
BIG DATA OF MATERIALS SCIENCE – CRITICAL ROLE OF THE

DESCRIPTOR: SUPPLEMENTARY INFORMATION

1. Details on the iterative LASSO-based approach for finding the best descriptor,
applied to the 82 octet binary materials and ∆E = E(RS)− E(ZB) as property to be

learned.

I) We start from atomic features (the column “#” indicates the number of features in the class described
in the line):

ID Description Symbols #

A1 Ionization Potential (IP) and Electron Affinity (EA) IP(A) EA(A) IP(B) EA(B)§ 4

A2 Highest occupied (H) and lowest unoccupied (L) H(A) L(A) H(B) L(B) 4
Kohn-Sham levels

A3 Radius at the max. value of s, p, and d rs(A) rp(A) rd(A) 6
valence radial radial probability density rs(B) rp(B) rd(B)

§ We used for IP (EA) the energy of the half occupied Kohn-Sham orbital in the half positively (negatively)
charged atom.

II) Our goal is to create physically well-formed combinations of the initial features. For example, we
exclude linear combinations of inhomogeneous quantities, such as “IP + rs” or “rs + r2p”. Except
the exclusions of physically unreasonable combinations, we produce as many combinations as possible.
However, compressed sensing theory poses a limit on the maximum size M of the feature space from
which the best (low-) Ω-dimensional descriptor can be extracted by sampling the feature space with the
knowledge of N data points : N = AΩ ln(M) [1, 2, 3], when the M candidate features are uncorrelated.
A is not a universal constant, however it is recommendable to have values between 4 and 8. For Ω = 2
and N = 82, this implies a range of M between ∼ 200 and ∼ 30000. Therefore, we regarded values of M
of few thousands as an upper limit of its size. Since the number of thinkable features is certainly larger
than few thousands, we proceeded iteratively in several steps, by learning from the previous step what
to put and what not in the candidate-feature list of the next step. In the next part of this section, we
describe the final set of ∼ 4500 features that we created for finding the actual descriptor as presented in
the main text. Then, we summarize how we arrived at this particular set, i.e., the iterative procedure.
First of all, we form sums and absolute differences of homogeneous quantities

ID description prototype formula #
B1 absolute differences and sums of A1 |IP(A)± IP(B)| 12
B2 absolute differences and sums of A2 |L(B)±H(A)| 12
B3 absolute differences and sums of A3 |rp(A)± rs(A)| 30
C3 squares of A3 and B3 (only sums) rs(A)2, (rp(A) + rs(A))2 21
D3 exponentials of A3 and B3 (only sums) exp(rs(A)), exp(rp(A)± rs(A)) 21
E3 exponentials of squared A3 and B3 (only sums) exp(rs(A)2), exp(rp(A)± rs(A)2) 21

III) In turn, the above combinations are further combined:
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ID description prototype formula #
{F1, F2, F3} Abs. differences and sums of |rp(A)± rs(A)| + |rp(B)± rs(B)|† 72

{B1, B2, B3}, without repetitions
X ratios of any of {Ai,Bi}, i = 1, 2, 3 |rp(B)− rs(B)| /(rd(A) + rs(B))3 ∼ 4300

with any of {A3, C3, D3, E3}

† With sign −, this is Zunger’s rπ, with sign + Zunger’s rσ.

IV) LASSO is run in this set of ∼ 4500 candidate features. If the features were uncorrelated the first
two features appearing when λ is decreased would be the best 2D descriptor, i.e., the one that minimizes
the RMSE. Correlation between pairs of features means in this context that the covariance (i.e., the
scalar product of the 82-dimensional vectors containing the values of features i and j, with each vector
subtracted of its mean value and divided by its standard deviation) is close to 1 or -1. If their covariance
is close to zero, the two features are uncorrelated.
Unfortunately, checking all pairs of features for covariance would scale with size M as unfavorably as
just performing the brute force search for the best 2D descriptor by trying all pairs. Furthermore, such a
screening would require to define a threshold for the absolute value of the covariance for deciding whether
any two features are correlated and possibly discarding one of the two. A similar problem would appear
in case more refined techniques like singular value decomposition are tried in order to discard eigenvectors
with low eigenvalues. Still a threshold should be defined and thus tuned.
We adopted instead a simple yet powerful solution: The best 30 features with non-zero coefficients that
emerge at decreasing λ are grouped, and among them an extensive test is performed: All single features,
all pairs, all triples, . . . are used as input for a linear least square fit. The single features, pairs, . . . that
score the lowest RMSE are the outcome of the procedure as 1D, 2D, . . . descriptors. The validity of this
approach (extensive test on 20-30 best candidates as selected by LASSO) was tested by running it on
smaller feature spaces (M ∼ few hundreds) where the brute force all-pairs and all-triples search could be
carried out.

In order to determine the final feature space as described above, we proceeded in this way:

• As scalar features describing the valence orbitals, we use the radii at which the radial probability
densities of the valence s, p, ad d orbitals have their maxima. This type of radii was in fact selected
by our procedure, as opposed to the average radii (i.e., the quantum-mechanical expectation value
of the radius). Namely, a feature space containing both sets of radii was constructed and only
features containing the radii at maximum were selected among the best.

• Similarly, we also defined three other radius-derived features for the atoms: the radius of the
highest occupied orbital of the neutral atom, r0 (this is either rs or rp as defined above, but it
generates over all the 82 compounds a set that is different from - and uncorrelated with - both rs
and rp), similarly defined radii for the anions, r−, and the cations, r+. As in the previous point, we
constructed a feature space containing both {r0, r−, r+} and {rs, rp, rd} and their combinations,
and found that only the latter radii were selected among the best.

• We have considered in addition features related to the AA, BB and AB dimers:

ID Description Symbols #

A4 Binding energy Eb(AA) Eb(BB) Eb(AB) 3

A5 HOMO-LUMO KS gap HL(AA) HL(BB) HL(AB) 3

A6 Equilibrium distance d(AA) d(BB) d(AB) 3

These new features where combined in the same way as the classes A1, A2, and A3. After running
our procedure, we find that features containing dimer-related quantities are never selected among
the most prominent.
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• We constructed in sequence several sets of features, in particular varying systematically the
elements of class X. Multiplication of the {Ai,Bi,Ei}, (i = 1, 2, 3) by the {A3, B3} was included,
as well as division of {Ai,Bi,Ei}, (i = 1, 2, 3) by the {A3, B3} cubed. Only division by C3 were
selected by LASSO. At this stage, a descriptor in the form

|IP(B)− EA(B)|
rp(A)2

,
|rs(A)− rp(B)|

rs(A)2
,
|rp(B)− rs(B)|

rd(A)
2

was found.
The persistence of the C3 class in the denominator suggested to try other decaying functions
of r and r + r′; for instance, exponentials as defined in D3 and E3. Interestingly, when the
set of features containing C3, D3, and E3 was searched, the second and third component of
the above descriptor were substituted by corresponding forms where the denominator squared is
replaced by exponentials of the same atomic features (see below). This descriptor was therefore

found by LASSO, in the sense that the substitutions 1/rs(A)2 → exp(−rs(A)) and 1/rd(A)
2 →

exp(−rd(A)) are an outcome of the LASSO procedure, not of a directly attempted substitution.

With our 82 materials, the LASSO run takes few seconds (less than 10) for our sets of few thousands
candidate features, so the overall selection took less than 5 minutes of CPU time (with MATLAB, on an
Intel-i7 CPU).

Our procedure, applied to the above defined set of features, found the following features as best 1D,
2D, and 3D descriptor, already combined linearly with the fitting coefficients in order to approximate the
property ∆E (energies are in eV and radii are in Å).

∆E = 0.117
EA(B)− IP(B)

rp(A)2
− 0.342(1)

∆E = 0.113
EA(B)− IP(B)

rp(A)2
+ 1.542

|rs(A)− rp(B)|
exp(rs(A))

− 0.137(2)

∆E = 0.108
EA(B)− IP(B)

rp(A)2
+ 1.790

|rs(A)− rp(B)|
exp(rs(A))

+(3)

+ 3.766
|rp(B)− rs(B)|

exp(rd(A))
− 0.0267

We removed the absolute sign from “IP(B)− EA(B)” as this difference is always negative.

We note the following:

• The stability of fitting the coefficients of the features when the dimensionality is increased is
remarkable. This fact gives substance to the idea that the descriptor is built incrementally by
adding new dimensions, where the adding a dimension to the descriptor always improves the
accuracy of the fit.

• The fact that all selected features belong to class X, which is the most populated, is NOT due
to the fact that members of the other classes are lost in the large population of class X and
“not seen” by LASSO. We have run extensive tests on the classes excluding X and indeed the
best-performing descriptors yield RMSE larger than those we have found.

• The stability of the found descriptor was tested by constructing feature spaces where the func-
tional class containing the selected descriptors and other, each time varied, functional classes
were included. We always found the above descriptor as the best (resulting in smallest RMSE).

• This final stability check and to some extent also the initial selection procedure as described above
can be parallelized, especially if larger amount of data N >> 82 is treated, and henceforth much
larger M values are achievable according to compressed sensing theory. At present, however, the
human time needed for constructing feature spaces was by far larger than the computational time
needed for running LASSO, thus no parallelization was implemented.
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• A fascinating way to implement the parallel search, which we are presently exploring, is to perform
a Monte Carlo (MC) sampling of the sets of features over which LASSO is performed, where the
loss function is used as an energy for building the Boltzmann factor for the MC selection rule.
Besides, the effective temperature that enters the Boltzmann factor in MC selection rule offers a
straightforward way to implement a parallel search in a replica-exchange fashion.
• The description of the iterative procedure for the generation of the feature sets over which LASSO

is run gives an idea of the stability of our method, in particular when the direct substitutions
1/rs(A)2 → exp(−rs(A)) and 1/rd(A)

2 → exp(−rd(A)) was found without giving any informa-
tion, i.e., any bias, in this direction.
However, one should realize that even this kind of iteration cannot be pushed too far. With
the cumulative dimensionality M of the feature space growing effectively (even though in each
constructed feature space this number was kept around few thousands or less), the number of 2D
hyperplanes (i.e., the 2D linear fits) grows quadratically with M , thus the probability to find one
such plane with RMSE almost the same as the previously found best descriptor grows very fast.
At that point, several competing pairs could be found and the solution is not anymore unique
(even though there is one hyperplane for which the RMSE is the lowest, several others would
differ by negligible amounts). Then, one would have a set of possible good 2D descriptors and the
choice among them could be dictated by other criteria than RMSE, e.g., in our case, separation
between RS and ZB materials, or small MaxAE, where both the latter criteria are not contained
explicitly in the RMSE minimization which is performed by LASSO.

2. Gaussian-kernel ridge regression with various descriptors

We have performed KRR with several descriptors of various dimensionalities. In each case the optimal
(λ, σ) was sought by running leave-10%-out cross-validation, averaged over 150 random selections of the
test/training set.

ID Dim. Description λ σ RMSE [eV]

1 1D our 1D 3 · 10−4
√

3000 0.145
2 2D ZA, ZB 3 · 10−4 0.1 0.191

3 2D Zunger’s rσ and rπ [4, 5] 10−5
√

10 0.090
4 2D our 2D 0.01 10 0.102
5 3D our 3D 3 · 10−3 10 0.082
6 4D our 4D 3 · 10−3 10 0.062

7 4D rs(A), rp(A), rs(B), rp(B) 3 · 10−5
√

10 0.091

8 4D EA(B), IP(B), rp(A), rp(B) 10−5
√

30 0.095

9 5D Features building our 2D descriptor 3 · 10−5
√

10 0.084
[ IP(B), EA(B), rs(A), rp(A), rp(B)]

10 6D rs(A), rp(A), rd(A), rs(B), rp(B), rd(B) 10−3
√

10 0.115

11 14D All atomic features (A1, A2, A3) 3 · 10−5
√

300 0.111

We make the following observations:

• With several atomic-based descriptors, KRR fits reach levels of RMSE comparable to or slightly
better than our linear fit with the LASSO-selected descriptors.
• It is difficult to extract a physical insight out of these several fits. For example, descriptor 7 gives

a fit as good as Zunger’s descriptor (3), which is made of the same features as 7, but cleverly
combined. Furthermore, comparing, e.g., descriptors 7 and 8, it is difficult to understand whether
EA and IP of B play a more important role than some atomic radii.
• The performance is not incremental with dimensionality: Descriptor 10 contains the same fea-

tures as descriptor seven, plus two, intuitively important, features. One thus expects a better
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Figure 1. KRR fit of ∆E(ZA, ZB) . Green “curves” are for ∆E = 0, blue for ∆E =
−0.2 eV, and red for ∆E = 0.2 eV.

performance, which is not the case. The same happens when going to all 14 atomic features
(11), where the performance is similar to the 6D descriptor (10), i.e., worse than the 4D (7).
Interestingly, the incremental improvement of accuracy with dimensionality is fulfilled by our
descriptors.

• By using ZA and ZB as descriptors, the RMSE is not particularly large, compared to the baseline
at 0.44 eV. However, a look the the level set plot (Fig. 1) reveals that a leave-some-out cross
validation may not be enough to spot artifacts. In fact, in Fig. 1, each data point is characterized
by a peaked Gaussian (as suggested by the small optimal σ), i.e., overall it is a completely useless
fit.

3. A note on the leave-10%-out cross validation

“Leave-N%-out cross validation” and “N -fold cross validation” are two similar but different tests per-
formed to assess the stability of a fit. In this paper we have performed (incomplete) “leave-10%-out cross
validation” test, i.e., by randomly selecting for 150 times 90% of the materials for the training and the
remaining 10% for the prediction. The average errors were clearly converged (within 0.01 eV) after 50
random selections, thus the reported average over 150 samples is a very conservative result. In contrast,
in a “10-fold cross validation” the data set is divided in 10 parts and in turn each of the 10 subsets is
used for test while the other 9 for training.
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4. Performance of various descriptor with KRR and linear least square (Extended
Table 1 from main text)

Descriptor ZA, ZB Z∗A, Z
∗
B rσ, rπ 1D 2D 3D 5D

(λ, σ) of KRR (3·10−4, 0.1) (0.01,
√

0.3) (1·10−5,
√

10) (3·10−4,
√

3000) (0.01, 10) (0.01, 10) (1·10−3,
√

300)

RMSE 0.41 (2·10−4) 0.40 (5·10−3) 0.31 (0.07) 0.14 (0.14) 0.10 (0.10) 0.08 (0.07) 0.06 (0.06)
MAE 0.28 (1·10−4) 0.26 (3·10−3) 0.20 (0.05) 0.12 (0.12) 0.08 (0.08) 0.07 (0.06) 0.05 (0.05)
MaxAE 2.22 (8·10−4) 2.19 (0.03) 1.82 (0.25) 0.32 (0.31) 0.32 (0.28) 0.24 (0.22) 0.20 (0.19)

RMSE, CV 0.39 (0.19) 0.21 (0.19) 0.30 (0.09) 0.14 (0.15) 0.11 (0.10) 0.08 (0.08) 0.07 (0.07)
MAE, CV 0.29 (0.13) 0.15 (0.14) 0.22 (0.07) 0.12 (0.12) 0.09 (0.09) 0.07 (0.06) 0.05 (0.06)
MaxAE, CV 0.87 (0.43) 0.45 (0.42) 0.65 (0.17) 0.27 (0.27) 0.18 (0.18) 0.16 (0.14) 0.12 (0.13)

Root mean square error (RMSE), mean absolute error (MAE), and maximum absolute error (MaxAE),
in eV, for the least-square fit of all data (first three lines) and for the test set in a leave-10%-out cross
validation (CV), averaged over 150 random selections of the training set (last three lines). In paren-
theses the corresponding errors for Gaussian kernel ridge regression at optimized (λ, σ). The numbers
are reported for selected descriptors, including Zunger’s descriptor (rσ, rπ) [4]. For Z∗A, Z

∗
B, each atom is

identified by a string of three random numbers, the errors are averages over 10 random selections.

5. Calculated ∆E of the 82 octet binaries, view of all compounds

Figure 2. Extended view of Fig.2, bottom, in main text
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6. Details of the first-principles (DFT) calculations

All DFT calculations are performed with FHI-aims [6], using LDA based on homogeneous electron gas
calculations of Ceperley and Alder [7], as parametrized by Perdew and Wang 1992 [8]. All calculations
are without spin polarization. The grid settings are tight and the basis set is tier 3. For both RS and
ZB structures, the energy is calculated at the equilibrium lattice constant, which is determined by a
7-point fit to the Birch-Murnaghan equation of state. The scaled ZORA scalar relativistic correction [9]
is applied.

7. List of the features, used in our model, of the 35 atoms that build the 82 octet
binary materials

ZA A IP EA EN = Highest occ. Lowest unocc. rs rp rd
[eV] [eV] −1/2(EA+IP) KS level KS level [Å] [Å] [Å]

[eV] [eV] [eV]

3 Li -5.329 -0.698 3.014 -2.874 -0.978 1.652 1.995 6.930
4 Be -9.459 0.631 4.414 -5.600 -2.098 1.078 1.211 2.877
5 Be -8.190 -0.107 4.149 -3.715 2.248 0.805 0.826 1.946
6 C -10.852 -0.872 5.862 -5.416 1.992 0.644 0.630 1.631
7 N -13.585 -1.867 7.726 -7.239 3.057 0.539 0.511 1.540
8 O -16.433 -3.006 9.720 -9.197 2.541 0.462 0.427 2.219
9 F -19.404 -4.273 11.839 -11.294 1.251 0.406 0.371 1.428
11 Na -5.223 -0.716 2.969 -2.819 -0.718 1.715 2.597 6.566
12 Mg -8.037 0.693 3.672 -4.782 -1.358 1.330 1.897 3.171
13 Al -5.780 -0.313 3.046 -2.784 0.695 1.092 1.393 1.939
14 Si -7.758 -0.993 4.375 -4.163 0.440 0.938 1.134 1.890
15 P -9.751 -1.920 5.835 -5.596 0.183 0.826 0.966 1.771
16 Si -11.795 -2.845 7.320 -7.106 0.642 0.742 0.847 2.366
17 Cl -13.902 -3.971 8.936 -8.700 0.574 0.679 0.756 1.666
19 K -4.433 -0.621 2.527 -2.426 -0.697 2.128 2.443 1.785
20 Ca -6.428 0.304 3.062 -3.864 -2.133 1.757 2.324 0.679
29 Cu -8.389 -1.638 5.014 -4.856 -0.641 1.197 1.680 2.576
30 Zn -10.136 1.081 4.527 -6.217 -1.194 1.099 1.547 2.254
31 Ga -5.818 -0.108 2.963 -2.732 0.130 0.994 1.330 2.163
32 Ge -7.567 -0.949 4.258 -4.046 2.175 0.917 1.162 2.373
33 As -9.262 -1.839 5.551 -5.341 0.064 0.847 1.043 2.023
34 Se -10.946 -2.751 6.848 -6.654 1.316 0.798 0.952 2.177
35 Br -12.650 -3.739 8.194 -8.001 0.708 0.749 0.882 1.869
37 Rb -4.289 -0.590 2.440 -2.360 -0.705 2.240 3.199 1.960
38 Sr -6.032 0.343 2.844 -3.641 -1.379 1.911 2.548 1.204
47 Ag -8.058 -1.667 4.862 -4.710 -0.479 1.316 1.883 2.968
48 Cd -9.581 0.839 4.371 -5.952 -1.309 1.232 1.736 2.604
49 In -5.537 -0.256 2.897 -2.697 0.368 1.134 1.498 3.108
50 Sn -7.043 -1.039 4.041 -3.866 0.008 1.057 1.344 2.030
51 Sb -8.468 -1.847 5.158 -4.991 0.105 1.001 1.232 2.065
52 Te -9.867 -2.666 6.266 -6.109 0.099 0.945 1.141 1.827
53 I -11.257 -3.513 7.385 -7.236 0.213 0.896 1.071 1.722
55 Cs -4.006 -0.570 2.288 -2.220 -0.548 2.464 3.164 1.974
56 Ba -5.516 0.278 2.619 -3.346 -2.129 2.149 2.632 1.351

The table reports the atomic number ZA of atom A, its Ionization Potential IP and Electron Affinity
EA, its Electronegativity EN following Mulliken’s definition (this quantity is used to order the AB pair,
where EN(A)<EN(B)), the highest occupied and lowest unoccupied Kohns-Sham level, and the radii at
which the radial probability density of the valence s, p, and d orbital are respectively maximal.
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8. List of the 82 octet binary materials and their LDA and predicted properties

ZA ZB A B a0(RS) a0(ZB) ∆E ∆E1D ∆E2D ∆E3D d1 d2 d3 a0(WZ) ∆E(WZ)

[Å] [Å] [eV] [eV] [eV] [eV] [eV Å−2] [Å] [Å] [Å] [eV]

03 09 Li F 3.911 4.212 -0.059 0.101 -0.088 -0.048 3.783 0.246 2.596 · 10−5 2.978 0.011

03 17 Li Cl 4.966 5.330 -0.038 -0.051 -0.119 -0.059 2.483 0.171 3.964 · 10−5 3.769 0.005

03 35 Li Br 5.311 5.688 -0.033 -0.081 -0.113 -0.047 2.228 0.148 6.006 · 10−5 4.022 0.003

03 53 Li I 5.805 6.209 -0.022 -0.115 -0.089 -0.015 1.936 0.111 6.760 · 10−5 4.390 0.002

04 08 Be O 3.584 3.762 0.430 0.733 0.560 0.569 9.171 0.221 1.063 · 10−3 2.660 0.011

04 16 Be S 4.557 4.798 0.506 0.374 0.434 0.469 6.113 0.078 2.946 · 10−3 3.393 -0.004

04 34 Be Se 4.834 5.084 0.495 0.314 0.428 0.465 5.597 0.044 3.783 · 10−3 3.595 -0.004

04 52 Be Te 5.267 5.558 0.466 0.234 0.388 0.427 4.918 0.020 4.386 · 10−3 3.930 -0.004

05 07 B N 3.462 3.583 1.713 1.651 1.581 1.556 17.009 0.133 2.487 · 10−3 2.534 -0.014

05 15 B P 4.260 4.492 1.020 0.990 1.039 0.998 11.367 0.071 8.685 · 10−3 3.177 -0.008

05 33 B As 4.539 4.734 0.879 0.921 0.924 0.854 10.775 0.102 1.155 · 10−2 3.347 -0.006

06 06 C C 3.496 3.534 2.638 2.605 2.698 2.672 25.143 0.005 1.033 · 10−3 2.499 -0.024

11 09 Na F 4.504 4.965 -0.146 -0.080 -0.257 -0.209 2.238 0.242 3.721 · 10−5 3.511 0.011

11 17 Na Cl 5.465 6.031 -0.133 -0.170 -0.235 -0.170 1.469 0.172 5.681 · 10−5 4.265 0.007

11 35 Na Br 5.786 6.378 -0.127 -0.188 -0.219 -0.149 1.318 0.150 8.608 · 10−5 4.510 0.005

11 53 Na I 6.260 6.892 -0.115 -0.208 -0.186 -0.108 1.146 0.116 9.689 · 10−5 4.873 0.004

12 08 Mg O 4.163 4.519 -0.178 0.094 -0.083 -0.048 3.719 0.238 7.955 · 10−4 3.196 0.030

12 16 Mg S 5.132 5.598 -0.087 -0.051 -0.052 -0.002 2.479 0.127 2.204 · 10−3 3.958 0.009

12 34 Mg Se 5.395 5.876 -0.055 -0.076 -0.035 0.015 2.270 0.101 2.831 · 10−3 4.155 0.006

12 52 Mg Te 5.843 6.372 -0.005 -0.108 0.011 0.069 1.995 0.050 3.282 · 10−3 4.505 0.002

13 07 Al N 4.009 4.345 0.072 0.369 0.248 0.265 6.065 0.195 2.512 · 10−3 3.069 0.025

13 15 Al P 4.998 5.436 0.219 0.133 0.259 0.259 4.053 0.040 8.773 · 10−3 3.844 -0.002

13 33 Al As 5.212 5.632 0.212 0.108 0.272 0.251 3.842 0.017 1.167 · 10−2 3.982 -0.003

13 51 Al Sb 5.648 6.112 0.150 0.060 0.178 0.149 3.427 0.047 1.216 · 10−2 4.322 -0.005

14 06 Si C 4.005 4.331 0.668 0.574 0.560 0.598 7.815 0.121 7.966 · 10−4 3.063 0.003

14 14 Si Si 4.995 5.403 0.275 0.279 0.348 0.313 5.298 0.074 1.121 · 10−2 3.821 -0.009

19 09 K F 5.163 5.697 -0.146 -0.044 -0.172 -0.158 2.541 0.209 4.432 · 10−3 4.029 0.010

19 17 K Cl 6.078 6.773 -0.165 -0.147 -0.199 -0.194 1.668 0.163 6.767 · 10−3 4.790 0.007

19 35 K Br 6.372 7.141 -0.166 -0.167 -0.196 -0.219 1.497 0.149 1.025 · 10−2 5.050 0.007

19 53 K I 6.816 7.646 -0.168 -0.190 -0.184 -0.212 1.301 0.126 1.154 · 10−2 5.406 0.006

20 08 Ca O 4.710 5.121 -0.266 -0.050 -0.207 -0.244 2.495 0.229 9.595 · 10−3 3.621 0.040

20 16 Ca S 5.565 6.156 -0.369 -0.147 -0.190 -0.362 1.663 0.157 2.659 · 10−2 4.353 0.024

20 34 Ca Se 5.793 6.418 -0.361 -0.164 -0.179 -0.416 1.523 0.139 3.415 · 10−2 4.538 0.020

20 52 Ca Te 6.209 6.913 -0.350 -0.185 -0.150 -0.428 1.338 0.107 3.958 · 10−2 4.888 0.014

29 09 Cu F 4.397 4.663 -0.019 0.286 0.084 0.098 5.361 0.250 2.011 · 10−3 3.275 -0.007

29 17 Cu Cl 4.929 5.210 0.156 0.070 0.057 0.093 3.519 0.133 3.071 · 10−3 3.684 0.000

29 35 Cu Br 5.186 5.498 0.152 0.028 0.072 0.102 3.157 0.096 4.653 · 10−3 3.890 -0.001

29 53 Cu I 5.521 5.864 0.203 -0.020 0.113 0.151 2.744 0.039 5.237 · 10−3 4.147 -0.002

30 08 Zn O 4.212 4.493 0.102 0.313 0.151 0.169 5.589 0.223 1.996 · 10−3 3.176 0.008

30 16 Zn S 4.966 5.299 0.275 0.095 0.156 0.178 3.725 0.083 5.532 · 10−3 3.747 -0.002

30 34 Zn Se 5.214 5.572 0.259 0.058 0.172 0.188 3.411 0.050 7.104 · 10−3 3.940 -0.004

30 52 Zn Te 5.597 5.998 0.241 0.009 0.182 0.197 2.997 0.013 8.234 · 10−3 4.241 -0.005

31 07 Ga N 4.182 4.460 0.433 0.434 0.337 0.359 6.624 0.178 2.016 · 10−3 3.151 0.009

31 15 Ga P 5.049 5.395 0.341 0.177 0.352 0.372 4.427 0.007 7.040 · 10−3 3.815 -0.008

31 33 Ga As 5.254 5.607 0.271 0.150 0.309 0.307 4.196 0.019 9.365 · 10−3 3.965 -0.011

31 51 Ga Sb 5.645 6.052 0.158 0.097 0.149 0.132 3.743 0.089 9.758 · 10−3 4.279 -0.011

32 32 Ge Ge 5.291 5.626 0.202 0.234 0.272 0.255 4.918 0.096 8.941 · 10−3 3.978 -0.015

37 09 Rb F 5.464 6.012 -0.136 -0.169 -0.276 -0.250 1.478 0.199 3.739 · 10−3 4.251 0.008

37 17 Rb Cl 6.378 7.106 -0.161 -0.228 -0.270 -0.250 0.970 0.158 5.709 · 10−3 5.025 0.007

37 35 Rb Br 6.667 7.451 -0.164 -0.240 -0.261 -0.266 0.870 0.145 8.650 · 10−3 5.269 0.007

37 53 Rb I 7.104 7.977 -0.169 -0.253 -0.243 -0.253 0.756 0.125 9.736 · 10−3 5.641 0.006

38 08 Sr O 5.066 5.480 -0.221 -0.100 -0.241 -0.239 2.065 0.219 5.704 · 10−3 3.875 0.035

38 16 Sr S 5.906 6.514 -0.369 -0.181 -0.223 -0.297 1.376 0.157 1.581 · 10−2 4.606 0.026

38 34 Sr Se 6.124 6.775 -0.375 -0.194 -0.213 -0.324 1.260 0.142 2.030 · 10−2 4.791 0.023

38 52 Sr Te 6.527 7.267 -0.381 -0.212 -0.187 -0.321 1.107 0.114 2.353 · 10−2 5.138 0.017

47 09 Ag F 4.791 5.202 -0.156 0.160 -0.044 -0.020 4.281 0.254 1.362 · 10−3 3.679 0.001

47 17 Ag Cl 5.355 5.780 -0.044 -0.013 -0.050 -0.005 2.810 0.150 2.079 · 10−3 4.087 0.003

47 35 Ag Br 5.585 6.035 -0.030 -0.047 -0.033 0.010 2.521 0.118 3.150 · 10−3 4.268 0.002

47 53 Ag I 5.897 6.355 0.037 -0.085 0.008 0.059 2.191 0.067 3.546 · 10−3 4.494 0.000

48 08 Cd O 4.636 4.993 -0.087 0.178 0.004 0.031 4.435 0.234 1.407 · 10−3 3.531 0.011

48 16 Cd S 5.337 5.760 0.070 0.004 0.026 0.062 2.956 0.111 3.898 · 10−3 4.071 0.002

48 34 Cd Se 5.563 6.013 0.083 -0.025 0.043 0.075 2.707 0.082 5.006 · 10−3 4.249 -0.001

48 52 Cd Te 5.931 6.414 0.113 -0.063 0.092 0.129 2.378 0.026 5.803 · 10−3 4.535 -0.004

49 07 In N 4.604 4.943 0.150 0.268 0.143 0.178 5.208 0.200 7.797 · 10−4 3.491 0.013

49 15 In P 5.415 5.830 0.170 0.066 0.177 0.232 3.480 0.052 2.723 · 10−3 4.122 -0.005

49 33 In As 5.596 6.028 0.122 0.045 0.192 0.243 3.299 0.029 3.622 · 10−3 4.263 -0.007

49 51 In Sb 5.976 6.454 0.080 0.003 0.146 0.198 2.943 0.032 3.774 · 10−3 4.564 -0.010

50 50 Sn Sn 6.009 6.476 0.016 0.050 0.092 0.048 3.344 0.097 1.274 · 10−2 4.580 -0.014

05 51 B Sb 4.931 5.186 0.581 0.784 0.662 0.577 9.612 0.187 1.204 · 10−2 3.664 -0.001

55 09 Cs F 5.805 6.342 -0.112 -0.164 -0.241 -0.210 1.515 0.179 3.702 · 10−3 4.487 0.006

55 17 Cs Cl 6.730 7.485 -0.152 -0.225 -0.248 -0.226 0.995 0.145 5.652 · 10−3 5.292 0.006

55 35 Cs Br 7.021 7.829 -0.158 -0.237 -0.244 -0.245 0.892 0.135 8.564 · 10−3 5.535 0.006

55 53 Cs I 7.454 8.352 -0.165 -0.251 -0.232 -0.240 0.775 0.119 9.639 · 10−3 5.904 0.005

56 08 Ba O 5.436 5.793 -0.095 -0.115 -0.226 -0.212 1.941 0.200 4.910 · 10−3 4.105 0.018

56 16 Ba S 6.271 6.866 -0.326 -0.190 -0.224 -0.276 1.294 0.151 1.361 · 10−2 4.853 0.024

56 34 Ba Se 6.475 7.128 -0.350 -0.203 -0.218 -0.302 1.185 0.140 1.747 · 10−2 5.036 0.023

56 52 Ba Te 6.862 7.614 -0.381 -0.220 -0.200 -0.305 1.041 0.118 2.025 · 10−2 5.378 0.019

32 06 Ge C 4.312 4.531 0.808 0.527 0.524 0.567 7.416 0.116 4.929 · 10−4 3.202 0.000

50 06 Sn C 4.710 4.999 0.450 0.309 0.262 0.306 5.558 0.149 6.925 · 10−4 3.530 0.007

32 14 Ge Si 5.140 5.501 0.264 0.247 0.303 0.306 5.027 0.084 6.938 · 10−3 3.887 -0.011

50 14 Sn Si 5.539 5.953 0.136 0.099 0.252 0.247 3.767 0.024 9.748 · 10−3 4.207 -0.010

50 32 Sn Ge 5.656 6.061 0.087 0.090 0.227 0.195 3.686 0.035 1.256 · 10−2 4.283 -0.013
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The table reports the atomic number ZA and ZB of the binary material AB, the lattice constant a0 for
the three considered crystal structures§, the difference in LDA energy between RS ad ZB (∆E = E(RS)
−E(ZB)), the predicted ∆E for the 1D, 2D, 3D descriptor, the value of the 1D, 2D, and 3D descriptor†,
and the difference in energy between ZB and WZ structures (∆E(WZ) = E(ZB) −E(WZ)).
All inputs and outputs can be downloaded from on http://nomad-repository.eu.

§ For WZ, we have considered the arrangement that is equivalent to ZB up to the first neighbour cell, i.e., with ratio

between c and a lattice constants c/a =
√

8/3, and fractional displacement along the c axis of the second atom u = 3/8.
† The 1D descriptor is defined by d1, the 2D by the vector (d1,d2), the 3D by the vector (d1,d2,d3).
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