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This paper describes a computer code for total-energy and electronic structure calculations of an isolated adsorbate atom
on a metal surface using a self-consistent surface Green-function method. The approach is based on density-functional
theory together with the local-density approximation of the exchange-correlation functional. The method allows to calculate
the adsorption problem on an atomistic, semi-infinite metal surface. The code does not rely on particular symmetries of the
surface or adsorbate, but it requires to have the Green function of a so-called “reference system” projected onto a set of
Gaussian orbitals as an input. As a typical example, we present results for the adsorption of a single silicon atom at the

fcc-hollow site on Al(111).

PROGRAM SUMMARY

Title of program: thi93ssgf
Catalogue number: ACPV

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland (see application form in this
issue)

Licensing provisions: Persons requesting the program must
sign the standard CPC non-profit use license (see license
agreement printed in every issue).

Computer, operating system, and installation:

e IBM RISC System/6000; AIX 3.2; FHI der Max-Planck-
Gesellschaft, Berlin.

e CRAY Y-MP /4; UNICOS 7.0; IPP der Max-Planck-Gesell-
schaft, Garching.

o AXP Alpha; OSF/1; FHI der Mazx-Planck-Gesellschaft,
Berlin.

Correspondence to: B. Wenzien, Friedrich-Schiller-Universitat
Jena, Institut fiir Festkérpertheorie und Theoretische Optik,
Max-Wien-Platz 1, D-07743 Jena, Germany (present address).
E-mail:wenzien@ifdo.physik.uni-jena.de.

Programming language used: FORTRAN77, ANSI X3.9-1978
(exceptions from the standard are the use of IMPLICIT
NONE and DOUBLE COMPLEX). The code is divided into
five libraries for which makefiles on UNIX machines are
available.

Floating point arithmetic: 64 bits
Memory required to execute with typical data: 50 Mbytes

Size of distributed program, including test data, etc.: approxi-
mately low files, about 20 Mbytes

Keywords: Green function, surface, adsorbate, layer KKR,
DFT-LDA, total energy, Hellmann-Feynman forces

Nature of physical problem

The computer code allows to calculate the Green function of
an adsorption problem with a single, isolated adsorbate atom
(so-called “adsorbate system”) on a semi-infinite metal sur-
face. The following physical quantities are available as output:
change in electron density for the adsorbate system, change in
density of states, total energy of the adsorbate system, and the
Hellmann—-Feynman forces on the adsorbate atom. The
program uses density—functional theory within the local-den-
sity approximation for the exchange-correlation functional
and ab initio, norm-conserving pseudopotentials.
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Method of solution

The Green function of the clean substrate (so-called “refer-
ence system”) has to be calculated in advance. This reference
Green function is needed as input for this code. It is
obtainable with the layer KKR method [1-3) and has to be
projected onto a localized basis of Gaussian orbitals [4,5]. The
code described below then solves the Dyson equation self-
consistently for the effective potential of the adsorbate atom
with the projected Green function of the reference system.

Restrictions on the complexity of the problem

At this time, only one single adsorbate atom can be handled
by the code, although the input is made for a finite number of
adsorbate atoms. For the evaluation of the exchange-correla-
tion functional the electron-density change, Arn' (r), is
evaluated on a mesh in real space. This mesh is restricted to
be of cubic shape. The treatment of f-electron systems is not
possible with the present code, although there are no
limitations in principle.

LONG WRITE-UP

1. Introduction

Typical running time

One iteration on a CRAY Y-MP (single processor) takes 82

seconds, on an IBM RS /6000-350 it takes 493 seconds. About

40 iterations are necessary to converge a typical problem

which has a linear dimension of 108 in the Gaussian basis and

about 40% points in the real-space mesh for An" (r). There

are three time-consuming parts:

e solution of the Dyson equation;

e projection of the effective potential onto Gaussians;

o transformation of the density matrix (in the Gaussian basis)
to the real space mesh.
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Our aim is to solve the adsorption problem of a single adatom on a semi-infinite crystal with an
atomistic structure. The Kohn—Sham Hamiltonian [1,2] consists of the kinetic energy and the effective

potential V¢f:

H=—ip24pfi=_lp2pplnypyHp

(1)

We use atomic units and measure the energy in hartrees (1 hartree = 27.211562 eV) and the length in
bohrs (1 bohr = 0.052917706 nm). The effective potential is split into three parts. The first one is the

external potential of the ionic cores,

vier(e, 1) = L (VO (lr =R )8(r =) + VI (r =Ry, r' = R)))
k

= 2 A\Ve ' (lr— R )8(r—r")

k

+ )»

e Viond(|r — R, 1) — Vi (| r — R, 1)
1

=0 m=-—

2
I"_Rkl

XY, (r=R Y5 (r—R)S(Ir =R, | = 1r' =R, 1)|,



126 J. Bormet et al. / A self-consistent surface Green-function (SSGF)

where k counts the atoms and which are represented by ab initio, norm-conserving pseudopotentials and
are thus non-local operators in real space. The second term in eq. (1) is the Hartree potential
VHE (r)= [[n'(r")/|r — r'|}d%’, and the third one is the exchange-correlation potential ¥ **(r) which is
treated within the LDA [3,4].

The ionic pseudopotentials are available from the tables of Bachelet, Hamann, and Schliiter [5] in the
following form

. ) zZ; [ 2 .
Vienl(ry = Veore(r) + AVomi(r) = — Tk( Y el erf( a}cr)
i=1

3 N
+ Y (af +r2i) B (3)
i=1

Elements with Z < 55 have a non-local expansion with a maximum angular momentum of /™ = 2.

2. The self-consistent surface Green-function method

In this section we describe the basic ideas of the method. Applications of this method to the
adsorption of Na, Si, and Cl on Al and Cu surfaces have already been published [6-8]. It is convenient to
split the Hamiltonian of the total system (as well as.the electron density #n'(r)) into two parts,

H=H+ AV*f, (4)

The “reference system” H®= — V2 + V0 describes the two-dimensionally periodic, semi-infinite sub-
strate for a given potential ¥'? which is assumed to be self-consistent in the bulk region and has a step
barrier at the surface. The height of this barrier should be determined by the bulk Fermi level and the
clean surface work function. Whereas the Fermi level is most efficiently obtained from a bulk calculation,
the work function should be calculated using a slab approach. The electron density which follows from
H?Y is denoted as n"°(r). The potential V'® is correct 1-2 interatomic distances away from the surface,
but directly at the surface it is only an approximation. Therefore, the self-consistent change, AV
accounts not only for the adsorbed atom but also for the contributions which arise to make the surface
locally self-consistent.

Splitting the total Hamiltonian as done in eq. (4) leads to an operator Green-function method which
has to treat the operator of the kinetic energy only in the reference system. Besides the localization of
AV the only assumption of the method is that the change of the valence electron density,

An¥(r) =n"(r) —n"°(r), (5)

of the adsorbate system is localized in real space. In particular for metals, the screening properties
guarantee that this is fulfilled usually. Although the electron-density change is localized in real space we
emphasize that the adsorbate wave functions are typically extended, which is taken into account without
any constraint.

For the change of the effective potential of the adsorbate system we write

AV = AV 4 AVH + AV + Apofiseo, (6)

where the first term on the right is the change due to the ionic potential of the adsorbate, the second
term is due to the Hartree potential and the third term describes the change of the exchange-correlation
potential, AV*(r) = V*[An*(r) + n"%(r)] — V*[n"°(r)]. The last term in eq. (6) accounts for the local
contributions towards self-consistency of the clean surface, AV %se0 = peft0 _ /0
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The Green function of the reference system, G%(2)=(Z -~ H®) ™!, is calculated for all needed
complex energies .2 = € + in as described in refs. [9,10]. Once G° is known, the Green operator of the
total system, G(Z), is given by the Dyson equation,

G(Z) =G Z) + GY(Z)AVEG(Z). (7)

Taking advantage of the localization of AV °®(.Z’) the change of the Green function can be calculated
efficiently from

AG(Z) =G(Z) - G%(Z) =G%(Z) = GX(Z)AVH(1 - G(Z)AVH) G Z). (8)

With the projection operator P=1, ;| x: )< x; |, defined by local basis functions which span the real-space
region of An'(r) and AV °%(r), we have the identity

Pn'P=n". 9)

The electron-density change is then given by
2
An¥(r)= - = Im(f (r|PAG(Z)P|r) dz). (10)
T e

The factor 2 takes the spin degeneracy into account. In order to evaluate eq. (10) we use an energy
contour I'* in the complex energy plane which includes all occupied valence states. Thus, we start at an
energy €™ clearly below the substrate valance band, go into the complex energy plane and come back to
the real axis at the substrate Fermi energy, €. The quantity PAG(Z)P is evaluated from

PAG(Z)P=PG%(Z) PAVIP(1 — PG*(Z) PAVEP) "' PG*(Z) P, (11)

which requires only localized quantities. The needed projection PG%(Z)P is taken from refs. [10,11].

In a first step one can take the atomic electron density of the adsorbate atoms as a start guess,
calculating the effective potential thereof, solving eq. (11) and again extracting an electron density with
eq. (10) for the next iteration cycle until this process is converged.

3. Total energies and Hellmann-Feynman forces

Once the valence electron density of the adsorbate system, An¥(r), is calculated we can evaluate the
total energy of the adsorbate system. The total-energy functional for the valence electron density n"(r),
which describes all the valence electrons of the substrate and the adsorbate, can be written as

vout(r)nv,out(r ) vout(r)nv m(’. )

Etot[nv]_ Zeout+ sz Ir_rrl d3 d3 ’ ff |r_r d3r1

+f(nv,out(r) +nc,at(’.))exc[nv,out(r) +nc,at(r)] d3r

VZV

—f vout(py [ nvin(r) +no*(r)] &+ = Z ———— +ep dN. (12)
| R, —R,|

The indices “out” and “in” indicate if the corresponding quantity is input respectively output of one

specific iteration of the Kohn-Sham equation (in our case the Dyson equation) and take care of the

correct handling of the variational principle which underlies the total energy of eq. (12). €* stands for
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the exchange-correlation energy per electron of the LDA. V' * is the corresponding exchange-correlation
potential. Although we use the frozen-core approximation to find ourselfs in the pleasant situation to be
able to use the scheme of pseudopotentials we do not linearize the exchange-correlation functional
between the density of core and valence electrons. This immediately leads to the electron density of the
cores, n“*(r), to be present in eq. (12). The contribution 3T;,ZYZ'/| R, —R,| is the electrostatic
interaction of the ionic cores. The last term, ez dN, accounts for the fact that our Green-function
method uses a constant chemical potential e — the Fermi level - for the integration in eq. (10) which
implies that there is no constraint for charge neutrality in the system. The charge discrepancy is
characterized by d N (in all practical cases of adsorption we find d N to be smalier than one-hundredth of
an electron). Therefore, we actually minimize the Gibbs free energy if we use E'*' from eq. (12).

Now it is an important fact to recognize that the total energy of the adsorbate system can be evaluated
with the knowledge of An¥(r) in a spatial region £2'° in which An"(r) is different from zero. This is true
because all the kernels of the integrals in eq. (12) can be factorized into products of two quantities of
which one is strongly localized in that spatial region £2'°. Nevertheless, it is necessary to know the
valence electron density, nV%(r), of the reference system in (2'°°,

If we take into account that all integrals must be exactly evaluated - in the same manner as they
appear in the term of the single-particle energy (with respect to the spatial localization) — the total
energy of the adsorbate system reads

2 2 .
AE®t = ; [erout(eF) _ Ebotaout(ebot)] + ; fé—‘eam(z) de
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The spatial region £2°%° has the planar translational symmetry of the reference system and a thickness
of several vacuum and crystal layers — at least as many as they are included in £2'°°. Equation (13) exibits
only a few additional new symbols which are not defined so far. One of them is the generalized phase
shift defined by

8(Z)=-ImiIn det(I—GO(.?’)S_lAVe“S‘l). (14)
In practice, we use a basis set of Gaussian orbitals,
Xi(r) =r=0,|"ei=0y, . (r=0,), (15)

to define the projection operator of eq. (9). O; is called the orbital site, k; is the decay constant and /; is
the angular momentum of the Gaussian orbital i. Because the Gaussian orbitals are not orthonormal we
have to insert the inverse S™! of the overlap matrix (elements are defined by S;; = [geex*(P)x;(r) d°r)
wherever the projection operator P occurs in the formulas of the previous section. I is the matrix of
unity. N counts the (finite) number of adsorbate atoms whereas n}"“ gives the charge distribution of
the ionic cores of the pseudopotentials.

The quantities n™'(r) are test charge densities with the property that the difference An*(r) —n*'(r)
has no monopole and dipole moment. This is useful to carry out the corresponding integrals with the
technique of the fast Fourier transform. Furthermore, the test charges should provide a mathematical
representation which allows the evaluation of the Poisson equation, V2V *™(r) = —4wn''(r), analytically.

In one of the integrals, the electron density of the reference system,

tm{ (5775007 (1), (16)

i

with its density matrix n*° is calculated in the localized representation to make sure that the term is
treated exactly as it contributes to the single-particle energy.

If one is interested in the Hellmann-Feynman forces one has to compute the total derivative
F,= —dE" /dR,, of the energy functional with respect to the position of the mth nuclei. Similar to the
energy functional the integrals have kernels with two factors of which at least one is localized. With the

abbreviation 7,,= |r— R, | and the property 97, /dr, = —(r — R,) the force for the mth nuclei of the
adsorbate atoms can be written as
L p— Ny
= - N7 _ v,out _ n _ 3
Fm_j;zlm a;m (f Rm) An ou(r) ag}nl: (Ir Ral) d’r

( Z n;on(lrl_Rll)) _nv,()(rr)
[=N*1 d&3r'| &3r

ni™(7,,) ——
+fnloc afmm (r—R’") .[nslah lr—r'|
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ol Ay jon-Lm(F )| | —
j;)bc [ a’;)] (r—Rm)(AnV’°“'(r) +n"(r)) &r

nl

—Im
oR,,
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+ fglocV"c[An"”“‘(r) +n"0(r) +no¥(r)] ) 7. (17)

The partial derivative of the matrix containing the non-local contributions of the pseudopotentials V™!
with respect to R,, (see eq. (2)) is done with the centered differential quotient

v li an(Rm,a'+ha') - an(Rm,u_ha) 18
R, , h,“—I}O 2h, » OTE Y2 (18)

m,o

4. Numerical details

Quantities with a local dependency on the vector r (for example the change in the electron density
An¥(r)) have a real-space representation on a three-dimensional regular cubic mesh with M mesh points
and the discretization interval A. M is typically in the order of 10° and 4 is in the range from 0.2,...,0.6

Calculate projection AVior,

Choose “arbitrary” An¥-*=%(r) on real-space mesh.

Calculate AVi(r) ;= AVH[r, AnV*~!(r)] + AV=[n"""1(r)].

Projection of AVi(r) — AV

AVemi .= AVE 4 AVion,

Mixing: AVeDi := qAVeEi=1 | (1 — g)AVeAS,

Solve: AG(Z) =

-1
G°(2)S~1AVfg! (1 - G°(z)s—1Avef*s—1) G°(2).

Calculate in real space An""(r).

AVeTt converged?

Postprocessing.

Fig. 1. Iteration of the Dyson equation.
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Fig. 2. Valence charge density for a single isolated Si atom adsorbed on the fcc-site of Al(111).

bohrs. Any integral over such functions is evaluated by summing up its weighted values at the mesh
point, for example the charge represented by An¥(r) is calculated from

M
q=[nlocAn“(r) dr= ) hn3%n'(r,). (19)

m=1

Non-local quantities (dependent on r and r’) are calculated analytically with formulas given in ref. [19].

The most important part of the program is the iteration loop. Figure 1 shows a flow diagram which
can be directly mapped onto a corresponding loop in the main program. At first one has to do two things
in advance: To calculate the projection of the fixed part of the effective potential — this is the projection
of the pseudopotential — and to choose a rather arbitrary start electron density. The closer this density is
to the converged result the less iterations are to be done. In practice, we provide a start guess of a
Gaussian-like distribution with a charge of approximately the charge of the ionic core of the pseudopo-
tential. Once the electron density An*(r) is available the Hartree potential is calculated with the method
of the fast Fourier transform and the exchange-correlation potential is directly evaluated from the
parametrization of Perdew and Zunger [4]. The next step is to project the two contributions onto
Gaussian orbitals and to add the already projected pseudopotential to compile up the effective potential.
If there is an effective potential from a previous iteration available it is mixed such that the new potential
contributes with a percentage of about two to twenty per cent. This means that the mixing parameter «a is

Energy (eV)

Fig. 3. Change in the density of states (Im 2 = 0.2 eV) induced by the adsorption of a single isolated Na (dashed line), Si
(dashed-dotted line), and Cl (dotted line) atom on a Al(111) surface with respect to the density of states for the clean surface which
is given by the solid line as a reference. The energy is referred to the Fermi level.
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in the range of 0.80,...,0.98. The next step is to solve the Dyson equation which requires the inversion of
a general complex matrix. After that the change in the electron density, An¥(r), is calculated from eq.
(10). If the effective potential is converged (the relative change of the norm of the matrices of the
effective potential from two adjacent iterations is smaller than some tolerance = = 10~%) the iterations
are finished, otherwise the procedure is repeated with the new density as input.

5. Adsorption of a Si adatom on Al(111)

In order to explain a typical run of the program we have build up a test suite which treats the
adsorption of a single isolated silicon adatom on the fcc-site of Al(111) [6,7]. The results, i.e., the valence
charge density of the adsorbate system and the change in the density of states induced by the adsorption
of the Si atom with respect to the density of states for the clean surface (compared with the
corresponding quantities for Na and Cl adsorption as well), are shown in figs. 2 and 3. One requirement
is to have a projected reference Green function. This file may be calculated in the manner of the
example given in ref. [10]. In addition, it is provided as an ASCII file together with a short utility
program which builds up the binary input file which is needed in the computation. All the other input
files are part of the standard test suite stored at CPC.

The program is called iter.x and may be build by makefiles which are available for at least three
different UNIX-like operating systems (UNICOS, AIX, OSF/1). To run the test suite the executable
must be build first. The code is highly portable and might even run on a wide variety of different
machines (including VAX under VMS). We decided to discuss directly an UNIX example script which
runs the program. If one really needs to port it onto other architectures the most important information
in the UNIX script are the numbers of input units. For example, a file named fort.8 is connected to
the FORTRAN unit 8 while the program is executing. It is useful to introduce explicit names for all files
which are physically important. Therefore, we used the UNIX link command (Ln -s filename1
fort.1) where filename1 might be any valid name. Our naming convention is as follows: The
abbreviation si means silicon, a file has the identifier basis in its name if the contained information
depends on the Gaussian orbital basis. v3c4 identifies that the projection of the reference Green
function was done in a complex layer consisting of a vacuum region which is equivalent in thickness to
that of three crystal sublayers and of four crystal sublayers. The example script is assumed to be in any
subdirectory together with the executable iter.x and some other files which are described below.

6. Description of the input

The example can be executed just by running the provided UNIX shell script named script.csh
and printed in the following:

#'bin/csh-f

=== =========S==S==S=S==S==S=C=SZCEZZ TSI EZCSCESCS=ZS=Z=ZS=S=S==S===================
# creation date: 1992-09-20 -------====---- author: Joerg Bormet

# library: <none>------==—=-==-—---- processor: UNIX, csh

R e e it bbb bbbk abstract --—=-----
#

# Shell script for iteration of dyson equation.

# Program: iter.x

R etk bttt it prepare flags ----=-=------
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#
cat >iter.cn <<*EQI
X I E i it it sttt ittt it it
* creation date: 1992-09-24 --=~--——--——--——- author: Joerg Bormet
* library: <none> -—-=—-—=—=ccec----- processor: DATA
L et e Dl abstract ---------
*
* Flags for operations of program iter.x.
*
K o e e e e e e e e m e ——— - used by iter --=------
*
1: 5 * ITERMX
9: 0 * LHYDRO

10: 1 * ion-1ion contribution

11: 1 * LAUTO

13: 0 * LDVCOR

14: 0 * LVSTRT

15: 0 * LRDRES

17: 0 * LPLOT

18: 1 * LWRITE

19: 0 * LRHORF: calculate (0), read (1)

20: 1 * read (0) or calculate (1) overlap matrix

21: 1 * local potential, vi (1), 1/r (2), erf/r (3)

22: 0 * forced compare of origin of input solution

23: 0 * calculation of flag 20 is done analytically

24: 97 * startmixing (percentage of input potential)

25: 90 * Llower bound for mixing (percentage of inp. potential)

26: 99 * upper bound for mixing (percentage of inp. potential)

28: 0 * add delta G to reference

31: 5 * optimization interval

32: 0 * optimize decay
*
K o o ————————— o o e e
*EQI
#
e prepare filesystem --=-=-----
#

rm -f fort.3 fort.4 fort.7 fort.9 fort.10 fort.11 fort.21\
fort.22 fort.23 fort.24 fort.40 fort.41 fort.42 fort.91\
fort.96 fort.98 fort.99

Ln -s v3c4basis,gr fort.4
. - reference Green function on contour

ln -s ACT fort.8
. - action control file
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ln -s basis.si fort.11
# . . inverted overlap matrix

Ln -s basis.cr fort.24
# . . electron density of reference system on real space mesh

Ln -s basis.cd fort.96
# . . electron density of reference system as density matrix

ln -s si.ii fort.40
# . . energy and forces from ion-ion contribution

ln -s sibasis.is fort.9
# . . if old input solution is available, use it

ln -s sibasis.os fort.10
# . . output solution contains: density matrix, perturbation
# potential and electron density

ln -s iter.cn fort.99
# . . flags used by iter.x

Hm——mmmmmm—meme e iterations —~-==-==----
#
iter.x < sibasis.d
# . . start program and read data from standard input
#
rm -f fort.3 fort.4 fort.7 fort.8 fort.9 fort.11 fort.10 fort.21\
fort.22 fort.23 fort.24 fort.40 fort.41 fort.42 fort.91\
fort.96 fort.98 fort.99
#

B e m e e e e e e e e e e e e e e e e e e e e

The execution of this shell script requires the existence of four files which must be provided in
advance:

v3c4basis.gr (unit 4): Projected Green function of the reference system. This file may be
generated in the manner of the example input of the program published in ref. [10].

sibasis.d (unit 5, standard input): Input data of the adsorbate system for the self-consistent
iteration. This file will be discussed extensively below in this paper.

ACT (unit 8): This file contains parameters to influence the behaviour while i ter . x is executing. One
can change the numbers of iterations and the mixing parameters for the potential.

si.14 (unit 40): Contains the An'(r)-independent contributions for the total energy and the forces.
This file is part of the distribution of the example discussed in this paper.

While the script is executing a couple of files are created (either by the script itself or by the execution of
iter.x):
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iter.cn (unit 99): Control file for the determination of program flow. It provides flags numbered

with 1 to 50 which are translated to INTEGERs or LOGICALs within the code. The most important flags

are:

1 Number of iterations to be done. In this example: five.

10 Is unit 40 expected as input? (Yes: 1, No: 0). In this example: Yes.

15 If there is a previous run, should the solution be read for further processing? (Yes: 1, No: 0). In this
example: No.

19 Is the electron density and the density matrix of the reference system to be calculated (0) or to be
read (1)? In this example: To be calculated.

20 Is the inverted overlap matrix, S™1, to be calculated (1) or to be read (0)? In this example: To be
calculated.

21 Should the program use the potential in the parametrization of eq. (2) as external potential? In this
example: Yes.

24 Potential mixing in hundredth of the old potential. In this example: 97%.

After the end of the execution one will find some new files:

basis.si (unit 11): Inverted overlap matrix.

basis.cr (unit 24); Electron density, n*°(r), calculated from the projected reference Green
function.

basis.cd (unit 96): Density matrix corresponding to basis.cr.

sibasis.os (unit 10): Contains the density matrix of the adsorbate system, the matrix of the
effective potential, AV °f" and the electron density itself, An'(r).

Standard output: Messages about the program flow and the information about total energy (variable
ETOT on the standard output) and force. Any message has the module name which created it in front.

If one likes to do further iterations with the program (which might be necessary to converge the
solution) set flags 15 and 19 to one, flag 20 to zero and copy sibasis.os onto the file sibasis.is
and then restart the shell script. The new run again does five iterations but uses the output of the first
run (files basis.si, basis.cr,and basis.cd which are fixed and sibasis.os which was copied
to sibasis.is).

All the input data related to physical quantities are collected in the file sibasis.d (standard input).
The data records in this files are structured by groups where every group is enclosed in a #Begin - and
#End - environment. In this sense, the whole data in the file itself represent such a group - the group
called #Begin/End-0f-1Iter-Data-Set. The groups are discussed in detail below. The real-space
coordinates are given in (x, y, z)-tripels in units of the lattice constant of the underlying substrate. The
—z-direction is assumed to coincide with the outward surface normal. Names written in capital letters of
a teletype are names of variables of the FORTRAN program. The file sibasis.d for the example
given in this paper is printed at the end of the description of the groups.

#Begin/End-0f-Iter-Data=-Set: At the level of this group the version of the data set
(version is 2), the symmetry of the adsorbate system (this example: fcc(111)) and all the other groups are
defined. For selecting the symmetry see also the #Begin / End - 0f - Box-group below.

#Begin/End-0f -Gaussians: The Gaussian orbital basis becomes defined. The first of the three
integer numbers, NDIM = 108, gives the linear dimension of the Gaussian basis. NDEF = 12 counts the
lines in the #Begin/End-0f=S1ites-group. NBUFF =9 is divisor of NDIM = 108 and gives a size for
a memory buffer used in the calculation of the real-space representation of the electron density and the
projection of the effective potential. Small values of NBUFF stand for long computation time and less
memory usage. Large values provide shorter computation time and large memory consumption. A very
large memory usage may slow down the computation. Therefore set NBUF F to about ten to twenty per
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cent of NDIM. In any line of the #Begin/End - 0f - S1ites-group one finds (from the left to the right)
the three (x, y, z)-components of the orbital sites O,, the decay constant k;, and an integer number for
the largest value of the angular momentum which should be used together with each site and decay. A
number of /" = 2 means to include s, p and d contributions.

#Begin/End-0f-Box: NOCT gives the discretization in one octant of the real space mesh which
is always of cubic shape. The total number of mesh points, M, can be calculated from M = (2*NOCT +
1)* %3. RMRBOX gives the basis vectors for the cubic mesh. This variable is included for further use and
the values given in this example are the only possible values. SPN = 21.693. .. denotes the length of one
edge of the cubic mesh. The origin of the cubic box is identical with the origin of the Gaussians. Because
the cubic box may lower the symmetry of the substrate (as in the case of fcc(111)) not all of the possible
symmetry transformations of the fcc(111) surface are used to speed up the calculation. Only the y-z
mirror plane is included in this case. For fcc(001) all symmetry operations are used. In both cases, the
input set of the Gaussian orbitals and the substrate must be oriented such that their symmetry axes are
identical with those of the cubic mesh.

#Begin/End-0f-Substrate: The pointer “13” indicates that this example deals with an
aluminum substrate. The pointer is an abbreviation for the whole group #Begin/End-0f-Element
which is discussed below. The second number (2) tells the program to treat the d-potential of the
pseudopotential as local one (I = 2, compare with eq. (2)). The next quantities are the lattice constant
given in bohrs, the Fermi-level, the muffin-tin level relative to the (1/r)-asymptote of the local part of
the potential, the work function of the substrate, and the z-position of the geometrical surface (jellium
edge, if the substrate is jellium) relative to the origin of the Gaussian orbitals. Energies are given in
electron volts (eV). N6FBUF determines the number of energy points which can be loaded at once into
the central memory. The variation of this parameter has only a minor effect on the computation time (at
maximum 10% were measured).

#Begin/End-0f-Perturbations: NADSO gives the number of adsorbate atoms, N2, Up to
now, N®¥ must be equal to one. The next entry is the pointer to the lines of the #Site-0f-
Perturbation-group. Because only one adsorbate atom can be calculated, one finds only one number
(4) on that line labelled with IVADSO(NADSO). The 4 points to the fourth line of the #Site~-0f -
Perturbation-group. NADPO counts the lines in that group. Any line contains (from the left to the
right) the (x, y, z)-coordinates of the adsorbate (RMADPO), the pointer to the element (same convention
as in the #Begin/End-0f-Substrate-group), the value of I7* and two parameters prescribing a
Gaussian-like (charge and decay) electron density for starting the iterations. FAKZ and 0CC are used if
one performs atomic calculations in the vacuum without substrate, and in this example they must be
equal to one.

#Begin/End-0f-Unique=-Descriptors: For a given program unit (first number on each line),
the descriptors (or time stamps) prescribe the data and time of its creation. If the program reads from an
unit it checks the time stamp and the information in the heading of any file to be consistent. If one runs
this example from scratch then the second line (unit 4) of the time stamps has to be changed to the topic
date and time of the Green function calculated in ref. [10].

#Begin/End-0f-Graphics: This group is used to define cuts and directions for plotting data
after the solution is converged. In this example it is of no importance.

#Begin/End-0f-List-0f-Elements: The elements are listed in their pseudopotential
parametrization. The given example contains only aluminum and silicon.

#Begin/End-0f-Element: The first number is the pointer identifying the chemical element.
Then follows the charge of the nuclei. In an additional line the experimental covalent radius COVRAD is
provided.

#Begin/End-0f-BHS-Potential-Parameters: These data are divided into a “local” and
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“non-local” part. In the local part one finds Z7, a, and c. The non-local part contains the parameters
¢ all, and bl/, separately for s, p, and d orbitals. Compare the parameters with eq. (3).
#Core-Correction: Number of the points to be read for the approximated core charge (given on
a logarithmic mesh). The second number is the spacing of the logarithmic mesh. This is used if the
linearization of the exchange-correlation functional for the core and valence electrons is not a good
approximation (so for Na).

The file sibasis.d is printed at the end of this paper as Test Run Input.
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TEST RUN INPUT
File sibasis.d

#Begin-0f-Iter-Data-Set
#Version-0f-Data-Set

2
#Symmetry
3 * (0): any symmetry, (1) fcc(001), (3) fcc(111)
#Begin-0f-Gaussians * surface adapted coordinate system is used
#Dimension

108, 12, 9 » NDIM, NDEF, NBUFF
#Begin-0f-Sites * Orbital sites in GF (x,y,z), decay, ang. mom.

0.0D0, 0.0D0, -0.577350269189626D0, 0.15D0, 2
0.0D0, 0.0D0, -0.577350269189626D0, 0.38D0, 2
0.0D0, 0.0D0, -0.577350269189626D0, 0.60D0, 2
-0.353553390593274D0, 0.204124145231931D0, 0.0D0, 0.15D0, 2
-0.353553390593274D0, 0.204124145231931D0, 0.0DO, 0.38D0, 2
-0.3563553390593274D0, 0.204124145231931D0, 0.0DO, 0.60D0, 2
0.0D0, -0.408248290463863D0, 0.0D0, 0.15D0, 2
0.0D0, -0.408248290463863D0, 0.0D0, 0.38D0, 2
0.0D0, -0.408248290463863D0, 0.0D0, 0.60D0, 2
0.353553390593274D0, 0.204124145231931D0, 0.0D0, 0.15D0, 2
0.363553390593274D0, 0.204124145231931D0, 0.0DO, 0.38D0, 2
0.353553390593274D0, 0.204124145231931D0, 0.0D0, 0.60D0, 2

#End-0f-Sites
#End~0f-Gaussians
#Begin-0f-Box * (origin is the same as for gaussian orbitals)
#0ctant
20 * NOCT, points in octant
#Box * (x,y,2)
1.0D0, 0.0DO, 0.0DO * Box RMRBOX(., 1)
0.0D0, 1.0DO, 0.0DO * Box RMRBOX(., 2)
0.0D0, 0.0D0, 1.0D0 * Box RMRBOX(., 3)
#Span
21.6939363648002D0 * SPN [bohr]
#End-0f-Box
#Begin-0f-Substrate * (same symmetry as gaussians)
#Type-0f-Substrate * type, local treatment (s=0)

13, 2 * Aluminum
#Lattice-Constant
7.515D0 * Lattice Constant of substrate [bohr]
#Fermi-Energy * relative to Muffin-Tin-Level [eV]
8.800D0 * EFERMI
#Muffin-Tin-Level * [eV]
-3.07444771D0 * VMT
#Work-Function * [eV]
4.3D0 * WORFU

#Geometric-Surface
-0.288675134594813D0 * ZZERQ
#Buffer-For-Green-Function
1 *= NGFBUF
#End-0f-Substrate
#Begin-0f-Perturbations
#Number-0f-Adsorbates
1 * NADSO
#Pointer-To-Perturbation
4 * IVADSO(NADSO)
#Number-0f-Perturbations
5 * NADPO
#Site-0f-Perturbation * RMADPO(., 1), type, local, start (q, d)
1, 0.00DO, 0.00DO, -0.577350269189626D0, 14, 2, 3.10D0, 0.25D0
2, 0.00D0, 0.00DO, -0.533D0, 14, 2, 3.10D0, 0.25D0
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3, 0.00D0, 0.00DO, -0.4886D0, 14, 2, 3.10D0, 0.25D0
4, 0.00D0, 0.00D0, -0.4540D0, 14, 2, 3.10D0, 0.25D0
5, 0.00D0, 0.00DO, -0.4194DO0, 14, 2, 3.10D0, 0.25D0
#Scaled~Perturbation
1.0D0 * FAKZ
#Scaled-Delta-Charge
1.0D0 * 0OCC
#End-0f-Perturbations
#Begin-0f-Unique-Descriptors
#Number-0f-Descriptors
7
#Descriptors * logical unit, date, time. (integers)
3, 19901211, 101011 * gr (n-contour)
4, 19901211, 1011 * gr (iteration-contour)
9, 19920727, 212638 * is
11, 19920727, 172351 * si
24, 19920804, 161240 * cr
96, 19920804, 160932 * cd
40, 19920203, 200000 * ii
#End-0f -Unique-Descriptors
#Begin-0f-Graphics
#Number-0f-Steps
25, 24 » NPLAN and NRAD
#Step-Range
1.44337567297406D0, 1.22111186D0 * FDELTP and FDELTR
#Number-0f-Drawings
3, 1, 1, 1 * NCUT, NDIR, NWFCT, NEDEN
#Planes * al, a2, a3, bi, b2, b3, Offset: ol, 02, o3 (x,y,2)
-1.0D0,0.0D0,0.0D0, 0.0D0,0.0D0,-1.0D0, 0.0D0,0.0D0,0.0DO
0.0D0,-1.0D0,0.0D0, 0.0D0,0.0D0,-1.0D0, 0.0D0,0.0D0,0.0DO0
-1.0D0,0.0D0,0.0D0, 0.0D0,-1.0D0,0.0D0, 0.0D0,0.0D0,0.0DO0
#Directions * al, a2, a3, Offset: ol, o2, 03 (x,y,2)
0.0D0,-0.408248290463863D0,0.454D0, 0.0D0,0.0D0,-0.454D0
#Energy-0f-Wave-Function * in eV, EWFCT, NSPWF
8.8D0, 3
#Energy-Range-For-Charge * in eV, Emin, Emax
7.0D0, 8.0D0
#End-0f-Graphics
#Begin-0f-List-0f-Elements
#Number-0f-Elements
2
#Begin-0f-Element
#Type-0f-Element * type, charge of nuclei
14, 14.0D0 * Si
#Covalent-Radius * Si experimental
2.098D0 * COVRAD [bohr]
#Begin-0f-BHS-Potential-Parameters * Si of FHI
#Local
4.0D0 * Valency
2.16D0, 0.86D0, 1.6044D0, -0.6044D0 * decays, constants
* di, d2, cl, c2
#Non-Local
2.40D0, 2.67D0, 3.32D0
~-31282.5029298036D0, 26617.4089692391D0, 4675.45239398890D0
2983.68842102636D0, 7527.63343817730D0, 990.299717554505D0
1.24D0, 1.61D0, 2.10D0
-155.801764454364D0, -42.6981043650161D0, 204.130342766202D0
14.6381060580222D0, 105.550700472344D0, 39.1133073194108D0
1.62D0, 1.83D0, 1.94D0
220888.470870308D0, 1525507.68136707D0, -1746392.24511167D0
-12593.8763319792D0, -150078.414567912D0, -75820.6826720308D0
* decays 1, 2, 3\
* al, 2, 3 - three times for 1=0,1,2
* b1, 2, 3/
* Vi(r) = (ai + r*r*bi) * exp(-di*rxr)
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#End-0f-BHS-Potential-Parameters
#Core-Correction * number of radial mesh-points, log. mesh
0 0.0D0

#End-0f-Element
#Begin-0f-Element

#Type-0f-Element * type, charge of nuclei
13, 13.0D0 = Al
#Covalent-Radius * Al experimental
2.23D0 * COVRAD [bohr]
#Begin-0f-BHS-Potential-Parameters * Al of FHI
#Local
3.0D0 * Valency
1.77D0, 0.70D0, 1.7886D0, -0.7886D0 * decays, constants
* dl, d2, cl, c2
#Non-Local
1.85D0, 2.17D0, 2.34D0
-21399.2454461336D0, -149130.398387931D0, 170537.043024465D0
1833.58400227064D0, 22531.5541572220D0, 11484.3848056219D0
0.93D0, 1.09D0, 1.37D0
-1254.71433301360D0, 740.969038332463D0, 517.890749424891D0
63.1318145427416D0, 231.970961290708D0, 50.7266557261341D0
1.37D0, 1.58D0, 1.75D0
60308.8537018445D0, 106243.207947003D0, -166549.260723623D0
-3575.24090697685D0, -26650.1036827611D0, -10755.3964881995D0
* decays 1, 2, 3\
* al, 2, 3 - three times for 1=0,1,2
® b1, 2, 3/
* Vi(r) = (ai + r*r*bi) * exp(-dixr*r)
#End-0f-BHS-Potential-Parameters
#Core-Correction * number of radial mesh-points, log. mesh
0 0.0D0

#End-0f-Element
#End-0f-List-0f-Elements
#End-0f-Iter-Data-Set

TEST RUN OUTPUT

INFO ID 1 *%% MODULE INIERR: ERROR HANDLING INITIALIZED.

INFO ID 1 *** MODULE ITER: BEGIN OF PROGRAM.

INFO ID 1 *x% MODULE ITER: BASIC DIMENSIONS I. MDIM = 108. MOCT
= 20.

INFO ID 1 **x MODULE ITER: BASIC DIMENSIONS II. MBUFF = 9.
MGFBUF = 79.

NOTE ID 27 s*xx MODULE RDBADI: CHOICE OF SYMMETRY: (0): NO SYMMETRY,
(1): FCC(001), (3): FCC(111). IFCC = 3.

INFO ID 1 %% MODULE RDBADI: DIMENSIONS. NDIM = 108. NDEF =
12.

INFO ID 1 *xx MODULE RDBADI: RS BUFFER. NBUFF = 9.

INFO ID 1 **x MODULE RDBADI: DIMENSION OF OCTANT. NOCT = 20.

BOX: 1.0000E+00  0.00Q0E+00  0.0000E+00
0.0000E+00  1.0000E+00  0.0000E+00
0.0000E+00  0.0000E+00  1.0000E+00
INFO ID 14 #*** MODULE RDBADI: SPAN OF BOX IN A. U. SPN =
2.1693936364800E+01.
INFO ID 14 =+ MODULE RDBADI: LATTICE CONSTANT IN A. U. SPA =
7.5150000000000E+00.
INFO ID 16 *+* MODULE RDBADI: EFERMI IN EV. EFERMI =
8.8000000000000E+00.
INFO ID 16 *** MODULE RDBADI: MUFFIN-TIN LEVEL IN EV. VMT =
-3.0744477100000E+00 .
INFO ID 16 *x* MODULE RDBADI: WORK FUNCTION IN EV. WORFU =
4.3000000000000E+00.
INFO ID 1 *+x MODULE RDBADI: GEOMETRIC SURFACE. ZZERO =
-2.8867513459481E-01.
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* kK
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INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO
INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO
INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

ID 1 *%x MODULE DIVERG: ION-ION FILE READ, ORIGINATING FROM DATE
= 19920203. TIME =  200000.

ID 1 *xx MODULE ITER: LOOP-PARAMETER SET.

ID 1 **% MODULE PVMINI: NO PVM USAGE.

ID 1 *%* MODULE ITER: SCREENING CONSTANTS. C1 =
1.6044000000000E+00. C2 = -6.0440000000000E-01.

ID 1 *xx MODULE ITER: SCREENING DECAYS. Al =
2.1600000000000E+00. A2 = 8.6000000000000E-01.

ID 1 #xx MODULE ITER: GAUSSIAN ENERGY. VGAUS =
~7.8624810967933E-01. VGAUSN = -7.8640062344029E-01.

ID 1 *x* MODULE VVHARX: CENTER OF GRAVITY. ZCG =
-1.4553737668350E+00.

ID 1 *%x MODULE VVHARX: DIPOLE MOMENT. CHARGE =
2.5076583174180E-05. COG = 7.8257449366600E+00.

ID 1 #*» MODULE VVHARX: AVERAGE CHARGE BEFORE FFT. DT =
-1.6671363994814E-07.

ID 1 *%* MODULE VVHARX: OTH FOURIERCOEFFICIENT OF POTENTIAL REAL
= -4.1309124697007E-09. IMAG = 0.0000000000000E+00.

ID 1 **x MODULE STEVXC: ZERO VALUES OF CHARGE DENSITY. IP =
19837.

ID 2 **x MODULE STEVXC: SMALLEST VALUE OF RHO. RLOW =
2.3797962891805E~36.

ID 1 **« MODULE DVEXDR: LOCAL TREATED PART. ILOCAL = 2.
FORCE: 1.30709829978E-011 7.29023508264E-004 7.18940569296E-001
ID 1 %+ MODULE ITER: ITERATION. IT = 1.

ID 1 *%* MODULE ITER: CHARGE. ORBITALS = 1.0856730398416E+01.
BOX = 1.0856730454969E+01.

ID 1 *%* MODULE ITER: CONT. PHASE = 1.1614876177755E+01. NORM =
6.4017906376969E+00.

ID 1 *x* MODULE ITER: CONT. MIX = 9.7000000000000E-01. TIME =
4.7060000000000E+02.

ID 1 *** MODULE ITER: CONT. ETOT = 0.0000000000000E+00. HAR® =
0.0000000000000E+00.

ID 1 %*% MODULE VVHARX: CENTER OF GRAVITY. ZCG =
-1.8843045062129E+00.

ID 1 %% MODULE VVHARX: DIPOLE MOMENT. CHARGE =
-2.6775474483846E-06. COG = 6.1100219791483E+00.

ID 1 *x* MODULE VVHARX: AVERAGE CHARGE BEFORE FFT. DT =
~8.9924155038517E-08.

ID 1 =%x MODULE VVHARX: OTH FOURIERCOEFFICIENT OF POTENTIAL REAL
= -2.,2281851390898E-09. IMAG = 0.0000000000000E+00.

ID 1 **x MODULE STEVXC: ZERO VALUES OF CHARGE DENSITY. IP =
20036.

ID 2 **x MODULE STEVXC: SMALLEST VALUE OF RHO. RLOW =
2.0621612997937E-36.

ID 1 *x* MODULE DVEXDR: LOCAL TREATED PART. ILOCAL = 2.
FORCE: 3.85901191420E-010 2.22317934072E-004 3.84308617215E-001
ID 1 #»x MODULE ITER: ITERATION. IT = 2.

ID 1 #x* MODULE ITER: CHARGE. ORBITALS = 7.3656821912318E+00.
BOX = 7.3656822874644E+00.

ID 1 =xx MODULE ITER: CONT. PHASE = 7.7928989204284E+00. NORM =
3.6600805684710E+00.

ID 1 *x+ MODULE ITER: CONT. MIX = 9.7000000000000E-01. TIME =
4.6916000000000E+02.

ID 1 #x% MODULE ITER: CONT. ETOT = -9.5614115180958E+01. HARR =
-1.0060818063517E+02.

ID 1 »x* MODULE VVHARX: CENTER OF GRAVITY. ZCG =
-2.4845419795120E+00.

ID 1 =*x* MODULE VVHARX: DIPOLE MOMENT. CHARGE =
5.5503014170617E-06. COG = 3.7090720819519E+00.

ID 1 #** MODULE VVHARX: AVERAGE CHARGE BEFORE FFT. DT =
-4.,2601633426313E-08.

ID 1 *%* MODULE VVHARX: OTH FOURIERCOEFFICIENT OF POTENTIAL REAL
= -1.0556042299554E-09. IMAG = 0.0000000000000E+00.

ID 1 *#x MODULE STEVXC: ZERO VALUES OF CHARGE DENSITY. IP =
20142.

ID 2 **x MODULE STEVXC: SMALLEST VALUE OF RHO. RLOW =
1.8930441316306E-36.
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**x INFO ID 1 *xx MODULE DVEXDR: LOCAL TREATED PART. ILOCAL = 2.
ok FORCE: 2.87492145113E-010 -2.98572964220E-005 1.76412607808E-001
*xx INFO ID 1 **% MODULE ITER: ITERATION. IT = 3.

**x INFO ID 1 **x MODULE ITER: CHARGE. ORBITALS = 5.5827751234844E+00.
*kk BOX = 5.5827752460461E+00.

**x INFO ID 1 *** MODULE ITER: CONT. PHASE = 5.8755864290122E+00. NORM =
*kk 1.9803645241134E+00.

*x* INFO ID 1 »xx MODULE ITER: CONT. MIX = 9.7000000000000E-01. TIME =
*xk 4.6959000000000E+02.
*x* INFO ID 1 ***x MODULE ITER: CONT. ETOT = -4.4694508362549E+01. HARR =

ok -4.5921723263045E+01 .

»xx INFQ ID 1 *** MODULE VVHARX: CENTER OF GRAVITY. ZCG =

ok -3.0419594342496E+00.

*xx INFO ID 1 **+x MODULE VVHARX: DIPOLE MOMENT. CHARGE =

Hokok 5.4475924475838E-06. COG = 1.4794022630014E+00.

*x* INFO ID 1 %%« MODULE VVHARX: AVERAGE CHARGE BEFORE FFT. DT =

hdd -1.9033608411725E-08.

*xx INFO ID 1 **x MODULE VVHARX: OTH FOURIERCOEFFICIENT OF POTENTIAL REAL
Rk = -4.7162410129486E-10. IMAG = 0.0000000000000E+00.

*xx INFO ID 1 *xx MODULE STEVXC: ZERO VALUES OF CHARGE DENSITY. IP =
ok 20200.
*x*x INFO ID 2 **x MODULE STEVXC: SMALLEST VALUE OF RHO. RLOW =

*okk 1.8204401460578E-36.

*x* INFO ID 1 ***x MODULE DVEXDR: LOCAL TREATED PART. ILOCAL = 2.
kK FORCE: 1.52293055306E-010 -1.25810508480E-004 6.44358274194E-002
*** INFO ID 1 #xx MODULE ITER: ITERATION. IT = 4.

*x% INFO ID 1 #*x MODULE ITER: CHARGE. ORBITALS = 4.6944709348687E+00.
>k BOX = 4.6944710749501E+00.

***x INFO ID 1 *xx MODULE ITER: CONT. PHASE = 4.9241266998301E+00. NORM =
oxk 1.0383738856192E+00.

**x* INFO ID 1 %+ MODULE ITER: CONT. MIX = 9.7000000000000E-01. TIME =
kK 4.6952000000000E+02.

**x INFO ID 1 **x MODULE ITER: CONT. ETOT = -2.2015703809829E+01. HARR =

ok -2.2329524867725E+01.

**x INFO ID 1 *** MODULE VVHARX: CENTER OF GRAVITY. ZCG =
ok -3.4328901972876E+00.

*x* INFO ID 1 #*x MODULE VVHARX: DIPOLE MOMENT. CHARGE =

*kk ~-6.3517936758806E-06. COG = -8.43207891560397E-02.

*«x INFO  ID 1 *#x MODULE VVHARX: AVERAGE CHARGE BEFORE FFT. DT =
>k ~8.2337163701617E-09.

#x% INFO  ID 1 **» MODULE VVHARX: OTH FOURIERCOEFFICIENT OF POTENTIAL REAL
. = -2,0401897296619E-10. IMAG = 0.0000000000000E+00.

#+% INFO ID 1 *++ MODULE STEVXC: ZERO VALUES OF CHARGE DENSITY. IP =

>k 20230. ,

#s% INFO  ID 2 *++ MODULE STEVXC: SMALLEST VALUE OF RHO. RLOW =

- 1.7916865828791E-36.

**% INFO ID 1 **% MODULE DVEXDR: LOCAL TREATED PART. ILOCAL = 2.
koK FORCE: 9.77414248289E-011 -1.38605810693E-004 8.33261246528E-003
*x% INFO ID 1 #»» MODULE ITER: ITERATION. IT = 5.

*x*x INFO ID 1 **x MODULE ITER: CHARGE. ORBITALS = 3.5487714403910E+00.
hkok BOX = 3.5487716141596E+00.

*=xx INFO ID 1 *x*x MODULE ITER: CONT. PHASE = 3.7006084328970E+00. NORM =
kK 5.4932987896083E-01.

*xx INFO ID 1 =xx MODULE ITER: CONT. MIX = 9.2150000000000E-01. TIME =
*xk 4.6983000000000E+02.

*x* INFO ID 1 #x* MODULE ITER: CONT. ETOT = -1.1191444077290E+01. HARR =
ok -1.1266940842639E+01 .

*xx INFO ID 1 =*x MODULE WROS: CHARACTERISTIC SUMS FOR CMVD. SUM =

Aokk -3.0103543509492E+02. ABS = 8.3919391322640E+03.

**x INFO ID 11 =% MODULE ZSYMCL: CMVO IS HERMITIAN. IEPS = 8.
**% INFO ID 1 **xx MODULE WROS: CHARACTERISTIC SUMS FOR CMCD. SUM =
L 2.2997573228048E+00. ABS = 5.6780570069409E+02.

*x% INFO ID 1 **x» MODULE WROS: CHARACTERISTIC SUMS FOR RMRR. SUM =
*kok 2.2245539305321E+01. ABS = 7.1684653983886E-01.

*xx INFOQ ID 1 *xx MODULE WR0S: SOLUTION WRITTEN.
*xx INFO ID 1 #x* MODULE ITER: REGULAR END OF PROGRAM AFTER ITERATION
bbb CYCLE.



