial multiplier ny,; denotes the denominator of these fractions.

e.g., a radial multiplier of 2 places additional shells at s = % s =

%, ...,S=N+ % resulting in 2N, + 1 total shells. Fig. D.14 shows

exemplarily the position of the integration shells for different ny,
and royeer in the case of silicon. In Table D.4, the specifications of the
light and tight integration grid for silicon are shown which were
used for the study of the numerical correction terms.

r(S) = Touter (D.1)

D.2. Basis set

The atom-centered basis set of FHI-aims (details are described
in Ref. [16]) is defined by the numerically tabulated radial func-

Table D.4

Integration grids of silicon. The specification of the light and
tight integration grid are shown here. N, specifies the number of
spherical integration shells around each atom, 7oy, the extend of
the grid, Ny the radial multiplier, Nag the number of angular
integration points, and N, atom the total number of grid points per
atom. See also text.

Light grid Tight grid
N; 42 42
Touter 5A 7A
Nmult 1 2
min(N;ng) 50 50
max(N;ng) 302 434
Niot,atom 5604 17918

Table D.5

Shorthand notation for the parameters used to obtain the radial
functions for silicon according to Eq. (8) in Ref. [16]. For the
confinement potential vy, we used roner = 4A and we =
2 A (see Eq. (9) in Ref. [16]). The minimal basis consist of the
radial functions of the occupied orbitals of spherically symmetric
free atoms with noble gas configuration and quantum numbers
of the additional valence functions. H(nl, z) denotes a hydrogen-
like radial function for the Coulomb potential z/r with radial and
angular quantum numbers n and [, respectively. X>* (nl) denotes a
n, | function for the doubly positive charged ion of element X. See
Ref. [16] for more details.

Si

Minimal [Ne] + 3s3p

Tier 1 H(3d, 4.2)
H(2p, 1.4)
H(4f, 6.2)
Si>*(3s)

Tier 2 H(3d, 9.2)
H(5g, 9.4)
H(4p, 4.0)
H(1s, 0.65)

Tier 3 Si2*(3d)
H(3s, 2.6)
H(4f, 8.4)
H(3d, 3.4)
H(3p,7.8)

tions. Variational flexibility of this basis set is achieved by suc-
cessively adding different radial functions. For each chemical
element, radial functions are grouped in so-called tiers, namely
“tier 1”, “tier 2”, and so on. The successive basis sets are hierar-
chical. For instance, “tier 1” for silicon consists of a s, p, d, f radial
function each, as specified in Table D.5. A “tier 2" basis set adds fur-
ther radial functions while including the radial functions of “tier 1”
as well. Table D.5 shows the shorthand notation for the parameters
used to obtain the radial functions of silicon for those basis sets
which were used for the study of the analytical stress for different
basis set sizes.
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