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calculating the electronic structure of a bulk semiconductor (GaAs) with up to 1,024 atoms per unit cell
without compromising the accuracy.
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1. Introduction

The Hartree-Fock method is the oldest viable electronic struc-
ture approach for practical computations that ensures the
fermionic character of the electronic wave function explicitly. For
accurate calculations, electron correlation must still be accounted
for. In molecular calculations (quantum chemistry), so-called hy-
brid functionals based on a mixture of non-local exchange and
semilocal density-functional theory have long been employed as
a de facto standard (e.g., the B3LYP [1,2], PBEh [3] (also referred to
as PBEO [4] or PBE1PBE) functionals, or the HSE range-separated
hybrid functional [5-7]). For solids, however, the non-local na-
ture of the Coulomb operator has prevented a widespread use of
Hartree-Fock-like exchange for a long time. A number of success-
ful hybrid functional implementations for solids (periodic bound-
ary conditions) have been reported in the past several years [8-20].
Aside from ever-improving computational resources, a main driv-
ing force is arguably the emergence of the HSE06 functional [5,6],
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which shows an appealing performance for lattice parameters,
cohesive energies, and single-quasiparticle-like band structure
properties of semiconductors and insulators. Thus, efficient imple-
mentations of hybrid functionals are highly desirable.

Aside from the “fundamental” choice of the right approxi-
mation for exchange and correlation, a primary challenge for
theory is that of the accuracy of all other numerical approxi-
mations vs. the efficiency of the method. Efficient all-electron
hybrid-functional implementations exist for the linearized aug-
mented plane wave (LAPW) [18,19] and projector-augmented
wave (PAW) [16,20] methods, but contain additional approxima-
tions for the core-valence electron interaction, and remain com-
paratively computationally heavy for large and/or low-symmetry
structures. Much larger system sizes are attainable by methods
which “pseudoize” away the core electrons [17,12,20] or rely on
basis sets that allow analytic integration [8,15]. Even then, the at-
tainable problem sizes (number of atoms or molecules in a super-
cell) in practice remain significantly below what is achieved by
semilocal functionals [21,22].

The work presented here employs numeric atom-centered
basis functions in an all-electron implementation of electronic-
structure theory [23] for hybrid functionals with periodic bound-
ary conditions. Depending on the choice of basis set, total-energy
convergence vs. computational speed can be balanced from fast
qualitative to meV-level converged accuracy as, e.g., demonstrated
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for benchmark molecules by Delley [24]. Our own implementation,
the Fritz Haber Institute ab initio molecular simulation (FHI-aims)
code [23], features hierarchical numeric atom-centered basis sets
for all elements (nuclear weight 1-102) that enables such accurate
convergence for large systems and semilocal density-functional
theory (DFT) in practice [21,25,26]. Molecules and atomic clus-
ters can be treated with similar accuracy with hybrid functionals,
using a “resolution of the identity” (RI) [27-29] approach (also re-
ferred to as “variational density fitting”) tailored for numeric atom-
centered basis functions [30]. Our implementation also allows for
valence correlation-consistent atomic orbital basis sets [31] for
extrapolating to the complete basis set limit, which is particu-
larly important for perturbation-theory-based methods, such as
the random-phase approximation or the GW approach. Recently,
the RI approach has been also applied to periodic systems [32-35].

The goal of the present paper is to outline the methodological
and algorithmic framework that allows us to significantly increase
the computational performance of methods based on RI for peri-
odic systems. As in the molecular case, we aim for a numerically ac-
curate all-electron treatment that remains feasible up to relatively
large system sizes (hundreds of atoms per unit cell), with low or
no spatial symmetry. Based on this framework, we compare two
different implementations: One that treats the Coulomb operator
in reciprocal space, where it is diagonal, and another that treats
the Coulomb operator in real space, where distance-based screen-
ing can be exploited to reduce computational time and memory
use for larger systems without loss of accuracy. From a practical
point of view, we are able to avoid any reliance on intermediate
storage to disk (which would imply a very slow communication
between the disk and the main memory) of any quantities and can
exploit parallel computer architectures with reasonable efficiency
for large problems. The performance of the method is verified for
bulk semiconductor properties. In particular, calculations of GaAs
supercells up to 1024 atoms demonstrate that our implementation
scales linearly with the number of atoms, retaining the rigorous ac-
curacy control.

The outline of the paper is as follows. Section 2 introduces
the general formalism of the Hartree-Fock exchange in periodic
systems. Section 3 describes the resolution of the identity approach
and related approximations. Details of the reciprocal- and real-
space implementations of the periodic Hartree-Fock exchange are
given in Sections 4 and 5, respectively. The analysis of the accuracy
and performance of the implementations is presented in Section 6.
Finally, our conclusions are summarized in Section 7.

2. Exchange operator in periodic boundary conditions

The fundamental quantity to be expressed in the Hartree-Fock
method is the exchange operator:

K¢ = (ik|l)Dg. (1)
kl

Here, o represents the spin index, and Dy, is the single-particle
density matrix of the system. Indices i, j, k, and [ refer to individual
basis functions in the chosen basis set used to expand the single-

particle states ¥, (r) = Zl 1 Cho @i(r). Dy, is defined as a sum over
states n in each spin channel:
kol
= Yhocch @)

where f,,, are occupation numbers, 0 < f,, < 1. For any
given choice of basis functions {¢;(r)}, the key challenge is to
represent (or, preferably, entirely circumvent the storage of) the
two-electron, four-index Coulomb integral (ij|kl):

kD = / PO DX .

Ir—r|

The exchange operator can be formally written in the coordinate
representation,

o (
R Yo @ = 3 / Vo (rf/’ 48 ). (4)

Yno (r) are eigenstates of the generalized Kohn-Sham hamiltonian

(—1v2+vem(r)+ / nr)
2 [r —

7 dr’ + g (r)
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wheren(r) = Y, fao |¥no (¥) |2 is the total electron density, Vey: (r)
is the external potential (including the potential due to atomic
nuclei), vg (r) and vZ(r) are the local exchange and correlation
potentials, respectively, €,, are the single-particle energies, and
« is a mixing parameter. For hybrid functionals, the total-energy
expression reads:

Etot _ Zem — Z (/((l —a)vy (r) + v (r))nU(r)dr)

1 [ n()n(r) )
— = | ——Zdrdr’ + E* + (1 — a)EX° — oELF 6
5 [ v+ B (- - aEl
where n? (r) is the electron density for spin-channel o, E)'(OC and ElcOC
are the local exchange and correlation energies, and

EF = ZKM D} (7)
klo

is the Hartree-Fock exchange energy. For the PBEO functional,
a = 0.25, Efe EPPE, and EX* EP®E [3,4]. In the HSE
functional, the exchange operator is replaced with a screened
version by replacing the Coulomb interaction 1/r with a short-
range interaction erfc(wr)/r, where w is the screening parameter,
and the missing long-range exchange piece is added by way of a
separate semilocal expansion [5-7]:

EHSE(w) _ EPBE () +aEHF R () 8)

HESR §s the exchange energy calculated with the screened

Coulomb interaction kernel, and EpBE R is the short-range PBE
exchange energy calculated by rescalmg the exchange hole by a
short-range Coulomb screening factor. Note that Coulomb interac-
tion is screened only in the exchange term, but not in the Hartree
and correlation terms. As mentioned above, the screening param-
eter w is not rigorously grounded by electronic structure theory.
Instead, optimum w and « values are sometimes determined by
comparing to experiment or to accurate parameter-free methods,
for example derived from many-body perturbation theory, for dif-
ferent system types [36-38]. For systems with translational sym-
metry, the above equations can be used with the following nota-
tional changes:

e The atomic-centered localized basis functions are repeated
periodically in real space. The three vectors of the real-space
lattice, a;, a,, as, also define a “reciprocal lattice” b; =
27'([32, 33]/‘/, b2 = 27'[[33, 31]/‘/, b3 = 27'[[81, 82]/‘/, where
square brackets denote vector product, and V = (ay, [a;, a3])
is the scalar triple product.

e Bloch’s theorem implies that the Kohn-Sham states of the
periodic hamiltonian are labeled by a continuous vector-index k
(k-point) and a discrete index n (band index). The unique values
of k can be restricted to only one unit cell of reciprocal space (by
convention, the “first Brillouin zone” or Wigner-Seitz cell of the
reciprocal lattice). Further, Eq. (5) can be solved independently
for each k-point. The single-particle states can be written as
Yk no () = exp(ikr)uy no (), Where uy o (r) is a function with
the periodicity of the lattice. In general, Y n, () is complex-
valued.

PBE SR

where Ey
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e For simplicity, we will define “extended” Bloch-like basis
functions, by incorporating the Bloch phase factors right there:
¢i(r) = Y p ¢i(r — R) exp(ikR), where R denotes real-space
lattice vectors.

For practical calculations, the first Brillouin zone must be sampled
on a discrete mesh. For instance, we can define such a mesh by
dividing each reciprocal lattice vector into m subdivisions, which
then define a grid that spans the first Brillouin zone. Due to the
phase factors associated with the states Yy . (r), the resulting
wave functions will be exactly periodic with a real-space period
m. For instance, an 8 x 8 x 8 k-space grid subdivision corresponds
to an exact periodicity across 8 x 8 x 8 real-space unit cells (the
so-called Born-von Karman cell). Because of the long-range nature
of the Coulomb potential, this imposed periodicity requires a spe-
cial treatment of the long-wavelength components of the Coulomb
operator (as discussed further in the text).

3. Resolution of the identity

The challenge in the HF exchange calculations is to evaluate the
two-electron Coulomb integrals as given in Eq. (3). Already in the
1950s [39], it was realized that, since two of the basis functions
share the same spatial coordinate in the integral, the set of all ba-
sis function products {¢;(r)¢;(r)} must be redundant as the ba-
sis set {¢;(r)} approaches completeness. Thus, numerical efficiency
can be notably enhanced when the basis function products are ex-
pressed as a linear combination of functions from a separate, auxil-
iary basis set {P, (r)}. Even if the convergence requirements for this
separate basis set are somewhat stringent if the Coulomb operator
is to be expanded accurately, its size will still scale as O(N), not
O(N?) if N is a measure of the system size. This approach is known
as “resolution of the identity” (RI), or “variational density fitting”,
in the literature [40-46]. In the following, we implicitly take into
account that our localized basis functions (both main and auxiliary)
are real-valued. Generally speaking, the RI approach consists in ex-
panding the basis pair products in terms of the auxiliary basis set

Gi(DPi(r) = CiPu(x), 9)
"

where C,-‘-L are the expansion coefficients to be specified later. This
immediately leads to

(kD = iV G, (10)

v

where

//P p P e (11)
[r—r/|

We will discuss different versions of the RI below. They cor-
respond to different strategies for determining the expansion co-
efficients C“ by minimizing errors due to the residual §p;;(r) =
¢i(r)i(r) — Z C P,(r) in the RI expansion. A straightforward
way to expand the four index integrals is known as “RI-SVS”,
where the expansion coefficients are determined as

= Z(U")Suw (12)
where (ijv) and S, are the three- and two-orbital overlap matrices,
i = [ #®amP.ws (13)
and

S = / P, (r)P,(r)dr. (14)

RI-SVS amounts to minimizing the norm of the residuals (8 0ii6 Pu)

Another strategy, more accurate particularly for calculating the
Coulomb integrals (see Eq. (3)), is an expansion that uses the
Coulomb metric. This expansion minimizes the Coulomb repulsion
between the residuals (Spi]-|8pij), and eliminates the expansion
error. The remaining quadratic error term goes to zero much faster
as the auxiliary basis set size (expansion quality) increases. The
corresponding expansion coefficients are:

= (v, (15)
v
where

$i(r)¢;(r)P, (')

(ij|v)=/ D!
r—r]

and the V matrix is already defined in Eq. (11). The “RI-V” ver-
sion of RI arguably reflects the most accurate RI standard in quan-
tum chemistry today. Our own non-periodic implementation of
the Coulomb operator [30] is also based on RI-V and encompasses
hybrid functionals, perturbation expressions such as second-order
Mpller-Pesset perturbation theory (MP2), random-phase approx-
imation (RPA), GoW, or self-consistent GW [47,48] accurately for
all practical purposes.

For extended (periodic) systems, straight RI-V does have one
disadvantage. If the basis functions i and j are localized, the spa-
tial extent of any given basis function product (i, j) is rigorously
bounded to the volume where both are non-zero. In RI-V, this prop-
erty is lost, as any basis function pair (i, j) localized at two specific
atoms is now expanded into auxiliary basis functions u centered at
any other atom in the system. In an infinite periodic system, such a
delocalization is obviously impractical. Based on simple complete-
ness arguments, it should be equally well possible to restrict the
auxiliary basis set into which a basis function pair (i, j) is expanded
to only the two atoms at which those basis functions are centered.
From a formal point of view, such a prescription destroys the rigor-
ous error cancellation properties of the expansion, reintroducing a
linear error of the resulting Coulomb matrix elements in the expan-
sion. Nonetheless, in the limit of a large auxiliary basis set the ex-
pansion must still be complete. As a benefit, the locality of the two
basis-function products in the original four-index Coulomb opera-
tor is now preserved in the RI expansion.

We have implemented such a localized resolution-of-identity
expression (called “RI-LVL”). Details will be reported in a separate
paper [49]; we here rely on the fact that our results for hybrid func-
tionals, given below, show excellent convergence both compared
to the literature and within themselves. We note that similar ex-
pansion recipes have been explored by others before [50-54]. In
our localized RI, we a priori require that

drdr’, (16)

Cj =0, forp ¢ P, (17)
where I, ] label the atoms where basis functions i, j are center-
ing, and & (I]) denotes the set of auxiliary basis functions belong-
ing to these two atoms. By minimizing the Coulomb self-repulsion
(80518p5) enforcing condition (17), one arrives at the following
“LVL” expansion coefficients

=Y @i, (18)

veP ()

where L{{M = (V”)_1 with V! being the V matrix (11) with non-
zero entries only for u € £ (If). This is the form of the RI expansion
that will be used for the remainder of this work.
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4. Reciprocal-space formalism for the exchange operator

The Coulomb operator is non-local in real space (i.e., it explicitly
depends on r and r’), but it is diagonal in reciprocal space. For a
periodic system, the exact-exchange matrix in reciprocal space can
be generally expressed using the RI approach

a(r ) () (r
K? (lo) = 15 @ i (D) Piq (D) @1 (T) P (1) dedr’
ij N kl /
1 iTa [r—1r'|

1
= N > Dh@ Y ik @)V, (k— @)C (g, k), (19)
kl.q w

where Nq is the number of k-points used to sample the first
Brillouin zone, and Cj,(k, q) are the RI expansion coefficients for
a periodic system,

PP =Y Chi(k, QPI™¥(r), (20)
"

where both the single-particle and auxiliary basis functions now
carry a kindex referring to a vector in the first Brillouin zone. P}f (r)
is the Bloch summation of auxiliary basis functions,

PE@®) =) e**p,(r—R), (21)
R
and Dy (q) is the density matrix that now also has a q-dependence:

DY@ =Y fino (@)l (@l (@), (22)

where f,,, (q) are the occupation numbers at k-point q, and c,’fm qQ
are the Kohn-Sham eigenvectors.

We have implemented two different methods to treat the sin-
gularity of the Coulomb matrix V,,, (k) atk = 0: (i) the singularity-
correction method of Gygi and Baldereschi [55], extended to sparse
k-point samplings [56], and (ii) a cutoff for the Coulomb opera-
tor beyond a certain distance (the cut-Coulomb operator) [57]. The
singularity-corrected Coulomb matrix VW calculated with either of
the methods can be used for a compact real-space representation of
the Coulomb matrix, as described in the next section (see Eq. (31)).
In practice, the Coulomb matrix in reciprocal space is calculated
using Ewald summation in case of the unmodified Coulomb opera-
tor, or discrete Fourier transformation by explicit real-space sum-
mation in case of cut-Coulomb or screened Coulomb potentials.

Now let us examine what simplification the localized RI (“LVL")
can bring. For a periodic system, the RI-LVL approximation implies
that in real space, one has

¢i(r — R)gy(r — R)

_ HR®) 1R '
=> (Ci(R)k(R/)PM (r = R) + Gy Pu (F — R )) ’ =
o

where R, R’ are Bravais lattice vectors, and we use i(R) to empha-
size that the basis function i belongs to the unit cell R. Apparently
Eq. (23) reflects the basic idea of RI-LVL: only the auxiliary func-
tions belonging to the unit cells from which the single-particle
basis functions originate are used in the expansion. In reciprocal
space, we now have

Pr Mg =Y e "R gy (r — R)gy(r — R)

RR
_ —ik-R ,iq-R’ 1(R) _
= DR Y (i Pur — R
R,R w

w(R')
+ Cryr)Pre (™ — R/))

_ —ik-R ,iq-R’ 1(Ro) _
=D e Rty (Cimo)k(R’—R)P (T —R)
n

RR

1(Ro)
+ O e Pu (T — R’))

= > (Chi(—k, Ro) + Cls(q, Ry)) PY(r), (24)
"

where Ry = 0 denotes the unit cell at the origin, and the trans-
lational invariance of the expansion coefficient, i.e., Ci’(‘é;‘k()R,)
Ci’jé'i"lg,,)km,_]{,,) is used above. The expansion coefficients in Eq. (24)

" . .
Cix (K, Ro) are represented in Fourier space

CL (K, Ry) = Z ef"'“c;(‘,;;‘,f&o). (25)
R

Comparing Egs. (20) and (24) we arrive at the following key ex-
pression:

Cir (K, @) = Cj, (=K, Ro) + Gy (q, Ro). (26)

This means that the RI-LVL scheme decouples the k and q de-
pendence of the RI expansion coefficients C,-’,j (k, q) in reciprocal
space. In practice only one independent Bloch vector (or equiva-
lently one Bravais vector in real space) needs to be kept in storage
of the three-orbital expansion coefficients. This greatly reduces the
memory cost and computational effort in HF-type calculations for
periodic systems.

5. Real-space formalism for the exchange operator

While algorithmically transparent and relatively easy to imple-
ment, the reciprocal-space approach has the disadvantage that the
Ci‘,f(—k, Rp) matrix is not sparse. It can be either stored or recal-
culated on the fly by Fourier transform of the real-space RI coeffi-
cients, and in each case there will be a time overhead. Moreover,
the possibility of a distance-based screening, based on the locality
of the basis functions, is lost.

As an alternative to the reciprocal-space formulation, one may
also formulate the exchange operator according to Eq. (1) in real
space. In this case, the number of arithmetic operations required
to calculate the Coulomb integrals (see Eq. (3)) will be reduced due
to the following two properties:

(1) the overlap between real-space basis functions (i, k) becomes
negligible with distance, as does the overlap between (I, j).

(2) The density matrix D}, decays with increasing distance
between the basis function pairs (i, k) and (1, j).

These properties result in a significant sparsity of the four-center
Coulomb integrals in real space, and pave the way to an a priori
screening of near-zero integrals.

It is this property that would be destroyed by traditional RI-V, as
then each basis function product (i, k), even if limited in range on
its own, would first become delocalized over the expanding auxil-
iary basis functions . By choosing our RI expansion to be localized
at only the atoms at which i and k are centered, we retain the same
localization as i and j, and therefore preserve the sparsity proper-
ties of Eq. (1).

The real-space version of the exchange operator is implemented
as follows. The k-dependent exchange operator in Eq. (1) can be
expressed as [58]:

K7 (k) =Y X7 (R), (27)
R
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where
XJ(R) =Y DY(R)
kI R
« Z/drdr/¢i(r)¢lc(r_ R")¢i(r' — R)¢y(r' —R' —R") (28)
R’ |r - r,|
and
DY(R) = DY (K)e ™R (29)

Ng 5

The translational symmetry is taken into account by considering
basis functions ¢; in Eq. (28) only within the reference unit cell
(R = 0). The meaning of the different lattice vectors entering Eq.
(28)isillustrated by Fig. 1. Using the resolution of identity, the real-
space exchange matrix can be written as:

Xij (R) = Z Z Z Z Cill:&%/)) VinriQ'-@ )CJI(R”)

kR R’ pnQ vQ’
x D(R+ R’ —R)). (30)

where Q' and Q" are lattice vectors. For brevity, we omit index 0
for basis functions belonging to the reference unit cell. In case of
our localized RI, the index w of an auxiliary basis function in the
above equation is restricted to either the same atom to which basis
function ¢; belongs (and then Q' = 0), or the atom of basis function
¢ (then Q' = R’). Similarly, Q” can only be either 0 or R”, for a
givenR”.

In the above formulation, lattice vectors R" and R” that can con-
tribute to the sums are restricted by basis function overlaps, while
the vector R is restricted only by the decay of the density matrix
(and the very slow 1/|R| decay of the Coulomb matrix). It has been
shown previously [59] that the density matrix decays exponen-
tially in insulators, but in metals the decay is only polynomial. Thus,
a naive implementation would have to deal with a large number
of lattice vectors for which the Coulomb and exchange matrices
would have to be calculated and stored (or re-calculated). A more
robust and consistent implementation can be obtained if one im-
poses Born-von Karman (BvK) periodic boundary conditions. For
a given finite mesh of k-points, the lattice-vector-dependent den-
sity matrix calculated using Eq. (29) will automatically satisfy BvK
conditions. The BvK-periodic Coulomb matrix can be obtained in
a similar way, i.e., by the reverse Fourier transformation of the
singularity-corrected reciprocal-space Coulomb matrix introduced
in the previous section:

1 ~ .
Vinw = 5~ > V() exp(—ik - R), (31)
k Tk
where lattice vectors R are restricted to the BvK cell. An approx-
imate but more efficient method for calculating the BvK-periodic
Coulomb matrix is to use the cut-Coulomb operator

1

—erfc[n(|r
20r] [n(r| —
where 1, determines the radius beyond which the cut-Coulomb
operator decays to zero, and 7 is the inverse decay width. The BvK-
periodic Coulomb matrix is then constructed by first summing up
the cut-Coulomb potentials in real space with appropriate phases
calculated for the specified k-point mesh:

Veur(r) = reun) ], (32)

Vi (k) =) "R f P, (1) Veu (It — F'|)P, (' — Rydrdr’,
R

and then Fourier-transformed back to real space according to Eq.
(31). This method is a natural choice in case of range-separated hy-
brid functionals.

Fig. 1. Four atom centers and the lattice vectors used for grouping of four-center
integrals in Eq. (30). The grid lines represent borders of the unit cells, atom centers
are shown as black dots, and lattice vectors are shown by arrows. The superscript in
A’,. denotes the number of pair, while the subscript denotes atoms within the pairs.

The real-space Coulomb matrix obtained in either of these ways
has the advantage that the Coulomb interaction with auxiliary
basis functions beyond the BvK cell is folded in, since no explicit
lattice-vector-dependent cut-offs are applied when calculating
V/w (k)

Note that the vectors R" and R” in Eq. (30) are restricted solely
by the overlap of basis functions, and, therefore, are allowed to go
beyond the BvK cell, which can happen in case of sparse k-point
samplings. In this case, we simply take into account BvK periodicity
of the Coulomb and density matrices, e.g,, V,,® = V, LV (R-RBVK)»

where RB¥X is any lattice vector of the BvK superlattice.

Due to the complex algebraic structure of Eq. (30) (it is a product
of four multi-index matrices), its actual implementation involves
multiple choices in the order, grouping, and distribution of oper-
ations, with the effect of each choice on the overall performance
being hard to predict. Below we outline our algorithmic solution,
which showed the best performance among several implementa-
tions that we have tried.

It is convenient to group the RI coefficients C in Eq. (30) by
atoms to which the auxiliary basis functions belong. For clarity, the
four atoms and the corresponding lattice vectors involved in each
single term in Eq. (30), are depicted in Fig. 1, along with their no-
tations. Thus, the exchange matrix for each pair of atoms A}A? can
be written as:

V(R) pvo
X ® =22 20 2 R B
AJR)) keA}(R') veA?
+Y Y o)
A3(R") L,veA2(R")
Hi” R+R")) Cj g, (33)
where
Eicy = D G DU(R+R), (34)
IR//
v(R)
1I<(R’) Z Clk(R’) Hv(R)» (35)
HEA(D)
G = > (Eif &) Virw): (36)
HEA(D)
Hi" (R) = > Fuly R)D“(R R). (37)

kR’
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A(i) denotes the atom on which basis function i resides, “x” de-
notes complex conjugation, i € A(i) signifies that the auxiliary
function P, (r) is centered on atom A(i), and k € A(i) signifies that
the atomic basis function ¢y (r) is centered on atom A(i). The choice
of these intermediate matrices is dictated by the effort to mini-
mize the number of matrix multiplications. In the above equation
we make use of the translational symmetry of the RI coefficients,

namely Gyl w) = Ciioy )

For brevity, we introduce the following short-hand notations
that are used throughout the text below. The auxiliary basis
functions P, (r + R) are labeled by their greek-letter index and the
lattice vector: ©«(R) or simply u for R = 0. Similarly, the atomic
basis functions ¢;(r + R) are labeled as i(R) or simply i for R = 0.

The matrices E and F are sparse. The indices i and k(R") of matrix

Fizgg?) are bounded by the overlap of corresponding basis functions.
In addition, in cases when auxiliary basis functions v(R) do not
overlap with i and k(R") atomic orbitals, the corresponding matrix
elements are determined by the multipole moments of v(R). Thus,
we can make an efficient use of the idea by Betzinger et al. [18]
to perform a simple unitary transform of the auxiliary basis func-
tions on each atom and in each Im channel, such that the multipole
moments vanish for all but one function. We also extended this
method to the functionals with screened Coulomb interaction (in
particular, the HSE functional), in which case the multipole mo-
ment of all but one function can be made small, although not ex-
actly zero. Indices j and k(R) in Ej‘jj(’m are bounded by the decay
of the density matrix with increasing distance between the cor-
responding functions.

A key ingredient of an efficient implementation of non-local
exchange is screening out small elements of the exchange matrix
without actual calculation. The above representation and the spar-
sity patterns allow for such an efficient a priori screening. We in-
troduce a single parameter ¢, and discard all exchange matrix ele-
ments below ¢. A priori screening of the exchange matrix is based
on estimates of the matrix elements for each of the three terms
in Eq. (33). Since the implementation of these estimates is closely
tied to the algorithm of the exchange matrix calculation, we com-
bine its description with a rough sketch of the algorithm. The same
screening procedure can be applied also to non-periodic systems
(clusters), simply by setting all lattice vectors in the above expres-
sions to 0.

The outer-most loop is over basis functions on atom A; (see
Fig. 1 for atom notations). In practice, the loop is performed over all
basis functions in the central unit cell (R" = 0), and for each basis
function the atom to which it belongs is treated as atom Al, with
additional loops over the lattice vector R* when needed. First, we
define the following quantities:

. 2
~AD) I
Ciw) = Z (C:'j(w)) ’

eA()

~A
max Ci.(lk,),
icAq.jeAy, Y

Vam® = Z Vw®)?,
nehq,vehy

Dia(R) = max Dy (R)],

Cayayw) =

Dy, (R) = max D, (R),
A / -
SA?AZ (R) = max (VA2A3(R)DA1A3 R+ R/)) )

A ~
OA]AZ (R/) = max (SA?AZ (R/) max CA3A4(R//)> .
A3 Aq,R”

For each atom A} and lattice vector R’, we select basis function
pairs ik(R),i € A} (k is the index of the basis function in the outer-
most loop), that satisfy the following criterion:

~Al

1
Ciy(r) Max max VA% A2R+R) MaxX
A{.R A3R”

(DkA% R+ R”)CA%A%(R,,)) ] O (0)] > e.
Analogously, basis pairs ki(—R’) are considered only if
~A%
Cki(—R’)
The coefficients Ci’,f(R,) for the selected subset of the basis function
pairs are then distributed among processors and used for the
evaluation of the intermediate matrix products.

As a next step, we loop over atoms A%. A subset (within the
BvK supercell) of lattice vectors R for which the density matrix
Dy (R + R”) needs to be calculated to obtain the matrix Ejfg, is
determined by the following condition

OA}A; (R/) > £.

AYa ~
DkA% (R+R )CA%A%(R”) I,:;le:z)’( (VA}A%(R+R’)CA}A;(R’)) > g,
1

tested for every atom pair A2A%(R”).

Withing the same loop over atom A2, we identify, for each lattice
vector R within the subset determined above, atom A}, and lattice
vector R/, basis function pairs ik(R) (i € Al) which need to be
considered in calculation of the first and third terms (E-F and H- C)
in Eq. (33). For the E - F term, the basis function pairs should satisfy

the condition
1

Cillzl(R/)vA}A% ®EkR-—R) > &
where
2
Epzkr-r) = max ?;jzx Z (E]"IL((YR—R’)) :
1 pea?

For the H - C term, the basis function pairs are selected according
to

A ~ ~
1
Ciw Vatz@Daraz (R) Max Gz gy > €.

Finally, the basis function pairs ki(—R’) (i € A}) needed for the
second term (G - C) in Eq. (33) are selected according to

~Al
2
C’(i(*R’)

- , ~
VasawDaist R+ R)YMax Cz g ey > €.
Note that, while the F -E term (the first term in Eq. (33)) contributes
to the XiZAljeAz elements of the exchange matrix, the matrices H
1 1
and G are indexed in such a way that the H - C and G - C terms
contribute to the X;{’eAl len? elements. This allows to reduce the
2 2

communication between CPUs and to avoid redundant operations.

For each atom A% and lattice vector R”, we also determine for
which lattice vectors R the last two terms in Eq. (33) have to be
calculated from matrices G and H, based on the following criterion

~ ) 2
CA%A%@,,)E?)( > (HY R + 267 R)” > &.

Nea
1' veA%

Although the sparsity patterns described above allow for more
refined screening, we find the above screening scheme conve-
niently compatible with such grouping of matrix multiplications
that the highly optimized dense matrix multiplications can be used
without the need for an overwhelming number of indexing arrays.

We aim at an implementation that does not require any storage
of large matrices to disk. Such a storage would make calculations
unacceptably slow for any periodic system of practical interest. A
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disk-free implementation, on the other hand, must deal with the
necessity to repeat some operations. In particular, we need to re-
calculate the product of the Coulomb matrix and the RI coefficients
(the F matrix above, Eq. (35)). This product does not change during
the SCF cycle, and could be calculated only once. It is also a three-
index matrix (if one associates the lattice vector indices with the
basis function index in a supercell). However, due to the non-local
nature of the Coulomb interaction, we cannot efficiently benefit
from the sparsity of the matrices, which will most likely make the
storage of the complete product in memory unfeasible even if it is
distributed.

Ideally, we want to distribute the storage and operations on
multiple CPUs so that: (i) memory load is distributed evenly be-
tween different CPUs, (ii) the communication between CPUs is
minimized, and (iii) computational load (number of operations) is
distributed evenly between CPUs. We find that it is very non-trivial
to fulfill all three conditions simultaneously for an arbitrary sys-
tem. Nevertheless, computational effort for a wide range of sizes
(from few- to few-hundred atoms per unit cell) with the current
implementation on average scales linearly with the system size
(see the example in the next section).

In cases of a large number of k-points and intermediate unit cell
sizes (bulk metallic systems), the Coulomb matrix would dominate
the memory consumption for storage, followed by the density ma-
trix, the exchange matrix, and the RI coefficients C. We find that
the on-the-fly calculation of the Coulomb matrix using a multipole
expansion is not fast enough to compete with fetching the ma-
trix from memory, which has to be done multiple times to avoid
additional storage, computations, and communication. However,
we do benefit from the multipole expansion during the initial cal-
culation of the matrix. We also make full use of the sparsity of
the Coulomb matrix mentioned above. Namely, we store only ele-
ments with absolute values above a small number 7. In fact, we find
that the results are rather insensitive to the value of 7 in the range
10~'2-107*, due to the on-site transformation that removes the
intermediate values of the Coulomb matrix [18] (see text above).
The sparse matrix V,,, g, is computed and stored for each atom pair
A1A; (u € A1, v € Ay) within one unit cell, and each lattice vector
R within the BvK supercell. It is distributed among CPUs first over
atoms A,, but if the number of CPUs is larger than the number of
atoms, it is also distributed over lattice vectors R. The distribution
by atoms A, is used for the density matrix Df;(R) (k € A,) and for
the real-space exchange matrix Xl-}’ (R) (j € Ay).

For systems with large numbers of atoms and basis functions

the RI coefficients Ci’,ffl%’)) can be expected to dominate the storage.
However, due to the use of localized RI (LVL), the size of the C ma-
trix is significantly reduced. The index i is distributed according to
the atom distribution used for the Coulomb matrix storage.

The matrix operations are distributed such that communication

between CPUs is minimized. For each basis function k, RI coeffi-

cients Ci’,f((g)) that passed the screening criteria described above,
are first communicated to all CPUs. Then we loop over local atoms
and local unit cells within BvK supercell on each CPU, and calculate
all local contributions to the exchange matrix. The only additional
global communication takes place at the end of all operations for

given k, namely, to synchronize the exchange matrix.

6. Performance

6.1. Benchmark systems

We demonstrate the accuracy of our approach by comparing to
benchmark periodic HSEO6 results in the literature. Specifically, we
focus on the well studied semiconductors Si, GaAs, and GaSb.
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Fig. 2. Dependence of the total energy (right axis) and computational time (left
axis) on the screening parameter . The energy zero corresponds to the total
energy obtained with the k-space implementation. The system is zinc-blende GaAs
(2 atoms in the unit cell), the method is HSE06 (w = 0.11 bohr™!). The total
computational time increases for larger ¢ because the number of scf cycles needed
for convergence also increases. Each calculation was distributed over 96 CPUs.

Table 1 contains the calculated and experimental lattice param-
eters, bulk moduli, cohesive energies, and selected electronic prop-
erties for each material. The settings used in FHI-aims are “tight”
and an 8 x 8 x 8 k-space grid. All parameters are calculated for the
diamond/zinc-blende crystal structure.

6.2. Real-space vs. reciprocal space implementation

In this subsection, we compare the relative accuracy and effi-
ciency of our own implementation. We focus on total energy devi-
ations between the k-space implementation and the real-space im-
plementation. The k-space implementation has no adjustable pa-
rameters, and can thus serve as a reference. In the real-space im-
plementation, the key parameter to be examined is ¢, whose use is
described in detail in Section 5.

The dependence of the accuracy and computational time on the
screening parameter ¢ for the primitive unit cell of GaAs is shown
in Fig. 2.

The results clearly demonstrate that the a priori four-center in-
tegral screening can significantly reduce the computational time
without loss of accuracy. However, this behavior may be system-
dependent, and we recommend to test it for every system or class
of similar systems.

6.3. Computational scaling

Scaling of the computational time with the number of CPUs for
the real-space implementation is shown in Fig. 3 for different unit
cell sizes. For the unit cell of the largest size (1024 atoms), only
k = 0is used. Other sizes are obtained by the successive division
of the unit cell by a factor of two along one, two, and then three
directions, with the number of k-points being doubled along cor-
responding directions in the reciprocal space. Based on the results
shown in Fig. 2, the value of the screening parameter ¢ is set to
1075, As can be seen from the figure, the computational time con-
sistently improves with increasing the number of CPUs, up to the
maximum tested number (8192 cores).

Finally, we demonstrate the linear scaling of the total computa-
tional time with the system size for the real-space implementation,
using GaAs as an example. Fig. 4 shows total time per iteration of
the self-consistency cycle as a function of the number of atoms in
the unit cell.
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Table 1

Calculated and experimental lattice constants (a), bulk moduli (By), cohesive (atomization) energies
(Econ), band gap at the I" point (E/. ), and the gap between lowest conduction band at X point and the

gap

valence band at the I" point (E, ). The first row for each material shows results obtained in this work.
The method is HSEO6 (w = 0.11 bohr™1), the crystal structures are diamond for Si, and zinc-blende for
GaAs and GaSb. The relativity is taken into account via scaled zeroth-order regular approximation [60].
The spin-orbit coupling is not included in our calculations. The experimental numbers for Si and GaAs
are the same as cited by Paier et al. [61]. Values in parentheses are calculated at the experimental lattice

constant.
Material a(A) By (GPa) Econ (€V) Egp (eV) Ex,. (eV)
Si 5.446 97.5 4.540 3.33(3.33) 1.34(1.33)
Ref. [61] 5.435 97.7 4.582 (3.32) (1.29)
exp. 5.430° 99.2° 463° 3.34-3.36¢ 1.13%¢
3.05 1.25°
GaAs 5.695 71.1 3.181 1.12(1.34) 2.09 (2.06)
Ref. [61] 5.687 70.9 3.149 (1.45) (2.02)
exp. 5.648 78.98 3.26¢ 1.52¢ 1.98¢
Gasb 6.157 53.1 2.859 0.58 (0.87) 1.43 (1.40)
Ref. [62] 6.16 0.65
exp. 6.086" 55! 3.03 0.817k
55.7'
2 Ref. [63].
b Ref. [64].
¢ Ref. [65].
d Ref. [66].
¢ Ref. [67].
f Ref. [68].
& Ref. [69].
b Ref. [70].
i Ref.[71].
i Ref.[72].
k Ref. [73].
! Ref. [74].
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Fig. 3. Scaling of computational time (total time per calculation divided by the
number of iterations) with the number of CPUs for different system sizes. The
system is zinc-blende GaAs, the method is HSE06 (w = 0.11 bohr™1).

7. Conclusions

We have presented an all-electron implementation of the
Hartree-Fock (“exact”) exchange for periodic systems using
numeric atomic orbitals as basis functions. The resolution of the
identity (variational density fitting) is used to avoid storage of
the four-center electron repulsion integrals. A localized version
of the RI approach, RI-LVL, allows to further reduce memory
consumption and computational time. In conjunction with an a
priori screening of the four-center electron repulsion integrals,
based on the locality of the basis functions, the use of RI-LVL
leads to a linear scaling of the computational time with system
size (number of atoms per unit cell). The numerical accuracy
of the implementation has been tested by comparison with
the theoretical and experimental results for Si, GaAs, and GaSb
reported in literature.

8000

6000

4000

2000

Time per iteration (seconds)

(e | ! -
512 1024
Number of atoms per unit cell

Fig. 4. Scaling of computational time (total time per calculation divided by the
number of iterations) with the system size. The system is zinc-blende GaAs, the
method is HSEO6 (w = 0.11 bohr™'). Each calculation was distributed over 256
CPUs.
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