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Zusammenfassung

Die Elektronenstrukturtheorie ermoglicht es die berechneten elektronischen Eigen-
schaften (z.B. Bandstruktur und Gesamtenergie) realer Systeme mit denen aus dem
Experiment zu vergleichen und erlaubt deren Vorhersage. Die Qualitat der the-
oretischen Ergebnisse hingt allerdings von der verfiigharen Computerleistung ab.
Dies spiegelt sich in dem hohen Rechenaufwand der fortgeschrittenen theoretischen
Methoden wider, anhand derer die Elektronenstruktur von Materialien mit hoher
Genauigkeit reproduziert werden kann. Folglich ist die Anwendbarkeit dieser Meth-
oden auf kleine Systeme beschrankt.

Einbettungsmethoden bieten eine Moglichkeit fortgeschrittene theoretische Metho-
den auf groBere Systeme auszuweiten. Die Grundidee eines jeden Einbettungsansatzes
besteht darin, das zu untersuchende System in ein eingebettetes Teilsystem und
dessen Einbettungsumgebung aufzuteilen. Hierbei wird das eingebettete System
mit genaueren, aber rechenaufwandigeren Theorien als die Einbettungsumgebung
beschrieben.

In diese Arbeit entwickle ich eine Einbettungsmethode fiir periodische Systeme.
Diese erlaubt die Berechnung des physikalisch relevanten Teils, hier der Einheitszelle,
mit Elektronenstrukturmethoden, welche (typischerweise) fiir periodische Systeme
mit grofem Rechenaufwand verbunden sind. Im Gegensatz hierzu wird der Rest
des Systems mit der rechnerisch effizienteren Kohn-Sham Dichtefunktionaltheorie
beschrieben. In Anlehnung an die dynamical mean-field theory (DMFT), wird die in
dieser Dissertation eingefiihrte Einbettungsmethode mit Hilfe von selbstkonsistenten
Greenschen Funktionen formuliert. Das Greensche Funktion Formalismus ermoglicht
es die Hybridisierung zwischen der eingebetteten Region und der Umgebung auf
natiirlicher Weise darzustellen. Diese Beschreibung der Hybridisierung macht eine
zusatzliche Sonderbehandlung der Einheitszellenatome, die an die Umgebung an-
grenzen, iiberfliissig. Dies ist ein entscheidender Vorteil gegeniiber konventionellen
Einbettungsmethoden.

Unsere real space dynamical mean-field embedding (RDMFE) Methode basiert auf
zwei Dyson Gleichungen, wovon eine das eingebettete Teilsystem (hier die Einheit-
szelle) und eine weitere die periodische Umgebung beschreibt. Diese Dyson Gle-
ichungen definieren zwei selbstkonsistente Zyklen, die ich in FHI-aims im Rahmen
dieser Arbeit implementiert habe. Die Gesamtenergie und die Bandstruktur wer-
den anschliefend aus den resultierenden selbstkonsistenten Greenschen Funktionen
berechnet. In der DMFT wird das eibgebettete System (typischerweise d- oder f-
Elektronzustdnde) mit sehr genauen bis hin zu exakten Theorien berechnet. Im
Gegensatz hierzu werden in der RDMFE Naherungen zur Berechnung der Einheit-
szelle herangezogen. Diese approximierte Beschreibung der eingebetteten Einheit-
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szelle hat den Vorteil, dass zur Beschreibung des eingebetteten Systems kein korre-
lierter Unterraum benotigt wird, wie das fiir DMFT der Fall ist.

Um die Leistung von RDMFE zu zeigen, habe ich einfache Bulk-Systeme betrachtet
und die eingebettete Einheitszelle mit Hybridfunktionale und die G'W-Naherung
der Vielteilchenstorungstheorie berechnet. Grundsatzlich kann aber jede Theorie,
die iiber die GW-Néherung hinaus geht, verwendet werden. Ich habe gezeigt,
dass die resultierenden Gesamtenergien und Zustandsdichten schnell mit den nu-
merischen Rechenparametern konvergieren. Auflerdem habe ich demonstriert, dass
diese physikalischen Groflen systematisch mit der Grofle der eingebetteten Einheit-
szellen zu ihren periodischen Werte konvergieren. Das die RDMFE die wichtigsten
Eigenschaften der “besseren” Theorie erfasst, habe ich am Beispiel des Plasmon
Peaks in Bulk-Silizium dargestellt, wobei die Einheitszelle mit der G'W-Naherung
behandelt wurde.

Die zugrunde liegende Arbeit zeigt, dass die RDMFE verwendet werden kann um
fortgeschrittene Elektronenstruktur Methoden fiir Systemgrofien anwendbar zu machen,
die vorher so nicht erreichbar waren. Dies verspricht unzéhlige interessante Anwen-
dungsmoglichkeiten in der Zukunft. Die Entwicklung von RDMFE ist daher ein
bedeutender Schritt nach vorne auf dem Weg zur Anwendbarkeit sehr genauer The-
orien auf periodische Systeme.



Abstract

Electronic structure theory is of fundamental importance for material science, since
it enables the comparison of the calculated electronic properties (e.g. the band
structure and the total energies) of real systems with the experimental findings and
allows their prediction. The quality of the theoretical results depends, however, on
the available computational power. This is reflected in the fact that advanced the-
oretical methods, that are able to reproduce the electronic structure of materials in
a reasonable way, are computationally demanding. As a consequence, their applica-
bility is limited to small systems.

Embedding schemes offer a way to extend advanced theoretical methods to large
systems. The main idea behind every embedding scheme is to partition the system
of interest into an embedded region and a surrounding. The embedded system is
smaller and can then be treated with more accurate, and thus computationally more
demanding, approaches than the surrounding.

In this thesis I present an embedding scheme for periodic systems that facilitates
the treatment of the physically important part (here the unit cell) with advanced
electronic-structure methods, that are computationally too expensive for periodic
systems. The rest of the periodic system is treated with computationally more ef-
ficient approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent
manner.

The method is based on the concept of dynamical mean-field theory (DMFT) for-
mulated in terms of Green’s functions. The Green’s function formalism facilitates a
natural definition of the hybridization between the embedded system and the sur-
rounding, so that no special treatment of the boundary atoms is required. This
constitutes a major advantage over conventional embedding schemes used in quan-
tum chemistry.

Our real space dynamical mean-field embedding (RDMFE) scheme features two
nested Dyson equations, one for the embedded cluster and another one for the pe-
riodic surrounding. These Dyson equations define two self-consistency cycles that I
have implemented in FHI-aims as a part of this thesis. The total energy, the density
of states and the band structure are then computed from the resulting self-consistent
Green’s functions. Compared to DMFT, where the embedded system (usually d- or
f-electron levels) is treated with essentially exact methods, I use in RDMFE ap-
proximate theories to calculate the embedded unit cell. RDMFE is thus free from
the ambiguity in the definition of a correlated subspace that plagues DMFT.

To demonstrate the performance of RDMFE, I consider simple bulk systems and
treat the embedded unit cell with hybrid functionals and many-body perturbation
theory in the GW approximation for which periodic reference calculations are avail-
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able. In principle, however, any beyond-GW approach can be used. I show that the
resulting total energies and density of states converge well with the computational
parameters. Moreover, I demonstrate that these quantities systematically converge
to their periodic limit when increasing the size of the embedded unit cell. The ability
of our method to capture key properties of the “better” theory is demonstrated for
the example of the plasmon satellite in bulk Silicon, when the embedded unit cell is
treated with the GW approximation.

The Analysis I give in this work reveals that RDMFE has the potential to make
advanced electronic methods accessible for unprecedented system sizes offering a
multitude of application possibilities. The development of our embedding scheme
is thus a significant step towards making highly accurate theoretical approaches
applicable to large systems.



Introduction

The electronic many-body problem is one of the most studied yet most challenging
problems in condensed matter physics. Due to the long-range Coulomb interaction
between electrons, the description of electronic systems is only possible in an ap-
proximated way. The development of approximations to understand and accurately
describe electronic processes in condensed matter systems constitutes a very broad
and simultaneously very active research field in theoretical physics. One of the ear-
liest quantum mechanical approaches to the many-body problem is perturbation
theory. The main virtue of perturbation theory is its controllability. In other words,
one knows exactly what one has approximated and one knows how to improve upon
this approximation. Hence, the theory is systematically improvable. In the model
Hamiltonian community, the quantum mechanical concept of second quantization
(also called occupation number formalism) is used to rewrite the many-body Hamil-
tonian in a simple form based on occupation number operators. This simplification
allows the construction of model scenarios mimicking electronic processes with two
or more electrons involved. Due to the drastic reduction in the electron number,
these models can be solved with highly accurate numerical methods facilitating qual-
itative insight into the complex electronic interactions. In quantum chemistry, wave
function based methods are favored due to their accurate description of real systems.
In contrast to perturbative approaches, where the approximation affects the Hamil-
tonian, here the complexity of the problem is translated into the wave function.
Hence, the configuration space, and with it the numerical cost, grows dramatically
with the level of accuracy required to describe a given system. The application of
such wave function based methods is thus limited to single atoms or small molecules.
Conversely, the balance between accuracy and computational efficiency of density
functional theory (DFT) with its local (i.e., local density approximation (LDA)) and
semi-local (i.e., generalized gradient approximations (GGAs)) approximations has
paved the way for DF'T to become the method of choice for discribing large, real
systems.

However, common density functional theory approximations (DFA) suffer from sev-
eral limitations such as the self-interaction error [1, 2, 3|, the lack of a derivative dis-
continuity in the exchange-correlation potential [4, 5, 6], the inaccurate description of
van der Waals iteractions [7, 8, 9], or the absence of image effects [10, 11, 12]. These
shortcomings limit the predictive power of LDA and GGAs, especially for localized
electrons such as d- or f-electron systems [13, 14, 15, 16, 17] or for systems where
charge transfer can occur as is the case for adsorbates on surfaces [18, 19, 20, 21].
Moreover, DFT is mainly a ground-state method and is of limited applicability
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to excited states. While perturbation theory or wave function based methods can
overcome some of these limitations, their applicability to real systems is limited by
their high computational cost as mentioned previously. To overcome the efficiency-
accuracy conundrum, much effort has been devoted to combine the best of both
worlds, that is to merge local and semilocal DFT approximations (DFA) with ad-
vanced electronic methods [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

In this work, I investigate the concept of embedding. Embedding is a divide-and-
conquer approach, where the full system is divided into two parts: a small embedded
region, which is treated with advanced, computationally demanding approaches, and
an embedding environment that is treated with computationally more efficient ap-
proaches. Following this general principle, various embedding schemes have been
developed in the past [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].
Depending on the background of the authors, they differ in area of application, on
how they treat the coupling between the embedded region and the surrounding, and
in the approaches used to describe the two regions. In (bio)chemistry, for example,
one of the most popular embedding schemes combines quantum mechanics (QM)
and classical molecular mechanics (MM). The embedded region is treated quantum
mechanically and the surrounding by MM [23, 24, 26, 28, 29]. In surface science,
fully quantum mechanical schemes are more prevalent, e.g., for the description of
surface adsorbates. They divide space into regions for advanced and less advanced
electronic-structure approaches and differ mostly on how these two regions are cou-
pled, e.g. through maximal exchange overlap [22], density embedding [33] or cluster
extrapolation [31, 32]. In the model Hamiltonian community, dynamical mean-field
theory [25, 27, 30] offers a natural embedding framework by mapping an infinite,
correlated lattice model into an impurity model coupled to a self-consistently deter-
mined mean-field bath [37]. When DFA is chosen as the mean-field, DMFT becomes
material specific [30, 38, 39]. The embedding is achieved by means of Green’s func-
tions facilitating the calculation of spectra, band structures, but also phase diagrams.
Recently, Zgid and Chan [34] proposed to use DMFT as an embedding framework for
quantum-chemistry approaches such as the configuration-interaction method. They
since proposed a simplified DMFT scheme based on density-matrix embedding to
access static properties (e.g., the ground-state energy and its derivatives) [35].

The objective of the work presented in this thesis is to extend the DMFT concept
to couple two ab initio regions. The idea is similar to that of Zgid and Chan [34],
but I here explore the possibility of using DMFT as a general embedding scheme for
advanced first-principles electronic-structure methods. These can be advanced DFT
exchange-correlation functionals or Green’s function based excited-state methods
for example, approaches that go beyond the GW method [40], which are still com-
putationally too expensive for large-scale systems. In contrast to previous DMFT
schemes, the unit cell is treated as the local, embedded region, that is coupled to
the rest of the periodic system via the DMFT formalism. The advantage of the
present approach is that all electrons in the embedded region are treated on the
same quantum mechanical footing.
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This thesis is structured as follows: in Chapter 1, I introduce perturbation the-
ory and the single particle Green’s function as basic tools to approach the electronic
many-body problem. For the two-body interaction, I step by step show how the
accuracy is improvable by accounting for more electronic processes. Hence, I start
with the simple Hartree-Fock approximation before I introduce the famous Hedin’s
equations and the concept of screening. Finally, I briefly tackle some prominent
wave function based approaches, to motivate the next chapter. In Chapter 2, I
turn to DFT and the related approximations and shortly discuss their performance.
To conclude this Chapter, I show how the random phase approximation and GW
can be combined with DFT to describe real systems. A review of some prominent
ab initio embedding schemes is given in Chapter 3, before I give a more detailed
discussion of DMFT and the derivation of the related Green’s functions. I then
address DMFT applications for real systems within the LDA+DMFT approach and
briefly present some of the established impurity solvers. To close this Chapter, I
present some examples, where DMFT is successfully applied. In Chapter 4 I present
the concept of our real-space dynamical mean-field embedding (RDMFE) approach
and its implementation in the all-electron Fritz-Haber-Institute ab initio molecular
simulations code [41, 42, 43]. Here I discuss all the technical details of the methods
related to the embedding Green’s functions but also computational ones, such as the
resolution of identity, the frequency grids and the required Fourier transforms. Fi-
nally, in Chapter 5 I discuss how physical quantities can be calculated from RDMFE.
The density of states and the total energy from RDMFE are discussed and tests for
hybrid density functionals and GW for representative elements are performed.
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Chapter 1

Theory of Interacting Particles

Except for relativistic effects, the main physics and chemistry of a condensed matter
system with N, electrons and N,, nuclei, is captured by the many-body Hamiltonian

N, N, Ne N,
~ IV 1 1 I 4
D Eah D Dl roprs bl D IP W) oy 3
N, N,
1 vz 1 7,2,
= ZAT Nl 1.1
5 M,,+22\RV—R#|’ (1.1)

where Latin indices 4, j label electronic coordinates and Greek indices v, u, nuclear
ones. Correspondingly, r and R are electronic and nuclear coordinates, respectively.
M, labels the mass of the nucleus with index v, Z, its atomic number and m, is the
electronic mass. The first term in the Hamiltonian Eq. (1.1) describes the electronic
kinetic energy, the second one the interactions between electrons and the third one
the interaction between electrons and nuclei. The last two terms (second line of Eq.
(1.1)) are pure nuclear terms, where the first term describes the kinetic energy of
the nuclei and the second one the interaction between different nuclei. I use atomic
units M, =m.,=e=h = 47350 = 1, but write the masses m. and M, esplicitly for
clarity.

Most physical properties of a given system can be obtained by solving the time-
independent Schrodinger equation

HU({r},{R}) = E¥({r}, {R}), (1.2)

where U({r}, {R}) is the wave function of the full system (i.e., electrons and nuclei)
and F the corresponding eigenvalues. A common way to write the solution to Eq.
(1.2) is the expansion

\II({rj}v {Rl/}) = (b({rj}; {RI/}>A({RI/}>7 (13)

where A({R,}) are coefficients that depend on the nuclear coordinates only and
¢({r;};{R.,}) the electronic wave-functions at nuclear position R,, that solve the
electronic Schrodinger equation H.¢ = E, 1) corresponding to the electronic Hamil-
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tonian

ﬁe:__ m. _Z,r_r, ZZ|r_
Z|R R

= T + V:ae + V:?xt
+ V. (1.4)

ul

The ground state from such a solution to the Schrédiger equation, Eq. (1.2), contains
matrix elements such as (¢;|VZ|¢;) and (¢;|V,|¢;). Essentially, such matrix elements
of the nuclear kinetic operator describe the dynamics of the lattice atoms within what
is called electron-phonon coupling. They couple different electronic states ¢; and ¢;
and are thus difficult to solve. Hence, approximations have to be considered at this
point:

(i) The adiabatic (or Born-Oppenheimer) approximation [44]: Due to their much
smaller mass, the electrons can be viewed as following the motion of the nuclei
adiabatically. This means that transitions between ¢; and ¢; for ¢ # j are
suppressed. Thus, matrix elements such as (¢;|V2|¢;) or (¢:|V,|¢;) vanish for

i # 5.
(ii) For the diagonal terms (i.e. i = j) however, only (¢;|V?2|¢;) survives and can
be roughly estimated to be

(6] V2] ~ 1074 x (TL), (1.5)
where (T) is the kinetic energy of an electron.

With these approximations, the full many-body problem described by Eq. (1.2) can
be seperated in an equation for electrons defined by the electronic Hamiltonian H,
in Eq. (1.4), and one for the nuclei given by

2 Z|R R

where EY is the electronic energy at the nuclear position v. Equation (1.6) deter-
mines the coefficients A, and in practice it is replaced by the classical mechanical
(Newtonian) equation of motion.

In contrast to Eq. (1.1) the electronic Hamiltonian Eq. (1.4) does not include the
kinetic part of the nuclei and thus, the kinetic contribution comes only from the
electrons. The nuclear coordinates R, are not quantum operators anymore, but
become parameters for the electronic Schrédinger equation.

In the Born-Oppenheimer approximation the electronic mass m, is taken to be much
smaller than that of the nuclei, so that one can consider the electrons as instanta-
neously (i.e., adiabatically) following the motion of the nuclei without getting excited

+E'| A, = E A, (1.6)

ul
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from the stationary state of the electronic Hamiltonian H.. Hence, for systems where
electron-phonon coupling effects (i.e., non-adiabatic effects) are not important the
Born-Oppenheimer approximation is well justified. However, the description of su-
perconductivity for instance, where electron-phonon coupling is crucial, would not
be possible within this approximation.

Solving the electronic Schrédinger equation is simple for the case of non-interacting
electrons, i.e., V.. = 0. However, to describe real systems, electronic interactions
are crucial, making the exact solution of the electronic Schrodinger equation an un-
feasible task. This is mainly due to the long-range nature of the Coulomb repulsion
between electrons. Hence, interacting electronic systems are strongly correlated “in
the sense that every electron feels the presence” of every other one. The devel-
opment of accurate approximations to describe real systems has been the driving
force of a lot of fields in theoretical quantum physics and chemistry. One of the
most prominent quantum mechanical tools that has been used extensively in con-
densed matter theory, is perturbation theory. It relies on the idea of partitioning
the Hamiltonian in two parts: one part where one knows the solution exactly and
another part (the perturbation), which includes all the complexity and where the
solution is still to be found. Using quantum mechanical tools and physical intuition
one can then rewrite the problem as a series expansion of the perturbation. Assum-
ing that the perturbation is small enough so that at some part of the series it will
become negligible, allows a truncation of the perturbation series. In this Chapter I
will introduce an important tool of perturbation theory, that is the propagator the-
ory which represents the foundation of the successful concept of Feynman diagrams.
After a brief introduction into the propagator theory, the key approximations, such
as Hartree-Fock [45, 46] and the random-phase approximation [47, 48, 43], will be
discussed before presenting Hedin’s equations [40] and the approximations related
to them. This Chapter is mainly based on the books by Mattuck [49, 50], Fetter
and Walecka [51] and the review article by Aryasetiawan and Gunnarsson [52].

1.1 The single particle Green’s function

To start with, I would like to briefly remind the reader how the time evolution of
states is defined. The time evolution of a state |¢(to)) at time ¢y can be defined as
is known from basic quantum mechanics lectures as

[0(t)) = U(t,to) ¢ (to)), (1.7)

where I omit spatial coordinates for brevity. Inserting Eq. (1.7) in the Schrédinger
equation yields

50t t0) — HU( )] 0)) = 0 (18)

Since this must hold for every state |¢(ty)), one has

i%z}*(t, to) = HU(t, t,). (1.9)
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Equation (1.9) is a differential equation with the following solution

For time-independent Hamiltonians one obtains the very simple formula
U(t, to) = exp[—i(t — to)H]. (1.11)

It is straightforward to show that the time evolution operator U (t,t9) satisfies the
following properties

Ulto,to) =1, Ulta,ty) = U(tQ,m)U(tl,to)
Ut(t,to) = Ulto,t) = ULt ty). (1.12)

One can now look at a specific Hamiltonian and ask how it evolves in time under a
given perturbation.

1.1.1 Time-dependent perturbation theory
Now I consider the following Hamiltonian
H=H,+V(t), (1.13)

where Hj is the unperturbed Hamiltonian and V(t) is a perturbing time-dependent
potential. Using Eqgs. (1.12), one can easily show that the Schrédinger equation can
be written as

i%UI(t,to) = Vi(t)U;(t, o), (1.14)
where Vi(t) = Ul (t, to)V (£)Up(t, to) and Uy(t, te) = Ud(t, to)U(t, to) with Up(t, te) =
exp[—i(t—to)ﬁg] being the time evolution operator corresponding to the unperturbed
Hamiltonian ]'—A[O.

Making use of the solution of the Schrédinger equation Eq. (1.10), the time evolution
operator can be written in the useful form of a series expansion

Ult,to) = Up(t, to) + Y _ UM (t 1), (1.15)

n=1

with U™ (t,t,) given by

T3 T2
U™ (t,t,) = /dTn/ drp_1 ... / dTg/ dry (1.16)
to to

Uo(t,Tn)V(Tn)UO(Tn,Tn_l) .. Uo(rs, 1)V (12)Up (72, 1)V (1) Up (71, ).

In the case of a time-independent V one easily see that all terms in U only depend
on (t —tp) and one can write

Ut —to) = Us(t —to) Z UM (t —t,). (1.17)
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1.1.2 The Green’s function - a definition

I focus now only on such cases where the perturbation is purely static (i.e., V =
V(t =0)). As discussed above, the time evolution operator contains the exponential
function that is typically a rapidly oscillating function. Calculating integrals over
such oscillating functions is not always easy. Instead a Fourier transformation to
the frequency domain may be appropriate. But since the Fourier integral runs from
—o00 to oo the integration bound has to be fixed. Hence, the Green’s functions [53]
on the time axis is defined as

GT(t) = —iOM)U(1),

Gi(t) = —iOt)Uy(t), (1.18)
where 0 i 1<

@(t):{1 it >0,

One can see that the Green’s function differs from the time evolution operator
only by specifying the integration bounds, which is done using the Heavyside func-
tion O©(t). The ” 4+ 7 sign labels the retarded Green’s function, which means that
one "measures“ the system after the interaction happens. Equivalently G~ (t) =
—iO(t)U(t) refers to the advanced Green’s function, where the interaction happens
after the system is measured.

For & very small G* () corresponds to the Hamiltonian H and G{f (¢) is the one cor-
responding to H. Recalling Eq. (1.9) for the time evolution operator and choosing
to = 0 one can derive a Schrodinger like equation for the Green’s function using the

relation U(0) = 1
0

0 i - 0
i G (0) =2 0MU) = SOU)+6)5U) (1.19)
Bl 50 (0) + %@(t)]f[f](t)
= O(t)+ HGH (),
which yields
(i% - H) GT(t) = 4(t). (1.20)

The upper definition of the Green’s function makes it clear that the Green’s function
is an operator. A similar equation for G§ can be derived

<i% - ﬁo) G (t) = 6(b), (1.21)

for the non interacting Hamiltonian Hy. One can now write Eq. (1.17) in terms of
the Green’s function as well

GH(t) = GF(t) + i G (1), (1.22)
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with

G(") / dTn/ dT,—1 . / dTQ/ dm (1.23)

G+( Tn VGJr( — Tp— 1) TQ)VG ( Tl)‘A/Gg(Tl —to)

Here I make use of the convolution theorem, i.e. the convolution of two functions is
the product of their Fourier transform

F(t) = / h dn G (s — VG () 5 F(w) = G (w) VG (). (1.24)

It is then possible to rewrite Eq. (1.22) in the frequency domain and to obtain this
common and very useful expression for the Green’s function in terms of G§ and V/
only

(W\VGH(w) + (1.25)

Substituting G for the time evolution operator in Eq. (1.18), one obtains
G (t) = —iO(t)e 1, (1.26)

Its Fourier transform is then
GHw) = —i / dt exp {i(w — H + i6)t)
0
= (w—H+i0) ™" (1.27)

Further writing G (w) in the basis ¢, (r) of the eigenstates with eigenvalues €, of the
Hamiltonian H gives the following more common expression for the Green’s function
in the frequency and time domain respectively

/ Pn(r
GHr,x,w) = Zw—e —H(S

G*(r,r',t) = Z hn(r e~ ntQ(t). (1.28)

These representation is often referred to as the Lehmann representation of the
Green’s function.

1.1.3 The single particle propagator

To understand how Green’s function theory is used to answer key physical questions
one can imagine trying to look at a specific particle and asking the question:

”if this particle is at an initial state |i(r/, %)) at time to and position r’ what is the
probability to find this same particle at a different time ¢ and position r in the final



1.1 The single particle Green’s function 11

state |f(r,t))? Asking this question is the same as thinking of propagating a state
that one can prepare to be |i(r', 1)) at time £y, to a state |f(r,t)) at time ¢. Thus,
I consider the initial and final states

[i(x', to)) = ¥"(t')U (o, 0)]0) (1.29)

and

|f(I', t)) = 1/)T(1")U(ta O>|0>7 (130)

respectively, where |0) is the vacuum state and the field operators v, that play the
role of creation (¢T) or annihilation (1)) operators.
The transition probability W;_,; between these two states is given by

Wiss = [(f(r, )|U (L, to) [i(x', 1)) . (1.31)
Wi_y is proportional to the matrix element of the time evolution operator
(fr Ut )i 1)) = (O]w(r, 1) (', 1)]0)
= G (r,v',t —ty), for t >t (1.32)
where the definition
wT(rlv tO) =U" (tO’ OWT(F/)U(toy 0)
o(r,t) = UM, 0)0(r)U(t,0), (1.33)

has been introduced.

Until now I have only worked with the propagator for the electrons. One can think
of the same procedure to describe hole propagation. The difference between the
electron and the hole propagator is essentially of causal nature. Hence, the hole
propagator can be written as

iG™(r,r' tg — t) = — (O[T (r/, )Y (x', 10) |0). (1.34)
A way to write the particle and hole propagators together in one expression is

iG (v, t — to) = (O|T{¥!(r,t)¥(r’, 1) }]0), (1.35)
with the time ordering operator T that is defined as follows

. by Olp(r, )0t (1) [0) if € > to; electron
iG(r,x', b —to) —{ (Ot (', to )i, )|0) if to > ¢ hole

which is a very commonly used definition of the propagator.

1.1.4 The Dyson equation

In the previous section I have derived the relation (1.27) for H and G. The same
expression can of course be derived for H

G (w) = (w— Hy +i0)~". (1.36)
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Using Eq. (1.36) and H = Hy + V one can rewrite Eq. (1.27) as follows
G w) = (w—Hy—V +i6)™" (1.37)
-1
- (Ei@-v) .

Multiplying with ([Gg(w)]_l - V) one obtains

([Gg(w)]-l - V) GH(w) =1L (1.38)

Finally multiplying with G¢ (w) from the left gives
GF(w) = Gf (w) + G (W) VG (w). (1.39)

Equation (1.39) is the famous Dyson equation, first introduced by Freeman Dyson
[54], that relates the interacting Green’s function G* and the non-interacting one
G4 in a self-consistent way.

1.2 The self-energy

In this section I introduce the self-energy and its meaning for Green’s function theory.
To this end, I consider a simple example of the time evolution of a single incoming

particle after interaction (scattering) with a single center. For clarity, I work in the

following in the reciprocal space, with the plane waves ¢y (r) = (r|k) = \/%e“"r,

see Mattuck [49] for further reading. For a single scattering center modeled by a
potential V' (r) the probability Wy, of scattering an incoming particle k into a
state q is given by

Wi = KalU(t = to) k)|
= [i(a|G(t — to)[k) [, (1.40)
which gives in the frequency domain
Wig = [i{dGT(w)[k)?
= [iGT(k,q;w)|*. (1.41)
Conversely, the probability that the particle passes through unscattered is
Wik—ix = [iGT(k, k;w)|? (1.42)

I now look at a specific case and use for G*(w) the Dyson equation Eq. (1.39).
Using the resolution of identity > |k)(k| = I and G{ (k,q;w) = G (k; w)dkq, One
K

then obtains the expanded Dyson equation

Gtk kw) = Gikw)+ G (kw)ViaGy (k;w)
+ ) Gk w)ViaGy (0 0) Ve G (K w) + .. (1.43)

q
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with Vigq = (k|V]q).

Equation (1.43) can be represented by a series of Feynman diagrams [55] (see Figure
(1.1)), where a double arrow corresponds to the interacting Green’s function G*(w)
and the single arrow to the non-interacting one G (w).

Vikk
k—=—aa>—k = k—->—k 4+ k —>—@>— k -+

k —>—Q+q—.—>— k -+
Vkq Vak

Figure 1.1: The Dyson equation as Feynman diagram summation. The double line
represents the full Green’s function the single line the non-interacting one. The
black dots stand for the perturbing potential.

Defining the quantity X(k;w) as the summation of all terms with intermediate
states that are not equal to the in-going and out-going states

Sk w) = Vi + > ViaGi (@ 0)Vae + Y Vi G (€50)Ven Gl (1 w) Vi + .. (1.44)
Kra Vi

The upper equation can be represented in diagrammatic language as shown in Figure
(1.2).

a#k azk 1#k

© = o + >0 |+ e>e>0 +
Vik Viq Vak Viq Vai Vi

Figure 1.2: The diagrammatic representation of the self-energy as sum over all terms
with intermediate states with k # q

Using the definition of ¥(k; w), one can then rewrite the Dyson equation diagrams
in Figure (1.1) as depicted in Figure (1.3)

k—>—k = k—>>—k -+ k—>—®—>—k -+
k—>—®—>—®—>—k+
k

Figure 1.3: The expansion of the Dyson equation using the definition of the self-
energy.

which is the expanded Dyson equation corresponding to the one in compact form
as given by Eq. (1.39) and the diagrams of Figure (1.4)
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Figure 1.4: Compact form of the Dyson equation in diagrammatic form.

Now all incoming, intermediate and outgoing particles are in the same state k,
while all particles that have a different state are included in the definition of ¥(k;w).
Y (k;w) is called the self-energy of the particle in state k and one can rewrite Eq.
(1.43) as

Gk kw) = Gj(kw)+ Gy (kw)E(kw)Gy (kw)
+ Gf(kw)S(k;w

Q
ey
~
E
el
i
£
Q
o3
"
£
_|_
=
.
Z

making it easy to sum the series again

G lekiw) = Gilw) 143 [Sw)GE (dsw)”

n=1
+ (1.
i) A0
Multiplying by [Gg (k;w)]'Gg (k;w) = 1 leads to
Gk kow) = !
(G5 (k;w)] ™! = (ki w)
_ ! (1.47)

w—ex — B(k;w) + 16

Here G§(k;w) is the solution to the non-interacting Schrodinger equation corre-
sponding to the free particle eigenvalues €. Equation (1.47) shows that the inter-
action part of a given system is contained in the self-energy > (k;w), which corrects
the free particle energy.

1.3 The quasi-particle concept

In Eq. (1.47) I have derived an expression for the fully interacting Green’s function
involving the eigenvalues of the non-interacting system, i.e. €y, and the self-energy.
However, a physical meaning for the self-energy is still missing. To clarify the role
of the self-energy in the energy spectrum, one has to look at the Fourier transform
of Eq. (1.47) to the time domain

o0

Gk, k Y .48
t—1ty) = — . )
( ) By 0) o / ww—ek—Z(k;w) ( )

—0o0

This integral can be calculated on the complex plane, see Mattuck [49]. Briefly
speaking, one needs to avoids the poles of the integrand on the real axis by analytical
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continuation into the complex plane. For this, one needs first to find the poles
themselves. This means one needs to solve

w—ex — 2(k;w) = 0. (1.49)

Since ¥ (k; w) is w-dependent, this is not an easy task and has to be performed using
approximations. Once the poles are known, the residues can be calculated using
the so-called residue theorem. Assuming, that the imaginary part of the self-energy
|ImY(k;w)| is small, (see appendix (A) for further details on the calculation) one
can show that the integral Eq. (1.48) is
i e
27 dww—ek—E(k;w)

—0o0

—iw(t—to)

= —QiWZke*i[eﬁAk*%Fk](t*tO) for t >t

= 0 for t < to, (1.50)

where the different components are given by

. -1
2 — (1_ OReX(k;w) ’w:6k>

ow
Ak = RGZ(k, Ek)

For Eq. (1.48) one then obtains
GT(k, Kk, t — tg) = Zye lextBul(t=to) =3 xlt=to), (1.52)

Conversely for the free particle case, i.e. the case without scattering potential, one
has

G (k, k, t — tg) = e~talt=to), (1.53)
Comparing Eq. (1.52) and Eq. (1.53), I observe the following:

1. By the introduction of the scattering potential V', the single particle energy €
has been shifted to €, + Ay.

2. Since the propagator Eq. (1.52) defines the probability amplitude Wy as
I have seen in the previous section, one notices, that introducing a scattering
potential induces an exponential decay of Wiy _,,. This is characterized by

the life time 7, = ﬁ with a decay rate I'y. Thus, if the decay time is long,

corresponding to a long life time, the particle can be considered as being free-

particle-like and one speaks of a quasi-particle.

3. In addition to the life time, the quasi-particle also has an effective mass m*
defined by the quasi-particle weight Zy as

m 1 OReX(k;w)

:Zk[1+dek/dk ot (1.54)

m*

where m is the mass of the free particle.
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Hence, by introducing this quasi-particle concept, the scattering problem can be
“mapped” back to a free particle problem with renormalized eigenvalues and masses.
Thus, the quasi-particles are weakly coupled to the rest of the system and can be
considered as independent particles. This is a useful concept and a way of under-
standing particle interactions that has proven to be very successful in gaining insight
into the complexity of the many-body problem.

1.4 The electron-electron interaction

Up to now I have briefly introduced the one particle Green’s function, the Feyn-
man diagram representation and the quasi-particle concept as theoretical tools for
treating single particle scattering (non-interacting systems). They reflect a way of
approaching the complexity of many-body interactions, that has proven to be very
successful. However, one is usually interested in understanding the physics of sys-
tems with more that one electron. Hence, the ground state |0) in Eq. (1.35) would be
the one of a many-body system. Gell-Mann and Low [56] have shown in their famous
theorem, that the ground state of the non-interacting system, |0p), is connected to
the ground state of the many-body system |0) via

U(0, —00)|00)
0) = . 1.55
= DU o) 00 159
Thus, in the many-body case, the propagator in Eq. (1.35) is given by
iG(r, v’ t —to) = (0] (r, )1 (r',20)[0), T > g
_ (0| Ut (o0, )th1(x', ) Ur(t, to)y (x, to) Ur(to, —00)|00) (1.56)

{00|Ur (00, —00)[00)

where ¢(r',t) = Ul(t,000(r)Uy(t,0) and ¢(x',t) = Ul(t, 001 (r)Us(t,0). Uy is
the time evolution operator corresponding to the non-interacting Hamiltonian while
Uy(t, to) = U (t, to)U(t, to). The proof of Eq. (1.56) goes through the adiabatic con-
nection, where one starts from the non-interacting state and adiabatically switches
on the two particle potential considered as the perturbation (see the books of Mat-
tuck [49] or Fetter and Walecka [51] for further reading).

Although the expression in Eq. (1.56) looks more complicated than the one for the
non-interacting case, Eq. (1.35), Feynman showed that the procedures and recipes
available for the non-interacting picture can still be applied for the many-body case.
Hence, the very handy Feynman formalism, discussed in the previous section for the
non-interacting case, can be directly adopted for the many-body problem.

As mentioned in the introduction to this chapter, electrons ”feel” each other trough
the Coulomb interaction. The long-ranged nature of the latter is a problem when
trying to describe systems with more than one electron. In fact, already two-body
interactions, such as the Coulomb interaction depicted in Figure (1.5), are complex
enough and a system of electrons that interact herewith can only be described using
approximate approaches.
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~

AT

Figure 1.5: The interaction between two electrons (solid lines) via the Coulomb
potential (dashed line).

The (Coulomb) electron-electron interaction is strong. Thus, it appears con-
tradictory to perform perturbation expansions in the Coulomb interaction directly.
This is because the series will not converge rapidly, which is a requirement for per-
turbation theory. An there are cases where the series even diverges [57, 58]. To
overcome this issue, the way to go is to first choose the relevant interaction that
might give an important contribution, using propagator theory, and then expand in
this interaction by solving the Dyson equation. Solving the Dyson equation in a self-
consistent way (i.e., dressing the propagator), then yields higher order diagrams (i.e.,
more interactions) that may also be relevant. I am going to present in this section,
step by step, the different approximations to the two-body interaction that can be
derived from the diagram in Fig. (1.5). Starting from the Hartree [46] interaction,
which is the first and the simplest of the two-body interactions, and going through
the Hartree-Fock [45] approximation to then introduce the so-called random-phase
approximation [47, 48, 43] and the concept of screening. Finally, I will introduce
Hedin’s equations [40], written in this Green’s function language. They are insight-
ful and incorporate higher order interactions via the so called vertex function. The
prominent and very successful GW approximation to Hedin’s equations will also be
discussed.

1.4.1 The Hartree-Fock approximation

The first electron-electron interaction to be included and at the same time the most
intuitive one is the so called Hartree approximation [46] that can be derived straight-
forwardly if one closes the two particle diagram Fig. (1.5) as depicted in Figure
below.
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{
\/k
ﬁ

.

1, 7

Figure 1.6: Left: A cartoon way the two particle interaction diagram that results in
the Hartree diagram. Right: The diagram depicting the resulting Hartree interac-
tion.

The two-particle propagator would have the following expression

occ.

Gk, q;t' —t) Z/er* (K, k: t' — 7)WViaqGy (LI T — 7)GE (q, q; 7 — 1),

(1.57)

where the equal time hole propagator G gives [49] G (1,1;7—7) = —1, so that one
gets

occ.

GhLk, qt' —t) = — Z / drG(k k;t' — 7V keGa (q, q; 7 — 1). (1.58)
1

where I have set

occ. occ.

ZVqul —Z//dhdrzébk r)dy (1‘2)|

:/dr1¢l’i(r1)VH(r1)¢q(r1) = Vi kq, (1.59)

Pq(r1)Pr(r2)

1_2|

occ.

with Vi (ry) fdr2| 22 and the electron density given by p(r) = > |di(r2)|*
1

Vy is essentially the interaction of an incoming electron in state q with a hole at a

state 1, that gets annihilated instantaneously, which brings the electron to the state
k.
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k, ¢

Figure 1.7: Left: A cartoon showing how the two particle interaction diagram should
be connected to yield the Fock diagram. Right: The resulting Feynman diagram
representing the Fock interaction. It depicts the interaction of an electron with itself,
which is a direct result of the indistinguishableness of electrons.

The next possible first order diagram to include is the exchange (or Fock) ap-
proximation [45]; again looking at the diagram of Figure (1.5), one can choose to
connect the lines as shown in Figure (1.7). This corresponds to the propagator

occ.

Gikat —0=3 [ Gk kst = VG (Ui = 7)G (i~ ),
(1.60)
with
Zvlkql _Z [ [ drideagir ask(rz)‘ [falr)oe)
ry — Iy

://drldr2¢l*((r2)VX(r1,r2)¢q(r1) == VX,kqa (161)

and Vy(ry,ry) = Z o ‘:;_?;rg One can then rewrite Eq. (1.60) as
Gix(k gt —t)=— / drGy (k k;t' — 7)Vx1qGa (q, q; 7 — t). (1.62)
depicted by the diagram in Fig. (1.7) and where the “—” sign results from the

diagrammatic rules for the propagator Gy (1,1; 7 —7) [49]. It represents the indistin-
guishability of electrons; meaning that, one cannot tell, when an incoming electron
gets exchanged with another one in the system. So, an electron in state 1 can result
from the interaction of an electron in state q with an electron in state k, and the
same electron can interact with an electron in state q to yield an electron in state
k. That is why this diagram has the name of exchange diagram. Another way
of interpreting the exchange diagram, is by looking at it as being a diagram of an
electron interacting with itself.

The Hartree-Fock (HF) self-energy describes both the Hartree and the exchange (or
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Fock) interaction and is defined as Xpyp(k,q) = Vakq — Vxkq allowing us to write
the Dyson equation for this self-energy in the frequency domain

Grr(k,q;w) = Go(k, K;w)dq + > > Go(k, K;0)Shp(K,1)Grp(l, q;w). (1.63)
1 K
The Hartree-Fock self-consistent field equations

The HF eigenfunctions ¢ (r) as expansion of a set of basis functions can be written
as

r) =Y cudi(r), (1.64)

where the ¢, are the expansion coefficient matrices. Using this expansion it is then
possible to write the HF equation in real space

2 _ _Z r r) — r'Vy(r, 1’ r)=c¢ r
5V g V)| vt [ Ve, ) = e o), (165)

Vi(r) = Z/ ‘fff_mm,
U (r1),(r2)
Z—.

vy — 1y

Vx(ri,12) (1.66)

m

\/

©- 4 -

Figure 1.8: The Hartree-Fock self-energy at self-consistency. The double lines refer
to Gy obtained from solving the Hartree-Fock equations in a self-consistent way.

Since the potentials Vi and Vy are defined by the orbitals 1, Egs. (1.65) and
(1.66) define self-consistent equations that have to be iterated until the potentials
(fields) do not change anymore. Thus, they define a so called self-consistent field
cycle. One can then depict the Hartree-Fock self-energy as shown in Figure (1.8),
where the double lines refer to the self-consistent propagators including higher order
and more complex processes through the infinite summation in the self-consistency
cycle.
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1.4.2 The random phase approximation and the concept of
screening

The Hartree-Fock approximation is very popular and constitutes a useful start-
ing point to understand complex electron-electron interactions. However, the bare
Coulomb interaction contained in the exact exchange term of Hartree-Fock turns
out to be problematic. This is especially manifested when one aims to describe
metallic systems for which Hartree-Fock theory predicts an insulator even for the
simple case of the homogeneous electron gas (see the discussion by Pines [59]). To
overcome the issues caused by the bare Coulomb interaction that enters the Hartree-
Fock approximation presented in the previous section, one can go a step further and
look at second-order diagrams. Even if doing Hartree-Fock self-consistently does
include some second-order diagrams in the Coulomb interaction, not all of them are
included. The first second-order diagram, that is not included in the self-consistent
Hartree-Fock approximation is the one depicted in Fig. (1.9). It is constructed by
linking two two-particle diagrams and is called second order since two Coulomb lines

N i S G e

<>

Figure 1.9: A cartoon depicting the construction of the second order diagram from
two two-particle interaction diagrams.

(dashed lines) are involved in the self-energy part. This becomes clear, if one writes
the corresponding propagator

Gt (k,q;t' —t) = Z //dTldeGar(kak;t/ — 71)Viemmn Gy (0, 1579 — 7)
ILnm

Gy (m,m; 7 — 1)Gy (1,175 — 71) VingmGg (q, a; 7 — £), (1.67)

where the coulomb matrix element Vi, occurs twice. The physical meaning of the
diagram Fig. (1.9) is, that an incoming particle with state q creates a particle-hole
pair at time 7; and is scattered to state 1. The particle-hole recombines at time
T and the electron is scattered to state k. The process occurs at different times
and is thus of dynamical nature, in contrast to the Hartree-Fock processes, that are
occurring instantaneously and thus, are purely static processes.

It is possible to sum these contributions to infinity, which yields higher, more com-
plex interactions.
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+ +© +
-

Figure 1.10: The screened Coulomb interaction (double dashed lines) as an infinite
sum over bubble diagrams with their Coulomb ”legs” (single dashed lines).

A way to perform the summation over second order diagrams is to consider an
additional Dyson equation, for the two Coulomb lines and the electron-hole bubble
of the second order diagram Fig. (1.9) as shown in Fig. (1.10), where the series
defines a screened Coulomb interaction depicted by the double Coulomb lines. Then
it is clear that the infinite summation can be written as a geometric series, and thus
in the compact form of Fig. (1.11)

Figure 1.11: Screened Coulomb interaction in Dyson equation form.

Hence, summing up the Coulomb lines with electron-hole bubbles leads to a new
"screened “ Coulomb interaction consisting of an infinite summation of electron-hole
interactions. This way of summing up the Coulomb interaction diagrams is known
as the random-phase-approximation (RPA) first introduced by Bohm and Pines
[47, 48]. In other words, it renormalizes Fock diagrams so that the bare Coulomb
interaction is replaced by the screened one as illustrated by the diagram in Fig.
(1.12).
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Figure 1.12: The exact exchange diagram with the screened Coulomb interaction
from RPA.

The second order diagram becomes the one depicted in Fig. (1.13) and for the
corresponding propagator one obtains the expression

occ.

Gl ppall, kst —t) = Z//dTldTgGa_(k,k;t/ —1)VeGd (k—q,k —q;79 — 1)
l.q

Gy (1,17 — Tl)GaL(l +q,l4+qm— Tl)V_an_(k, k;m —1).

(1.68)
k_
Kt >4 P k¢
1 1
a, 1 .4
1
7'1©7’2
1+ q

Figure 1.13: The second order diagram for the homogeneous electron gas.

In diagram Fig. (1.13) the electron-hole bubble describing the electron with
momentum 1+ q and the hole with momentum 1 can be considered as a separated
quantity called the polarisability (Ilj):

o(q;m2 —m1) = ZGE(LI;TQ - )Gy (1+aql+aqn—mn), (1.69)
1

that corresponds to the diagram

- G

One has then all the ingredients to write the screened Coulomb interaction as
the series in Fig. (1.10) illustrates explicitly using the formula for the geometric
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series. The screened Coulomb interaction in the frequency domain is then

W(q,w) = Vqg— Vollo(q;w)Vy + Vollo(q; w)Vello(q;w) Vg — ...
= V[l + o(q;w) Vg ™" (1.70)

;.x(l__ )—1
(o)

Figure 1.14: Feynman diagram representation of the Screened Coulomb interactions
as in Eq. 1.70

corresponding to the diagrams of Fig. (1.14)

RS

The Dyson-like expression Eq. (1.70) is a a key equation in RPA and shows that
the screened Coulomb interaction W is an infinite sum over the electron-hole bubble
diagrams.

1.4.3 Hedin’s equations and the GW approximation

In this section I want to present a well known scheme for writing the general many-
body problem of many interacting electrons in terms of self-consistent equations
formally describing all the possible interactions that can occur in a many-body
system. This Green’s function based scheme developed originally by Hedin [40]
has become very popular in the electronic structure community, in particular its
so-called GW approximation, where the vertex function, describing the complex
interactions, has a particularly simple shape. The GW approximation has proven
to be very successful in describing spectral features of finite systems and solids [60,
61, 62]. Here I present the formalism as is done in the review paper by Aryasetiawan
and Gunnarsson [52]. To start, I consider the many-body Hamiltonian in second
quantization

= [ dvde! (o) (r,)
1
b g [ e U @ el - DU o). (LT
Using commutator relations for the Fermion field operators ¢ (r,t) and the Heisen-

berg equation of motion for the above Hamiltonian i2(r,t) = [i)(r,t), H], one
obtains

[i0, — ho(1)]G(1,2) — /dsM(l, 3)G(3,2) = 6(1 — 2), (1.72)
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where 1 = (r,t), 2 = (¢/,¥') and 3 = (ry,t) have been defined and the so called
quasi-particle mass operator

/ d3M(1,3)C(3,2) = —i / d30(1 — 3)(OIT{¢ (3 )@Y @}0),  (1.73)

is given via the self-energy as > = M — Vg, where Vg is the Hartree potential
and 37 = (ry,t7). The expression above introduces the two-particle propagator
(O] T{yT(37)w(3)1(1)¥T(2)}|0), that accounts for higher order interactions. As is
done by Schwinger [63, 52], one can introduce a time-dependent field ¢(r,t) as a
mathematical tool for generating the self-energy and the vertex. At the end of
the formalism ¢(r,t) is then usually set to zero. One finally obtains the coupled
equations

N(1,2) = ib/nd3d4(?(1,3+)LV(1,4)F(3,2,4), (1.74)
G(1,2) = G0(1,2)+/d3d4GO(1,3)Z(3,4)G(4,2), (1.75)
N(1,2,3) = 6(1—2)5(2—3)

+ / d4d5d6d7%(¥(4,6)6’(7,5)F(6,7,3), (1.76)
(1,2) = —z’/d3d4G(1,3)F(3,4,2)G(4, 1), (1.77)
WMJ)zU@@+/%MWﬁM@®W&% (1.78)

where II is the polarizability, W the screened Coulomb interaction and I' the vertex
function. Equations (1.74) - (1.78) are the so-called Hedin’s equations. They are
connected to each other; this means, if one wants to calculate one quantity, e.g. the
Green’s function, one needs to know the self-energy and thus the screened Coulomb
interaction that is a functional of the polarizability II, itself a functional of the vertex
function T'.

A more careful look at the equations above, makes it obvious that the vertex function
enters all quantities. Hence, one can easily think of approximating this function to
simplify the computation of the related other functions. The easiest approximation
of the vertex function is to take

0(1,2,3) = 6(1 — 2)5(2 — 3). (1.79)

This is the so called GW approximation whose name originates from the expression
for the self-energy ¥(1,2) = iG(1,2)W(1,2). Hedin’s equations then simplify to

$(1,2) = iG(1,2)W(L,2) (1.80)
G(1,2) = Go(1,2) +/d3d4G0 (1,3)%(3,4)G(4,2), (1.81)
(1,2) = —iG(1,2)G(2,17), (1.82)
W(l,2) = / d3d4dv(1,3)I1(3,4)W (4, 2). (1.83)
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Equations (1.80) to (1.83) define a self-consistency cycle that is simpler than the one
given by Eqgs. (1.74) - (1.78), since the vertex is set to unity. A cartoon depicting
the GW self-consistency cycle is shown in Figure (1.15)

GW

Approximation

W ©

Figure 1.15: Cartoon representing the loop over Hedin’s equations. The self-
consistency loop for the GW approximation is obtained by computing the polar-
izability II directly from the Green’s function without vertex correction.

From a diagrammatic point of view, the GW approximation describes exactly
the same processes, and hence has the same diagrams as RPA. This is illustrated in
the Feynman diagram for the GW self-energy in Fig. (1.16). One can say that the
first approximation to the vertex function I' in Hedin’s equations recovers the RPA.

Figure 1.16: The GW self-energy obtained by replacing the bare Coulomb interaction
in the Hartree-Fock self-energy by the screened one.

1.4.4 GW calculations for real systems

Because of the high computational costs of numerical implementations of fully self-
consistent GW, a perturbative approach has been considered known as GoWy. One
starts with the Green’s function of a self-consistent Kohn=Sahm density-functional
(see next chapter) or HF calculation, from which one obtains the polarisability x° (iw)
after the Alder-Wiser formula [64, 65]
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o occ. unocc. (pl ( /)(pl(r/)
.C. 1.84
X (r, v, iw) ZZ P— + c.c., (1.84)

_61/

where ¢; (¢,) are the Kohn-Sham or HF occupied (unoccupied) orbitals and ¢; (€,)
the corresponding eigenvalues. The GW self-energy can then be calculated from
Eq. (1.80) via the screened Coulomb interaction W. One can then correct upon the
Kohn-Sham eigenvalues X5 as follows

& =" + X (e) — ko, (1.85)

where X4y, (e97) = [drdr'y, (r)S(r, v/, €97)¢%(r') and the Kohn-Sham exchange-
correlation potential v%. = [ dry,(r )VXC( )% (r). Thus, the unperturbed eigenval-
ues €55 experience the perturbation Yy — V. With the quasi-particle correction

GW( Oy — %o, The GoWy gained its reputation mainly from its successful de-

scription of electronic excitations in solids [52, 66, 62, 67].

1.5 Wave-function based approaches

As mentioned previously, the electron-electron interaction makes the description of
real systems only feasible within approximated approaches. The electronic wave
function represents a key quantity in such approaches since it sets the configuration-
space within which a given approximation is valid. Hence, schemes that can improve
the predictive power of a given theory by improving its wave function are often
referred to as wave-function based methods.

The most primitive of such methods is the HF approach as I have introduced in the
previous sections from a diagrammatic perspective. In HF the wave function of N
interacting electrons is described by a Slater determinant

pi(ri, 04) wj(ri,o0) 0 on(r,09)
Wo(fr. o)) = | PO ) et (1.56)
pi(tn,on) @i(tn,on) - on(ry,oN)

It is essentially the linear combination of the product of independent electronic wave
functions ¢;(r;, 0;) of spin o; with all the possible permutations of their coordinates.
Moreover, the Slater determinant satisfies the antisymmetry properties of electrons.
Using this wave function, the HF energy can be calculated from

B — (W|H,.|T,). (1.87)

The above formula defines an energy functional of the electronic wave function
E"[{o(r,0)}] that can be minimized using the variational principle [68]. How-
ever as mentioned in the previously a major drawback of HF theory is its lack of
electronic correlation effects.

To include such effects a treatment of the electron-electron interaction beyond HF
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is required. In other words not only occupied states should be considered but also
unoccupied ones, allowing for excitations to be taken into account. Hence, a larger
configuration-space is needed and the single Slater determinant is not enough any-
more. In so called Mgller-Plesset perturbation theory (MP2) [69] the second order

60— = = 4
p—= = =
v— 4+ -+
R R T SR
J e 4 4 4
ke 44 4 4
B s 2 ¢
R B A

Ty Wy Wy g

o T

Figure 1.17: Schematic drawing showing an example of the different excitations
considered in CC theory. The Latin indexes label occupied states, whereas the
Greek one stand for the unoccupied states.

term of the exact exchange from perturbation theory (on the bare Coulomb inter-
action) is included, yielding the MP2 expression [43]

1 occ. unocc. . . / o . . / 500’
EMP2 _ 52 SO S v, ol o) [(m,awj,a) (vi,o|vj, o) o (1.88)

o o' _ Lo _ o
€ +€ —€, —€

i uv oo’

where the Greek indexes, v, ju, ..., run over unoccupied states and the Latin ones,
i, ], ..., over occupied states. The two-electron Coulomb repulsion integrals are given
by

(r, 0)pu (r, 0)5 (r', o) o', o).

1.
v —r/| (1.89)

(iv,o|ju, o’y = /drdr'%

The two terms in the brackets [...] in Eq. (1.88) correspond to the second order
Coulomb (i.e., Hartree) and second order exchange energy (i.e., Fock), respectively.
While MP2 improves upon HF in many aspects [70, 71, 72], it fails for metals with
zero direct energy gap. This is because EMF? includes energy differences in the de-
nominator that are zero for such systems and hence EMP2 becomes divergent [73].

In another context, Cizek and Paldus [74, 75] introduced the coupled cluster (CC)
method. It has been considered as the most reliable and at the same time compu-
tationally still affordable method in quantum chemistry [76, 77]. In CC theory one
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differentiates between single excitations (¥}) double excitations (W;}') triple excita-

tions (\I/;’j’ff) and so on, as shown in Fig. (1.17). Hence, the CC wave function builds

on the following ansatz

~
mn

. <. T
Voo = exp(T)Vg = Z F\IJO’ (1.90)
n=0 ’

where ¥, is the single Slater determinant and the cluster operator 7" is given by
T=Ty+To+T5+..+T,. (1.91)

The indexes 1, 2, ..., n refer to the number of excited states introduced by the operator
T. Hence, T1V, = > /¥ introduces the single excitation V¥ from the Slater

determinant Wy, and Ty 0, = > tl'»’]“ \I/;-’j“ includes double excitations \IJ;’J-“ and so

i>5,U> U
on. The ¢ are the CC amplitudes and their determination is the major task in
CC calculations [77].
Considering only single (S) and double (D) excitations within the CCSD, the energy

is then given by

occ. unocc.

1 14 v v .. ..
ECCSD = EHF + 5 Z Z Z(t”'u + tz tél - tft]> [</Lj7 U‘IUV, U,> - <7’]7 U’”M? OJ” .

1<j p>v oo’

(1.92)

The computational cost of CCSD is already very demanding and scales as O(N°).
Going beyond CCSD and including third order excitations within CCSDT (the “T”
here stands for triples) would make the theory scale as O(N®). Although the CC
theory in all its variants is a very accurate method [78], one can easily see that the
computational cost grows extremely fast with the configuration-space i.e., the size
of the wave function. This implies that CC is restricted to small systems in the size
of small molecules and has only recently been extended to periodic systems [79]. It
is then legitimate to think that a theory that depends less, or in another way, on
the electronic wave function would be helpful to assess larger systems. In the next
chapter I introduce density functional theory, which is the established method for
treating realistic systems.
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Chapter 2

Kohn-Sham Density Functional
Theory

In the previous chapter I have introduced some basic concepts, that are useful for
understanding processes related to the many-body nature of condensed matter sys-
tems. The relation between the computational scaling and the configuration-space
of so-called wave-function based methods was discussed in the last section of Chap-
ter 1. The usefulness of these concepts resides in their ability to capture electronic
correlations in a reasonable manner. However, despite the fact, that these methods
have, in many cases, proven to be very accurate, their high computational cost limits
their applicability to extended systems. The main reason for the high computational
cost is the large, configuration-space needed to describe the correlations at the level
of these theories. A scheme, that has proven to be very efficient in describing large,
realistic systems is Kohn-Sham density functional theory (DFT) [80, 81]. It has been
developed, as its name suggests, by Walter Kohn and Lu J. Sham in the 1960s and
has become the most widely used quantum-theoretical method for real materials.
Its main advantage is that it allows a formulation of the many-body problem, rep-
resented by the many-body Schrodinger equation, as a single particle Schrordinger
equation. In this new Schrordinger equation all quantities become functionals of
the electronic density. The one-to-one connection between the electronic density
and the potentials is established by the Hohenberg-Kohn theorems [80] building the
mathematical foundation of Kohn-Sham DFT. First in this chapter, I will present
Kohn-Sham DFT as a direct result of the Hohenberg-Kohn theorems before I dis-
cuss the different approaches to approximate the exchange-correlaton functional.
Finally, I will introduce the Sham-Schliiter equation [5] that allows a connection of
DFT and many-body schemes and show how the many-body schemes such as the
random-phase approximation (RPA), described in the previous chapter, can be used
to improve upon DFT.

2.1 The Hohenberg-Kohn theorem

Let us start with the electronic Hamiltonian Eq. (1.4). Discarding the Coulomb
interaction between the nuclei, i.e. V,,,, one can write the N-electron Hamiltonian
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as
H=T+ Vs + V.. (2.1)
The Schrodinger equation corresponding to this Hamiltonian is

Hip,, = €nthn, (2.2)

where €y < €; < ... are the eigenvalues of the many-electron problem. The density
related to a particular eigenstate is given by

n(r) = (Y(ry, ...t y§:5 i —O)[Y(ry, .. ry)). (2.3)

I am now going to present the so called Hohenberg-Kohn (HK) theorems [80], that
are the basis of the Kohn-Sham density functional formalism. I do this without
any proof and refer the reader to the book by Dreizler and Gross [82]. The main
motivation of the HK theorems is to answer the key question of whether two different
external potentials Vext and Ve%:t can yield two different ground state densities. In a
more mathematical language, if one considers the mappings F' and F with

A

F . ‘/ext(r) — w

F 1 —s n(r) (2.4)
and the mapping G
FoF =G :Vg(r)—s n(r), (2.5)

which can be depicted as in Figure (2.1), is G an injective (a one-to-one) mapping?

F O\ £

Figure 2.1: Schematic drawing showing the mapping of the external potential into
the electronic density n(r)

The proof of the injectivity of G [82] implies that different external potentials
always lead to different ground state densities. Additionally, from the proof that
G is reversible follows that the ground state density n(r) uniquely determines the
external potential V. (r) (up to a constant). So, the first of the two HK theorems
states:
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"The external potential Vm 1s determined, within a
trivial additive constant, uniquely by the electron den-
sity n(r)”.

The essence of the the second HK theorem is, that

“the exact ground state density no(r) can be deter-
mined by minimizing the functional ”

Eln] = ($oln|T + Vil + Veeltoo[n])
Ey, = Ig%lE[n],
with f/e(;t being the external potential and V.. the

electron-electron interaction of a specific system with
ground states density no(r) and ground state total en-
erqy Ey”.

The HK theorems set the stage for the development of a set of equations that define
the Kohn-Sham density functional scheme.

2.2 The Kohn-Sham equations

As mentioned above, the HK theorems have far reaching consequences. To show
what exactly is meant by that, is the main purpose of this section. Let us consider
an auxiliary non-interacting (NI) system described by the Hamiltonian

FrNT SNT | 1)

AN = TN 4 Vg, (2.6)
with the effective potential Vef ¢. Thus, according to the HK theorems, there exists
a unique energy functional

ENn] = PV ] + / den(r) Vi (r), (2.7)

so that the variational equation
SENn] =0 (2.8)

yields the ground state density n¥’(r) that corresponds to HN'.
The key assumption while establishing the Kohn-Sham density functional scheme is
considering that

“for any interacting system there exists a nmon-interacting
system with local single-particle effective potential ‘A/eff,
such that the exact ground state density ngo(r) of the in-
teracting system equals the ground state density of the aux-
tliary one”

no(r) = ny(r). (2.9)
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The trick is, one can easily calculate the non-interacting electron density ny;(r) of
HNT using

occ.

mvi(x) = 3 Wr)[?
(7Y (0) 4+ Vegp(n) ) i) = extitr), (2.10)

with the ground state single particle energies ¢;.

Following the first HK theorem, V,;(r) exists and is a unique functional of the
electronic density. From Eq. (2.9) it becomes clear that the single particle orbitals,
V.;¢(r) and the kinetic part 7V(r) are also unique functionals of the density ().
However, one is usually not interested in the non-interacting case but in the interact-
ing one. Thus, for an interacting system with external potential Vemt(r) and ground
state density no(r), the V,;7(r) that generates no(r) can be determined by

occ.

no(r) = Z [¥i0(r)[?
(FV7(0) + Vegs(r)) iolr) = o). (2.11)
While the corresponding energy functional is the following
Enln] = (ol + Valto) + [ den(s) V(). (2.12)
If now one adds and subtracts the expression
TN n) + % / drdr'n(r)v(r — r')n(r’), (2.13)
where v(r — ') is the Coulomb interaction. One can redefine
Eoln] = TV [n] + / drn(r) Ve (r) + % /drdr'n(r)v(r —r')n(r') + Exc[n]. (2.14)
The new last term defined as
Bxeln] = (ol + Veelt) — / drdr'n(r)o(r — )n(’) - TV, (2.15)

is the so called exchange-correlation energy functional, where the first term corre-
sponds to the contributions from the kinetic and Coulomb potentials for the inter-
acting system, the second term is the corresponding Hartree contribution and the
last term the kinetic contribution of the non-interacting system. Here it is worth
mentioning, that the kinetic part 7N7[n] is not a "real” functional of the density
since it contains the differential operator V, which make it a functional of the single
particle orbitals.
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The HK variational principle (second HK theorem) ensures that Ey[n| is stationary
for small variations around the minimum density ng(r), which means

0 = 0Ey[n| = Eo[nog + én] — Ey[ne]
= 6T [n] + [ dron(r)Vi(r) + /drdr’5n(r)v(r —1')n(r')

+ / drVe(nol: 1)on(r). (2.16)

with the exchange-correlation potential

Fre(lnalr) = 2l 217

Hence, as is explained in [82], performing the minimization with respect to the

electron density yields for the kinetic energy term 67 = — [ drV,s(r)on(r), so
that one has for the minimizing effective potential

~

Vop(r) = Vi(r) + /dr’v(r —)n(r') 4+ Vxe(r) (2.18)
= Ver(r) + Vi (r) + Vxe(x),

with the Hartree potential Vi (r). Egs. (2.11) together with (2.17) and (2.19) define
the so called Kohn-Sham theorem: it can be formulated as follows

The ezact ground state density no(r) of an arbitrary interacting
system can be obtained by the self-consistent solution of the set of
equations

occ.

no(r) = Z |hio(r) |7

2 A ~ A~
g T Vi) + Vi) + )| ) = v, (219

with €9 < €1 < ... and the exchange-correlation potential VXC('P) as
given by Eq. (2.17).

It should be pointed out here, that compared to the Hartree-Fock equations, the
Kohn-Sham equations in (2.19) represent a local scheme that does not include the
exact exchange potential. Instead, exchange and correlation effects are encoded in
the multiplicative exchange-correlation potential VXC(r). Moreover, one can obtain
from Kohn-Sham theory excited state energies in terms of energy differences. In
Hartree-Fock theory, Koopmans’ theorem [83] establishes a relation between the
Hartree-Fock eigenvalues ¢; and the total energy difference between an N-particle
ground state and an N — 1-particle ground state related to the energy needed to
remove a particle in state ¢ as

e'f = Eyp[N] — Egr[N — 1), (2.20)

)
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provided the system remains otherwise unperturbed. An equivalent theorem for
Kohn-Sham eigenvalues can be formulated within the so called Janak’s theorem
[84]: For a Kohn-Sham Hamiltonian H7;(r) = €;(7)¥;(r) with the ground state

occ.

density n(r) = > vi|ts(r)|?, the Kohn-Sham eigenvalues are proportional to the

differential change of the ground state total energy with respect to the fractional
occupancies 7y;

ei(y) = %ﬁj}). (2.21)

The excitation energy AFE(7;) corresponding to the occupation number ~; is then
approximately given by [82]

AE(vi) = E(vi) — E(), (2.22)

and requires two self-consistent calculations, one with occupancy ~; yielding the to-
tal energy E(7;) and the other with the ground state occupancy =y, yielding the total
energy FE(yo). )

Until now the exchange-correlation potential Vxc(r) in Eq. (2.19) remains a myste-
rious quantity that I have not talked about yet. Thus, Eq. (2.19) is up to now exact
but unfortunately, to be able to apply the Kohn-Sham scheme to realistic systems,
approximations to VXC(r) have to be made. In the next section I will present the
most famous (and also the first) attempt to approach this key quantity, the so called
local-density approximation.

2.3 Local and semi-local approximations

The first and at the same time a broadly used approach to evaluate the exchange-
correlation potential VXC(I‘) is to assume a slowly varying electronic density. This
assumption may, at first glance, seem unreasonable for atoms and molecules, but is
quite plausible for extended systems such as periodic systems, since there the density
varies slowly in space (however, in the extreme vicinity of the nuclei, the density
still varies quit significantly). This is the main idea behind what is known as the
local-density approximation (LDA). In LDA the system is locally approximated as
a homogeneous electron gas:

B[] = / drn(r) e () e (2.23)

with €297 (i) being the exchange-correlation energy per particle in the homogeneous

system at a constant density n given by n = % for an N-electron system with
volume 2. For the homogeneous electron gas, the form of the exchange part is
known analytically [85] and is given by

A ] = (ﬁ) / drn(r)?. (2.24)

(e

W=
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The correlation contribution, however, cannot be obtained in analytically and has to
be parametrized. Different parameterizations of €™ have been proposed by Perdew
and Zunger [1], Perdew and Wang [86] or Vosko, Wilk and Nusair [87]. The LDA
exchange-correlation potential is then calculated from EXPA as

. ELDA
Vidi (r) = %wm (2.25)
LDA involves the most simple approximations and one would intuitively expect,
that LDA is not sufficient enough to describe a lot of systems. However, it has been
shown, that it is surprisingly accurate for a multitude of systems where the theory is
expected to fail [88, 89]. Even for molecules or atoms it gives reasonable results that
are, most of the time, at least of qualitative predictive power [88]. A reason for this
unexpected success of LDA lies in its averaged description of the so called exchange
hole leading to a sufficiently good approximation to the exchange-correlation energy.
An extended and clear discussion of this matter can be found in Ref. [82]. From
a quantitative point of view however, it has been shown that LDA has a tendency
to overestimate the cohesive energies by ~ 15 — 20% while it underestimates lattice
constants by ~ 2 — 3% especially for metals and insulators [89, 90, 91].

There have been several attempts to improve upon LDA by incorporating some
“inhomogeneity”. One way of doing this is by accounting for the spin degree of
freedom, in the frame of what has been known as local-spin density approximation
(LSDA). In the LSDA the density is spin dependent making the exchange-correlation
energy functional dependent on the spin-up (n') and spin-down (n*) densities

Exe™ it nt] = / drn(r)exc(n', nt), (2.26)

where n(r) = n'(r) + n*(r).

Furthermore, one can add the gradient of the density within what is commonly called
the generalized gradient approximation (GGA)[92]. The GGA exchange-correlation
energy functional is given by[92]

EXEH " 0] = / drf(n',nt, Vnl, Vn?), (2.27)

f(n',nt, Vn' Vn'), is an analytic function that needs to be parametrized. The most
widely used parametrization of f was performed by Perdew, Burke and Ernzerhof
[93] leading to an exchange-correlation functional known as the PBE functional.
Many other GGA functionals have also been developed [92, 94, 86, 95, 96, 97, 98,
99, 100, 101, 102] such as the empirically parametrized BLYP functional [103, 104]
all with different performances compared to LDA [105, 106].

2.4 Hybrid functionals

It has been shown that the thermochemical data obtained from L(S)DA/GGAs
can be improved if one adds a fraction of HF exact exchange [107, 108, 109, 110]
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giving rise to a hole new rung of functionals called hybrid functionals. From a DFT
calculation one obtains Kohn-Sham orbitals building up a unique Slater determinant
Wy. In principle a HF exact exchange functional can be defined as

Erxx = (Uo|Vie| o) — %/dr dr QM (2.28)

vy — 1y

where Vee is the electron-electron Coulomb repulsion.
Initially, Becke [111] motivated the construction of hybrid functionals using the
adiabatic connection equation [96, 97, 7]

1

Exc = / d\Exc(N), (2.29)

0

where A € [0,1] and

Bxc(3) = (0 |Via ) — 5 / diy ey MEDT) (2.30)

|1—m|

with Exc()\ = 0) = EEXX and EXC(A — 1) — E;(CS)DA/GGA

became known as the B3LYP functional [112]

. He then proposed what

By = BEPA + ao(Bixx — BEY) + a(BEE = BEPA) o+ 0, (B — B,
(2.31)

Here ag, a, and a. are fitted to experimental data. The B3LYP functional has gained
a large popularity especially among quantum chemists.

To get rid of the empirically determined parameters Perdew and co-workers [113]
developed a functional that contains a fixed fraction « of exact exchange

1
B = aBx + (1 — o) EX®E + EEPE with o = T (2.32)

This functional became famous under the name of PBEQ [114].

They justified the value of a by considering that the fourth order in perturbation
theory is sufficient to produce accurate results for molecules. Adding this fraction of
exact exchange indeed improved upon L(S)DA/GGAs in a quite significant manner
[113, 115]. Another motivation for considering the HF exact exchange is the so called
self-interaction error in the approximated XC density functionals. It occurs when
calculating the Hartree energy, given by

//drler m_;f (2.33)

In the case of a one electron system this term would not cancel for L(S)DA/GGAs,
which is wrong, since an electron should not interact with itself. In Hartree-Fock
theory, the exact exchange part (i.e. Fock part) of the Hamiltonian would correct
this by cancellation of the self-interaction. Hence, including a fraction of exact
exchange would correct “some” of the self-interaction error.
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For periodic systems, on the other hand, the calculation of the exact exchange
contribution entering the PBEO functional turns out to be a numerical bottle-neck
that slows down the calculation dramatically. The introduction of range separated
functionals provided a solution. The so called Heyd-Scuseria-Ernzerhof (short HSE)
functional by Heyd, Scuseria, and Ernzerhof [116] is the most famous [114] range
separated functionals and it is constructed by splitting the Coulomb interaction into
a short-range (SR) and a long-range (LR) component

1 erfe(w|r—1'])  erf(w|r —1'|)

_ , 2.34
e I = .
using the error function erf(w|r — r’|) where w is a numerical parameter that can
be adjusted and erfc(w|r — r|) = 1 — erf(w|r — r’|). The HSE exchange-correlation
functional is then given by

B = aBy M (w) + (1-a) By M (w)
+ BT M (w) + EEPE, (2.35)

In fact, by “cutting” the long reaching tail of the Coulomb potential not only im-
proved on the efficiency of the calculation but also has proven to correct upon PBEO,
resulting in a better agreement with experiments, as was found for band gaps and
binding energies (see Ref. [116] for details).

2.5 Connecting DFT and many-body perturba-
tion theory - The Sham-Schluter equation

Despite the success of DFT in describing a multitude of systems and its ability to
efficiently describe extended systems, the appeal of high level many-body methods
based on standard many-body perturbation theory techniques remains omnipresent.
This is mainly because many-body methods enable the improvement of accuracy
in a systematic and tractable way yielding the inclusion of features that are, while
absent in approximated DFT functionals, of high importance when describing con-
densed matter systems. Dynamical screening or vertex corrections in the RPA or
Hedin’s equations mentioned in the first chapter of this manuscript, for example, are
established and well understood many-body concepts that one would like to merge
with the DFT way of performing electronic structure calculations. Additionally,
GW and related methods are able to accurately describe spectral properties since
they include excitations in a natural way. Thus, a connection between both theo-
ries is of high interest. The Sham-Schliiter equation [5] establishes the connection
between the Kohn-Sham exchange correlation potential ch(r) and the irreducible
self-energy via the one particle Green’s function. Starting with the following Dyson
equation for the one particle Green’s function G

G=Ggs+ GKsiG, (236)

where I have defined

~ ~

Y(r,v;w) = Ixe(r,r’;w) — 0(r — r')Vxe(r), (2.37)
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with exchange and correlation self-energy at a given level of many-body theory,
Yxc and the Kohn-Sham Green’s function Ggg corresponding to the Kohn-Sham
Hamiltonian

th(I‘) = —;—QVQ + V;gxt( ) VH(I‘) + ch(r), (238)

so that (w — hgxs)Gks = 1. The density n(r) is related to the diagonal part of the
Green’s function via

® fim G(r,r';w)e®" . (2.39)

27T ' —r

It is then straightforward to derive the Sham-Schliiter equation if one considers the
Kohn-Sham condition that same external potentials yield the same density

n(r) = ngg(r / — lim Ggs(r,';w)e" . (2.40)

27T r'—r
Performing a frequency integration over the Dyson equation (2.36) and using the

definition of the self-energy equation (2.37) one readily obtains the Sham-Schliiter
equation

[ dr'Vxe(r) [ dwGrs(r, v w)G(r, ryw) =
[dr' [dr" [ dwGres(r,r';w)S(r, v w)G(r", r;w). (2.41)

The corresponding exchange-correlation energy functional is expressed by [117]
Exc[n] = iTr{ln(1 — ©Ggs) + G} — i®xc[n], (2.42)

where ®x¢[n] represents the sum over all the skeleton diagrams, so that a functional
derivative of Eq. (2.42) would yield Eq. (2.41) [82]. The Sham-Schliiter equation
was first solved by Godby et al. for a GW self- energy [118] and tested on the solids
Si, GaAs, A1As, and diamond.

2.6 RPA exchange-correlation energy in a DFT
framework

The efficiency of DF'T functionals due to their reasonable computational scaling, led
DFT based approaches to become the methods of choice in chemistry and materials
science [114]. On the other hand, the high computational cost of wave-function based
approaches such as RPA, mainly due to the dependence on the unoccupied states,
reduces there appeal for applications in quantum chemistry and materials science.
There have been many attempts to implement RPA, the earliest implementation
by Furche [119] had a scaling of O(N®) with respect to system size. The use of
different techniques (e.g. the resolution of identity (RI) [120] or the plasmon-pole
formulation [121]) can reduce the computational costs to O(N*) [122, 121]. Recently,
an implementation that scales as O(N?3) has been reported [123]. Hence, the rapid



2.6 RPA exchange-correlation energy in a DFT framework 41

increase of computer power in the last years, together with the growing interest in
the quantum chemistry and materials science community to reduce the scaling of
this method with respect to system size, foresee a promising future for RPA. In this
section I turn to the formulation of RPA within the Kohn-Sham DFT framework,
derived using the adiabatic connection fluctuation dissipation theorem, see Ren et
al. [124] for details. The RPA correlation energy is then given by [124]

o0

/dwTr[ln(l — X (iw)v) + x°(iw)v] (2.43)

EgPA — %

with the bare Coulomb potential v(r —r’) = ﬁ The response function x°(iw)
is given by the Adler-Wieser formula [64, 65] Eq. (1.84). RPA is implemented in
the localized numeric atom-centered orbitals code FHI-aims (Fritz-Haber-Institute
ab initio molecular simulations) [41, 32, 125, 43], together with some beyond RPA
schemes, such as RPA+, RPA4+SOSEX and RPA+rSE, see Ren et al. for details
[43, 126]. Figure (2.2), from Ren et al. [124], shows the mean absolute percentage
errors (MAPEs) for the van-der Waals (vdW) bonded S22 set of molecules. In
contrast to approximated DFT functionals, RPA is able to capture vdW interactions.
Thus, the MAPEs of the RPA based methods are noticeably reduced compared to

PBE or PBEO, see Fig.(2.2).
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Figure 2.2: The MAPEs for atomization energies of the S22 test set with RPA-based
methods. A comparison to PBE, PBEQ and MP2 is made. From Ren et al. [124]
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2.7 Comparison to GW
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Figure 2.3: Experimental data compared to theoretical calculations. It shows a very
good agreement with experiment for OEPx(cLDA)+4GyW, and an clear improvement
upon LDA for LDA+GyW,. The theoretical values are not corrected by the electron-
phonon coupling.

In Fig. (2.3), I report the comparison between experimental and theoretical

band gaps for a set of nine representative semiconductors as presented in the work
of Rinke et al. [67]. GoWy improves upon LDA and exact-exchange optimised
effective potential with LDA correlation (OEPx(cLDA)), by opening the band gap
towards the experimental value.
However, the starting-point dependence of GoW, and the aim to get a GW total
energy, together with the improving computational power, some fully self-consistent
GW (scGW) implementations for finite systems [60, 127] has emerged in the last
years. There the total energy is calculated from the self-consistent Green’s function
G(w) using the Galitskii-Migdal (GM)[128] formula

Fent = —i / g—:Ter 4 h)G(W)). (2.44)

Here hg is the sum of the kinetic energy operator and the external potential. Figure
(2.4) shows the GM total energy for a set of eleven small molecules, with config-
uration interaction calculations (CI) as reference. Compared to GoW,@QHF and
GoWy@QPBE total energies (also computed using Egy) the scGW total energies lie
reasonably close to the CI values and do not show starting-point dependence. A
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Figure 2.4: Galitskii-Migdal total energies referenced at full CI values E¢y for scGW,
GoW,QHF, GoW,@QPBE and PBE total energy for comparison. From Caruso et al.
[127].

more detailed discussion of the scGW implementation in FHI-aims will be given in
Chapter 4.
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Chapter 3

Embedding Schemes and the
Dynamical Mean-Field Theory

One of the main virtues of DFT with its LDA/GGAs functionals is its applicability
to large systems. It is the method of choice for the simulation of realistic systems
(~2000 atoms) [129]. State of the art codes [41] allow a linear scaling with system
size. Conversely, the aim to treat systems where electronic correlations become more
important, such as systems with d- or f-electrons, in a more accurate way has driven
people to go back to computationally more demanding theories such as, GW, RPA
or even to wave-function based methods such as the full configuration interaction
or the coupled cluster method [79], that are able to capture correlation effects at a
high level of accuracy. These methods, however, scale at least cubically [123] with
system size and are thus limited to small systems, which reduces their attractiveness
to real system applications. Hence, one can imagine that a perfect theory would be
one that is at the same time efficiently applicable to large systems and provides high
accuracy. This conundrum between efficiency and accuracy has given rise to the
concept of embedding. Embedding relies on the idea of dividing the system under
consideration in two parts: the embedded system (region (I)) and the embedding
surrounding (region (II)) where region (II) is treated in a more approximated manner
than region (I) (see the schematic picture in Fig. (3.1)). This divide-and-conquer
approach should, in an ideal case, allow an extraction of all the “good” features of
the embedded region (region (I)) into the embedding surrounding (region (II)).
Many different embedding schemes have been developed in the past [34, 24, 26,
29, 23, 28, 22, 33, 31, 32, 27, 35]. I would like here to present some prominent
representatives. This chapter consists of two sections. In the first one I discuss some
established embedding schemes for ab initio theories, while in the second I address
the embedding concept within dynamical mean-field theory (DMFT). Here I first
introduce DMFT equations and the related approximations and then briefly discuss
“impurity solvers” and some examples for physical quantities where DMFT provides
accurate results.
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Embedding surrounding
(region Il)

Figure 3.1: Cartoon depicting the embedding concept.

3.1 Conventional embedding schemes

In this section I am going to review some popular embedding approaches used to
describe real systems in an ab initio way.

3.1.1 The ONIOM model

To overcome the high numerical costs of quantum mechanical (QM) methods with
respect to molecular mechanical (MM) approaches, QM:MM embedding schemes
were devised [23, 28]. Here the chemically interesting region i.e., region (I) in Fig.
(3.1), is treated with QM methods (usually it is DFT), while the rest of the sys-
tem i.e., region (II) is considered at the molecular mechanical level. The resulting
embedding total energy formula is then defined as

E — E%lighflevel + Elli)wflevel _|_ Eint, (31)

high—level —
EI igh—leve E}?w level

where and are the energies of region (I) and (II) calculated at
the high-level (i.e., QM) and low-level (i.e., MM) theory respectively. FEi, models
the interaction energy between the two regions. The challenges facing the QM:MM
embedding approaches lie essentially in the way the boundary region (i.e., the region
between (I) and (II)) is defined. For covalently bound systems the definition of an
embedded region (I) leads to a braking of the saturated covalent bounds. These
unsaturated bounds can make the QM calculation of Ef"#" ™! problematic. Hence,
the severed bounds should be saturated using link atoms. In practice any type of
link atoms can be considered but usually H atoms are used. On the other hand, for
systems where no covalent bounds are cut by the definition of region (I), such as for
salvation processes, no saturation is needed. Thus, depending on the system under
consideration, many QM:MM embedding schemes have been proposed [130, 131].
A characteristic difference between embedding schemes is the definition of the inter-
action energy Fi,. A way to define it is by considering for region (II) a potential
that includes at least one center in region (I) [132]. The interaction energy is then
the difference between the resulting energy at the low-level theory and the one for
region (II) with centers in region (II) only i.e., B, .

To improve upon MM for the geometry optimization of molecules and include QM
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corrections, Maseras and Morokuma [29] proposed a method that they named ”our
own N-layer integrated molecular orbital molecular mechanics” (ONIOM). In the
ONIOM scheme the interaction energy is given by

o low—level low—level low—level
Eint - E1+H - (Ef + EII ), (32)

where the subscript (I) stands for region (I) with the link atoms, E% ' is the

E}ow—level EﬁJw—level

energy of the full system and and the energies of region (I) and
(IT) respectively, all calculated at the low-level theory. Hence, substituting Eq. (3.2)
into (3.1) for region (I) with the link atoms yields the ONIOM embedding total
energy [132]

— Elowflevel o Eilowflevel + Eihighflevel

Eoniom L1l , (3.3)

where Eihigh_level is the energy of region (I) with the link atoms at the high-level
theory. Due to the link atoms, each component of the ONIOM total energy Eq.
(3.3) can be calculated from a well-defined molecular system. The ONIOM scheme
is hence a general approach and is not constrained to a given theory. In princi-
ple also a QM low-level theory for the treatment of region (II) can be used within
ONIOM(QM:QM).

More recent works by Mayhall et al. [133] and Hratchian et al. [132] extended the
ONIOM(QM:QM) to the electron embedding using Mulliken atomic point charges
which allows the polarization of the high level wave function and thus leads to a bet-
ter description of the charge-charge interaction region. For the low-level theory HF
was used whereas Mgller-Plesset perturbation theory [69] and the BSLYP functional
[134, 104] were considered as high-level theory.

3.1.2 The shell embedded-cluster model

To properly describe solids with localized perturbations of the lattice periodicity,
such as defects or adsorbates large supercells are required. This is mainly to eliminate
the artificial interactions with periodic images and to reach convergence with respect
to the supercell size in particular for charged systems.

To tackle this problem, Berger et al. [36] presented recently a QM:MM embedding
approach for periodic systems based on the ChemShell framework [135, 136]. In
this scheme the solid is modeled by a cluster of atoms with the periodicity of the
solid under consideration (i.e., an embedded cluster model). This model is divided
in multiple concentric regions (shells) as depicted in Fig. (3.2).

Moving further from the center of the cluster, each of these regions is described with
more approximate methods. Hence the center is described with QM methods, while
the MM region is divided into an inner “active” part, where atoms are allowed to
relax and an outer “fixed” part where atoms are constrained to their lattice positions.
The outer most shell is constituted of point charges that are fitted to mimic the full
electrostatic embedding potential of an infinite bulk reference system [135, 136].

In the same spirit as the link atoms for the ONIOM embedding model, as I have
discussed in the previous section, in solid-state embedding, the introduction of an
intermediate shell at the QM boundary is necessary to avoid spurious charge transfer
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Figure 3.2: Cartoon picture depicting the embedded cluster model used in the
QM:MM calculations. The QM central region (red and light blue circles) is treated
most accurately. It is surrounded by a region of active (yellow) and a fixed (blue)
MM atoms. For ionic systems, an additional embedding (yellow circles) is included
in form of atom-centered PPs surrounding the QM region. The outer most shell
of points (dark blue) represents the fitted potentials to reproduce the correct long-
range electro-static potential of the periodic system. The figure is adapted from
Berger et al. [36].

from the QM into the MM region. In practice, this is done by replacing all the
cations in the intermediate shell by effective core potentials. To this end, Berger
et al. [36] use norm-conserving pseudopotentials (PPs) of Kleinman-Bylander type
[137]. Proceeding as such, the artificial overpolarization of the electronic density
trough the neighboring positive MM charges is prohibited. Hence, spurious charge
transfer into the MM region is suppressed.

The total energy of the embedded-cluster is then given by

Etot — EQM + EMM, (34)

where EMM is the MM energy obtained from the ChemShell package and the EM,
the QM energy, corresponding to a QM Hamiltonian H®M, is given by

nuc nuc ?

(3.5)

with VMM the fitted external MM embedding potential acting on ¥, while E® and
EWEMM degeribe the Coulomb interaction between QM nuclei only and between QM
and MM nuclei respectively.

As QM calculator Berger et al. [36] used the FHI-aims package [41]. The perfor-
mance of their approach was demonstrated using different functionals, such as PBE,
BLYP, B3LYP, PBEO, HSE06 and the XYG3 [138] for the QM region, applied on
two examples. The first one being the Fe reduction potential in Fe-substituted ZSM-
5 zeolitic framework and the second was the calculation of the adsorption energies
of in the water oxidation at defect-free TiO5(110). They could then confirm, for
both cases, the importance of an appropriate description of long-range electrostatics
captured by their embedding scheme.
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3.1.3 The cluster extrapolation scheme

Addressing the problem of CO adsorption on Cu(111) [18], where the LDA/GGA
predicts the wrong site preference (hollow site) compared to experiment (top site).
See Fig. (3.3).

Hu, Reuter and Scheffler [31, 139] developed a cluster extrapolation scheme that is

LDA/GGA
)

Side view Top view

Figure 3.3: Schematic representation of the CO adsorption on a Cu(111) surface.
On the top view (right hand side) the experimental site is indicated together with
the LDA/GGA predicted one. The figure is a courtesy of Prof. Patrick Rinke.

based on performing a cheap (LDA/GGA) calculation for the periodic system then
correcting the resulting total energy by

AExc = EXE™ [LDA/GGA] — ESE" [ “better”], (3.6)

where EZE* [LDA/GGA] and EZE™ [“better”] are the cluster XC-energy parts of
a cluster calculation with the cheaper (LDA/GGA) and the "better” theory re-
spectively while the cluster itself is a supercell having the lattice periodicity of the
periodic system. The resulting "better” total energy Eio[EP*] is then given by

the sum of the LDA/GGA total energy of the periodic system and the correction
AFExc as

B[22 = B [EXPA] +  lim  AFxc, (3.7)
cluster—o0
Increasing the cluster size, they could then show that the correction AFExc converges
for relatively small cluster sizes (~16 atoms) and thus much faster than if one would
have considered ES&* ["better”] alone in Eq. (3.6).
Using B3LYP and MP2 theories for the "better“ E,., they could predict the right
site preference for the CO molecule. Finally, it is worth mentioning that a main
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difference between the Hu-Reuter-Scheffler [31, 139] cluster extrapolation concept
and the ONIOM described above is that link atoms were not used for the cluster
calculations.

3.1.4 The embedded cluster theory

Aiming to describe the adsorption of molecules on surfaces Whitten and co-workers
[22, 140, 141] developed an embedding scheme that uses the fact that localized
electrons/orbitals “exchange more”. The surface is modeled by a symmetric cluster
of atoms, where the embedded region (i.e., region (I)) constitutes a subspace of
atoms within this cluster. Starting with the solution of a Hartree-Fock calculation
for the model surface i.e., a single Slater determinant, a localization of the electronic
orbitals is performed for region (I) of the system using the maximization of the
exchange matrix element with respect to the substrate orbitals in the vicinity of
the interaction region (i.e., adsorption region) as criterion. Whitten et al. defined
the localized orbitals ¢; of region (I) as the ones with maximal exchange interaction
with the orbitals & of region (IT). Hence, the following exchange matrix element is
to be extremized

= Zm(rim(rmﬁ|5n<ri>5n<rj>> >0, (3.8)
The set of delocalized orbitals W ({1 }) is related to the set of localized ones ®({yy})
via the unitary transformation (that leaves the eigenvalue spectrum unchanged) as

({ox}) = UV ({¢r}). (3.9)

Thus, for an N electron system the extremal problem reduces to finding the coeffi-
cients ¢ relating the localized states to the delocalized ones

N1 =Y e

7

Yot Pp = Z Ciq/]k

TN PN = Z cr, V-
The localized orbitals can then be ordered with respect to their degree of localization
as
most localized v; > v, > ... > v, > ... > yn least localized. (3.10)

Going from point 1 to N the first orbitals are localized inside region (I) then for
a given orbital p (with p < N), the electrons will be localized at the intermediate
region between region (I) and (II). After this point, the orbitals will be mainly
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localized in region (II). Overall, one obtains thus less electrons (i.e., p < N) in
region (I). This hierarchical structure of the localized orbitals is the core idea of this
embedding scheme. For the unoccupied states the same localization procedure can
be undertaken.

The resulting localized orbitals are then used to construct an embedded Hamiltonian
for the adsorbate-substrate system

N v? N M Z N 1 .
H:_ZT_ZZ—lri—Ryl+Z—Iri—rj|+ve’ (3.11)
7 7 v 1<J

with the effective potential V¢

+ m|ﬂ(ri,1‘j)>

+ Y Al Qua) (Qunl, (3.12)

that includes the localized subspace (i.e., {¢x, k = 1,...,p}) via the density p(r;) =
p p
> i(ri)er(r;) and the density matrix p(r;,r;) = > ¢i(ri)pr(r;). The overlap
k k

between core and valence orbitals is treated using a pseudopotential for the valence
electrons. This is done in the last term in Eq. (3.12), where |@,,) are the auxiliary
core basis functions introduced to orthogonalize the valence basis functions and A,,
the resulting coefficients. See Ref. [22] for details. The localization of the orbitals in
the vicinity of the region of interest (region (I)) allows then to use of configuration
interaction to solve the Shrédinger equation defined by the Hamiltonian Eq. (3.11).
The method was successfully applied to describe the reaction of methane thiolate
on Ni(111), where they could identify the site preference observed in experiment
[141, 142].

3.1.5 Potential-functional embedding theory

In the potential-functional embedding scheme developed by Hang and Carter [33],
the system is partitioned in two or more subsystems &. The external potential of
the total system is constructed as

V(1) = ) 054 (r). (3.13)

Each subsystem is connected to the rest of the system by an embedding potential
u(r). This potential can be viewed as an additional external potential, whose role
is essentially to replace the interaction between the subsystem and the rest of the
system. Huang et al. [143] showed that wu(r) is unique under the constraint that
all subsystems share the same embedding potential for a fixed electron number Ng.
For a given u(r) and Ng the subsystem’s electron density ps can then be calculated
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and hence the total density pyot is given by pr = >, ps. The Hohenberg-Kohn
S

theorem then guarantees the one-to-one correspondence between u(r), Ns and p.
The key idea of this potential-functional embedding approach is that the problem of
finding pior that minimizes the Kohn-Sham total energy functional Eq. (2.14) from
Chapter 2, can be translated into a problem of finding u(r) and Ng that minimize
a corresponding functional. One can then write

félin Eiot[prot] = m}fn FEiot[prot[u, Ns]], (3.14)
tot u,INs
with
Eiot[prot[t, Ns|] = Z Eslu, Ns] + Ei[u, Ns] (3.15)
S
1 Z, 7
i 52 Z R —R;|
i€S jeSI£S

Hence, the resulting energy functional above consists of three term the first one
being the subsystem total energy in presence of the embedding potential for a given
Ng and is given by

Es[u, Ns] = E2[u, Ns] + /pg(r)u(r)dr, (3.16)

where E2[u, Ns| is a Kohn-Sham like total energy of the bare subsystem (i.e., without
the presence of u) and can be written as the Kohn-Sham energy functional Eq.
(2.14) from Chapter 2, but using the subsystem’s electronic density ps instead of
the density of the full system py and constraining the ion-ion interaction to the

ions of the subsystem S, i.e., %;S 'E‘;#' |RZiiZﬂj|' The last term in Eq. (3.16)
€S JES,j#]

represents the ion-ion Coulomb interaction between different subsystems, with R;

and Z; the coordinates and nuclear charge of the nucleus i in subsystem S. The

interaction energy FEiylu,{Ns}| is defined such that the total energy of the full

system, i.e., Eq. (2.14), is recovered when adding it to ) Eslu, Ns|] + Eint[u, Ns]
S

and 1 Z ‘ > |RZii_Zﬁj| in Eq. (3.16). Hence it is given by
€8 S48

By = B2 — / provuu(r)dr, (3.17)
where
By = Tlpror] = 2 Tps]
+Exclprot] — ; Exclps] + Eul{ps}]

+%:fps(r) > 5 (r)dr. (3.18)

S£S!

The minimization of the total energy functional Fiu[ptet[u, Ns|] Eq. (3.16) is done
in two steps



3.2 Dynamical Mean-Field Theory 53

(i) for a given u, Fg is minimized with respect to Ng.
(ii) Finally, with fixed Ng, Eiot[ptos[tt, Ns|] is then minimized with respect to w.

The steps (i) and (ii) are repeated until u and Ns do not change any more.

In practice, the kinetic energy density functional T[ps] in Eq. (3.18), is calculated
either using optimized effective potentials (OEPs)[144] or approximated methods
such as Thomas-Fermi [145, 146] or von Weizsécker [147]. The XC functionals can
be evaluated at the LDA level or using more advanced functionals. This scheme was
applied to some diatomic molecules, bulk NaCl and water/MgO(001)[33]. When
applying OEP, the embedded total energy Eq. (3.16) reproduces almost exactly the
Kohn-Sham benchmark calculations. Moreover, Huang and Carter [33] showed that
forces can be obtained by calculating the gradient of the total energy functional with
respect to the embedding potential u, which would enable structure optimization.

3.2 Dynamical Mean-Field Theory

Correlated electron systems are often identified as those systems, where the com-
petition between the kinetic and the Coulomb energy is particularly important. In
the model Hamiltonian community, Metzner and Vollhardt [25] introduced the limit
of infinite dimensions d — oo (or equivalently infinite number of neighboring lat-
tice sites) to correlated electron systems. They showed that within this limit, the
regime where the kinetic and Coulomb energies compete (i.e. where electronic corre-

lations become important) is well described by a momentum independent self-energy
d—> o0

Y(k,w) —— 3(w). A short time after the work by Metzner and Vollhardt, Georges
and Kotliar [27] showed that the Hubbard Hamiltonian [148, 149], one of the most
prominent models that describes electronic interactions on a lattice, can be mapped
onto an effective Anderson impurity model [37]. Thus, one could map a complex
system (that is the Hubbard Hamiltonian) onto a simpler one (that is the Anderson
impurity model). This allows the use of very sophisticated and accurate theories
to solve the resulting Schrodinger equation. These theories are often referred to as
“impurity solvers“. They range from iterated perturbation theory [27] to numer-
ically exact ones such as quantum Monte Carlo (QMC) or renormalisation group
techniques [150, 151, 152]. In this section I first introduce the DMFT scaling and
the resulting DMFT equations before I briefly address impurity solvers and some
prominent examples where DMFT gives reasonable results. Here, I mainly orient my
self on the review articles by Held [39] and Georges [153] and the work of Georges
and Yedidia [154].

3.2.1 Scaling analysis in the limit d — o~

To start, I consider the so called Hubbard model Hamiltonian [148, 149]. For sim-
plicity, I constrain my self to the case of single orbital lattice sites, so that I do not
have orbital indices

H=— Z t’ijcjo'cjﬂ' + U Z T - (319)

ij,0 i
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ni = CZTC,'T is the particle number operator, where C;rT (¢it) creates (annihilates)

Figure 3.4: Schematic representation of the single orbital Hubbard model. Every
site can be filled by at most two electrons with different spins (Pauli principle). The
Coulomb interactions between two electrons occupying the same site is described by
the matrix element U. Due to the overlap of the orbitals, every electron is free to
hop from one site to the other with the probability amplitude ¢.

an electron with spin up at site ¢ and ¢;; is the hopping matrix element (essentially
modeling the kinetic energy of the problem) between site ¢ and j given by

R2V?

with the atomic wave functions ¢(r — R, ;) at site positions R;; and electronic
position r. m is the electron mass and U is a general on-site Coulomb interaction
probability amplitude given by

U= /drdr'|¢(r —R)|PV(r —1)|o(r — Ry)J?, (3.21)

with the bare Coulomb potential V' (r —r’).

One can consider an extended lattice [25, 27, 39], so that one obtains a large number
Nr,-R,| of neighboring sites j with the same distance |R; — R;] to site i. In the
case of a cubic lattice, one has N' = 6 = 2d nearest neighbors for the dimension
d = 3. In general the number of nearest neighbors is related to the dimension d
via Nr,-R,| & d®:~Ril - Thus, considering J\[IRij\ — 00 is equivalent to taking
d — oo. The interesting question now is, how does the Hamiltonian Eq. (3.19)
scale with Mr,—r,| — 00.

The second term on the right hand side of (3.19) is purely local. Hence, it scales like

MRi—levmo

(UZnian) —————— const. (3.22)

meaning that this term does not diverge but assumes a finite value.
The first term of Eq. (3.19) however is more delicate and requires more attention: it
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features a sum over j-equivalent sites. This leads to a divergence of the kinetic energy
per site ¢. This divergence can be overcome by rescaling ¢;; in the /V’IRZ'*RJ'I — 00
limit using the ansatz

t;‘j Nir,-Rr;| =

tij = —=——, with t;; ———— const. (3.23)

Y
v:;|Ri—Rj|

The non-interacting Green’s function (U = 0) is directly related to the hopping
matrix element ¢;; and thus has the same dependence on MRi_Rj| as the hopping ¢;;

1
V y lei—Rj\ '

This can be best demonstrated if one performs the matrix inversion in the upper
expression using the minors method. Then it becomes clear that the off-diagonal
terms are a factor — +t5_ o smaller than the diagonal ones. Hence, within the limit
of an infinitly large number of neighboring sites these terms can be neglected and
one is left with diagonal terms only.

For the full Green’s function one can also show that it scales in the same way. Hence,

one can write

[Go(iw)]s; = [iw + p —t];;" o (3.24)

1 NR;-Rr;|—
Gij(iw) o LT const. (3.25)

\/:;|RFRJ\

But how does this scaling analysis translate into the language of diagrams?

Localization of Feynman diagrams

In the former subsection I briefly discussed how the Green’s functions scale in the
limit of infinite neighboring atoms. As I have discussed in Chapter 1, the best way to
visualize the meaning of Green functions is to draw Feynman diagrams. Figure (3.5)
shows a second order diagram describing an electron from site ¢ interacting with a
hole on site j (i # 7). This is a typical non-local diagram. It contains three Gy lines

that, as I discussed above, scale as ‘ 1 - In the diagrammatic expansion this
R;-R;

L__.. Considering that in the sum 3 t;;(c} ¢;,) there is

\/:;\Rerl ij,0

a factor MRi—Rj\ for every class of equivalent sites j, one is left with

term thus scales as

MRi—Rj\

—3 p—
A /Wmi—Rj\
1

———_ This means that the contribution of such a diagram becomes negligible in
V A IR;—R;|

the limit MRi_Rj| — 00. Diagrams like the one in Fig. (3.5) are not the only non-
local ones occurring. The left hand side of Fig. (3.6) shows the process of an electron
that leaves site ¢ to interact with another electron from site j and then finally comes
back to site ¢. Such a diagram survives the scaling since it only contains two Gy lines

connecting site i and j: it scales as ——mil — (NMr,-r,|)? = 1. However, this

IR;—R|
process is already contained in the diagram of the full Green’s function (represented
by double lines in diagrammatic language) shown in the right hand side of Fig. (3.6).
They describe the fact that, within this scaling, an electron can still leave site R;,
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1/NRr,-R,|

Ri Rj
1 /\/]RiijI — OO

[
Ul 1/Nr,-r,| 1 >
I I
IR.

[
Ril > R

1/NR,-R,|

Figure 3.5: Second order diagram of the non-local Green’s function. It can be seen
as an electron-hole process, where the electron sits on site R; and the hole on site

R;. Such a diagram vanishes in the limit d — 0.

> > e >
R. ,

Figure 3.6: Left hand side: Diagrams, where the sites R; and R, are connected
by only two G lines. These diagrams survive the scaling. However, they are all
included on the full Green’s function diagram shown in the right hand side.
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interact on other sites an then come back to site R;. In Chapter 1, I have shown that
the connection between the full (interacting) Green function and the non-interacting
one is made through the Dyson equation via the self-energy. Diagrammatically, the
self-energy is the sum of all skeleton (amputated) diagrams. These are diagrams
such as the ones in Fig. (3.5) or Fig. (3.6) only without the ingoing and outgoing
Gy legs (i.e. the amputated diagrams). Hence, it is obvious that the locality of the
full diagrams is automatically translated to the skeleton diagrams. Thus, just as the
Green’s functions, the self-energy is purely local

. MRerl_>oo .
Ei]’(ZW) 51']'2(7,@). (326)
As a summary one can say that in the DMFT limit only local diagrams are con-
sidered, while the lattice of the real problem is approximated by a local on-site
problem.See Fig. (3.7). This approximation becomes exact for d — co.

Figure 3.7: Cartoon of the DMFT approximation to the Hubbard model. Within
the d — oo limit the Hubbard lattice can be described by a single lattice on which
only local interactions are relevant. While electrons can still interact on other sites,
only interactions of electrons that ”come back“ are taken into account.

3.2.2 Derivation of the dynamical mean-field equations

To start, I again consider the Hubbard model
H)\ =U Z NipMy — A Z tijc;rgcja (327)
i ij,0

where the coupling constant A € [0, 1] was introduced to control the non-local hop-
ping term of the Hamiltonian, so that one can distinguish

H)\ = Hloc + )\Hnonfloc (328)

Mapping the Hubbard model onto an impurity model

The mapping is done by constraining the local Green’s function (¢;(7)c! (7)) to take

a specific value G(7 — 7’) by introducing the Lagrange multiplier A(7 — 7’), so that
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one can write the free-energy functional for finite temperatures as [153]

B
MW [G(w), A(w)] = —%ln/DchTexp{/dT(Z ¢ (=0, + )iy — Hy)+

s B

/ / drdr’ Z AT —G(r —7) — ei(r)el (7]}, (3.29)

0 0

where [ = kBLT with temperature 7', kp is the Boltzmann constant and the path
integral f Dc = lim,,_,o f deq... f de, and the Matsubara frequencies w are [155]

— _ Qu+)m
w=w, = 221
v B
Usually, one is interested in the stationarity of Q,[G(w), A(w)] with respect to the
Lagrange multiplier A(7 — 7/) (i.e. 9% = 0). This means that for all A one should
have
(ci(T)cl (7)) an = G(r = 7'), VA (3.30)

The upper expression means that the expectation value (¢;(7)c! (7)) should coincide

with the local Green’s function G(7 — 7’). This can be easily seen, by explicitly
performing the derivative of the free-energy functional Eq. (3.29) and considering
the Boltzmann weight (...)a ) defined for a given operator O as

B
(O)ar = /DCDCT@ exp{/ dT(Z b (=0r + p)cie — Hy)+
B B i
/ / drdr' SO A = )G — 1) = ()]

B
[/ DeDct exp{/ dT(Z b (=0, + p)cie — Hy)+
0 0

6 8 .

//deT’ Z At =G —7")— Ci(T)C;r(T,)]} (3.31)

0 0

Eq. (3.30) implicitly expresses the Green’s function as a function of the Lagrange
multiplier A. One can formally inverse this expression to get an expression of A as
function of the Green’s function A = A,[G]. So that one can then write Eq. (3.29)
as functional of the Green’s function only

0\[G, A[G]] = T4 [G). (3.32)

The upper expression is the Legendre transformation of the free energy functional
with respect to the local source A. Now let me consider the case A = 0 corresponding
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to the atomic limit where the Hamiltonian is purely local. In this case one can show
[153, 154] that the Legendre transform of the free-energy functional is given by

Q0[Ao, G] = Finp[Ao] — Tr(GAy), (3.33)

with the free-energy of the quantum impurity as functional of the hybridization Aq
given by

1
Fimp[Ao] = —Eln / DeDc!

B B B
exp{/ / drdr’ Z CZTU(T/)[(—((?T +w)o(r — 7)) — Ao(T — T/>]CIU(T/) +U / drng(T)n (1)}

(3.34)

Hence, in the A = 0 case the local Green’s function is that of a quantum impurity
problem (often referred to as the Anderson impurity problem [37] when dealing with
the Hubbard model)

G = Giunp[Ad]. (3.35)

With the hybridization function Ay that defines the bare Green’s function of the
impurity

Go(iw) = iw + p — Ag(iw). (3.36)

Thus, since 4y is a dynamical object, it includes retardation in the aspect as the
related Green’s function.

However, an explicit inversion of (3.35) i.e., Ag[G] = Gimp, is not possible in practice
without approximations. These numerical approximations are referred to as quan-
tum ”impurity solvers® (see section (3.2.5)) and are part of an iterative procedure
that has the following steps:

(i) Start with initial condition for Ay or G

(ii) Compute interacting Green’s function Gy, and the related self-energy iy, =

-1 -1
gO - Gimp

(iii) Get new GYFW as GYEW = [, +G 1!, where G is the local Green’s function
corresponding to the previous iteration step.

I want now to turn to the explicit form of the local Green’s function and the ap-
proximation involved therein.

Exact functional of the local Green’s function

The X\ # 0 terms can be included in the Hubbard Hamiltonian by integrating over
the coupling constant A. Taking the derivative of I')[G] in eq. (3.32) with respect
to A, one obtains for the Hubbard Hamiltonian

dl'\[G]

— 3 = (Huon-toc) = — D tilelenle = Tr )~ ali(k iw)le, (3.37)
ij k



60 3. Embedding Schemes and the Dynamical Mean-Field Theory

with e, = Y t;;®~Ri) and where |¢ means that the quantities should be ex-

pressed as flinctional of the local Green’s function G.

Essentially, Eq. (3.37) is the kinetic energy part of the problem and it establishes a
relation between the lattice G\ (k,iw) and the local Green’s function G.

Thus, for the exact functional (A = 1) one has

1
dl'\[G]
IG]=T X
6 =6+ [ ]
0
= Fimp[A0[G]] — Tr(GAG[G]) + TG, (3.38)
with the kinetic energy functional
1
TIG) = / dATr ) " aGa(k, iw)|a. (3.39)
0 K
The stationarity condition g—g = 0 determines the local Green’s function at equilib-

oTy _

5o = —A one gets the important relation

_ TG
-~ 0G (iw)’

rium. Recalling that

Ag[G(iw)] (3.40)
that relates the hybridization function to the local Green’s function. Equation
(3.40) together with (3.35) constitute the fundamental equations of DMFT, where
Ao[G(iw)] is often referred to as dynamical mean-field hence, giving the method its
name. Up to now the theory is general and the only approximations involved are the
ones related to the Hubbard Hamiltonian under consideration. However, to obtain
the local Green’s function one should solve the impurity problem eq. (3.34) with
the constraint (3.40). Thus, approximation of the kinetic energy functional T[G] is
necessary. Below I briefly discuss the so called DMFT approximation to the kinetic
energy functional.

The DMFT approximation to the kinetic energy functional

The one particle Green’s function of the Hubbard Hamiltonian is

1

G(k,iw) = (iw + p) — Aex — Ay (iw) — Ba(k, iw)

(3.41)

The DMFT approximation is to omit the k dependence of the self-energy, meaning
that the self-energy becomes purely local

EA(k,z'w) — E};Q(i&}). (3.42)

With Yy_o[iw; G] = G5! — G™! = iw + p — Agliw; G] — G, Summing over k yields

: D(e) 1= (E(iw)
G(iw) = dem = XD (T) : (3.43)
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where D(e) = > (e — e) and &(iw) = (iw + p) — Ay (iw) — Xy—o(iw) = Ag(iw) —
k

Ay (iw) + G~ Introducing R, the inverse function of D given by D[R(g)] = 5(;@

R(AG(iw)), one can then invert the equation above which enables to write the hy-

bridization function as functional of the local Green’s function

Ayliw; G = G + Agliw; G] — AR[MG]. (3.44)

Using this expression one can obtain the lattice Green’s function as functional of
the local Green’s function GG
1

K iw)= — .
Gl i) = e T e

(3.45)

Now one has all the ingredients to write down the kinetic energy functional in the
DMEF'T approximation. It is given by substituting the upper expression for the lattice
Green’s function into eq. (3.39)

Tomrr|[G] = / Zd)\Tr {G(m)R[AG(m)] —% . (3.46)

The resulting full free-energy functional in the DMFT approximation is then

the hybridization function then follows from the equilibrium condition g—g =0
. , 1
Ao[lw; G”DMFT = R[G(Zu})] — G(zw) . (348)

The local Green’s function is then given by

o Do) B Do)
Gliw) = | de R s Gloarr — RG] / s s e LR )

with the impurity self-energy ¥, = Gy l_G1'and Go U = dw+ p— Agliw; G)|pumrr-
Equation (3.49) is in agreement with the constraint that at self-consistency Ay_;[G] =
0. Thus, within the DMFT approximation the lattice Green’s function is given by
taking Ay_1[G] =0 in eq. (3.41) to finally get

1

Gk, -
( ,ZM)|DMFT iw + n— €x — Zinlp(iw)

(3.50)

3.2.3 Example of a single impurity Anderson model

To summarize, it is useful to illustrate DMFT for an explicit example. For simplicity
I start with the single orbital Hubbard model Eq. (3.19) which models a lattice of
single orbital atoms. Orbitals from different lattice sites can overlap so that electrons
can hop from one site to the other with probability amplitude ¢;; as shown in Fig.
(3.4). For the isolated atom, i.e. the case where no hopping occurs, the lattice site
can have the following eigenstates
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e |0), when no electron is occupying the site, with a corresponding eigenvalue 0.

e | 1) (or | |)), when an electron of spin 1 (or J) is occupying the site, with
eigenvalue ¢4

e | 1)), when two electrons of opposite spin occupy the lattice site, which cor-
responds to an eigenvalue of 2¢; + U (since every second electron should have
enough energy to subdue the barrier given by the Coulomb interaction U).

Fermi
energy

electron
bath

Figure 3.8: Cartoon of the single impurity Anderson model Eq. 3.51. It describes
a single electronic level, coupled to an electronic bath. Electrons can hop back and
forth between the electronic level and the electronic bath. When the level is half
filled (occupied by one electron only) the other electron should should have the
energy €, + U and an opposite spin to be able to occupy the same level.

As T have shown in the previous section, in dynamical mean-field theory the local
Green’s function is represented as that of a single atom coupled to an effective
bath of electrons as illustrated by Fig. (3.8). The Anderson impurity model (AIM)
describes this effective coupling. It is given in the case of a single impurity by

HAIM - Hatom + Hbath + Hcouplinga (351)

where

Hatom = Unqny + (e — p) (ng 4 ny),

Hbath = Z Enggdqaa

qo
Hcoupling - Z[‘/nggca + h.C.],
qo

with ny | = ci 11 c$ creates an electron on the atom with spin up and df,, creates
a bath electron at state ¢ and spin o. ¢, is the energy of a bath electron at state ¢

and Vj is the hopping amplitude from the atomic level to the bath level g.
In the case of the Anderson model the hybridization function can be derived as

, /A%
Aliw) =Y ﬁ (3.52)
q q
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The resulting impurity self-energy as functional of the local Green’s function is then

Simp = G ' (iw) — Gy (iw)
=iw+ g — g — Aliw) — Gt (iw), (3.53)

imp
-1
imp

with the local impurity Green’s function G
in the DMF'T approximation becomes

(iw). Again the lattice Green’s function

1

w + n— €4 — €k — Zimp(iOJ).

G(k, iw) = (3.54)

Summing over the k degrees of freedom, the following self-consistency condition

on—site [ ; o 1
G ) = zk: Aiw) + G (iw) — e
_ D(e)
N / A T G (i) — < (3.55)

is obtained. From the upper equation it becomes clear that the self-consistency con-
dition relates the dynamical mean-field A(iw) to the local on-site Green’s function,
at each frequency point. This defines an iterative procedure within which the lattice
Hamiltonian is mapped onto a simpler impurity problem. This is the essence of the
embedding concept in DMFT: a complex problem is represented as a simple one
that is easier and more efficiently solvable one. A sketch of the self-consistency cycle
in DMFT is shown in Fig. (3.9). For an initial guess of the impurity self-energy
Yimp a lattice Green function that yields after k-summation the local on-site Green’s
function resulting in a hybridization function A(w). Solving the resulting impurity
problem then gives the new impurity self-energy >,,,, which is related to the local
impurity Green’s function via Eq. (3.53).

3.2.4 Extending DMFT to ab-initio methods: The LDA+DMFT
approach

As T have shown in the previous sections, DMFT is a method that has its roots
in the model Hamiltonian community. Model Hamiltonians are a common tool
in physics because the desired physics can be put by hand and because they are
solvable. However, their predictive power for real systems remains limited due to
the approximations made and the parameters introduced that are not always obvious
to determine. In this section, I briefly present a scheme that merges the ab-initio
within the model Hamiltonian word. The idea, originally developed by Anisimov
et al. [156] within the so-called LDA+U framework, is to start with an ab-initio
Hamiltonian at a given level of theory and to include local interactions by means of
the DMFT framework. There have been numerous schemes following the X+-DMFT
philosophy, where X stands either for Hartree, Hartree-Fock, LDA by Anisimov et al.
[157] and Lichtenstein and Katsnelson [158] or even GW by Biermann et al. [159].
Here I shortly address the LDA4+DMFT framework since it is the most broadly used
one. As its name suggests, the LDA4+DMEFT approach uses the LDA Hamiltonian
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Impurity
solver

self-consistency

Figure 3.9: Sketch of the DMFT self-consistency cycle. Staring with an initial guess
of Yimp the DMEFT Green’s-function-mapping onto an effective impurity model is
initialized. Solving the resulting impurity problem yields a new impurity self-energy,
that serves as a new starting point for the Green’s-function-mapping.

as a starting point. On top of this Hamiltonian the local correlation effects from
DMFT are added. However, as I have shown in Chapter 2, LDA already contains a
correlation part. To avoid double counting, the correlation contribution from LDA
should be subtracted. Hence, one ends up with the following Hamiltonian (here I
restrict my self to the J = 0 case for simplicity, meaning that I am considering
single orbital models, where Hund’s coupling J is zero and refer the reader to [39])
for details)

Hipaipwrr = H 0 + U Z ny ny, (3.56)
VL

where H{ , is the double counting corrected LDA Hamiltonian given by H{S, =
Hyipa— Y Aen? , with the double counting correction Y Aen? and Hypa the LDA

1,0 2,0

veL veL
Hamiltonian from an ab initio calculation. The sum »_ runs over all locally inter-

veL
acting (with interaction U) orbitals v. In the lattice Green’s function Eq. (3.50)
the part describing the electronic surrounding €, becomes é£PA = LPA — Ae, where

ekPA is the Fourier-transform of the LDA Hamiltonian into reciprocal space.

Additionally to the proper choice of the local manifold (i.e., the correlated states)
[160], the calculation of the double counting correction term Ae and the interaction
U constitutes a major challenge for LDA+DMFT. The latter can be addressed using
the LDA density in the framework of the so-called constrained LDA (cLDA) estab-
lished by Dederichs et al. [161], McMcMahan et al. [162] and Gunnarsson et al.
[163]. It relates Ae and U to the LDA density and makes the formalism completely
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parameter free and thus purely of ab initio nature. In this thesis, I will not give a
detailed description of the cLDA formalism. Instead, I will present the general idea
of the method. The basic idea behind cLDA is to choose the localized orbitals of
interest, usually these are d- or f- orbitals, then isolate them by setting the hopping
between these orbitals and all the others to zero. This means that the electrons
on these orbitals cannot leave the site and thus are isolated from the rest of the
system. This controls the electron number of the electrons interacting on that site.
The total-energy as a function of the electron number for a given localized orbital
is then [39]

1
E(nay) = Eo + §Und7 r(nay — 1) + (ef* + Ae)ng,y. (3.57)

Hence, performing cLDA calculations for different occupations (e.g. for (ng + 1)
and (ng — 1)) of the localized orbitals using Janak’s theorem [84, 164] yields U and
Ae. The resulting U and Aec are related to the density p(r) and thus, are different
for different densities. Here, it is worth mentioning that a number of schemes for
calculating the double counting correction Ae have been proposed [156, 165, 166,
yielding different values for the U and thus the resulting physical quantities.

The LDA+DMFT approach defines a self-consistency cycle that can be summarized
in the following steps

(i) From conventional LDA calculation, obtain a starting LDA density.

(ii) For a given density obtain bandstructure eLP4.

)
)

(iii) cLDA then provides the corresponding U and Ae.
)

(iv) The LDA4+DMFT Hamiltonian Eq. (3.56) can then be solved using the DMFT
self-consistency cycle as in Fig. (3.9).

(v) The resulting impurity self-energy ¥, yields a new lattice Green’s function
Eq. (3.50) and thus a new density. One can then go back to (ii) to restart the
procedure until convergence. However, in most applications of LDA+DMFT
the density is not updated [167, 39, 153].

Until now I have not explicitly discussed the way to solve the impurity problem and
how to calculate the impurity self-energy. This will be the topic of the next section.

3.2.5 Impurity solvers

The embedding aspect of DMFT is manifested by the Green’s function mapping.
This mapping reduces the full problem of an infinite lattice, where electrons are free
to interact on all the lattice sites, to an effective impurity problem as demonstrated
by Georges and Kotliar [27] and Jarrell [168]. The resulting impurity problem is
then easier to solve. This simplification of the problem allows the use of a multi-
tude of powerful numerical impurity solvers. In fact solving the impurity problem
became one of the major challenges in DMFT i.e., how to obtain the right impu-
rity self-energy and the related Hybridization function? Numerous ways to solve
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the Anderson impurity problem have been devised and implemented such as ex-
act diagonalization or renormalization group techniques such as Wilson’s numerical
renormalization group (NRG) [150, 151] or the more recent density matrix renormal-
ization group [169, 170, 152] (for a general idea, the reader is referred to the review
article by Schollwock [152]). All these methods can provide very high accuracy for
the estimation of the impurity self-energy. However, due to their exponential scaling
with the number of states, they remain restricted to very small systems and dimen-
sionality. For example, NRG has been very successfully applied to impurity models
with only one Hubbard band [171, 172] and becomes a serious challenge already for
the two band case.
For real systems however, the impurity solver of choice at present is the quantum
Monte-Carlo (QMC) method with all the various algorithms [173, 174, 175]. Here
the numerical effort grows cubically with a decrease in the electronic temperature,
which restricts possible simulations to finite temperatures that lie around room tem-
perature. For a more detailed discussion of the different impurity solvers, the reader
can refer to the review paper by Held [39].
There are many applications [176, 166, 167], where DMFT was successfully applied
within the LDA+DMFT framework using QMC as impurity solver. Here I want to
cite only two examples and refer the reader to the Refs. [39, 153] for further reading.
For instance, Lichtenstein et al. [166] were able to describe the Ni satellite at -6 eV
for the majority-spin spectrum, see Fig. (3.10), a feature, that is completely absent
in LDA as can be seen from the density of states in Fig. (3.10).

The other example is the Kondo volume collapse in Ce [177, 178] that was investi-

E

-1

[\
1

Density of states, eV

8 6 4 2 0 2
Energy, eV

Figure 3.10: LDA+DMFT with QMC solver (solid lines) and spin polarised LDA
(doted lines) for both spin directions. From Lichtenstein et al. (2001) [166]

gated by many authors [179, 176, 180, 181, 182] using LDA+DMFT. For instance,
McMahan et al. [176] could reproduce the right evolution of the 4 f-spectral func-
tion with change of volume at a temperature 7' = 632 K. The comparison of the
calculated LDA4+DMFT spectrum and the measured one is shown in Fig. (3.11).
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It shows the spectrum corresponding to the M- (V=29A3) and ~- (V=34A%) phases.
The parameter free LDA+DMFT with QMC impurity solver could reproduce the
measured spectra at the a- and ~y-phases.
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Figure 3.11: Comparison of the LDA+DMFT spectra with QMC solver (solid lines)
with experimental data (circles). From McMahan et al. (2003) [176]
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Chapter 4

Real Space Dynamical Mean-Field
Embedding

As T have discussed in the previous chapter, dynamical mean-field theory (DMFT)
in its original formulation is a Green’s function method for correlated model Hamil-
tonians. It uses the locality of the electronic interactions to embed a local on-site
region of the Hubbard lattice (usually a single d- or f-electron) into a periodic non-
interacting electronic bath. This mapping of the Hubbard lattice into an effective
localized region coupled to an electronic bath defines a self-consistency cycle.
Furthermore, The local treatment of the on-site region facilitates the use of compu-
tationally very demanding and at the same time exact methods, such as continuous
time quantum Monte-Carlo [183], exact diagonalization or renormalization group
techniques [184]. The localized region is then coupled through a hybridization self-
energy to the surrounding electronic bath, which is treated with computationally
more efficient methods (see discussion in Chapter 3).

In the last decade DMF'T has proven to successfully describe the spectral properties
of solids with localized electrons [185, 186, 187, 188]. This success has driven further
methodological development such as the extension of the DMFT formulation from a
single site to clusters of sites [189, 190], the combination of the DMFT with ab initio
approaches [157, 158, 191], and the formulation of DMFT for nano-structures [192].
A common feature of all flavors of DMFT, is that the local problem (i.e., single site
or cluster of sites) is solved essentially exactly. To allow such exact solvability, a
reduction of the electronic degrees of freedom of the local problem to a correlated
subspace is imperative. This “down-folding” into a correlated subspace is a highly
nontrivial issue that is still being intensively discussed in literature [160].

Conversely, if one does not require that the local problem be solved exactly, then
the projection into a correlated subspace is not necessary anymore. The price to
pay is that the thus formulated scheme may not be able to properly describe “strong
correlation effects” like the Mott-Hubbard metal transition for example. However,
there is a large number of problems where typical strong correlation effects are
not dominating so that approaches beyond LDA/GGAs are required in order to
get quantitatively accurate results. These approaches include quantum chemistry
methods [68], advanced exchange-correlation functionals of the 4-th and 5-th rung
Jacob’s ladder [193], and Green’s function many body perturbation theory. All
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these schemes treat electronic systems at an ab wnitio level, but are restricted to
small systems.

In this chapter I will present an embedding approach for periodic systems that
I have developed during my thesis and that I have implemented in the all-electron
code FHI-aims [41]. The approach is called real space dynamical mean-field embed-
ding (RDMFE) and is based on the concept of DMFT, while formulating it as a
Green’s function embedding for the above noted ab initio approaches. The moti-
vation of RDMFE is to extend the reach of the approaches beyond LDA/GGAs to
unprecedented system sizes. As poof-of-concept examples I take hybrid functionals
and the GW approximation, and consider the unit cell (or any computational super
cell that spans the whole space when periodically repeated) as embedded cluster (see
Fig. 4.1). For clusters larger than the primitive unit cell, the formulation is similar
to cluster DMFT (for a review, see Ref.[190]). in particular the cellular DMFT
scheme [194]. As a consequence, the translational symmetry of the original lattice
is lost and only that of the supercell is preserved (see discussion in Chapter 5).

Compared to DMFT, in RDMFE the quantum mechanical problem of the cluster
is solved only approximatively. This allows the treatment of all electronic degrees
of freedom on equal footing. In addition, compared to the conventional embedding
approaches that I have discussed in the previous chapter, RDMFE permits charge
flow between the localized region and the surrounding and therefore naturally incor-
porates the boundary between the two regions. Hence, neither special treatment for
atoms on the boundary of the embedded region (i.e. localized region) is required,
nor is there a problem with the covalent bonds of the boundary atoms.

However, before I present the embedding approach, I first introduce the numeric
atom-centered orbitals in FHI-aims to set the stage for the technical discussion of
the method and its implementation that will follow in this chapter.

4.1 Numeric atom-centered orbitals in FHI-aims

In ab initio electronic structure codes, the basis used is of major importance. It is a
quantum mechanical concept, that allows to rewrite the quantum mechanical opera-
tors as matrices. This constitutes a big advantage compared to the representation in
real-space, since the matrix representation is, from a numerical point of view, easier
to handle. For instance, the Kohn-Sham eigenvalue equation for a periodic system
is given by

Npasis Npasis

D Hy0d 00 = e 3 8K (k). (4.1

J

where k is the reciprocal lattice vector and 7, j run over the number of basis functions
Niasis- In FHI-aims these are numeric atom-centered orbitals (NAOs). The index
v labels the Kohn-Sham state corresponding to the eigenvalue €. H;;(k) is the
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Hamiltonian of the system in matrix representation of the NAO basis given by

Hij(k) = Z / dry;(r)H(r)p;(r — R)e™®

— [ dreiwH ol (42)

where ¢;(r) is the NAO basis function with the corresponding Bloch state p;(r) =
> pi(r —R)e™ R while H(r) is the Kohn-Sham Hamiltonian and R are the Bravais
R

lattice vectors. The non-orthogonality of the NAO basis is taken into account by
the so-called overlap matrix S;;(k), defined as

5,00 = Y [ dri(wpy e - R
~ [ dreironto) (4.3)

The NAO basis is related to the eigenstate basis of H(r) i.e., the Kohn-Sham basis
Y, x(r), through the expansion coefficients ¢/ (k) via

Yoalr) = el (K)pue(r). (4.4)
In FHI-aims the NAO basis set {¢(r)} is of the following form
— Y (2). (4.5)

The so-called radial functions u;(r) are numerically tabulated and hence fully flexible
to choose. To keep ¢;(r) real, the complex spherical harmonics have been divided
into a real part Y;,,,(Q2) for (m = 0,...,1) and imaginary part for (m = —[,...,—1).
The advantages of NAOs have been already demonstrated in a number of previous
implementations [195, 196, 197]. The flexibility of the choice of the radial functions
allows the creation of optimized element-dependent basis sets, that can be kept as
compact as possible providing a systematically improvable high accuracy for the
calculation of physical quantities. Furthermore, each radial function u;(r) can be
localized inside a given radius, allowing a clear separation of the spatial regions.
This enables a nearly quadratical O(N?) scaling with system size N.

The NAO basis sets in FHI-aims are called tiers. With increasing number of tiers
i.e., tierl, tier2, ... etc., the accuracy is improved but also the computational cost
grows. For an overview over tiers basis sets the reader is referred to Ref. [41].

4.2 The Embedding Green’s functions with NAQOs

As mentioned above, the embedding formalism I have developed during my thesis,
relies on Green’s functions. I have implemented this new concept in FHI-aims [41].
Since I will be using operators in the non-orthogonal NAO basis, it makes sense to
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first understand and derive the relevant Green’s functions in this basis. As I have
explained in Chapter 1, the Green’s function for the Hamiltonian of an extended
crystal H(r,r’) in real space is given by

/dr” [(iw + p) — H(r,x")] G(x", ', iw) = §(r — 1), (4.6)
with u being the chemical potential. Using the expansion of the Green’s function

G(r,r' iw) ZZGU (k, iw)pac(r)@ji (1), (4.7)

in Bloch states of the NAO basis ¢; x(r). Multiplying from left by ¢, (r) and inte-
grating over dr, dr” yields

> Z[(iw + 1)@ (r) Sni(k) — @i (r) Hyi (k)] Gy (K, iw)

= 90;(1‘,)7

where I considered the non-orthogonality of the NAO basis i.e., S;;(k) = [ dryf(r)e k(1)
Subsequent multiplication with ¢,,(r’) and integration over dr’ ylelds

D7 D10+ 1) () () — () Ho ()] Gy (k, )
= Snm7

with the NAO overlap matrix S,,, = [ dre}, (r)e,(r). The lattice Green’s function
follows if one multiplies with >~ >~ .S -1(q) and uses the relation 3" S;,,(k)S; 1 (q) =
q m m

ml
d0(k — q)

D7D M+ 1)S0i() = HyalI0)] Gl i) = 8 (4.8)

I call Gjj(k,iw) the lattice Green’s function G for the Hamiltonian H (k) = H°(k)+
Y(k, iw) with H? the non-interacting Hamiltonian (i.e., Kohn-Sham Hamiltonian)
and interactions described by the lattice self-energy >(k, iw)

Ga(k,iw) = Gy (k, iw) = {(w +1)S(k) — H(k) — B(k, iw) N (4.9)

5]
Relation between the NAO and the Kohn-Sham Green’s function

In the Kohn-Sham basis {1k}, the non-interacting Green’s function GSM corre-
sponding to the non-interacting Kohn-Sham Hamiltonian H°(k) is diagonal and can
be written as

(r,r', iw) ZZGOkzw Yo (X)) (1), (4.10)
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Inserting the NAO expansion Eq. (4.7)
(r,r')iw) ZGO k, iw)pac(r)@j (r)

= ZGB K, i) (1)1 (r'), (4.11)
and multiplying with ¢* (1)@, (r') yields
ZGO k, i) (1) 9iac(0) @ (1) om (x) =
Z GO (k, i) (1) ()53 (X))o (). (4.12)

One can now use the relation ¢, x(r) = Y ¢/ (k)i (r) between the Kohn-Sham and

(2
the NAO basis which gives, after integration over r and r’,

ZG (k, iw) Zsm (k)G (k, iw)c;” (K)Sjm(k).  (4.13)

To get rid of the overlap matrices, one can again multiply with the inverse overlap
matrix to get the final expression

Gy, (k, iw) Zc k)G (k, iw)c;" (k) (4.14)

For the Kohn-Sham Hamiltonian, G (k,iw) is diagonal and given by the expression

1

Gk, iw) = ——

(4.15)
with the Kohn-Sham eigenvalues ¢. For the Lattice Green’s function Eq. (4.9)
however, the corresponding Kohn-Sham Green’s function is not diagonal and is
given by

Gk, iw) = Z = c/(k) [(iw + 1) — exdpy — Syu(k, iw)] 7 €5 (k) (4.16)

vp

As discussed in Chapter 3 for DMFT, the k-dependent lattice Green’s function Eq.
4.9 constitutes a key quantity in the present formalism since it explicitly enters the
definition of the “on-site” Green’s function as I will show in the next section. In the
following, I present the embedding Green’s functions that maps the real crystal onto
an effective system of an on-site region interacting with a surrounding electronic
bath, in the same spirit as in DMFT presented in Chapter 3 of this dissertation.

4.2.1 The “on-site” Green’s function for a periodic system

I have demonstrated in Chapter 3, that the so-called ”on-site“ Green’s function is
a key quantity in DMFT. I want here to derive the ”on-site“ Green’s function from
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the lattice Green’s function as given by Eq. (4.9). The relation between the unit
cells and the k-dependent lattice Green’s function and self-energy in Eq. 4.9 can be
established via the Fourier-transform to real-space,

1.BZ
Glat R, - R;,iw) ¢(Ri—R;) kGlat k,iw
( N1 — Z (k, iw)
1 1.BZ
Eij (Rz — Rj, Z(,U) = Z €i(Ri_Rj)'kEij (k, zw)
1.BZ

(4.17)

where R; and R; are Bravais lattice vectors denoting the unit cells in which the basis
functions ¢ and j are located. Np gy is the number of k-points in the first Brillouin
zone (1.BZ). The concept of DMFT is based on the fact that the lattice self-energy
becomes local, or k-independent, in infinite dimension (D = oo) [25]. For a crystal
with translational symmetry this implies (see Chapter 3 for further reading on the
DMFT scaling)

2ii(Ri — Ry, iw) = B9°(iw)0R, R, - (4.18)

Thus, the self-energy is non-zero only if the two basis functions originate from the
same unit cell. T call this the local (loc) or “on-site” self-energy, following the ter-
minology of the model-Hamiltonian community. In this limit, the whole periodic
system can be mapped onto an effective impurity model of a local unit cell dy-
namically coupled to an effective “external” potential arising from the rest of the
crystal.

The first step in establishing this mapping is to define the “on-site” Green’s
function, ie., G;;(R; — R;,iw) with R;=R;. Using the locality of the self-energy
and Eq. (4. ) one obtams the following expression for the on-site Green’s function,

1 1.BZ
GOsite () = Gl (K, iw) =
o (iw) MBZZ}{: i (K, iw)
1 1.BZ L
N D [l + @) S(e) = HO(k) = 5 (iw)] . (4.19)
’ k

In the DMFT context this equation is also known as the k-integrated Dyson equa-
tion. In RDMFE, the environment is treated by KS-DFT in the LDA or PBE.
A natural choice of H? is thus the KS-Hamiltonian H¥S(k) within LDA or GGA,
that contains the kinetic-energy operator, the external potential (vey), the Hartree
potential (vy), and the exchange-correlation (XC) potential (vxc)

1
H (k) = =5 V2 4 ve (K) + v (k) + vxe(k). (4.20)
One needs furthermore to define ¥'°¢(iw) in Eq. (4.19). If one starts from H¥S(k),

the “on-site” self-energy becomes the difference between the dynamic, complex
many-body exchange-correlation self-energy Yxc(k,iw) and the KS XC potential,
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ie.,

(i) = LS (Bt o8500]

1.BZ K

= Y% (iw) — vy - (4.21)

Using Eqs. (4.19) and (4.21), one finally obtains

G;)]p-site (ZC«J) —
1 1.BZ

T 3 [+ WSO - HES() - Skeiw) +oke], . @)

RDMFE is thus free from any double-counting ambiguities, because the DFT XC-
contribution that has to be subtracted is uniquely defined (see the discussion on
double-counting in DMFT in Chapter 3).

4.2.2 The embedded Green’s function

In the DMFT formalism (Chapter 3), a periodic system is viewed as a periodically
repeated cluster (here the unit or super-cell) which is dynamically embedded into
a self-consistently determined environment. The coupling between the embedded
subsystem and its surrounding environment is described by a so-called bath Green’s
function G(iw), connecting the Green’s function of the embedded cluster G™ (iw)
and the local self-energy via

Gliw)];;" =[G (iw)] " + S (iw) (4.23)
Here the local self-energy ¥°°(iw) is the same as introduced in Eq. (4.21). The self-
consistency condition of DMFT requires that the Green’s function of the embedded
cluster G (iw) equals the on-site Green’s function as given in Eq. (4.19),

G (i) = GOt (i) . (4.24)

A more intuitive picture can be alternatively provided if one uses a so-called
hybridization function A(iw) to describe the coupling between the embedded cluster
and its environment. A(iw) is closely related to the bath Green’s function G(iw),

Gl = [(w+p)S — HE™ — A(iw)]

v

- (4.25)
In Eq. (4.25) H§"™ is the Hamiltonian of the bare cluster describing the non-
interacting unit cell i.e., without the v§S contribution and without the presence of
the other atoms from neighboring unit cells (see Fig. (4.1)). This corresponds to
the “on-site” term of the Hamiltonian of the periodic system, and in practice can
be conveniently obtained from the k-dependent Hamiltonian,

1.BZ
1

Hcluster _ HKS k _UKS k)| . 4.26
: oo 2 00 ) (4.26)
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Using Eqgs. (4.23)-(4.25), one obtains the following expression for the Green’s func-
tion of the embedded cluster

), -
[(iw + ) S — Hwter — sloe[qemb] () — Aiw) | . (4.27)

ij

In the expression above, I have explicitly indicated that the local self-energy is a
functional of the embedded Green’s function. Thus Eq. (4.27) has to be solved
self-consistently, which corresponds to the inner loop of Fig. (4.2). A more detailed
discussion of the self-consistency cycle defined be the embedding Green’s functions
will be provided later in this chapter. The functional dependence of ¥!°°(iw) on
G (jw) is given by the actual approximation for the localized region, which will
be the topic of the next section. However, already here one sees that the RDMFE
approach lends itself to those advanced electronic-structure methods that can be ex-
pressed by (self-consistent) Green’s functions. Figure (4.1) schematically illustrates

Embedded I-{egion

a Silicon lattice treated with the RDMFE approach.
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Figure 4.1: The RDMFE concept for a Si lattice. The atoms in the unit cell (red
region) constitute the embedded sub-manifold. Each unit cell of the periodic system
is treated as a localized region, i.e. only local interactions X!°¢ are considered. The
unit cells are coupled to the rest of the system via the hybridization self-energy
A(iw) (green arrow).

4.3 The local self-energy

In an analogous philosophy as for DMFT, one needs to solve the ”impurity problem*,
that is the unit cell coupled to the periodic electronic bath. In other words, one needs
to choose an impurity solver. In contrast to DMFT, in RDMFE all the electronic
levels that enter a specific system are considered. Hence, QMC or renormalization
group techniques are out of the question. Although in principle, one could use any
approximation that goes beyond LDA and GGAs, the framework is based on Green’s
functions. This includes density-matrix and density-based approaches, because both
quantities can easily be extracted from the single particle Green’s function. In this
thesis, two different self-energies have been implemented. The first one is based on
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hybrid density functionals that mix a fraction of exact-exchange with GGA semi-
local exchange [111, 93, 116], and the second is the GW approximation to the self-
energy [40]. In practice, more sophisticated self-energies that go beyond GW are
also possible e.g., by including the screened second-order exchange (SOSEX) self-
energy that was developed recently [198]. Before I introduce the local self-energy,
I want to briefly address the resolution of identity (RI) concept in FHI-aims. This
is of particular importance for my work, since all the quantities needed to evaluate
the local self-energy use this formalism.

4.3.1 The resolution of identity for NAOs

In an NAO basis the calculation of two-electron four-orbital integrals such as the
one for the Coulomb operator V'

(ij|k) = (i4|V |kl) = / ey £ f:)figr/)spl(r/), (4.28)

is not an easy task. In contrast to Gaussian based codes, where such integrals have
an analytic expression, in the NAO case no analytical solution is possible. Hence,
the large number of NAO pairs needed to be stored to evaluate such expressions,
requires an important amount of memory (i.e., O(N*) with number of basis func-
tions considered in the calculation). This makes four-center integrals numerically
very impractical in an NAO framework. The same holds for the evaluation of the
polarizability in GW or the related screened Coulomb interaction W. To reduce the
numerical costs raised by these integrals, one of the techniques that has been devel-
oped over the past years is the resolution of identity (RI)[199, 200, 201, 202, 203, 204].
The RI formalism as it is implemented in FHI-aims [43] enables an efficient eval-
uation of integrals such as the one in Eq. (4.28) by introducing an auxiliary basis
{P,(r)} that are defined as an expansion of NAO product basis functions

Naux

pi()psr) = 3 CP,(), (4.20)
m

where p and v run over auxiliary basis functions. The auxiliary NAO basis pairs
are linear dependent, which makes it possible that the number of auxiliary basis
functions N,. can be hold reasonably small and always smaller than the number of
NAO basis pairs, that scales as O(NZ,,;.). Tt is this simplification that makes inte-
grals like the one in Eq. (4.28) numerically affordable for NAOs. The determination
of the expansion coefficients C’i”j can be performed using the variational approach as
reported in Ref.[43]. In this implementation the so-called "RI-V“ was used. Here

the expansion coefficients are given by

Cli = (ijln)V,,, (4.30)

v

with (ij|v) = [@(r)ie(r);P,(r')V(r — r')drdr’ and the matrix elements of the bare
Coulomb potential V(|r —r'|) in the auxiliary basis

Vi = /Py(r)V(r —1')P,(r)drdr’. (4.31)
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For a two particle operator O, one can define the more general expression relating
the operator in real space and its matrix element in the auxiliary basis

=Y Pu(r)5, 10,55, P,(x), (4.32)

wy, v

with the overlap matrix of the auxiliary basis S, = [ drP,(r)P,(r), that takes the
non-orthogonality of the auxiliary basis into account. Similarly I can write

O = /drdr/PN(r)O(r,r’)P,,(r’). (4.33)

4.3.2 Hybrid local self-energies

For the hybrid functional based local self-energy, I use the PBE hybrid functional
family (PBEh) [205], whose most prominent functional is PBEO [115]. Furthermore
the short-ranged range-separated hybrid functional family HSE [116] will also be
used. In PBEh the local self-energy in Eq. (4.21) is given by

Sien (@) = [aX¥° + (1 — a)oX® 4+ v8°] — vx8
= a (IR —v¥°) . (4.34)

The PBEO functional is obtained for a=0.25 [115]. In Eq. (4.34), v¢ is the “on-site”
part of the GGA exchange, and ¥¥¢ is the exact-exchange matrlx given by

[Z%°],, = D (k|li)mir™, (4.35)
k,l

where n{™ is the density matrix of the embedded cluster which can be obtained

from the embedded Green’s function

em| i emb (- WwT
ngt = ~5- /de P (i) e (4.36)
(ik|lj) are two-electron four-orbital integrals given by
(ik|lj) =) ChViuCl, (4.37)
%

where p, v are indices of the auxiliary basis functions and V,, = [ P,(r)P,(r')V (r —
r’)drdr’ is the bare Coulomb potential in the auxiliary basis.

The extension to an HSE [116] type self-energy is straightforward. In HSE, a range-
separation parameter is introduced that cuts off the exact-exchange contribution at
long distances. The range is controlled via the screening parameter v so that the
local exchange self-energy becomes

ER°(7) = ZxH () + Zx (), (4.38)

with SR and LR denoting the short and long-range part, respectively. If one now
replaces L2 () by vl and introduce the o parameter again, the local HSE
self—energy assumes the following form

She(a,7) = a (S(9) = o§ (7)) (4.39)

defining the local HSE self-energy as I have implemented it for the RDMFE scheme.
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4.3.3 The GW local self-energy

Furthermore, the GW approximation for the local self-energy is used as an ”impu-
rity “ solver in RDMFE. Here, the computation of the GW self-energy for a given
input embedded Green’s function follows the self-consistent GW implementation for
finite systems in FHI-aims [43, 206]. On the imaginary time axis, the GW self-energy
for the embedded unit cell is obtained as

ocC /L 12 e1m . ocC/ :
(ke (i ).j:_%E jM;;MUGMb(w)[WI (i7)] o - (4.40)
lkpy

Here 1, v indices refer to the auxiliary basis set used to expand the screened Coulomb
interaction W'°¢ in the RI approach [43, 206]. Furthermore M}, are the 3-index
coefficients obtained as,

MY, = (ik|p)V,, 2 (4.41)

v

For W one thus obtains

Wos (iw) Z Vil — I (iw)] (4.42)

v

where I1°¢(iw) is the irreducible polarisability, whose Fourier transform in the time
domain is directly determined by the embedded Green’s function

T (i7) = —i Y MAMY, G(ir) G (—ir). (4.43)

ijlm

4.4 The RDMFE self-consistency cycle

In RDMFE, Eqgs. (4.27) and (4.35) or (4.40) define an additional ”inner* self-
consistency loop for a given local self-energy as depicted in Fig. (4.2). It is obvious
that the convergence behavior of the iterative loop is dependent on the choice of the
theory with which the local self-energy is treated. In fact for the PBEO self-energy,
one only needs to calculate the exact exchange potential and use it to correct a
fraction of the KS-DFT exchange. Hence, the convergence of such a cycle is much
faster than e.g., the one with a GW self-energy, where both the exchange and the
correlation parts of the Hamiltonian are updated.
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Gon-site (ZCU)

Figure 4.2: The embedded (Eq. 4.27) and the on-site (Eq. 4.19) Green’s functions
define two Dyson equations that form two nested loops. The two loops are iterated
until self-consistency is reached.

Nevertheless, to accelerate convergence of the loop, a linear mixing scheme is
used for the self-energy

e, = ASEC 4 (1 N, (4.44)

with a mixing parameter \. Here X! is the self-energy for the current iteration
n, Efjl denotes the self-energy that is going to be used for the next iteration and
Yloc refers to the one from the previous iteration. Figure (4.3) shows a typical
behavior of the number of iterations of the inner loop versus the iterations of the
outer loop. For the first and second outer loop iterations, the inner loop iterations
increase before they systematically decrease to only one iteration at convergence. |

typically choose a mixing parameter of A = 0.5.
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Inner-loop iterations
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0 I 2 3 4 5 6 7
Outer-loop iterations

Figure 4.3: Inner loop versus outer loop iterations for a Si bulk with a PBEO local
self-energy. The calculation was performed with a tier! basis.

Furthermore, the convergence of the self-consistency cycles is controlled by com-
puting the average deviation dge, of the embedded (for the inner loop) and the on-site
(for the outer loop) Green’s functions at each iteration. dge, is given by

N basis

1 n,emb /on-site / . n—1,emb/on-site / .
Odev = 75— > /||G¢j P (i) — GO (), (4.45)
basis

ij

with the number of basis functions Ny,ss. The self-consistency cycle is considered
converged if d40, 1S gets less than a given threshold value. Although strongly system
dependent, typically an average deviation of dgey = 1077 is set throughout the hole
thesis. I found that for this threshold the convergence of the physical quantities is
best. Figure (4.4) shows the evolution of the average deviation with iterations of the
outer loop for different values of mixing parameter \. Increasing the mixing yields
slower convergence.
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0 5 10 15 20 25
Number of outer-loop iterations

Figure 4.4: The avergave deviation with outer loop iterations for different values
of the mixing parameter \. The calculations was done for bulk Si with a PBEOQ
self-energy and tier! basis.

More elaborate mixing schemes could be implemented as well, but I found that
linear mixing works well for the examples presented in this thesis. When the inner
loop reaches convergence the resulting ¥°¢ is fed back into the on-site GF and iterate
the main-loop further using the same mixing as for the inner loop. It is worth
mentioning, that the on-site Green’s function as defined in Eq. (4.19) requires that
the X°¢ in the 0-th iteration should be Zi*° = Vi%. Figure (4.2) shows a sketch of
the embedding scheme as described above. The behavior on the embedding Green’s
functions with iterations of self-consistency cycle is shown in Figs. (4.5)-(4.7). Figure
(4.5) illustrates the evolution of an element of the on-site Green’s function with outer
loop iterations for a PBEQ self-energy. Both the real and imaginary parts of the
Green’s function are represented and reach their converged values in a reasonable
number of iterations. In Figure (4.6) the real part of the embedded Green’s function
versus iterations of the outer loop (upper panel) and inner loop (lower panel) is
depicted. In the upper panel the embedded Green’s function at zeroth inner loop
iteration for different outer loop iterations is illustrated. In the inner loop the
change of the embedded Green’s function is less important than it is for the outer
loop. However, as shown in Fig. (4.3), the convergence of the inner loop accelerates
the outer loop convergence. Finally, the evolution of the imaginary part of the
hybridization function A(iw) with outer loop iterations is represented in Fig. (4.7).
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Figure 4.5: Real and imaginary parts of the first diagonal element of the on-site
Green’s function with a PBEO self-energy, for bulk Si with two atoms in the unit
cell and tier! basis. Upper panel: the real part of the on-site Green’s function at
different iterations of the outer loop. Lower panel: the imaginary part of the on-site
Green’s function at different iteration of the outer loop.
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with a PBEO self-energy,

for bulk Si with two atoms in the unit cell and tier! basis.

Upper panel: evolution of the embedded Green’s function at Oth iteration of the
inner loop, with the iterations of the outer loop. Lower panel: evolution of the
embedded Green’s function with the iteration of the inner loop. The change due to

the outer loop iteration

is more important, but the convergence of the inner loop

accelerates the one of the outer loop.
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Figure 4.7: Imaginary part of the hybridization function for bulk Si with two atoms
in the unit cell and tier! basis. The different colors refer to different iterations of
the outer loop.

During the self-consistency cycle I compute the particle number N, a quantity
that is obtained from the embedded Green’s function via

N, = —iTr/defflb(w, p)e 0" (4.46)

To guarantee particle number conservation, one needs to update the electron chemi-
cal potential every time one obtains a converged self-energy from the inner loop. I do
this using a so-called Richard Brent algorithm for minimization without derivatives
[207]. The change in the chemical potential is strongly dependent on the choice of
the local self-energy. Figure (4.8) shows a typical behavior of the chemical potential
with iterations of the outer loop for bulk Si with two atoms in the unit cell. For the
PBEQO self-energy the chemical potential approaches its convergence value already
after the first iteration. For the GW self-energy however, it keeps oscillating until
it stabilizes around the 13th iteration. I explain this with the fact that for the GW
self-energy the exchange as well as the correlation parts are iteratively updated,
which leads to a slower convergence of the chemical potential with the number of it-
erations that for the PBEQ self-energy case, where only a fraction of exact exchange
is updated.
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for a bulk Si calculation. Upper panel: Calculation for Si bulk with two atoms in the
unit cell with a PBEO self-energy with a tier! basis. Convergence is reached after 5
iterations of the outer loop. Already at the second iteration the chemical potential is
close to its converged value. Lower panel: Calculation for Si bulk with two atoms in
the unit cell with a GW self-energy with a tier3 basis. Convergence is reacjed after
18 iterations of the outer loop. The chemical potential oscillates strongly before it
reaches a stable value at iteration ~13.
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4.5 Frequency and time grids

From a general point of view, the non-interacting Green’s function for a solid is
given by

GOr,r',w) = E:E:ﬂLp%jti >’ (4.47)

as discussed for Eq. (4.15) and (4.10). Hence, G° has poles on the real frequency
axis at each w = € —p. These poles have an infinitely peaked d-shape. The positions
of these poles is known in the case of the non-interacting Green’s function. For the
interacting Green’s function however, the poles are still to be determined and need
to be properly resolved. Thus, it is clear that very dense frequency grids with up to
thousands of frequency points are required to capture such a peaky pole structure.
To bypass this issue, one can use a well known trick from complex analysis: If
one analytically continues the non-interacting Green’s function into the complex
frequency domain by replacing w — iw in Eq. (4.47)

GOr, 1’ iw) Zzlpyk QLG ), (4.48)

W+ — €y

then G° becomes smooth and hence, requires fewer frequency points. As a conse-
quence, the numerical costs are drastically reduced. The one-to-one correspondence
between the Green’s function on the real and imaginary frequency grids is established
through Cauchy’s theorem. For further reading on analytic continuation in Green’s
function theory, the reader is referred to the Refs. [208, 209]. In the RDMFE scheme
the analytical continuation becomes important for the local GW self-energy which
is frequency dependent and is built from the screened Coulomb interaction WW'c
and the polarisability I1'°¢, that are also dynamical quantities. However, physical
quantities are usually dependent on the pole structure on the real axis. The practi-
cal transformation from the imaginary axis (where the Green’s function is smooth)
back to the real axis (where the actual poles spectrum is) will be addressed in the
next chapter. Moreover, it is worth mentioning that the imaginary frequency grid
[ am using is not to be confused with the Matsubara [155] frequencies for finite
temperature Green’s functions.

In this implementation, the discretization of the imaginary time and frequency axes
is done on exponentially spaced grids with NV, frequency points going from [0, wyax],
and 2N, + 1 time points ranging from [—Tyax, Tmax|- The frequency and time grid
points wy,, 7, and their corresponding integration weights w(w,,), w(7,) are given by

Wy = wo{e™ V" — 1} with the weights w(w,) = hwee™ /"
7o = wole™" — 1} with the weights w(7,) = hwoe™". (4.49)

h is a constant specified using the condition wy.x = wo [erh_l} , while the parameter
wp determines the initial grid spacing. The resulting logarithmic grid has dense
points close to zero. This is the typical region where the Green’s function shows non-
trivial behavior. Dense points in this interval helps the resolution of such analytic
features. In this thesis, typical values that were adopted are wy,.x = 7T000Ha, 7o =
1000Ha™" and wy = 79 = 0.01.
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Fourier transforms using poles expansion

For an efficient self-consistent G'W self-energy implementation, it is necessary to
work in a mixed time and frequency-grid formalism. This is mainly to benefit from
the convolution theorem stating that the Fourier transform (FT) of two convoluted
functions is equal to the product of their respective F'T's. Hence, for the evaluation
of the polarisability the computationally demanding calculation of frequency con-
volutions can be replaced by the simple product of Green’s functions in the time
domain, as is done in Eq. (4.43). While for solving the Dyson equation, the time
integrals over convoluted Green’s functions and self-energies can be replaced by the
product in frequency space. The embedded Green’s functions in time and frequency
domains are related via the FTs

1 |
G i) = = / G (i) i7 (4.50)
G (iw) = L / dwG™™ (i)e™ (4.51)
V2r

As it has been done by Caruso et al. [61], T use the pole expansion method to evalu-
ates the F'T's. It introduces an analytical representation of the frequency dependent
Green’s function and its FT, reducing thus the grid size in a considerable meaner.
The idea here is to expand the embedded Green’s function in a set of poles having
the shape

foliw) = 5 iiw, (4.52)
with the corresponding F'T
folit) = €7 [0(=7)0(by) — O(7)0(=0,)] (4.53)

where p runs over the number of poles considered in the calculation, NVpqes, and the
parameters b, are distributed logarithmically in the beginning of the calculation in a
range that covers the hole eigenvalues spectrum of the system. Thus, the expansion
of the embedded Green’s function in this set of poles is

G (iw) = Z [ Re{ f, (iw)} + BIIm{ f,(iw)}] . (4.54)

The real-valued expansion coefficients o, P are determined using a linear least
square fit for the original Green’s function. Once the coefficients o, 5P are calcu-
lated, the evaluation of the F'T of the embedded Green’s function is straightforward

Npolcs

G (it) = Y [afiRe{f,(im)} + BAIm{f,(iT)}] | (4.55)

p
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with the pole-functions f,(i7) given by Eq. (4.53). The FTs of I1°° and W' and the
local GW self-energy X'°¢ are performed in an analogous way. Figure (4.10) illustrate
the frequency dependent local polarisability (calculated from pole expansion FT of
Eq. (4.43) using the pole expansion FT of the embedded Green’s function to time
frequency) and the resulting local screened Coulomb interaction calculated using Eq.
(4.42), at different frequency points. In Fig. (4.9) the same quantities are depicted
for a number of poles ranging from 40 to 200. The calculations where performed for
a bulk Si with two atoms in the unit cell. Very few poles, in the range of 40, are
already sufficient to describe the behavior of the dynamical quantities.
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Figure 4.9: Upper panel: the local screened Coulomb interaction calculated using
Eq. 4.42, for different poles. Lower panel: the local polarisability calculated from
Eq. 4.43 using the FT of the embedded Green’s function to time frequency, for
different poles. For 80 poles both quantities reach already their converged shape.
Calculation was done for Si bulk with 2 atoms in the unit cell and tier! basis. The
number of frequency points was fixed to 40.
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Figure 4.10: Upper panel: the local screened Coulomb interaction calculated us-
ing Eq. 4.42, for different frequency points. Lower panel: the local polarisability
calculated from Eq. 4.43 using the FT of the embedded Green’s function to time
frequency, for different frequency points. Calculation was done for He bulk with 2
atoms in the unit cell and tier2 basis. The number of poles was fixed to 100.
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Chapter 5

Exploring Physical Quantities with
the Real Space Dynamical
Mean-Field Embedding

In This chapter I will first show how physical quantities, such as the density of
states and the total energy can be calculated with our RDMFE scheme. Then I will
demonstrate that these quantities behave adequately with the related computational
parameters and the size of the embedded unit cell.

5.1 Evaluation of the density of states and the
spectra

The way the RDMFE density of states (DOS) is calculated depends on the self-
energy with which the localized region is treated. For the hybrid case i.e., PBEh and
HSE, the self-energy is static (no frequency dependence). Hence, at self-consistency
of the RDMFE cycle the local self-energy E%S]%Eh’HSE defines a k-dependent embedded
Hamiltonian corresponding to the self-consistent lattice Green’s function Eq. (4.9)

H*" (k) = HO(k) + EIP(’)ECBEh,HSE' (5.1)

One can then diagonalize the embedded Hamiltonian at each k-point, which yields
k-dependent eigenvalues and eigenstates. The resulting embedded DOS n(e) is
then given by the -distribution

n(a) = Y d(ac— e), (5.2)

where v labels the eigenstates of H°™ (k). Plotting the upper formula would give a
very peaky DOS with infinitely high peaked. To allow comparison with experiment,
the peaked structure can be made smoother by introducing a Gaussian broadening

(&) = / dk exp (—g%gg(k)f (5.3)
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with the broadening o. The resulting DOS is then given by N(€) = )" g,(€).

For the local GW self-energy on the other hand, the self-energy is dynamical. Here
the spectrum is directly obtained from the Green’s function. The k-dependent spec-
tral function is related to the lattice Green’s function via the formula

Ak, w) = —%Tr [ImG™ (k,w)] . (5.4)

As T have explained in the previous chapter, the lattice Green’s function is defined
on the imaginary axis. To evaluate the spectrum of the lattice Green’s function it is
necessary to know the poles on the real axis. To this end the analytical continuation
of the local GW self-energy back from the imaginary to the real axis is necessary. |
do this by fitting each matrix element of the self-energy to a two-pole model[210, 43]
given by the formula

2

Sl (iw) & Y (5.5)

. 9
n Zw—ﬁn

where «,, and (3, are complex fitting parameters that I obtain by performing a least
square fitting scheme. I then evaluate Eq. (5.5) for real frequencies and solve the
Dyson equation for G'(k,w). The total spectral function follows then from the
k-summation A(w) = > A(k,w), which is then convoluted with Gaussians

k

A@) = / dwe () Aw), (5.6)

with broadening o that leads to a DOS A(®) that can be compared to experiment.
To test our implementation and our DOS, I have constructed a test case. For the
PBEh self-energy in Eq. (4.34), I consider a hybrid parameter « = 1 and discard
the local correlation potential correction so that one ends up with a self-energy that
contains only the HF exact exchange

ZgéEh(a = 1) = Zg(m - U;?é (5.7)

Hence, with the upper self-energy I get a HF Hamiltonian with a Hatree part from
Kohn-Sham DFA

H™ (k) = H*S(k) + 2° — k¢, (5.8)

With this local self-energy one can look at the limiting case of an infinitely large
lattice constant. In this limit, the atoms in the unit cell can be considered as an
isolated molecule allowing a consistency check of my implementation. Figure (5.1)
shows the DOS of He and Na bulks with two atoms in the unit cell, where the lattice
constant was extended to 20A. I then compare the DOS to HF calculation for finite
systems. The RDMFE DOS resembles in both cases almost exactly the HF one
and is clearly distinct from the PBE DOS, which is the starting DOS in this case.
The slight differences between the RDMFE and the HF curves stem from the fact
that, in our scheme, the Hartree potential is not updated. Hence, the embedded
Hamiltonian still contains the Hartree potential from PBE.
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Figure 5.1: Comparison between the RDMFE (red), the HF (blue) and the PBE
(green) DOSs for the limit of an infinitely large lattice constant. The left panel
shows the DOS for He bulk with two atoms in the unit cell. The right panel shows
the DOS for Na with two atoms in the unit cell. The RDMFE DOS resembles the
HF one much more that the PBE one, which is the starting calculation. However,
since I am not updating the Hartree potential small discrepancies are still noticeable.
All the calculations were performed with a tierl basis set. A Gaussian broadening
of o = 0.2 and a k-mesh of 4 x 4 x 4 were used.

5.1.1 Density of states of embedded Si unit cells
Embedded PBEO self-energy: RDMFE(PBEO)

To investigate the evolution of the DOS with each embedding cycle, for a PBEOQ
local -self-energy, I calculated the DOS for bulk Si with two atoms in the unit cell at
each iteration of the outer loop. Figure (5.2) shows the resulting DOS at different
iterations until convergence is reached. The most important change happens already
at the first iteration, when moving from PBE to the embedded PBEO DOS. After the
first iteration the changes in the DOS are much smaller. This behavior is consistent
with the behavior of the chemical potential for a PBEQ local self-energy shown in the
upper panel of Fig. (4.8). The convergence of the embedded DOS with the k-mesh
and the basis size is shown in Fig. (5.3). Comparing the converged RDMFE(PBEO)
DOS for the 2 atom unit cell with the periodic PBE and PBEO DOSs as shown in
Fig. (5.4), One observes that the band gap and the band width are larger than the
PBE one and closer to the PBEO reference. Furthermore, one expects that when
increasing the unit cell size, the resemblance between the embedded DOS and the
PBEO reference should become more pronounced. I have done this investigation
and considered unit cells of 8 and 32 atoms, see Fig. (5.5). The difference between
the embedded DOS and the periodic PBEO DOS are systematically reduced. A
comparison between the resulting RDMFE band gaps for different unit cell sizes with
the PBE and PBEO values is reported in Tab. (5.1), showing that the RDMFE band
gap approaches the PBEQ value with increasing unit cell size. With the investigation
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RDMFE(PBEO)
PBE PBEO | 2 atoms 8 atoms 16 atoms | exp. (at 300K)[211]
band gap [eV] 0.68 1.85 | 1.2 1.257 1.569 | 1.12

Table 5.1: Comparison between PBE, PBEO and RDMFE for different unit cell

sizes for the indirect band gap of silicon. The experimental value [211] is shown for
reference.

of the change of the RDMFE DOS with increasing unit cell size I have shown that

our embedding scheme behaves adequately by approaching the right limit i.e., the
periodic PBEQ reference DOS in this case.
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Figure 5.4: Comparison of the embedded DOS, the periodic PBE and the periodic
PBEO DOS for a 2 atom unit cell.

Embedded scGW self-energy: RDMFE(GW)

For the local GW self-energy, I calculated the spectral function as given by Eq. (5.6)
from the k-summation over the k-resolved spectral function given by

Alk,w) = — %Tr [ImG™ (k,w)]

N )] |
T o — ReXE () + [T, (@)

(5.9)

Here the trace runs over the Kohn-Sham eigenstate indices v, i1 corresponding to the
eigenvalues €/ and [25;],., (w) is the local GIW self-energy obtained from analytic
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continuation of the imaginary frequency self-energy
Y0 (jw) = B8, (iw) — vs. (5.10)

I first looked at the spectral function at the first iteration of the outer and inner loops.
Figure (5.6) shows the embedded GW valence band spectral function at the I'-point
(k=0;0;0). A comparison is made for different basis sets up to tier3. The direct band

100 T T T T T T T T T M
Bulk Si W
2 atom unit cell

- RDMFE(GW)@first iteration

— tierl
50F — tier2
— tier3d

21000

%S0 40 30 20
wleV]

Figure 5.6: The RDMFE(GW) spectral function at the I'-point for different basis
set sizes for bulk Si with 2 atoms in the unit cell. The direct band gap is already
converged for the tier2 basis set. An artificial Gaussian broadening of 0.001eV was
used for all spectra.

gap is already converged for a tier2 basis set. Moreover, at the bottom of the valence
band i.e., at frequencies between -40 and -30 eV a broad peak appears that can be
identified as plasmon satellite [212, 213] (See the discussion in the next subsection).
The total spectral function (i.e., the k-summed one) for bulk Si with 2 atoms in the
unit cell at the first iteration and at convergence is shown in Fig. (5.7). Also here the
spectrum shows a broad satellite structure between -40 and -30 eV for the spectrum
at first iteration. Such satellites are completely absent in KS band structures or when
doing GW perturpatively (i.e., GoWj), because GoWj only corrects the KS states
and does not change the wave function of the states. Since Dyson’s equation has
been solved once, this spectrum is not equivalent to perturbative GoW} spectra and
one would expect to see plasmon satellites. The energy range of the RDMFE satellite
agrees well with previous periodic GW calculations [62, 214] and demonstrates that
the dynamic, local RDMFE framework can capture non-local phenomena such as
plasmon satellites. For scGW the converged DOS is also shown in Fig. (5.7). In
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Figure 5.7: Gaussian broadened (with broadening o = 0.01 eV) quasiparticle spec-
trum for the GW self-energy at 1st iteration (red curve) and at self-consistency

(blue curve). Only occupied states are shown. Calculation performed using a tier2
basis set.
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agreement with the previous findings by Holm and von Barth [212] and Schone and
Eguiluz [213], the fully self-consistent spectrum shows a broader band width, which
can be related to a weight transfer of the plasmon peak to the valence band. I obtain
a band gap of ~0.9 eV for the two atom unit cell, which is close to the experimental
value of ~1.12 eV [215]. This comparison together with the one between the indirect
band gap from my calculation and experiment[211] are presented in Tab. (5.2).

band gap RDMFE(GW) periodic scGW[216] QPscGW[217] exp. (at 300K)

direct (I'150) [eV] 37 — 3.47 3.4 [211]
indirect (E,) [eV] 0.9 1.55 1.25 1.12 [215]

Table 5.2: Direct and indirect band gaps as calculated from RDMFE(GW). Com-
parison is made with the periodic scGW work of Kutepov et al.[216] and the quasi
particle self-consistent GW calculation of Kotani et al.[217] and experiment.

Plasmon satellites in self-consistent GW spectra

The effect of self-consistency on the spectral properties in the GW approach have
been a matter of debate in the last decade. While fully self-consistent studies have
been limited to model [212] and finite systems [61, 60], there is to my knowledge
only one work by Kutepov et al. [216] that investigates full self-consistency for real
periodic systems; although they focus on the evaluation of the total energy rather
than spectral features. Schone and Eguiluz [213] have performed quasi-particle self-
consistent GW calculations based on the equivalent shielded-interaction approxima-
tion of Baym and Kadanoff [218] that fulfills the conservation laws. They applied it
to K and Si and found that, for K, the self-consistent treatment of the correlation
yields a bandwidth which is significantly wider than the one obtained from an LDA
Green’s function in disagreement with the experimental findings. See Fig. (5.8).
They connected this band width increase to the spectral weight reduction of the
plasmon satellite. Hence, in the non-self-consistent spectrum the plasmon is clearly
apparent while for the self-consistent case it is suppressed. These conclusions are in
agreement with what Holm and von Barth [212] showed before for the homogeneous
electron gas. They demonstrated that full self-consistency in G and W leads to a
deterioration in the GW spectral function compared to spectra where G and W
are directly computed from the LDA solution or when only G is obtained from the
solution of Dyson’s equation while W is still evaluated using the Green’s function at
the LDA level. They argued that the lack of vertex corrections may be the reason
behind the bad agreement of the full self-consistent spectrum with the experimen-
tal results. Figure (5.9) depicts the spectral function of the homogeneous electron
gas from [212]. For the self-consistent calculation, a transfer of the spectral weight
from the plasmon peak to the quasi-particle spectrum takes place. As mentioned
in the previous subsection, in the RDMFE scheme applied to bulk Si, I have found
a satellite structure at the bottom of the valence band for the spectral function
corresponding to the GW self-energy evaluated with the Green’s function at the
Kohn-Sham level. For this spectral function, a plasmon appears also at the top of
the conduction band. Figure (5.10) illustrates the valence band and the conduction
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Figure 5.8: Calculated DOS for K. Depicted is the LDA DOS (dashes line), an the
results obtained from an LDA Green’s function X[Gppa] (dot-dashed line) and the
self-consistent result (solid line) from [213]. The non self-consistent spectrum shows
a satellite structure and a narrower band width than the self-consistent one, where
the satellite does not appear.

band plasmons as I calculated them for the embedded 2 atom Si unit cell. Moreover,
a closer look at the GW correlation self-energy as done in Fig. (5.11) shows that the
appearance of the plasmon peak is directly related to the dynamic correlation in the
GW self-energy. Figigure (5.11) shows that the analytically continued imaginary
and real parts of the GW correlation self-energy have peak structures at the same
energy' as the plasmon in the spectral function. Figure (5.12) illustrates the effect
of self-consistency on the GW correlation self-energy. Self-consistency yields a loss
of the sharp structure of the self-energy components resulting in a much smoother
shape of the self-energy. This is in agreement with what Holm and von Barth [212]
showed for the homogeneous electron gas. Hence, the lack of vertex corrections ind
the GW approximation can be an explanation to the deterioration of the spectrum
at self-consistency. At present this is, however, still a presumption that needs to be
checked in future.

5.1.2 Band structure of embedded Si unit cells

For the computation of the DOS, diagonalization at each k-point is required. Since it
is a k-summed quantity relatively few k-points are necessary to obtain a reasonable
DOS. For the evaluation of the band structure however, a denser k-mesh is required
to resolve all the relevant bands. Hence, to overcome this ambiguity, the embedded
Hamiltonian is reevaluated at the end of the calculation at a denser k-points grid,
then a diagonalization at each k-point of the new grid yields the new k-dependent
eigenvalues. Next, I consider the band structure for the 2 atom unit cell shown in the
upper panel of Fig. (5.15). The same trend as for the DOS is noticeable: the band

Here the little shift between the plasmon peak and the peaks of the self-energy is due to
the contributions form the exact exchange and the non-interacting Hamiltonian, included in the
spectral function.
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Figure 5.9: The one-electron spectral function resulting from the fully self-consistent
GW calculation for the homogeneous electron gas (solid line) compared to the cor-
responding quantity from the partially self-consistent GW calculation (dashes line)
[219]. (a) shows the spectral functions at Fermi surface, w = kp, while (b) shows
the a zoom into the bottom of the band. In both figures the loss of the plasmon
satellites in the self-consistent GIW calculation is clearly noticeable. The band width
is also significantly increased for the self-consistent GW case.
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Figure 5.10: A zoom into the plasmon satellite region at the bottom of the valence
band (left) and the top of the conduction band (right). The calculation was made

with a tier2 basis set.
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Figure 5.11: The real (green curve) and imaginary (red curve) parts of the GW
correlation self-energy at the plasmon peak (blue curve) at first iteration of the
RDMFE inner and outer loops. The plasmon peak results from the dynamical
correlation in the GW self-energy.
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Figure 5.13: The embedded band structure for bulk Si compared to the periodic
PBEO one. The local self-energy breaks the translation symmetry and the degener-
acy lifted at some hight symmetry k-points
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gap and the band width approach PBEO and so do the bands in general. However,
at some high symmetry points the degeneracy of certain bands is lifted. The origin
of this degeneracy lifting is the break of the crystal symmetry that is introduce by
the local RDMFE self-energy. It is a well known artefact and has been discussed
extensively in the context of cellular and cluster DMFT [189, 220]. The local self-
energy simply does not “know” about the symmetry of the crystal and can therefore
not enforce it. The solution to the problem is then obvious: the approximation of
the range of the self-energy needs to be extended. If the self-energy would extend
over a larger region (i.e. supercell) it would acquire more information about the
crystal symmetry. Then the degeneracy splitting should reduce. This can be made
clear when expanding the self-energy of the crystal

I‘ I‘ w Zzgpkz zg k w)gpky( ) (5'11)

where! ¥;;(k,w) = [ drdr'of;(r)E(r, r';w) ek ('), r and 1’ are electronic space co-
ordinates and k the electronic wave vector, while 7, 7 are basis indices. FExpressing
the Bloch states in terms of atomic orbitals g ;

Ori(r Zexp —ik - R} pr.(r), (5.12)

with R being the Bravais lattice vector, I obtain from Eq. (5.11)

Y(r,r';w) ZZZexp —ik- (R —R/)]

ij R,R/
X @Ri(r)xij(kM)SOR'j (r'). (5.13)

I can then divide the sum > = > + >, so that the upper equation becomes
RR R=R' R#R'

(r,r';w) Z Z PRi(T Eloc )90;{/3'(1'/)
+Z > exp—ik - (R — R)] ori(r)Si;(k,w)gh, (). (5.14)
k R#R’

Here I have set £5°(w) = > ¥y;(k,w). The upper equation shows that by approxi-

k
mating the full crystal self-energy by the local one, i.e. only considering the first line
of Eq. (5.14), one misses some crystal information that is contained in the second
line of Eq. (5.14).
Let us now consider a larger unit cell that I call region C of primitive unit cells, see
Fig. (5.14). I can then define a new local self-energy %°(w) = % ¥i;(k,w) for this

For simplicity I Conbldel‘ here an orthogonal basis so that I can write %;;(k,w) =
[ drdr’ o, (r)2(r, v w) ki (v) = [drde’ Y o5, (1) S5 (K)S(r, 13 w) S5 (K)@wm (r). Of course, the

im
nm
NAO basis I am writing my matrices in, is not orthogonal.
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Zloc
primitive
unit cell

Figure 5.14: Cartoon depicting the primitive unit cell and the larger unit cell C.

region, so that

Syic) = [ drde'gi, (1)S(r.5w) (), (5.15)
with the Bloch states defined for region C as @k;(r) = > exp[—ik-R]|¢r;(r).
ReC

Substituting in the upper equation and performing the integration over the electronic
coordinates yields the important formula

Sikw) = > Ny(R, R w)explik - (R - R)], (5.16)

R,R'eC

with ¥;;(R,R',w) = [ drdr'¢g,(r)X(r, r'; w)pr/;(r).

Equation (5.16) shows that considering a larger unit cell (or cluster) in RDMFE will
introduce more information about the crystal symmetry. In the two lower panels of
Fig. (5.15), I present an unfolded band structure [221] for the 16 and 32 atom unit
cells. Indeed a reduction in the splitting for both the 16 and 32 atom unit cells is
observed. However, while the degeneracy is fully restored for some high symmetry
points, it is still broken for others such as the X and Z points. The degeneracy lifting
occures also for the embedded GW self-energy as shown in Fig. (5.16) (a zoom into
the plasmon region of the spectral function of Fig. (5.6)). For the spectral function
at the I'-point the plasmon peak shows a splitting that can be related to the local
treatment of the embedded self-energy. This splitting does not occure for the total
spectral function shown in Fig. (5.7).

5.2 Total energy calculation

For the computation of total energies from Green’s functions, the Luttinger-Ward
[222] and the Klein [223] functionals are considered to be the functional of choice.
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Figure 5.15: Left panel: the embedded unfolded band structure for a 16 atom unit
cell. The degeneracy lifting is reduced compared to the 2 atoms case. Right panel:
the embedded unfolded band structure for a 32 atom unit cell. Also here the degen-
eracy is restored in most of the high symmetry points.
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Figure 5.16: A zoom into the plasmon region of the RDMFE(GW) spectral function
at first iteration. The splitting in the plasmon peak is an artefact of the local
treatment of the RDMFE self-energy.

Their main advantage is that they are variational [224], hence, the Green’s function
does not have to be the solution of the Dyson equation for them to give accurate
total energies. In other words, an approximation to the solution of the Dyson equa-
tion (i.e., an approximate Green’s function) gives already total energies that are
reasonably accurate [60]. On the other hand, the Galitskii-Migdal [128] equation is
not variational and is thus only suitable for self-consistent Green’s functions that
are solutions of the Dyson equation [225, 226, 227]. During this thesis I have in-
vestigated a number of ways to compute the total energy from the self-consistent
embedded Green’s function using the Galitskii-Migdal formula. In this section I will
present an analysis of the embedded total energy to justify the definition of the total
energy | have chosen for my calculations.

5.2.1 The Galitskii-Migdal equation for local Green’s func-
tions

The Galitskii-Migdal formula can be written as [51]

r'—r
t—tt

EGM = %/dr lim [8,5 — Zh(r):| G(I‘, I'/; ta t/)a (517)
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where h(r) is the non-interacting Hamiltonian and G(r,r’;¢,t’) the fully interacting
Green’s function. Using the Dyson-equation for the interacting Green’s function

G(r,v';t,t') = Go(r,r';t, t')+ (5.18)
[ driradtydtaGo(r,ryst, 1) 5 (ry, o5 1, t2) G (ra, 1/ £y, ),

and the equation of motion
[Z’@t — h(r)} Go(r,r';t,t') = d(r — r')o(t — t'), (5.19)
one can rewrite eq. (5.17) as follows

Eam = —i [ drdrydty lim {h( )o(r —r9)d(t — to)+
I' —T
t—t

%Z(r,rg;t,b)} G(I‘Q,r/;t27t,). (520)

To make the upper expression easier to handle, I divide it into two parts: Fqy =
Eqy + E(3), where the first term is given by

Eqy = /drdr2 lim A (r)é(r — ra)n(rs,r'), (5.21)
i

where I have substituted

n(rq,r’) = —QL /dwei“’OJrG(rg,r’,w). (5.22)
T
Because of the time dependence of the self-energy, the second term becomes
Eo) = ——/drdrgdtg lim  X(r,ro;t, t2)G(re, v’ ta, t'). (5.23)
2 r' —rt—tt

Here, I use the Fourier transform of the time dependent functions G(t2,t') and
Y(t2,t') to the frequency domain, G7(ry,r';ts,t") = %fdwe_i“’(t2_t/)G”(r2,r’,w).
Recalling the relation for the Dirac d-distribution 270(w — w') = [ dtpe i@t T
readily obtain

Eo) = ~55- drdradw }121 S (r, 1y w) G (ra, vy w)e ™0 (5.24)

Since I will be working with a non-orthogonal basis it makes sense to expand
G7(ry, ', w) in the basis of NAO Bloch states ¢; k()

G(ra, ', w) ZZGU k, W)} ()i (ra), (5.25)
where
Gm‘(k,&)) = Z de'QdI'/

Sin (K)¢ 1 (12) Gr2, 1, w) 0 e (1) 5,5 (k). (5.26)
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with the overlap matrix Si;(k) = [ droj, (r)e;k(r).
Substituting Eq. (5.25) into Eq. (5.22) and (5.24) I obtain the k-dependent Galitskii-
Migdal formula in the non-orthogonal NAO basis

dw ,
Eem = ZZ [ silk)ni;(k) — 5/ o Yk, w)Gij(k, (,u)e_“‘JOJr ) (5.27)

I have not introduced any constraints or approximation yet and the Galitskii-Migdal
formula in the upper expression is general. To be able to use the Galitskii-Migdal
formula for the RDMFE scheme, however, a few approximations must be introduced

(i) In RDMFE the self-consistent Green’s function is local i.e., k-independent

G(k,w) — G™(w) (5.28)

(ii) as a direct result of the locality of the Green’s function, the self-energy in
RDMFE is local

Yk, w) — X°%w). (5.29)

(iii) Up to now I did not specify the non-interacting Hamiltonian in Eq. (5.27). In
our case | define it as

1
h(k) ~ H*S(k) — 2@4;6 — 8 (5.30)
where v1¢ is the local Hartree potential obtained from the Kohn-Sham Green’s
function via the density matrix ng»s = —% [dw GKS(z'w)ijeW+ as
[vitlis = D (ijlkD) i (5.31)
kl

HX5(k) is the Kohn-Sham Hamiltonian as given in Eq. (4.20), while vk, is
the local XC-potential from Eq. (4.21).

The resulting RDMFE total energy formula is then given by
nem dw oc emb /- w0t
LR HICLASE 5 | S SR C )
1
ZHljs gﬂb [Uﬁc]ﬂnemb [U%gé]ﬂnzegmb
dw yloc _Gremb (; iw0t 5.32
+§ 2z7r[ xe(iw)];GE (iw)e™” (5.32)

where I have defined the k-summed Kohn-Sham Hamiltonian Y H¥S(k) = HXS.
K

Compared to Eq. (5.27), Eq. (5.32) includes only the local (i.e., k-independent)
quantities. Furthermore, the non-interacting Hamiltonian h(k) is given by the ap-
proximation Eq. (5.30).
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To test my total energy implementation, I have performed calculations for the local
GW self-energy at the limit of very large lattice constant (i.e., isolated unit cell).
This allows a comparison with an implementation for finite systems in FHI-aims [61]
where the total energy is computed using the Galitskii-Migdal formula. Table (5.3)
shows the components of the Galitskii-Migdal total energy in the RDMFE frame-
work compared to the ones of the scGW calculation for the He atom and the Hy and
the Nay molecules!. The RDMFE values where all calculated for the correspond-
ing bulks with a lattice constant of 20A. The RDMFE values reproduce almost to
the meV level the scGW values. For the PBEOQ case the self-energy is static and is

Term He H, Na,
H¥Spemb -30.971399 -20.082893 -4681.324289
H¥SpseGW -30.976581 -20.084208 -4681.324755
vRENP -36.283999 -24.105587 -1004.447234

viEn W -36.286584 -24.106258 -1004.447806
ToffSnemb 54.994712 35.697015 4847.058775
SoRSpcW 54.996847 35.697851 4847.073781
O -27.173906 -17.503642 -760.630196

I35CW pseGW -27.181325 -17.505250 -760.632183

L[ dosiloc (i) Gemb (i) 0T -1.744578 -2.3053908 -2.457104
1 g—wxscGW W) GOV ()0t _1.737910 -2.304200  -2.455707

Total energy ESy M -78.759362 -32.067732 -8808.470968
Total energy ESCGW -78.759212 -32.068074 -8808.489963

Table 5.3: Galitskii-Migdal total energy components for a G total energy (see Eq.
(5.32)): a benchmark against the standard scGW implementation for molecules[127].
All energies are in eV. n**“V is the density matrix computed from the scGW Green’s
function G (iw) at self-consistency and LW $%CW (jw) are the exchange and
correlation GW self-energies at self-consistency.

defined as in Eq. (4.34) for @ = 1. Thus, the last term of Eq. (5.32) becomes

dw oc emb  : iw0t 1 oc em
3 | S ER G )" = J[Eke(a)
1 loc loc emb
zé[aZX +(1- a)vxc]]m” . (5.33)

!The chemical potential for the RDMFE calculation had to be adapted to the corresponding
value from the finite system calculation to allow optimal comparison. Moreover, additionally to
the XC self-energy the Hartree potential should also be updated in the RDMFE self-consistency
cycle.
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I have computed the different components of the the total energy Eq. (5.32) for
the PBEO self-energy, where I choose bulk Silicon as test system. Figure (5.17)
illustrates the evolution of the different components entering the definition of the
Galitskii-Migdal formula Eq. (5.32) with increasing unit cell size (up to 32 atoms
in the unit cell). The change of all components with respect to the unit cell size
is very important. Particularly the change in the local Hartree potential is very
large. This is not surprising, since the Hartree potential is a strongly non-local
quantity, which cannot be computed from a local density matrix as I am doing in
Eq. (5.31). This carries over into the behavior of the total energy shown in Fig.
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Figure 5.17: The components of the Galitskii-Migdal total energy for the RDMFE
Green’s function and self-energy as in Eq. 5.32 for bulk Si with increasing unit
cell size. All component show strong dependence on the size of the embedded sys-
tem (i.e., the unit cell). The Hartree contribution (top right) shows an even more
pronounced change. All calculation were performed using a tier! basis set.

(5.18) that changes drastically with increasing unit cell size. Hence, this strong,
nearly divergent, behavior of the total energy, Eq. (5.32), with increasing unit cell
size, can be mainly led back to the Hartree contribution (see Fig. (5.17)) that enters
the embedded total energy. This observation reinforces the fact that the Hartree

potential is a strongly non-local quantity and the local approximation as in Eq.
(5.31) is thus too coarse-grained.



5.2 Total energy calculation 115

—8000'|'|'|'|'|'|'|'|'|'
Si Bulk

-10000

2

= -12000} :
=

2= -14000F .
=9 |

S

-16000

_18000 L1 . .1 .1 .1 . . . 1.
0 4 8 12162024 2832 36 40
Number of atoms in the unit cell
Figure 5.18: The total energy from the Galitskii-Migdal formula Eq. 5.32 with
increasing unit cell size for bulk Si. The strong dependence on the size of the
embedded system stems mainly from the Hartree contribution. All calculation were

performed using a tier! basis set.

5.2.2 The embedded total energy as correction to the KS
total energy

To reduce the effects introduced by the localisation in the RDMFE approxima-
tion, I have thought of rewriting the embedded total energy as a correction to the
Kohn-Sham total energy Fxs. In FHI-aims the total energy is calculated from the
electronic density at self-consistency using the variational Harris formula [228, 229].
It is given, using the equivalent density matrix formalism, by

1
Exs = Z Z H( (k) = 5 lon (k)i (k) = [vxo (k)] jimg;" (k)
+EXC[ ], (5.34)
where n¥5 is the non-local Kohn-Sham density matrix and Exc[n] the XC energy

functional evaluated at the Kohn-Sham density n of the periodic system. The em-
bedded total energy can then be written as

B = Bs + B - £, (539

where the local Kohn-Sham total energy EiSS is given by

Exs = Z Z hji(k)ngs + Excln]. (5.36)
ik
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Substituting the upper equation and Eq. (5.32) into Eq. (5.35) one finally arrives
at the embedded total energy

dw D\
Efgftlb Fxs + Z Z hRDMFE emb nES] 4= : / o [Eloc( )]jiG?;nb(Zw)ezw0+ — Exc [n]

_ EKS + ZHKS emb KS]

U

1
— Sl —
— (oLl — ok

1 [ dw
+5 [ o ERG iw)e" ~ Excl. (5.37)
In analogy to the analysis of the Galitskii-Migdal equation in the former section, I
analized the components that enter the definition of the embedded total energy Eq.
(5.37) for a PBEO self-energy. I performed calculations on bulk Si with increasing
unit cell size. Figure (5.19) depicts the behavior of the different components with
respect to increasing the unit cell size. With exception of the Hartree potential,
most components change less strongly with increasing unit cell, compared to the
"pure“ Galitskii-Migdal case Fig. (5.17). The strong change in the Hartree term
confirms the assumption, that the Hartree energy cannot be described properly using
a local density-matrix. Hence, in the following I will discard this contribution to the
embedded total energy. Equation (5.37) then becomes

Efértlb EKS + ZHKS emb __ KS]

”LJ

[vié’é]ﬂ[nemb )
dw loc emb iw0t
+5 [ S GE ) ~ Bxcln. (539

Figure (5.20) shows the embedded total energy as in Eq. (5.38) for bulk Si with
increasing unit cell size for a PBEQ self-energy. One would expect that the total
energy approaches the periodic PBEO total energy. However, the embedded total
energy goes relatively far below the periodic PBEQ value. In Eq. (5.38) T used in
the calculation of the XC energy Fxc[n] the global (i.e., non-local) density of the
periodic systems, while the contribution from RDMFE i.e., ¥&n®™ is purely local.
In addition to that, the correction coming from the Kohn-Sham Hamiltonian i.e.,
the second term in Eq. (5.37), still contains the global Hartree potential corrected
with the local density matrix. All this represent inconsistencies in the embedded
total energy definition. In the next section I will present the final embedded total

energy that overcomes these inconsistencies.

5.2.3 The RDMFE total energy

To recapitulate the findings of the previous section; Eq. (5.38) contains the Kohn-
Sham XC-energy part of the full periodic system (i.e., evaluated with the global
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Figure 5.19: The components embedded total energy for the RDMFE Green’s func-
tion and self-energy as in Eq. 5.38 for bulk Si with increasing unit cell size. Com-
pared to the the Eq. 5.32, the dependence on the embedded system size (i.e., the
unit cell) is strongly reduced. For the Hartree contribution (top right), however,
this dependence is still important suggesting that the Hartree contribution cannot

be properly described using a local density matrix. All calculation were performed
using a tierl basis set.
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Figure 5.20: The embedded total energy for the RDMFE Green’s function and self-
energy as in Eq. 5.38 for bulk Si with increasing unit cell size. Comparison is made
with the periodic PBE value (green line), i.e., the Kohn-Scham total enegy I am
correcting on, and the periodic PBEQ value (red line). For 2 atoms in the unit cell
the embedded total energy lies above the PBE value before it drops quite far below
the periodic PBEO total energy for larger unit cells. All calculation were performed
using a tzerl basis set.
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density n). Moreover, to be consistent, the change in the XC-energy contribution
of the total energy and the kinetic contribution should be taken together. On the
other hand, it is clear that the term

> (HSS = [0Re]0) [ng™ = nlsf) (5.39)

ij

in Eq. (5.38) still includes the Hartree and the external potential parts. To surmount
this inconsistency in the definition of the embedded total energy, I have implemented
a formula including the kinetic matrix operator explicitly.
For embedded hybrid functionals the total energy expression is given by
EBY ~ EIS 4+ Y 4 — i)
ij

+ Byy [ng] — EXS[n®S), (5.40)

with the k-summed kinetic matrix operator t;; = ﬁ > tij(k), where
PPk

==Y [ g S el - R (5.1

The local Kohn-Sham density nX® is obtained from the corresponding local density

matrix nKS via

Z% niy 05 (r). (5.42)

Hence, EXS[n%9] is restricted to the embedded region. The contribution from the
embedded hybrid calculation is given by

em| 1 oc em|
BRI = 5 > ol SR + (1= a) BRE ") + B[], (5.43)

ij
where EXS[nemP] EES[nemP] are respectively, the Kohn-Sham exchange and corre-

lation total energy contribution evaluated with the local embedded density ne™P
calculated from the corresponding density matrix nemb

nemb( Z% ns ;i (r). (5.44)

For the embedded GW calculation the total energy is given in an analogous fashion

GW KS emb KS
By =~ By + E :tﬂ — ;)

)
]

K G5 (1w)] — EX[n™]. (5.45)

Besides the explicit calculation of the kinetic operator contribution, a key advantage

of the total energy formulation Eq. (5.43) and (5.45) is that, instead of evaluating

hyb/GW

the full By [n;(k)], T only compute the change of Ey), with respect to the
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local or semi-local (LDA or GGA) energy in the embedded region (i.e., EX5[n%9)).
This is the main approximation of our approach, which is consistent with the spirit
of the local self-energy correction in the RDMFE scheme, and is suggested by the
near-sightedness of the XC energy of a bulk system [210]. To test my implementa-
tion, I have benchmarked the components of the RDMFE total energy Eq. (5.40)
in the limit of large lattice constants, to finite systems calculations. For different
hybridization parameter a I expect to recover the PBE values for a = 0, while
for @ = 1 the total energy components should equal the HF ones'. The resulting
comparison is presented in Tab. (5.4) for the He atom and the Hy molecule. The
RDMFE calculation was performed at a lattice constant of 20A. The Kohn-Sham
kinetic energy and XC components tn%® and Fxc[n*®] are always equal to the cor-
responding PBE value. This should be the case, since I am starting from a PBE
calculation and hence have a PBE Kohn-Sham density n*5. On the other hand, the
embedded kinetic and XC components ¢n®" and E?(%br[nemb] are almost identical
to the corresponding PBE value (for @« = 0) and HF (for &« = 1). To see how the

He
RDMFE(PBE)
a=0 a=1 PBE HF

tnXS 7530373823 75.30373823 75.30451969 78.62114201
tnemP 7530373823 78.61837539 — —
Exc[n®5] -26.47122999 -26.47122999 -26.471861714 -27.85312715
BExc[n®™P] -26.47122999 -27.08958449 — —
B [neP] -30.17622890 -27.85233473 —
H2
RDMFE(PBEh)
a=0 a=1 PBE HF

tnKS  31.04311147 30.17349743 31.04214324 30.81157936

tn™ 3104311147 30.80868329 — —
Exc[n®] -18.78311417 -18.78311417 -18.782194209 -17.81992246
Exc[n®™P] -18.78311417 -17.92711806 —

B [ne™P] -19.01981400 -17.81950266 —

Table 5.4: Total energy components for the RDMFE(PBER) total energy for the
cases @« = 0 and o = 1 in the limit of a very large lattice constant (isolated unit
cell). Comparison is made with the corresponding PBE and HF components.

new total energy expression behaves with the iterations of the outer RDMFE loop,

1To allow optimal comparison with HF, I have set the local correlation part in Eq. (5.43) to
Z€ero.
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I have considered bulk Si with two atoms in the unit cell as test case. Figure (5.21)
depicts the evolution of the embedded total energy for the embedded PBEO and
GW self-energies as in Eqgs. (5.40) and (5.45), respectively. For the PBEO case, the
total energy reaches its converged value already after 8 iterations, while for the GW
self-energy 18 iterations were necessary to converge the total energy. This is not
surprising and can be related to the fact that the PBEOQ self-energy contributes only
a fraction of exact exchange (that is o = %) to the embedded Hamiltonian, while
the GW self-energy contributes the full exact exchange self-energy additionally to
the dynamical correlation self-energy. Hence, the embedded GW total energy needs
more iterations to stabilize to its converged value. For the same system, I have in-
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Figure 5.21: The evolution of the RDMFE(PBEO) total energy (left panel) and the
RDMFE(GW) total energy (right panel) for bulk Si with a 2 atom unit cell with the
iteration of RDMFE the outer loop. The RDMFE(PBEO) total energy approaches
its convergence value already after 6 iterations, while the RDMFE(GW) needs 12
iteration to stabilize. The RDMFE(PBEO) calculations were performed with a tierl
basis set, while for the RDMFE(GW) I used a tier3 basis set.

vestigated the dependence of the embedded total energy on the number of k-points
in the calculation. Figure (5.22) shows the evolution of the RDMFE total energy
for the PBEO and the GW self-energies, RDMFE(PBEO) and RDMFE(GW). In
the case of RDMFE(PBEO), the total energy reaches a reasonably converged value
for a k-mesh of 6x6x6 points, while for RDMFE(GW) convergence is reached for
10x10x10 k-points. The convergence with respect to the basis set is shown in Fig.
(5.23) for the RDMFE(PBEO) total energy. While the total energy still changes
quite significantly the cohesive energy shows much smaller changes with the basis
set size. For the RDMFE(GW) case, the total energy converges only for a tier3
basis or higher, as is illustrated in Fig. (5.24). To investigate how the RDMFE
total energy Eq. (5.40) behaves with the size of the embedded system, I have per-
formed RDMFE(PBEOQ) calculations for bulk Si again at increasing unit cell size.
Figure (5.25) illustrates the evolution of the components of the embedded total en-
ergy coming from the kinetic and the XC contributions. Both components behave in
an opposite way i.e., with increasing unit cell size the contribution from the kinetic
part becomes more positive in the same way the XC contribution becomes more
negative. This is consistent with the fact that the kinetic and XC contributions are
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Figure 5.22: RDMFE(PBEO) total energy (left panel) and RDMFE(GW) total en-
ergy (right panel) for bulk Si with a 2 atom unit cell at different numbers of k-
points in the grid. The energy zero is set at the value of the k=4x4x4 mesh. The
RDMFE(PBEO) calculations were performed with a tierl basis set, while for the
RDMFE(GW) I used a tier3 basis set.
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Figure 5.23: RDMFE(PBEO) total energy (left panel) and cohesive energy (right
panel) for bulk Si with a 2 atom unit cell as function of the basis size. The energy
zero is set at the value of the tierl basis.
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Figure 5.24: RDMFE(GW) total energy for bulk Si with a 2 atom unit cell as
function of the basis size. The energy zero is set at the value of the tierl basis.
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correlated to each other and should always be considered together.
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Figure 5.25: Components of the RDMFE(PBEO) total energy for bulk Si with in-
creasing unit cell size. The change in the kinetic contribution (blue line) goes in an

opposite way to the one from the XC contribution (red line). The calculations were
performed using a tier! basis set.

The resulting RDMFE(PBEO) total energy is depicted in Fig. (5.26). For the 2
atom unit cell the RDMFE total energy lies above the periodic PBEO value (EXS in
Eq. (5.40)) that is the starting calculation. On the other hand, going to larger unit
cells, the RDMFE total energy shifts to values below the periodic PBEO total energy.
Recalling Eq. (5.40), one can see however, that the RDMFE total energy corrects
up on the Kohn-Sham kinetic and XC contributions, while leaving the electrostatic
part of the Kohn-Sham total energy unchanged. Hence, in the RDMFE(PBEO) total
energy the electrostatic energy is still the one from PBE. This can be seen when
comparing to a periodic PBEO total energy where the electrostatic part is taken from
the PBE calculation. The RDMFE(PBEO) total energy approaches this new value in
a systematic way. Analogously, the evolution of the cohesive energy with respect to
an increase of the embedded region is illustrated in Fig. (5.27). In the same spirit
as for the RDMFE(PBEOQ) total energy, I have investigated the size dependence of
the RDMFE(GW) total energy for bulk He. The small size of the system allows me
to consider unit cells with up to 64 atoms. The total energy reaches a converged
value for the 48 atom unit cell however, for RDMFE(GW) case I lack of periodic
reference with which I could compare my results to.

To summerise, I have investigated the embedded RDMFE total energy as given by
Egs. (5.40) and (5.45) for the embedded PBEO and GW self-energies. I have shown
that it behaves well with the computational parameters and I have demonstrated
that the RDMFE(PBEOQ) total energy converges to the right limit with increasing
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Figure 5.26: The RDMFE(PBEO) total energy for bulk Si with increasing unit cell
size. For the 2 atom unit cell, the RDMFE total enegy lies above the periodic PBE
reference (green line), while increasing the unit cell size, the RDMFE total energy
drops bellow the periodic PBEO value but approaches systematically the periodic
PBEO with PBE electrostatic energy one. The calculations were performed using a

tier1l basis set.



5.2 Total energy calculation

125

' 1 ' 1 ' 1 '
-;- 0 periodic PBE Bulk Si
2o, ] '
o -0.5F .
m-<
I | Q‘
m -1F “ RDMFE(PBEO) -
| \
o) \
L \
é < -15 = \ -
SR LN periodic PBEO |
Lﬂ O~ _ _ _ with PBE electrostatic energy
— HF =O—==———""" -
} . ] . ] . o
0 10 20 30 40

Number of atoms in the unit cell

Figure 5.27: The RDMFE(PBEQ) cohesive energy for bulk Si with increasing unit
cell size. The RDMFE enegy lies between the periodic PBE reference (green line)
and the periodic PBEO with PBE electrostatic energy values. The calculations were
performed using a tierl basis set.
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Figure 5.28: The RDMFE(GW) total energy for bulk He for increasing unit cell size,
where the blue region indicates a change in the range of ~ 20 meV. Both curves are
referenced to the PBE total energy.



5. Exploring Physical Quantities with the Real Space Dynamical
126 Mean-Field Embedding

size of the embedded region.

5.2.4 Correlating the required size of the unit cell with the
range of the interaction

In large systems, electronic screening plays a crucial role. In particular periodic
systems cannot be accurately described with a theory that lacks on screening effects.
Thus, as I have discussed in the first chapter, the exact exchange self-energy from
HF theory includes the bare (unscreened) Coulomb interaction. For my total energy
test, however, I have used the PBEO self-energy that includes a fraction (i.e., 0.25)
of exact exchange. One can easily think that this is not the optimal choice for the
embedded self-energy in RDMFE, since I am replacing the PBE exchange for the
periodic system (that contains some screening effects) with a local exact exchange
that does not include any screening. To investigate the screening effect on the
RDMFE total energy I have performed a RDMFE calculation with an embedded
HSE [116] self-energy as in Eq. (4.39), where the screening can be tuned by the
so-called screening parameter . The resulting RDMFE total energy can then be
written as

Exeng™ a0 = 5 ) oS ()] + (1 — @) B[S + ES ™, (5.46)

ij
ij

with the short range exact exchange self-energy 33%'°¢(7).

In principle 7 is just a numerical tool and does not necessary have a physical meaning.
To relate the screening parameter to my embedded scheme I have defined the radius
Rgphere enclosing the embedded region (i.e., the embedded unit cell). The screening
parameter is then given by this radius as 7 = 1/Rphere. Figure (5.29) illustrates
the change of the screening parameter with respect to the unit cell volume and
the corresponding sphere radius for the 2, 4 , 8 and 16 atom bulk Si unit cells. For
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Figure 5.29: An illustration of the relation between the radius of a sphere enclosing
the Si unit cell, the sphere volume and the corresponding screening parameter.
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different screening parameters I have then performed RDMFE(HSE) calculations for
bulk Si. For each given ~ I have carried out a calculation with increasing unit cell
size from the 2 up to the 32 atom unit cell. The resulting total energy extrapolation
is depicted in Fig. (5.30). When compared to the RDMFE(PBEO) curve, the change
of the RDMFE(HSE) total energy is reduced, when going from one unit cell to the
other. Furthermore, the curve with the smallest radius (largest screening parameter
) changes the least with increasing unit cell size and reaches a converged value for
the 8 atom unit cell.
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Figure 5.30: The RDMFE(HSE) total energy for bulk He for increasing unit cell
size for bulk Si for different screening parameters. Comparison is made with the
RDMFE(PBEO) calculation (black line). The dependence on the size of the em-
bedded region is much less pronounced for the RDMFE(HSE). Calculation with a
screening of v = 0.37A~! shows convergence for the 8 atom unit cell.

This investigation demonstrates that the relatively strong dependence of the
RDMFE(PBEO) total energy on the size of the embedded region can be related to
the long ranged nature of the exact exchange self-energy. Hence, for self-energies
that involve screening, such as the GW self-energy, the dependence on the unit cell
size should be reduced. This is supported as shown in Fig. (5.28) for bulk He.
Furthermore, this study shows that for RDMFE(HSE) the same behavior is possible
as for RDMFE(PBEL) with a corresponding . One can then perform size-converged
RDMFE calculations and with PBEO like total energies and spectra.

5.2.5 Calculating cohesive properties with RDMFE

To finalize my analysis of physical quantities calculated with RDMFE, I want to
discuss cohesive bulk properties. Again considering bulk Si as a test system I have
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performed RDMFE calculations with embedded PBEO and GW self-energies. The
resulting total energy as function of the lattice constant for RDMFE(PBEOQ) is shown
in Fig. (5.29). For the 2 atom unit cell the equilibrium lattice constant lies already
bellow the periodic PBE one, that is the starting point calculation. Increasing the

unit cell size to 8 atoms in the unit cell, the equilibrium lattice constants takes a value
below the periodic PBEO one. For the RDMFE(GW) calculation I have performed a
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Figure 5.31: RMDFE(PBE) total energy as function of the lattice constant for the
2 (blue dashed line) and the 8 (red dashed line) atom unit cell the equilibrium
lattice constant for the 8 and 16 atom unit cells are indicate by the red vertical
solid line. Comparison is made with the periodic PBEO reference (green line). The
experimental value (turkis vertical line) and the periodic PBE (black vertical line)
are also shown.

2 atom unit cell calculation and compared the resulting equilibrium lattice constant
with the only reference at hand, which is the work of Kutepov et al. [230]. Figure
(5.32) shows this comparison. Also here, the equilibrium lattice constant of 5.43A lies
below the starting point values (i.e., periodic PBE) going towards the experimental
result. Moreover, it is reasonably close to the periodic self-consistent GW reference
value of 5.39A. Furthermore, I performed a Birch-Murnaghan [231] fit of the total
energy curves to extract the bulk moduli for RDMFE(PBEO) and RDMFE(GW)
using the equation of state

= 2 () [(8) o (2) )
(5.47)

where E(V) is the total energy at lattice constant a and Vj the unit cell volume at
equilibrium lattice constant ag, while B is the first derivative of the bulk modulus
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Figure 5.32: RMDFE(GW) total energy as function of the lattice constant for the
2 atom unit cell (blue line). Comparison is made with the periodic PBE reference
(black line).

By with respect to the pressure.

The resulting values are reported in Tabs. (5.5) and (5.6). RDMFE tends

|RDMFE(GW) |periodic scGW[230] | experiment

unit cell size 2 atoms — —
lattice constant [A] 5.43 5.39 5.43[232]
bulk modulus B, [GPa] 80.37 100.7 99[233]

Table 5.5: Bulk Si RDMFE(GW) equilibrium lattice constant and bulk moduli Bj.
Comparison is made with the periodic scGW work of Kutepov et al. [230] and
experiment [232, 233]

to overestimate the bulk moduli for RDMFE(PBEOQ) compared to the values from
periodic PBEO, while for RDMFE(GW) the bulk moduli are significantly below the
periodic scGW reference and experiment.

5.3 Physical properties for metals from RDMFE

In this section of the chapter I will present RDMFE calculations of some relevant
physical quantities for metalic systems. I consider here bulk Na and Al as represen-
tatives.
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H RDMFE(PBEO) periodic PBEO ‘ experiment
unit cell size 2 atoms |8 atoms |16 atoms 2 atoms —
lattice constant [A] 5.45 5.4 5.4 5.43 5.43[232)]
bulk modulus By [GPa]|| 95.14 | 129.07 | 101.33 84 99[233]

Table 5.6: Bulk Si RDMFE(PBEO) equilibrium lattice constant and bulk moduli By.
Comparison is made with periodic PBEO performed with FHI-aims and experiment
[232, 233]

5.3.1 Cohesive properties for metals from RDMFE(GW)

To verify whether RDMFE is still applicable to non-local systems, I have carried
out RDMFE(GW) total energy calculations for metals. For bulk Na with 2 atoms
in the unit cell (i.e., primitive unit cell) I looked at the behavior of the total energy
with change of the lattice constant. This is shown in Fig. (5.33). The equilibrium
lattice constant from RDMFE(GW') compares well to the periodic scGW calculation
of Kutepov et al. [230]. However, the change of the total energy with the lattice
constant is important, suggesting a large bulk modulus as shown in Tab. (5.7). For
bulk Al with 4 atoms in the unit cell (i.e., primitive unit cell), the same calculation
has been carried out. Here the resulting RDMFE(GW) lattice constant agrees less
with the periodic scGW reference. The change in the total energy with respect to
the lattice constant appears to be important which is reflected in the bulk modulus
(see Tab. (5.7)).

Going to larger unit cell sizes, however, reduces the bulk modulus significantly as
shown in Tab. (5.7) for the 8 atom unit cells. This observation is not unexpected.
Metals have very delocalized electrons hence, the localization approximation intro-
duced by RDMFE is not well justified. For larger enough unit cells, however, the
embedded region would capture enough non-locality so that reasonable results can
be produced. The equilibrium lattice constant of bulk Na is converged for the 8
atom unit cell. For bulk Al it is still different from the one of the primitive unit cell
calculation but approaches the periodic reference. This observation suggests that,
for bulk Al, one needs to go to even larger unit cells to converge out the equilibrium
lattice constant.

5.3.2 Band structures for metals from RDMFE(PBEO)

To explore the translation symmetry breaking of RDMFE, discussed in the previous
section for bulk Si, I have carried out RDMFE(PBEO) calculations on bulk Na and
Al for different unit cell sizes. I then evaluated the unfolded band structures [221]
and investigated the behavior of the degeneracy lifting with unit cell size. Figure
(5.35) illustrates a comparison of the RDMFE(PBEOQ) band structure to the periodic
PBEO one for Na the primitive unit cell. The degeneracy lifting, due to the symme-
try breaking in RDMFE, is clearly apparent e.g., for the high symmetry k-points X,
Z and W. The degeneracy is nearly fully restored already for the 4 and 8 atom unit
cells, as shown for the unfolded band structures in Fig. (5.36). This is also the case
for the 16 atom unit cell unfolded band structure depicted in Fig. (5.37).
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Figure 5.33: RMDFE(GW) total energy as function of the bulk Na lattice constant
for the 2 atom unit cell (red dashed line). Comparison is made with the periodic
scGW reference from Kutepov et al. [230] (blue line) and experiment (green line).
The calculations were performed using a tier3 basis set and a (10x10x10) k-mesh.

I did the same investigation for bulk Al. The comparison between the RDMFE(PBEO)
calculation and the periodic PBEO one for the primitive unit cell case is depicted
in Fig. (5.38). Also here the band structure shows degeneracy lifting. The 8 atom
unit cell unfolded band structure still shows degeneracy lifting at high symmetry k-
points as illustrated in the left panel of Fig. (5.39). Going to the 16 atom unit cell,
however, reduces the degeneracy lifting drastically, in agreement with my previous
findings for bulk Si (see right panel of Fig. (5.39)).
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Figure 5.34: RMDFE(GW) total energy as function of the bulk Al lattice constant
for the 4 atom unit cell (red dashed line). Comparison is made with the periodic
scGW reference from Kutepov et al. [230] (blue line) and experiment (green line).
The calculations were performed using a tier3 basis set and a (10x10x10) k-mesh.

Na Al
ao[A] By[GPa] ag[A] By [GPa]
PBE 4.0 78.62 4.03 1594
RDMFE(GW)
primitive unit cell ~ 4.15 203.47 3.94 206.68
RDMFE(GW)

8 atom unit cell 415 104.46 3.99 105.71
periodic scGW [230] 4.16 69.9 4.04  86.5
experiment 233, 234] 4.21  68.1  4.05 72.16

Table 5.7: Comparison between the equilibrium lattice constant (ag) and the bulk
modulus (By) calculated with RDMFE(GW), PBE, periodic scGW and experiment
for bulk Na and bulk Al. The primitive unit cell for Na contains 2 atoms, while it
contains 4 for Al. I considered a larger unit cell with 8 atoms for Na and Al. The
calculations were performed using a tier3 basis set and a (10x10x10) k-mesh.
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Figure 5.35: The RDMFE(PBEO) band structure for bulk Na, with 2 atoms in the
unit cell, compared to the periodic PBE(O one. The local self-energy breaks the
translation symmetry and the degeneracy lifted at some hight symmetry k-points.
The calculations were performed using a tierl basis set and a (10x10x10) k-mesh.



5. Exploring Physical Quantities with the Real Space Dynamical
134 Mean-Field Embedding

Bulk Na with 4 atom unit cell Bulk Na with 8 atom unit cell
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Figure 5.36: Left panel: the RDMFE(PBEO) unfolded band structure for a 4 atom
bulk Na unit cell. The degeneracy lifting is reduced compared to the 2 atoms case.
Right panel: the embedded unfolded band structure for a 8 atom unit cell. Also
here the degeneracy is restored in most of the high symmetry points.
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Figure 5.37: The RDMFE(PBEO) unfolded band structure for a 16 atom unit cell.
Also here the degeneracy is restored in most of the high symmetry points.
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Figure 5.38: The RDMFE(PBEO) band structure for bulk Al, with 4 atoms in the
unit cell, compared to the periodic PBEO one. The local self-energy breaks the
translation symmetry and the degeneracy lifted at some hight symmetry k-points.
The calculations were performed using a tierl basis set and a (10x10x10) k-mesh.
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Figure 5.39: Left panel: the RDMFE(PBEO) unfolded band structure for a 8 atom
bulk Al unit cell. The degeneracy lifting minimally reduced compared to the 4 atoms
case. Right panel: the embedded unfolded band structure for a 16 atom unit cell.
Here the degeneracy is restored in most of the high symmetry points.
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Conclusions and Perspectives

In this thesis I have presented a real space dynamical mean-field embedding (RDMFE).
It is an embedding scheme for periodic systems that builds on dynamical mean-field
theory (DMFT). In RDMFE the electrons interacting across periodically repeated
unit cells are mapped onto a cluster problem, where only electronic interactions
within the cluster are explicitly considered. These locally interacting electrons are
then dynamically coupled to a self-consistently determined bath of electrons. While
the bath is treated using more efficient methods, such as LDA /GGAs, the embedded
cluster is calculated using the computationally more demanding hybrid functionals
or the GW approximation. The coupling between the embedded system and the
surrounding is constructed naturally by means of Green’s functions, allowing elec-
tronic exchange between the two regions.

Within RDMFE, the translational symmetry with respect to the computational su-
percell is preserved, making the method most suitable for systems with periodic
boundary conditions.

An intrinsic feature of DMFT in RDMFE, is the k-dependent self-energy. It has
as a consequence that the non-local exchange-correlation (XC) coupling between
neighboring unit cells (or computational supercells) is included only at the Kohn-
Sham level and neglected in the more advanced (here hybrid functionals or GW)
treatment. This constitutes the only approximation introduced in RDMFE. The
approximated treatment of the localized region, allows that in RDMFE no down-
folding into a correlated subspace is required, which constitutes a major difference

to DMFT.

By computing physical quantities from RDMFE, for bulk Si as test case, I have
demonstrated that the density of states and total energies systematically converge
to the periodic limit with increasing size of the embedded system. For the total
energies, I moreover showed that the amount of locality in the embedded region can
be related to a screening parameter that controls the long-range exact-exchange part
of the local self-energy. I argue that this analysis is a proof that the functionality
of RDMFE is guaranteed as far as the correct amount of interaction is captured
within the embedded region. Moreover, I demonstrated that the problem of the
breaking of the translational symmetry due to the different treatment of the inter-
and intra-cluster interactions, can be remedied by systematically increasing the em-
bedded cluster size.

An evidence that RDMFE rapidly captures the main features of the “better” the-
ory, was given in the example of the plasmon satellite that already appears in the
RDMFE(GW) calculation for the primitive unit cell (2 atom unit cell). Hence, the
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non-locality of the self-energy in RDMFE is transfered into a frequency dependence,
which is a concept that has been proposed previously by Gatti et al. [235] and
the spectral density functional theory of Kotliar at al. [236]. Finally, a test on
RDMFE(GW) of some representative metals shows that the theory can still be suc-
cessfully applied to non-local systems.

Despite all the considerable insight that I have gained in my analysis of RDMFE,

the door for further development is still wide open. For instance, the Hartree-
potential can be updated self-consistently by feeding the local density from a RDMFE
cycle into a Kohn-Sham (i.e., LDA/GGASs) periodic calculation. This will result in
a new non-interacting Hamiltonian with which a new RDMFE calculation can be
carried out.
On a different aspect, in the present status of my implementation I calculate the
RDMFE total energy using the local density-matrix n(r) = n(r,r) as given by Egs.
(5.42) and (5.44). An interesting alternative would be to use the density-matrix
n(r,r’) in real space, while the integration in Eqs. (5.42) and (5.44) would go only
over r,r’ that are in the embedded region. Proceeding as such would provide more
non-locality into the total energy which could translate into an improved conver-
gence behavior of the total energy with respect to the size of the embedded cluster.
In the same spirit but from the point of view of the self-energy, the non-locality,
expressed by the k-dependence of the self-energy, can be restored if one follows
the scheme proposed in the dynamical cluster approximation [190]. The self-energy
would have a k-dependence only within the embedded cluster. Admittedly, however,
the development of such approach would require a more involved effort.

To conclude, this proof-of-concept analysis surely shows that RDMFE is a promis-
ing embedding scheme that has the potential to make sophisticated and computa-
tionally expensive ab initio theories accessible for periodic systems. Moreover, the
fact that the approach is still in its infancy paves the way for creative development
and predicts a multitude of usage possibilities.



Appendix A

The self-energy integral

Here I want to clarify how Fourier transform integrals such as the one in Eq. 1.48
in Chapter 1 is calculated. It is essentially given by

o

[ dogte) (A1)
where
e—iwt
= A.
o) = s (A.2)
Here, the self-energy Y(w) is a complex function
Y(w) = ReX(w) + ilm¥(w). (A.3)
For wy being the complex solution of
w—e€—3w)=0, (A.4)

g(w) has a pole at w = wy.
Using the residue theorem, one can perform the integral in the lower-half plane for
t > 0 as shown in Fig. A.1 for Im¥(w) < 0.
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A pole in the
complex plane
at ¢ — ReX(w) — i|ImX(w)|
< - >Rew
X

C

Figure A.1: Closing the contour C in the lower half-plane.

The purpose is to calculate the residue z; given by

21 = [(w = w0)g(W)]|w=wo- (A.5)

This can be done by assuming that ¥(w) is analytical, so that its Taylor expansion
around the pole w = wy gives

0¥ (w
() = Slo) + To oy o= ) + O — ). (A.6)
The expansion above can be substituted into g(w) in Eq. A.5 to give
) ) (w _ wo)efiwt
lim (w — wp)g(w) = lim :
) e S0~ By — ) — Ol )
(A.7)
Considering the fact that g(w) has a pole at wy i.e.,
€ — X(wo) = wo, (A.8)
one can rewrite
( ) ( efiwt
lim (w —wp)g(w) = lim
w—wo 0 ) w—wo 1 — ag_g*))|w:wo _ O{(W _ WO)Q}
e—iwot
= - 82(w0)| (A.9)
Ow |W=wo
For the self-energy integral for ¢ > 0' this results in
7d e LY R, (A.10)
Ww——————— = 2mi——————; for :
oo - B

for ¢ < 0 one can show that by closing the integral in the upper half-plane the integral vanishes.
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Quasi-particles have usually a very short life-time which, equivalently, means that
for quasi-particles |Im¥(w)| < 1. Hence, considering w = @ the real solution of

w — € — ReX(w) = 0, one can make the following approximation

Im¥(w) ~ ImX(0)

(;
ReS(w) ~ Re(@) + R @)) o o)
ow
The pole expansion then becomes
S(c
w—e—Yw)=w—€e—ReX(®) + Wﬁg—w(w)‘w:@(w — ) — iIm% ()

=0.

Again, using € — ReX(®) = @ yields

OReX (&
Ww—@— g—ww|w(w — &) —ilmE(@) = 0
_ im¥(®)
oI OR@)|
Ow w=w
The complex solution wy is then given by
. iImX ()
Wo =W + BReE( EI
i
=w—=L
w—3T,

where I defined T = 1_?)%172%

Finally, one arrives at thewfollo;)ving expression for the self-energy integral

w efz'wt ) e—i(&;—%f‘)t
/ d(ﬂm = —277'7/1 B 3R(e92(w)|w‘:}7f0r t > 0

= —QWiZ@e_i(‘:’_%F)t,

OReX(w)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

with the quasi-particle weight Zg = (1 — =35|,—5) "' and & = € + ReX(®).
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