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Femtosecond laser pulse shaping for enhanced ionization
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Abstract – We demonstrate how the shape of femtosecond laser pulses can be tailored in order
to obtain maximal ionization of atoms or molecules. For that purpose, we have overlayed a direct-
optimization scheme on top of a fully unconstrained computation of the three-dimensional time-
dependent Schrödinger equation. The procedure looks for pulses that maintain the same total
length and integrated intensity or fluence as a given pulse that serves as an initial guess. It allows,
however, for changes in frequencies —within a certain, predefined range— and overall shape,
leading to enhanced ionization. We illustrate the scheme by calculating ionization yields for the
H+2 molecule when irradiated with short (≈ 5 fs), high-intensity laser pulses. The magnitude of the
obtained enhancement, as well as the shape of the solution optimal field depend strongly on the
constrains imposed on the search space. In particular, when only small frequencies are allowed,
the solution merely increases the peak intensity through temporal compression, as expected from
a simple tunneling picture. If larger frequencies are allowed the structure of the solution field is
more complicated.

Copyright c© EPLA, 2009

Introduction. – When atoms or molecules are irradi-
ated with laser fields that are intense enough to induce
nonlinear effects, a wealth of fascinating phenomena may
be observed [1]. This applies even to deceitfully “unin-
teresting” systems such as the simplest molecule, H+2 [2]:
above-threshold or tunneling ionization [3], bond soft-
ening [4], bond hardening (light-induced bound states
or vibrational trapping) [5], charge resonance enhanced
ionization [6,7], above-threshold dissociation [8], high-
harmonic generation [9], etc.
This very same complexity in the molecular reaction,

however, is what permits to envision the possibility of
controlling molecules with short (femtosecond time scale)
and intense (1011–1015W/cm2) laser pulses [10]. The short
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durations allow for coherent control : the systems evolve
uncoupled to the environment, and can be steered towards
the desired outcomes without relying on the more tradi-
tional control parameters, i.e., average, thermodynamic
functions such as the temperature. The high intensi-
ties trigger the strongly nonlinear, even non-perturbative,
response of the systems. An essential ingredient to realize
the molecular control is the capability of shaping the laser
pulses —a technological area that has witnessed spectac-
ular advances in the recent years [11].
Yet this complexity implies the need for challenging

theoretical models. Not surprisingly, ionization is the first
and most studied process, mainly because it could already
be studied for atoms [12], and because in this intensity
regime it almost always occurs, be it accompanied or
not by other phenomena. Even in the absence of influ-
ence from nuclear dynamics, the ionization of molecules is
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significantly more complex than that of atoms, due to
the electron emission from different atomic centers [13,14].
Two rather successful models for molecular ionization that
have recently been suggested are the so-called molecular-
orbital strong-field approximation [13] and the molecular
extension of the Ammosov-Delone-Kraine (ADK) approx-
imation [15]. However, these approaches are insufficient as
general tools [16].
A common feature of the approaches mentioned above is

the use of the single-active-electron (SAE) approximation.
One-electron molecular systems such as the hydrogen
molecular ion H+2 are therefore perfect candidates to
isolate the error introduced by the SAE approximation
from further simplifications. Electron correlation origi-
nates difficult and interesting phenomena such as non-
sequential ionization [17].
In order to properly investigate the interaction of short

and intense laser fields with molecules, one needs to
perform explicitly time-dependent calculations, even if
it might imply a heavy computational burden. Calcu-
lations of this kind, that propagate the time-dependent
Schrödinger equation (TDSE), have been presented for H+2
in the past, for example with the purpose of understanding
the presence of maxima in the ionization yield for particu-
lar internuclear separations [18], or in order to disentangle
the relationship between ionization and dissociation [7,19].
Recently, Selstø et al. [20] and Kjeldsen et al. [21] have
reported calculations on the orientation dependence of the
ionization yield —lifting the commonly used assumption
of a molecular axis parallel to the light polarization.
In this work we take a further step, and focus on

the possibility of theoretically designing, via fixed-nuclei
three-dimensional (3D) TDSE calculations, laser pulses
able to control (in particular, significantly enhance) the
ionization yields, taking H+2 as an example system. Some
recent experimental breakthroughs on this area have trig-
gered our interest. For example, Suzuki et al. [22] demon-
strated the control of the multiphoton ionization channels
of I2 molecules by making use of a pulse shaping system
capable of varying in time the polarization directions.
Simultaneously, Brixner et al. [23] have made use of a
similar polarization-shaping system to enhance ionization
yields of diatomic molecules (K2). Our focus is, however,
on linearly polarized ultrashort pulses (≈5 fs), so rapid
that the nuclear movement does not play a role during
the pulse action —in contrast to the studies in which the
ionization is studied as the internuclear distance changes,
leading to possible resonances.

Methodology. – The optimization problem can be
formulated in the language of quantum optimal-control
theory (QOCT) [10,24]. QOCT answers the following
question: A system is driven, during some time interval, by
one or various external fields whose temporal dependence
is determined by a set of “control” functions. Given an
objective (e.g., to maximize the transition probability to
a prescribed final state, the so-called target state), what

are the control functions that best achieve this objective?
In most cases (as in this work), the control function is
the time-dependent electric field of a laser pulse, and
the objective is typically expressed as the maximization
of a target operator Ô: The value of the expectaction
value of this operator as a function of the parameters
that determine the control function is to be maximized.
The computation of the gradient of this function implies
a set of equations —some forward and backward time-
dependent propagations of the Schrödinger equations.
Over the years, a number of suitable, iterative algorithms
have been provided to cope with these equations [24].
In order to enhance ionization, one would just define Ô

as the projection onto unbound states, or, alternatively,
the identity minus the projection onto the bound states:

Ô= 1̂−
bound∑
i

|ϕi〉〈ϕi|. (1)

However, we have experienced numerical difficulties when
attempting to solve the QOCT equations for this partic-
ular operator: The forward-backward propagations that
must be performed in order to solve the QOCT equations
proved to be, for our particular implementation, numeri-
cally unfeasible when using the operator given in eq. (1) to
define the target. This was due to the appearance of fields
with unrealistically high frequencies and/or amplitudes.
We believe that the reason lies in the fact that the back-
ward propagation must be performed after acting with the
operator Ô on the previously propagated wave function.
This eliminates the smooth, numerically friendly part of
the wave function, enhancing, on the contrary, the high
frequency components. This procedure is repeated at each
iteration, eventually making the propagation impossible.
We do not claim, however, that any other numerical imple-
mentation will not be able to succeed.
Therefore, we have employed and present here, a direct

optimization scheme, which is in fact much closer in spirit
to the techniques utilized by the experimentalists [25]. In
this scheme, we construct a merit function by considering
the expectation value of the operator defined in eq. (1) at
the end of the propagation:

F (x) = 〈Ψx(T )|Ô|Ψx(T )〉, (2)

where x is the set of parameters that define the laser
pulse, and |Ψx(T )〉 is the wave function that results from
performing the propagation with the laser determined by
x, at the final time T . Of course, the sum over the bound
states has to be truncated; for the calculations presented
below, we find it sufficient to include the lowest ten states.
The merit function is calculated by performing consecutive
TDSE propagations: The resulting function values are fed
into a recently developed derivative-free algorithm called
NEWUOA [26]. This algorithm seeks the maximum of any
merit function F (x) depending on N variables x, and does
not necessitate the gradient ∇F . It is very effective for N
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larger than ten and smaller than a few hundred, which is
the case considered here. In all our runs, we necessitated
around two hundred iterations to converge the ionization
yields to within 1%.
The system and the TDSE propagations are modeled in

our homegrown Octopus code [27]. We represent the wave
functions on a real-space rectangular regular grid, and fix
the nuclear position at their equilibrium distance. The
small length of the pulses used here justifies this simpli-
fication. We perform calculations setting the polarization
direction both parallel to the molecular axis and perpen-
dicular to it. The size of the simulation box is selected
large enough to ensure that very little of the electronic
density has reached the grid boundaries at the end of the
laser pulse. Nevertheless, we add absorbing boundaries to
remove this charge; if the propagation is pursued after the
pulse, part of the density will “abandon” the simulation
box; the remaining integrated density should approach (as
it does) one minus the ionization probability calculated as
the expectation value of eq. (1).
We fix the nuclei to their equilibrium internuclear

distance, 2.00 atomic units. The nucleus-electron interac-
tion is not the pure Coulomb interaction, but a smoothed
expression that avoids the singularity at the origin;
this expression is a norm-conserving Troullier-Martins
pseudopotential [28] that preserves both the scattering
properties and the eigenvalue of the Hydrogen atom.
The laser pulse is taken in the dipolar approximation,

and represented in the length gauge. The temporal shape
of the pulse is given by a function f(t), which we expand
in a Fourier series:

f(t) = f0+

N∑
n=1

[
fn

√
2

T
cos(ωnt)+ gn

√
2

T
sin(ωnt)

]
,

(3)
with ωn = 2πn/T . In order to ensure a physically mean-

ingful laser pulse [29], we must have
∫ T
0
dtf(t) = 0, which

implies f0 = 0. Moreover, we must have f(0) = f(T ) = 0,
where T is the total propagation time. This poses the
following constraint:

N∑
n=1

fn = 0. (4)

The sum over frequencies is truncated according to phys-
ical considerations: Any pulse shaper has a predefined
range of frequencies it can work with. The feasibility of the
numerical scheme depends on the possibility of truncating
the previous expression at a reasonably low number. In
the cases considered here, due to the short duration of the
pulses (around 5 fs), we obtain no more than 20 degrees of
freedom by setting the maximum frequency to 1Ha.
Evidently, by increasing the intensity of a pulse one can

enhance the ionization yield. Our wish is to improve this
yield by changing the pulse shape, and not simply by lasing
with larger intensity. Therefore, to ensure the fairness
in the optimization search, we constrain the search to

laser pulses whose time-integrated intensity (fluence) is
predefined to some value F0:

F0 =

∫ T
0

f2(t) dt=

N∑
n=1

(f2n+ g
2
n). (5)

The search space {fn, gn} is thus constrained to the hyper-
sphere defined by the previous equation. But we must
add the condition given by eq. (4), which further restricts
the search space to a hyper-ellipsoid. By performing the
appropriate unitary transformation, this can be brought
again into a hypersphere:

F0 =
2N−1∑
n=1

ξ2n. (6)

This equal-fluence condition can be guaranteed if we per-
form a new transformation to hyperspherical coordinates:

ξ1 = F
1/2
0 cos(θ1),

ξ2 = F
1/2
0 sin(θ1) cos(θ2),

. . .= . . .

ξ2N−2 = F
1/2
0 sin(θ1) . . . sin(θ2N−3) cos(θ2N−2),

ξ2N−1 = F
1/2
0 sin(θ1) . . . sin(θ2N−3) sin(θ2N−2).

(7)

The set of angles {θj}2N−2j=1 constitute the 2N − 2 variables
that define our search space.

Results. – The initial laser field before the optimiza-
tion is a linearly polarized pulse having a sinusoidal
envelope, fixed peak intensity, and wavelength of λ=
400 nm —a typical value for frequency-doubled titanium-
sapphire lasers. Correspondingly, the initial frequency
is ω0 = 0.114Ha, and the total pulse duration is 5.3 fs,
which corresponds to eight cycles. The maximum allowed
frequency of the optimized pulse is set to ωmax = 2ω0. The
pulse polarization is fixed to be parallel or perpendicular
to the molecular axis. During the QOCT procedure, the
polarization and the fluence F0 are kept fixed, but the
peak intensity may change from the initial value, which is
selected in the range I = 0.5, 0.75, . . ., 2× 1015W/cm2.
Figure 1 shows the ionization probabilities as a function

of the peak intensity (of the initial guess pulse) for
the initial and optimized pulses polarized parallel (a)
and perpendicular (b) to the molecular axis, respectively.
Overall, the pulse optimization leads to a significant
increase in the ionization. As expected, the ionization
yield is slightly larger for pulses polarized parallel to the
molecular axis.
To get more insight into the optimized ionization

process, we plot in fig. 2 the initial and optimal laser pulses
and the occupations of some single-electron states during
the pulse interaction. The peak intensity of the initial
pulse is I = 2× 1015W/cm2. Optimized pulses of both
parallel (a) and perpendicular (c) polarization have large
peaks near the end of the pulse. According to the corre-
sponding occupations shown in figs. 2(b) and (d), these
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Fig. 1: (Color online) Ionization probability for the initial pulse
(circles) and for the optimized pulse (squares) as a function of
the peak intensity of the initial pulse. The polarization of the
pulse is (a) parallel and (b) perpendicular to the molecule.
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Fig. 2: (Color online) (a) Initial and optimized pulses (parallel
polarization) and their power spectra (in arbitrary units) and
(b) the occupation of selected single-electron states in the
optimized ionization process, when I = 2× 1015W/cm2. (c),
(d) Same as (a), (b) but for perpendicular polarization.
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Fig. 3: (Color online) (a)–(f) Snapshots of the electron densi-
ties in the optimized ionization process when the pulse polar-
ization is parallel to the molecular axis and the intensity is
I = 2× 1015W/cm2. (g)–(l) The same for a pulse polarized
perpendicular to the molecular axis.

amplitude peaks account for almost all of the ionization:
During the peaks the ground-state occupations rapidly
collapse. The 2p σu (2p πu) excited state contributes to
the process to a small extent in the parallel (perpendic-
ular) case, whereas the other states are involved by a
nearly negligible fraction; overall, no excited bound states
contribute significantly. Hence, within the constraints set
here for the laser pulse, the optimal ionization of H+2 is a
direct process obtained by focusing most of the available
pulse energy in a very short time frame —though keeping
the integrated total field at zero in accordance with
Maxwell’s equations (see ref. [29]). The electron densities
during the ionization process are visualized in fig. 3 for
both parallel (a) and perpendicular (b) polarizations.
An interesting aspect that can be learned from fig. 2

is the difference in the shape of the optimized fields for
the parallel and perpendicular cases. For the parallel
orientation, the pulse is a half-cycle pulse, whereas for the
perpendicular orientation, it is a full cycle. In other words,
the carrier-envelope phase is 0 in the first case, and π/2 in
the second case. The half-cycle is to be expected from the
simple tunneling arguments, since it provides the maxi-
mum possible peak intensity. Note, however, that in order

to satisfy the condition
∫ T
0
dtf(t) = 0, a pronounced peak

of a given sign must be compensated by a pulse fragment
of the opposite sign. This can be a large peak —as in the
π/2 pulse— or a small intensity, biased pulse fragment
—as in the half-cycle pulse case that occurs in the parallel
orientation case. The reason why one or the other option
is more advantageous could be related to the larger
polarizability of the dimer in the parallel direction: the
initial positively biased part of the pulse shown in the top
right panel of fig. 2 is able to modify the electronic state in
such a way that the final peak ionizes it more effectively.
It may be that a similar “preparation” is not as effective
in the perpendicular case, and therefore does not exist.
The first ionizing peak must then be compensated by an
opposite second peak (which has little effect in the system,
since most of the electronic charge is already gone).
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In any case, the previous optimizations have produced
rather “uninteresting” solutions. It is a well known fact
that in a short intense laser pulse, most of the ionization
occurs during the field peaks. Therefore, the optimizations
have just created short, intense bursts of light. This fact
can be understood if we consider the process happening
in the quasi-static, tunneling regime, in which the total
ionization can be approximated by considering at each
moment in time the static ionization rate that corresponds
to the electric amplitude. This ionization rate is nonlinear,
and it is much larger at the electric field peaks, which
therefore cause most of the ionization. Note, however, that
the cases discussed above lie in an intermediate regime
between the tunneling and the multi-photon regime —the
Keldysh parameter, γ, is of the order of one. (The Keldysh
parameter γ is defined as

√|EI|/2Up, where EI is the
ionization potential of the system, and Up is the ponde-
morotive energy, given in atomics units by (E0/2ω)

2, E0
being the peak intensity of the electric field, and ω the
pulse frequency. Since our optimized lasers do not have a
single frequency —not even necessarily a dominant one,
we can only speak of approximate Keldysh parameters.)
Alternatively, one can explain the pulse simplicity

considering that the maximum allowed frequency, 2ω0 =
0.228Ha, is smaller than any resonance transition energy
from the ground state. As a consequence, the system
does not significantly populate these states, and the only
ionizing channel is direct transition to the continuum.
The picture changes significantly, however, if we allow

for a larger cutoff frequency. First, this increases the value
of the Keldysh parameter associated with the process,
which may change the regime from a more quasistatic
to a more multi-photon–like character. Secondly, the
excited bound states are now accessible for single-photon
transitions. For example, fig. 4 displays results obtained
for 4ω0. The intensity is here set to 0.5× 1015W/cm2,
and the field polarization is aligned with the molecule
axis. Doubling the cutoff frequency of the search space
has a significant effect in the total ionization yield: Now
we obtain 0.99 for the ionization probability, whereas in
the first optimization the yield was 0.20 (see fig. 1, top
panel, first point in the series). Note that the initial yield
before any optimization was only 0.005.
Moreover, the manner in which the ionization occurs

with a larger cutoff frequency is qualitatively very differ-
ent. Figure 4 displays the evolution of the occupation of
some of the bound states. The first excited state (2p σu)
plays a significant role, which can be understood because
the transition energy from the ground state is now accessi-
ble in the field search space. In addition, a couple of other
lowest states contribute in the ionization process in an
ascending order as a function of time. It should be noted,
however, that only the σ orbitals participate in the transi-
tions, and π orbitals, for example, are not allowed due to a
different symmetry. As a consequence of the involvement
of several states in the ionization process, the structure
of the optimized laser pulse shown in the upper panel of
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Fig. 4: (Color online) Upper panel: optimized laser pulse for the
ionization when the cutoff frequency is 4ω0 (see text) and the
intensity is fixed to 0.5× 1015W/cm2. Lower panel: occupation
of a few lowest states during the pulse interaction.

fig. 4 is much more complicated than the single-burst fields
obtained in the previous calculations.
It becomes clear that at a given fixed fluence, the opti-

mal ionization yields may increase dramatically when the
maximum allowed frequency is also increased. This fact
stresses the need of carefully considering the constraints
in the search space when performing theoretical control
calculations, since experimentalists are also always bound
by some constraints —in particular, not all frequencies are
accessible. From the case that we have presented, there
seem to be two issues to be closely watched: whether or
not the allowed frequencies permit to consider the process
clearly in the tunneling regime, and whether or not the
allowed frequencies are high enough to allow direct tran-
sitions to bound excited states, and subsequent indirect
transition to the continuum.

Conclusions. – We have shown with 3D time-
propagations of the time-dependent Schrödinger equation
how the temporal shape of a short intense laser pulse may
affect significantly the total ionization yield of H+2 at fixed
internuclear separations. Moreover, we have employed
a gradient-free optimization technique to find the laser
pulse that enhances ionization. This optimization can
be constrained in different ways, accounting for the
limitations of physical sources —not all frequencies and
intensities are available, and not all possible shapes can
be constructed with the state-of-the-art pulse shapers
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(although the technology improves at a phenomenal rate).
The results will differ depending on these constraints: The
optimized pulse may be the single burst of electric field
that one would expect by considering a process in the
tunneling regime, or a field with complicated structure
that drives the system through intermediate states —the
ionization can be enhanced by resonant transitions.
Whereas in the former case it would be easy to intuitively
design optimal pulses, in the latter an optimization algo-
rithm such as the one presented in this work is necessary.
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J. Phys. B: At. Mol. Opt. Phys., 35 (2002) L397; Ruiz C.,
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