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Dipl.Phys. Sönke Lorenz

Zusammenfassung der Dissertation:

“Reactions on Surfaces with Neural Networks”

Theoretische Untersuchungen der Dynamik chemischer Reaktionen setzen die
Kenntnis der Potentialhyperfläche (potential-energy surface = PES), d.h. der poten-
tiellen Energie als Funktion der Freiheitsgrade des betrachteten Systems, voraus. In
den letzten Jahren ist es möglich geworden, PESs mit Programmen basierend auf der
Dichtefunktionaltheorie (DFT) zu untersuchen. Ab initio Rechnungen sind jedoch sehr
zeitintensiv und liefern daher nur einen beschränkten, diskreten Satz von Energien.
Aufgrund der statistischen Natur des Dissoziationsprozesses kann es allerdings erfor-
derlich sein, 106−107 verschiedenen Konfigurationen des Molekül-Oberflächensystems
zu berechnen. Das Ziel der Arbeit war die Entwicklung einer neuen, alternativen Metho-
de zur Interpolation von ab initio Energien unter Verwendung von Neuronalen Netzen
(NN) und deren Anwendung in Molekulardynamik-Berechnungen (MD) von Reaktions-
wahrscheinlichkeiten. Besonderes Interesse galt dabei der Untersuchung der Vergiftung
der Wasserstoffdissoziation auf Pd(100) Oberflächen durch Adsorbate wie Schwefel und
Kalium. Ein Verständnis solcher Prozesse ist von hoher technologischer Relevanz, für,
z.B., die Herstellung neuer Katalysatoren.

Die Interpolationsfähigkeit von Neuronalen Netzen wurde zunächst anhand von
sechs-dimensionalen analytischen Potentialhyperflächen für die Systeme H2/Pd(100)
und H2/S(2×2)/Pd(100) getestet. Dies erlaubte uns zum Einen den Einfluß der Aus-
wahl der zu interpolierenden Energien ausgiebig zu studieren. Zum Anderen ermöglichte
dies einen Vergleich der Ergebnisse von MD-Simulationen auf der analytischen und der
neuronalen PES. Wir zeigten, daß Neuronale Netze Potentialhyperflächen mehrerer
Freiheitsgrade flexibel, schnell und verläßlich interpolieren können. Dabei ist es not-
wendig, im Fit zusätzliche Konfigurationen als die üblicherweise verwendeten hochsym-
metrischen Punkte (top, hollow, bridge) einzubeziehen. Die Auswahl der Punkte auf
einem äquidistanten Gitter im 6D-Raum erfordert die Berechnung von 104−105 Energi-
en. Mit einem effektiven “Sampling” unter expliziter Berücksichtigung der Korrugation
der PES sind nur 103−104 Datenpunkte nötig.

Als eine Anwendung der Interpolationsmethode mit Neuronalen Netzen auf ab in-
itio Daten wurde im Rahmen dieser Arbeit die PES der Dissoziation von H2 auf einer
mit Kalium bedeckten Pd(100) Oberfläche mit der full-potential linear augmented-
plane-wave (FP-LAPW) Methode berechnet. Die Rechnungen zeigten, daß Kalium die
Pd(100) Oberfläche - wie auch Schwefel - bezüglich der Dissoziationsrate von H2 durch
die Bildung von Energiebarrieren verringert. Die Korrugation aufgrund der Adsorption
von K-Atomen ist im Vergleich zu Schwefel Adsorbaten deutlich geringer ausgeprägt.
Die berechneten 659 ab initio Energien wurden mit Neuronalen Netzen gefittet. Die
Ergebnisse von MD-Rechnungen auf der NN-PES für die K(2×2)/Pd(100) Oberfläche
wurden mit einer bereits existierenden Studie für S(2×2)/Pd(100) verglichen. Die Er-
gebnisse unterstrichen die Wichtigkeit hoch-dimensionaler Simulationen zur Vorhersage
von Adsorptionswahrscheinlichkeiten.

Durch eine Anwendung der Interpolation mit Neuronalen Netzen auf ab initio Da-
ten eines anderen Prozesses neben der Dissoziation, der Photodesorption von CO auf
Cr2O3(0001), konnte die Flexibilität der vorgestellten Methode demonstriert werden.





CONTENTS 1

Contents

1 Introduction 5

I Theoretical Background 11

2 Adsorption of hydrogen on metal surfaces 13
2.1 Potential-energy surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Sticking probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Dissociative adsorption of H2 on metal surfaces . . . . . . . . . . . . . 17

2.3.1 Dissociation on transition metal surfaces . . . . . . . . . . . . . 17
2.3.2 Dissociation on an adsorbate covered metal surface . . . . . . . 22

3 Ab initio total energy calculations and the FP-LAPW method 25
3.1 Density-functional theory . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Exchange-Correlation functional . . . . . . . . . . . . . . . . . 26
3.1.2 Kohn-Sham equations . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Full potential linear augmented plane wave method FP-LAPW . . . . 28
3.2.1 APW and the LAPW method . . . . . . . . . . . . . . . . . . 29
3.2.2 FP-LAPW method . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Atomic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Super-cell approach . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Brillouin zone integration . . . . . . . . . . . . . . . . . . . . . 33

3.3 Mapping of potential-energy surfaces . . . . . . . . . . . . . . . . . . . 33

4 Interpolation of potential-energy surfaces 35
4.1 Interpolation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 H2/Pd(100)-PES: Interpolation with analytical functions . . . . . . . . 37
4.3 H2/Pd(100)-PES: Interpolation with a tight-binding scheme . . . . . . 38
4.4 Advantages and disadvantages of various interpolation schemes . . . . 38

5 Neural Networks 41
5.1 Inspiration from Neuro-science . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Structure of feed-forward neural networks . . . . . . . . . . . . . . . . 43
5.3 Function approximation and neural networks . . . . . . . . . . . . . . 45
5.4 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Supervised Learning - parameter optimisation . . . . . . . . . . . . . . 46
5.6 Optimisation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6.1 Basics of gradient descent . . . . . . . . . . . . . . . . . . . . . 48
5.6.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . 49



2 CONTENTS

5.6.3 Conjugate Gradients . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.4 Newton and Quasi-Newton methods . . . . . . . . . . . . . . . 51
5.6.5 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.9 Normalising the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.10 Weight initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.11 Ill-conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.12 Fortran program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Ab initio molecular dynamics 61
6.1 Quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Classical dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

II Tests: Neural Network fits to analytical functions 65

7 Neural Network tests: Simple analytical functions 67
7.1 Trigonometric function (1D) . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Harmonic Oscillator (1D) . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Trigonometric function (2D) . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Neural Network test: 6-D analytical PES for H2/Pd(100) 73
8.1 Ab initio and analytical PES . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2 Tests of the Neural Network structure . . . . . . . . . . . . . . . . . . . 75

8.2.1 Optimisation algorithms . . . . . . . . . . . . . . . . . . . . . . 75
8.2.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2.3 Ill-conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2.4 Incorporation of the symmetry . . . . . . . . . . . . . . . . . . . 83
8.2.5 Optimised neural network structure . . . . . . . . . . . . . . . . 84

8.3 Neural Network PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3.1 Neural Network fit of a 2D elbow plot . . . . . . . . . . . . . . 85
8.3.2 Neural Network fit based on high-symmetric configurations . . . 85
8.3.3 Neural Network fit based on an enhanced lateral grid . . . . . . 88
8.3.4 Neural Network fit based on a dense grid of configurations . . . 89

9 Neural Network test: 6-D analytical PES for H2/(2×2)S/Pd(100) 91
9.1 Ab initio and analytical PES . . . . . . . . . . . . . . . . . . . . . . . . 92
9.2 Incorporation of the symmetry . . . . . . . . . . . . . . . . . . . . . . . 93
9.3 Neural Network PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.3.1 Neural Network fit based on a dense grid of configurations . . . 94
9.3.2 Neural Network fit based on eleven elbow plots . . . . . . . . . 95
9.3.3 Neural Network fit based on eleven elbow plots & corrugation . 96

9.4 Constrained Neural Network fitting approach . . . . . . . . . . . . . . 98
9.5 Energetic corrugation and its influence on adsorption probabilities . . 104



CONTENTS 3

III Applications: Neural Network fits to ab initio data 109

10 Hydrogen dissociation on the K(2×2)/Pd(100) surface 111
10.1 Hydrogen on K/Pd surfaces in experiments . . . . . . . . . . . . . . . . 112
10.2 Ab initio potential-energy surface . . . . . . . . . . . . . . . . . . . . . 112

10.2.1 Computational details . . . . . . . . . . . . . . . . . . . . . . . 112
10.2.2 Potential-energy surface . . . . . . . . . . . . . . . . . . . . . . 113

10.3 Incorporation of the symmetry . . . . . . . . . . . . . . . . . . . . . . . 125
10.4 Neural Network PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10.4.1 Constrained fitting approach . . . . . . . . . . . . . . . . . . . . 128
10.5 Molecular dynamics with neural networks . . . . . . . . . . . . . . . . . 130

10.5.1 H2 dissociation on K/Pd(100) versus S/Pd(100) . . . . . . . . . 131
10.5.2 Dissociation and scattering of H2 on K(2×2)/Pd(100) . . . . . . 133

11 Photodesorption of CO from Cr2O3(0001) 137
11.1 Laser induced desorption experiment . . . . . . . . . . . . . . . . . . . 138
11.2 Ab initio molecular dynamics with Neural Networks . . . . . . . . . . . 140

12 Summary 143

IV Appendix 147

A Derivation of Backpropagation 149

B Extended Kalman filter equations 151
B.1 Kalman filter equations with weighting . . . . . . . . . . . . . . . . . . 151
B.2 Kalman filter equations with forces . . . . . . . . . . . . . . . . . . . . 154

C Neural network derivatives 157
C.1 First derivatives with respect to the weights . . . . . . . . . . . . . . . 157
C.2 First derivatives with respect to the inputs . . . . . . . . . . . . . . . 159
C.3 Second derivatives with respect to the weights and inputs . . . . . . . 161
C.4 Derivatives of the transfer functions . . . . . . . . . . . . . . . . . . . 162

D Sampling of the ab initio PES for H2/(2×2)K/Pd(100) 165

E Neural Network PES for H2/(2×2)K/Pd(100) 169

F Abreviations 173





5

Chapter 1

Introduction

Surfaces play a prominent role in our everyday life. A better knowledge of them is vital
for the high-technology world we are living in and for future progress. An understanding
of surfaces will provide us with important insight into the properties of materials, their
production and their growth, into how to protect them from damage or rust and how
to protect the environment from hazardous products. The “evolution” from the micro
world of today into the nano world of tomorrow will be impossible without a deeper
knowledge about surfaces and their interaction with their surroundings.

Processes on surfaces play a crucial technological role, e.g. in the performance of
advanced materials. Many chemical reactions are in fact promoted tremendously if
they take place on a surface that acts as a catalyst [1]. However, since these processes
are often rather complex, in surface science one tries to analyse them focusing first
on single steps of the complicated reaction [2]. In this work we will concentrate on
dissociative adsorption processes since they constitute the first step in heterogenous
catalysis. Furthermore, they are often the rate-limiting step, the bottleneck of the
reaction as for example in ammonia synthesis or CO oxidation [3]. In particular we
are interested in the poisoning (reduction) and promotion (enhancement) of a surface
reaction by adsorbates.

Catalysts are not only used to increase the output of a chemical reaction but also
to convert hazardous waste into less harmful products. The most prominent example
is the car exhaust catalyst. Its reactivity is, e.g., poisoned by the presence of sulphur in
petrol [4]. The technological relevance of catalysis is reflected by the fact that through-
out the world more than 90% of the chemical manufacturing processes utilise catalysts
in one form or another [5]. In spite of their importance, the lack of understanding of
molecular and atomistic processes at surfaces is significant. The reason are the differ-
ent length and time scales of such reactions, where one has to bridge many orders of
magnitude - from a single dissociation event taking around 10 femtoseconds to a whole
concert of processes lasting several micro- or even milliseconds [6, 7].

In the last decade there had been enormous progress concerning the accurate and re-
liable description of the interaction of atoms and molecules with surfaces. This progress
was largely due to the improvement of programs based on density functional theory
(DFT) [8,9,10,11]. Yet, these calculations are still computational demanding. We will
present a combined DFT and neural network approach to study surface reaction rates
- a method inspired by nature and now used in various research areas [12, 13, 14].
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An understanding of the underlying mechanisms of poisoning and promotion by
adsorbates and their consequences on reaction rates is of strong technological relevance
for, e.g., designing better catalysts. A theoretical description of such reactions requires
a knowledge of the potential energy of the system as a function of the coordinates
of the reactants, the so-called potential-energy surface (PES). The PES is the central
quantity in any theoretical description as it rules all chemical processes.

The dissociative adsorption of hydrogen on metal surfaces has become a model
system for theoretical and experimental investigations of molecular-surface interactions.
Detailed reviews of the subject are available by Kroes [15] and Groß [16]. It is an
important step in many catalytic reactions. In recent years it has been possible to map
out potential-energy surfaces of H2 dissociation on metal surfaces with DFT based
computer programs [17,18,19,20,21,22,23,24,25,26,27,28]. These studies have largely
concentrated on the variation of the activity on clean surfaces of different substrate
materials. Also the influence of co-adsorbates on the surface reactivity for different
processes has been addressed by DFT methods [29, 30, 31, 32, 33]. For H2 dissociation,
experiments showed that Pd(100) surfaces are poisoned not only by S adatoms [4], but
also in the presence of a K adlayer [34]. This is of special interest, since commonly
it has been argued that electronegative atoms like sulphur poison and electropositive
alkali atoms like potassium promote a catalytic reaction [35, 36]. Theoretically it has
been found that H2 is able to dissociate freely on the Pd(100) surface [22], whereas due
to the presence of sulphur and also potassium energy barriers form which poison the
process [30, 33, 37].

However, up to now a theoretical comparison of the dynamical consequences of the
adsorption of an electronegative adsorbate and an electropositive on the dissociation
of hydrogen on the same substrate is missing. This is due to the fact that for a realistic
description of the performance of a catalyst in action a knowledge about the distribution
of energy barriers to the reaction is not sufficient. One has to go beyond the DFT
calculations and extend the simulation to different time scales. A number of methods
have been developed for this second step, each one applies to different situations as
summarised in Tab. 1.1.

An understanding of the dissociation of molecules on surfaces requires on the one
hand to study the motion of the involved particles on an atomistic scale. On the other,
for a proper description of real catalysts, a good statistical average over many such
events is necessary. Molecular dynamics simulations (MD) allow us to bridge the time
gap and to extend the DFT calculations to processes lasting up to several picoseconds,
covering the time scale we are interested in, and even nano- or microseconds [38]. In
MD calculations the atoms are allowed to move under the influence of the forces as
described by Newton’s equations of motion or the Schrödinger equation. In ab initio
molecular dynamics the potential and the forces are determined by DFT. Ab initio
MD simulations are accurate, but time-consuming. Of particular importance in studies
of dissociation dynamics on surfaces is the sticking probability, i.e. the probability
that an incoming molecule dissociates and then the atoms adsorb at the surface. For
its calculation we need to consider a good statistical average over the different initial
configurations of the molecule approaching the surface with a certain energy. We need,
e.g., 1000 trajectories per energy. A single event might take up to 1 ps divided into one
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Method Type of information Time scale Length scale

Density-functional theory Microscopic - ≤ 103 atoms

Ab initio
molecular dynamics

Microscopic t ≤ 10 ps ≤ 102 atoms

Semi-empirical
molecular dynamics

Microscopic t ≤ 1 ns ≤ 103 atoms

Kinetic Monte Carlo Micro-/Mesoscopic 1 ps ≤ t ≤ 1 ns ≤ 1µm

Rate equations Averaged 0.1 s ≤ t ≤ ∞ All

Continuum Equations Macroscopic 1 s ≤ t ≤ ∞ ≥ 10 nm

Table 1.1: The time and length scales handled by different theoretical approaches to
study chemical reactions. We will concentrate in this work on the first two rows of this
table, i.e. density functional theory calculations and ab initio molecular dynamics.

time step every 10 fs by the numerical integration of the equations of motion. Hence, a
theoretical simulation of a sticking curve might require to calculate

10 kinetic energies

x 1.000 trajectories / kinetic energy

x 1 pico seconds / trajectory

x 100 time steps / pico second

= 106 time steps (!),

i.e. 106 evaluations of the potential and the forces. This is a formidable task. Ab initio
molecular dynamics are limited to dynamical studies of only a few trajectories [39] and
do not allow the direct determination of reaction probabilities.

Therefore Groß and Scheffler proposed a “divide and conquer” approach for ab initio
molecular dynamics which is built on three independent steps [40]: first, one determines
the ab initio PES by DFT. In a second step an interpolation between the actually
calculated ab initio energies is performed. The last step consists of a molecular dynamics
calculation on this continuous representation of the ab initio PES. The crucial part of
this approach is the interpolation of the total energies. The interaction of a diatomic
molecule with a well-defined surface is at least six-dimensional, corresponding to the six
degrees of freedom of the molecule and a fixed substrate. The latter assumption is often
fulfilled for densely packed metal surfaces. For example on Si(100), the rearrangement
upon adsorption is indeed crucial for the adsorption and desorption mechanism [39]
and we easily arrive at 12 and more dimensions.

Six-dimensional ab initio dynamics calculations based on an analytical interpolation
of total energies showed that dynamical effects can be significant and differences from
a static theory remarkable (see Kroes [15] and references therein). They have advanced
the understanding of the dissociation dynamics greatly and caused the modification of
established concepts. Some phenomena, like the so-called steering effect [41], can only
be modelled in a theoretical simulation including a sufficiently large number of degrees
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of freedom. Thus, high-dimensional dynamical studies lead to progress not only in the
quantitative, but also in the qualitative understanding of processes on surfaces.

However, the fitting of the ab initio energies to a continuous representation is a
highly non-trivial tasks. A high-dimensional, flexible, accurate, reliable and fast inter-
polation scheme is needed. Ideally this method should be general to allow its application
to a wide range of problems. Various approaches to fit a PES can be found in the liter-
ature [42,43,44,45,46,47,48,28,27]. All of the proposed methods have some advantages
and some drawbacks. For instance, the fitting of ab initio data using analytical func-
tions [41,49,50,51] requires an appropriate choice of an analytical form, which is very
cumbersome to find in high dimensions. It is therefore fair to say that despite its im-
portance a general, fast and accurate interpolation tool for potential-energy surfaces is
still lacking.

As an alternative to the hitherto proposed fitting schemes we will introduce an inter-
polation method based on neural networks [52,53,54]. Neural Networks can in principle
approximate any continuous function to arbitrary accuracy [55,56]. They do not require
any assumptions about the functional form of the underlying problem. Neural networks
are general, i.e. the same computer program can be used for different problems. The
network learns itself what the best configuration is. Furthermore, the evaluation of the
potential energy with a fitted neural network is cheap and the derivatives, the forces,
are obtainable. Therefore, provided that the number of parameters and required data
for a good fit scale favourably with dimension, neural networks will be ideal for molecu-
lar dynamics applications. The main area of research in neural computing is devoted to
classification or pattern recognition problems which is a profoundly different task from
the one we are interested in, the interpolation of a multidimensional function. However,
recently neural networks have also been applied to the interpolation of potential-energy
surfaces [57, 58, 59, 60, 61]. These works have concentrated on low-dimensional studies
of the PES of molecules in the gas phase. We want to extend these applications to
reactions of molecules on surfaces on a high-dimensional potential-energy surface and
employ the neural network PES in molecular dynamics simulations.

This work is devoted to the development of a new interpolation method for ab
initio data and its application to the poisoning of catalytic surfaces by adsorbates.
We have studied the reduction of the hydrogen dissociation rate due to the presence of
potassium atoms on a Pd(100) surface using density functional theory, neural networks
and molecular dynamics. We will present a comparison of the poisoning effect due to
the co-adsorption of an electropositive atom like potassium to an existing study with
an electronegative adsorbate like sulphur [33, 51, 62] on the same substrate, i.e. the
Pd(100) surface.

In order to learn more about the practical approximation ability of neural networks
it is essential to find realistic test problems. Analytical potential-energy surfaces provide
ideal test cases for various reasons. They are fast to evaluate and therefore allow us
to study the influence of the data sampling on the quality of the neural network fit in
great detail. Furthermore, they have been successfully used for the ab initio description
of the hydrogen dissociation on metal surfaces using a six-dimensional PES [26,41,49,
63, 64, 51]. Moreover, as an additional check of the accuracy of the obtained neural
network model we are able to compare the neural network MD results to calculations
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performed on the analytical PES. We have chosen analytical PESs for the clean [41] as
well as the sulphur covered [33] Pd(100) surface as test problems.

The remainder of this work is divided into three parts: a description of the theo-
retical background (Chapter 2-6), the presentation of the neural network test results
(Chapter 7-9) and the application of the neural network model to the interpolation of
ab initio total energies (Chapter 10 & 11). In Chapter 2 we briefly describe the general
concepts in theoretical studies of hydrogen adsorption on metal surfaces. Chapter 3
consists of the theoretical framework of density functional theory. Following this we
give an overview over the existing interpolation methods for ab initio total energies
(Chapter 4). In Chapter 5 we will then introduce Neural Networks as an alternative
interpolation approach for potential-energy surfaces. The theoretical part ends with
the concepts of molecular dynamics in Chapter 6.

We have tested the neural network approach first with simple low-dimensional ana-
lytical functions as described in Chapter 7. Chapter 8 and Chapter 9 refer to the results
of the high-dimensional test problems, the analytical PES for hydrogen dissociation on
the clean and the sulphur covered Pd(100) surface, respectively.

In Chapter 10 we present the application of the “divide and conquer” approach to
ab initio molecular dynamics for the dissociation of hydrogen on the potassium cov-
ered Pd(100) surface using neural networks. We have first determined the ab initio
potential-energy surface by density functional theory. In a second step, we have inter-
polated the ab initio data with neural networks to a continuous representation. We
have then applied the neural network PES in classical molecular dynamics simulations
and determined the reaction rate for dissociative adsorption. In addition, we compared
this results to the dynamics on the sulphur covered Pd(100) surface.

Another important part of a catalytic reaction is the desorption of a molecule from
a surface. In order to demonstrate the flexibility of the neural network approach we
present in Chapter 11 the neural network interpolation of ab initio data for the pho-
todesorption of CO from Cr2O3(0001). The neural network PES has been employed in
molecular dynamics simulations of the rotational alignment of the desorbing molecule.
A comparison of the theoretical results to experimental data is given. Chapter 12 sum-
marises the results of this work.





Part I.
Theoretical Background
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Chapter 2

Adsorption of hydrogen on metal surfaces

Understanding reactions on surfaces plays an important role in a wide range of tech-
nologically relevant applications, among those “heterogenous catalysis”. A “catalyst”
is a substance that enhances the rate at which a certain chemical is produced. “Het-
erogenous” refers to the situation that the reaction occurs when reactants and catalyst
are present in different phases, e.g. in the gas and the solid phase. The presence of
a catalytic surface, which is exposed to the reactants, is crucial for the reaction: Ad-
sorbed particles on the surface encounter an energy barrier which is lower than that
of the chemical reaction between the same reactants in the gas phase. However, since
these processes are often rather complex, one tries to analyse them focusing first on
single steps of the complicated reaction. Processes relevant to heterogeneous catalysis
are, e.g., the adsorption of atoms and molecules, often dissociatively, on a solid sur-
face from the gas phase, the diffusion on the surface, chemical reactions of different
adparticles on the surface and the desorption of the reactant and the product. The rate
limiting step, e.g., in the ammonia synthesis or CO oxidation, is often the dissociation
of molecules on surfaces. Much theoretical and experimental work is devoted to the
measurement and calculation of the adsorption or sticking probability of molecules on
surfaces, i.e. the percentage of molecules impinging on a surface which are not scattered
back into the gas phase.

Hydrogen dissociation on metal surfaces has become the model system for bond-
breaking processes. Hydrogen is the simplest molecule which makes it a feasible can-
didate for theoretical investigations. At the same time hydrogen is also well-suited for
performing experiments which allows a fruitful interaction between theory and exper-
iment.

In the following we will briefly describe the general concepts in theoretical studies of
adsorption on surfaces. Having introduced the potential-energy surface as the central
quantity in theoretical descriptions of chemical reactions we will define the sticking
probability of adsorption events. In the last part of this chapter we will give a short
overview about research in the field of dissociative adsorption of hydrogen on metal
surfaces. We will describe the potential-energy surface of the H2 dissociation on the
clean palladium surface and the dynamics of the H2-surface interaction that proceeds
on it. We will also embark on the influence of adsorbates on the dissociation process.
Adsorbates can act as a promoter or poisoner of reactions on substrates. For a more
detailed description of hydrogen dissociation please refer to ref. [65, 16].
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2.1 Potential-energy surfaces

For dynamical studies of dissociation processes we need the energy for many configu-
rations of the nuclei, i.e. we need the potential-energy as a function of the coordinates
of the reactants, the so-called potential-energy surface (PES):

PES: ≡ V ({Rj
i}) ,

where Rj
i is the coordinate of nuclei i of species j taking part in the reaction. Potential-

energy surfaces are multidimensional functions, their dimensionality depends in prin-
ciple on the number of reactants involved.
The PES is the central quantity in theoretical studies of chemical reactions. It is usually
viewed in two-dimensional cuts through the multi-dimensional configuration space, the
so-called elbow plots, in the Zd plane, where Z is the distance of the hydrogen molecule
from the surface and d is the distance between the two hydrogen atoms, the bond length.
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Figure 2.1: Contour plot of
the ab initio PES along a 2D
cut through the 6D space of
H2/Pd(100), the so-called elbow
plot, from [29]. Energies are in
eV/H2 molecule. Inset: schematic
drawing of the dissociation pro-
cess. Top right part: H2 orientation
on the surface.

As an example the elbow plot for the dissociation
of H2/Pd(100) over the bridge site [29,22,41] has
been plotted in Fig. 2.1. In the top-left part of
the elbow-plot the molecule is far away from the
surface in the gas phase, defined as energy-zero.
In the bottom-right corner of the plot the hy-
drogen molecule is already dissociated, the two
hydrogen atoms are adsorbed on the surface. The
solid line between these two parts marks the path
towards dissociation in this configuration. As we
can see from Fig. 2.1 there is a path from the top
left to the bottom right along which the energy
monotonously decreases. The dissociation is not
only exothermic, there is also no barrier to dis-
sociation, i.e., the molecule can freely dissociate.
Such a dissociation path is called non-activated.
In contrast, paths with an energy barrier to dis-
sociation are called activated, as for example in
the system H2/Cu(111) [18].
An important concept in theoretical studies of
dissociation processes is to find the reaction path
from the molecule in the gas phase to the ad-
sorbed atoms on the surface. The reaction path is
usually defined as the minimum energy path to-
wards dissociation. In the case of hydrogen on the
Pd(100) surface this path is indeed the one plot-
ted in Fig. 2.1. However, it is important to notice
that this is just one two-dimensional cut through
the multi-dimensional configuration space. Other
configurations may exist, which do have an en-
ergy barrier for dissociation.
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2.2 Sticking probability

The sticking probability is defined as the fraction of particles that remain on the surface
and are not scattered back into the gas phase. This quantity can be measured in beam
experiments, where a beam of particles is directed onto a crystal surface. The particles
are either atoms or molecules. In the case of molecules, the process can be subdivided
into molecular and dissociative adsorption. Here molecular adsorption refers to the
situation where the molecule stays intact on the surface, while in the latter the molecule
breaks up and its fragments stay on the surface.

There is one fundamental difference between atomic and molecular adsorption on
the one side and dissociative adsorption on the other. In atomic or molecular adsorp-
tion the key process is the transfer of kinetic energy to the surface. For theoretical
descriptions of atomic or molecular adsorption it is therefore crucial to consider energy
dissipation of the impinging particle to the substrate. Let PE(ε) be the probability that
an incoming particle with kinetic energy E will transfer energy ε to the surface. The
atomic or molecular sticking probability can then be expressed as

S(E) =
∫ ∞

E
dε PE(ε) . (2.1)

It corresponds to the fraction of particles that transfer more energy to the surface than
their initial energy. This excess energy has to be transfered to substrate excitations like
electron-hole pairs or phonons. With increasing kinetic energy this dissipation process
becomes less and less efficient, the fraction of particles that lose more than their initial
kinetic energy becomes smaller at higher energies. Therefore the adsorption probability
decreases with increasing kinetic energy. The sticking probability as a function of the
kinetic energy of the impinging particles (or equivalently as a function of the beam
temperature) can be seen in Fig. 2.2 (from the textbook by Zangwill [2]). A sticking
probability of 1 means that all particles which approach the crystal stay on the surface,
a value of 0 reflects that all particles are scattered back into the gas phase.

Figure 2.2: Atomic sticking prob-
ability versus kinetic energy for
Xe and Ar on Pt(111) and
molecular sticking probability of
N2/W(100). These examples are
taken from the textbook by Zang-
will [2]. Inset: schematic represen-
tation of the adsorption process.
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Now in the case of dissociative adsorption another process of energy transfer comes
into play. The kinetic energy of the impinging molecule can be transfered into transla-
tional energy of the atomic fragments relative to each other. Eventually they will also
dissipate their kinetic energy and come to rest at the surface. However, especially for
light molecules like hydrogen dissociating on metal surfaces the energy transfer to the
substrate is very small due to the large mass mismatch of the reactants. The stick-
ing process is almost entirely determined by the bond-breaking of the atoms in the
molecule. If furthermore no substantial surface rearrangement upon adsorption occurs,
as it is usually the case for light molecules dissociating on close-packed metal surfaces,
then the new and important channel for energy transfer makes it possible to neglect
the surface degrees of freedom.

For the dissociation of hydrogen molecules on metal surfaces we are therefore able
to describe this process with a potential energy depending only on the six degrees of
freedom of the molecule. However, we should keep in mind that for heavier molecules
and also for the dissociation on semiconductor surfaces the rearrangement of the surface
atoms can be important and needs to be incorporated explicitly. The dimensionality
of the potential-energy surface will then be even higher than six.

Figure 2.3 shows the experimental sticking probability versus kinetic energy for the
dissociation process of hydrogen on a Cu(111) surface. In this system the dissociation
is hindered by an energy barrier. Sticking can only occur, if the kinetic energy of
the impinging molecule is large enough to overcome the barrier towards dissociation.
Even at high kinetic energies the adsorption probability is significantly reduced in
comparison to the atomic and molecular adsorption in Fig. 2.2 (please note the different
energy and sticking ranges in Fig. 2.2 and Fig. 2.3, respectively). However, dissociative
adsorption probabilities can differ by orders of magnitude for different systems. In the
case of hydrogen molecules on many transition metal surfaces the sticking at room
temperature is about 0.5 [66, 4], whereas for H2/Si it is only 10−8 [67], and for N2/Ru
it is even 10−13 [68].
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Figure 2.3: Dissociative adsorp-
tion probability versus kinetic en-
ergy of H2/Cu(111) (from Time-
of-flight measurements by Rettner,
Michelsen, and Auerbach [69]). The
curve shown has been obtained by
fitting the adsorption data while ne-
glecting the effects of rotation. The
molecules are initially in the vibra-
tional ground state. Inset: schematic
representation of the dissociation
process. Compare energy and stick-
ing range with Fig. 2.2 for atomic
and molecular adsorption.
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2.3 Dissociative adsorption of H2 on metal surfaces

Theoretical studies based on ab initio calculations showed that hydrogen dissociation
on a noble metal surface like Cu(111) [18] and Cu(100) [19] is activated, the molecule
exhibits a barrier for the bond breaking process. The PES for both surfaces shows
a strong corrugation. These investigations have established that even on metal sur-
faces, where the electronic density in front of the surface is rather smeared out, the
bond-breaking process is a very localised process close to the surface. It involves the
hybridisation of molecular orbitals with certain metal states, in particular the d-states
which are spatially strongly varying. It is the chemical nature of the dissociation that
leads to a strong corrugation of the potential energy.

Dissociative adsorption is a dynamical process. As we will lay out in the following, a
good treatment of the dynamics is indeed crucial to the understanding of reactions on
surfaces. But first we will briefly describe some general features of PES for the bond-
breaking of hydrogen on transition metals. For a more detailed discussion we refer to
Scheffler and Stampfl [70], Groß [40] and Kroes [63].

2.3.1 Dissociation on transition metal surfaces

Transition metal surfaces are usually very reactive with
respect to the dissociation of hydrogen, like for exam-
ple Pd(100) [4], Pd(111) [71, 48, 28], W(100) [72] and
Ni(110) [4, 27]. Here the term “reactivity” refers to
the surfaces ability to break bonds of an approaching
molecule and to adsorb the fragments, which is often
the rate limiting step in catalytic reactions.

A good knowledge of the high-dimensional PES of
the molecule surface system is mandatory for a detailed
understanding of the reaction, as the PES rules the
scattering and the dissociation. Wilke et al. have per-
formed density-functional theory calculations (DFT) of
the interaction of H2 with a Pd(100) transition metal
surface [29, 22]. They found that the process is non-
activated, i.e. the minimum pathway towards dissocia-
tion - the bridge site between the Pd atoms - shows no
energetic barrier. However, if we look at another cut
through the configuration space in the same system,
we find that paths exist, in fact the majority of them,
which have an energy barrier as, e.g., the one plotted
in Fig. 2.4. Here, where the molecule approaches the
surfaces at the on-top site, a barrier of approximately
0.15 eV exists. It is obvious from Fig. 2.1 and Fig. 2.4
that neglecting the high dimensionality, i.e., assuming
that the elbows for different choices of (Xc, Yc, θ, φ) are
similar, is by no means justified.
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This shows that typically several pathways exist along which a molecule may dissociate
and the associated energy barriers may be different: Some pathways may be activated,
some may not. For example, going through the periodic table from Rh to Pd to Ag it
was found [73] that for:

⇒ Rh: most pathways are not hindered by a barrier,

⇒ Pd: most pathways are hindered,

⇒ Ag: all pathways have an energy barrier.

Thus, these three transition metals cover the range from a nearly completely unac-
tivated system [Rh(100)] where the system gains energy on adsorption (exothermic)
over a surface exhibiting activated as well as unactivated pathways for H2 dissociation
[Pd(100)], but still being exothermic, to a surface where adsorption is always hindered
by an energy barrier and endothermic [Ag(100)] [73]. Yet, it is not only important that
there is a barrier towards dissociative adsorption but also where the barrier is located.
On the Rh surface the few barriers are situated in the entrance channel, i.e. when the
bond length of the molecule is not significantly stretched and the centre of mass is still
far away from the surface [73]. For the Ag surface the lowest barrier is found very close
to the surface and at a H-H distance which is by about 100% stretched compared to
the free molecule [73]. Thus, the hydrogen bond is nearly broken when the molecule
has reached the top of the energy barrier.

Hammer et al. showed by analysing the wave functions of the H2-surface system at
the location of the barrier that the differences between the different metals should be
described in a covalent picture [18, 20](see also the earlier study by Hjelmberg et al.
(1979) for H2 at jellium [74]). As illustrated in Fig 2.5, at the barrier the H2-surface
interaction has already produced a splitting into states which are bonding between the
molecule and the substrate and ones which are antibonding. Let us consider a substrate
from the middle of the transition-metal series, e.g. Ru or Rh, with the Fermi-level in
the middle of the d-band in panel (a) of Fig. 2.5. This implies that the resonances
σg and σu in panels (c) and (d) are filled with electrons. These states are on the one
hand bonding with respect to the molecule-substrate interaction, their filling implies
an attraction of the molecule to the surface. On the other hand, the filling of the σu
resonance weakens the H-H bond. Thus, the molecules are strongly attracted to the
surface and at the same time the molecular bond is weakened. Yet, if the substrate
Fermi level is well above the d-band, as for a noble metal like Ag, also the antibonding
molecule-surface states become filled. This results in a repulsive interaction between
the molecule and the substrate and leads to the formation of an energy barrier.

With this view the differences in the chemical activity of transition metals can be
easily explained. Ag is chemically inert because its Fermi level is about 3 eV above
the top of the d-band resulting in a repulsive molecule-substrate interaction. Its left
neighbour in the periodic table of elements, Pd, is chemically more active since its
Fermi-level lies within the d-band as plotted in Fig. 2.5. The elements further to the
left, namely Rh and Ru, are even more so, because their Fermi-levels are closer to the
middle of the d-band.
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Figure 2.5: Schematic description of the interaction of H2 at the energy barrier towards
dissociative adsorption at transition-metal surfaces. The bottom panel (a) shows the
density of states (DOS) for a transition metal before adsorption, the panel (b) shows
the energy levels of a free H2 molecule: the bonding state σg is filled with two electrons
and the antibonding state σu is empty. The interaction between the H2 σg-level and the
substrate s- and d-bands give rise to a broadening and the formations of an antibonding
level at about the upper edge of the d-band and a bonding level below the d-band,
see panel (c). Panel (d) shows that the interaction between the H2 σu-level with the
substrate s- and d-bands gives rise to a broadening and the formation of a bonding
level (at about the lower edge of the d-band) and an antibonding level (above the d
band). From Scheffler and Stampfl [70].

Dynamics of H2 dissociation at transition-metal surfaces

To obtain a full description of a dynamical process like the dissociation of hydrogen
on transition metal surfaces it is necessary to go beyond the DFT calculations and to
perform molecular dynamics simulations of the molecules approaching the surface (see
e.g. Groß et al. [41]). We will demonstrate in the following, that sometimes dynamical
effects can indeed be significant and differences from a static theory noticeable.

We have seen that the dissociative adsorption of hydrogen at Pd(100) can proceed
without an energy barrier. However, we recall that the majority of pathways has a
barrier for the reaction. This co-existence of non-activated and activated pathways to
dissociation has important dynamical consequences. An analytical representation of the
ab initio PES has been used for a quantum dynamical study in which all six hydrogen
degrees of freedom were taken into account explicitly while the substrate was kept
fixed [41]. The results are plotted in Fig. 2.6 together with the calculated adsorption
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probability for Rh(100) [73] and experimental beam data for hydrogen dissociation on
Pd(100) [75]. One unexpected result of Fig. 2.6 is that for low kinetic energies with
Ei ≤ 0.05 eV the probability for sticking on the Pd and the Rh substrates are very
similar. This is surprising since the PES of Rh exhibits many pathways with vanishing
energy barrier towards dissociation whereas Pd has only few. In fact, both substrates
give a sticking value as high as 75% for low Ei corresponding to typical thermal kinetic
energies. But while for Rh the sticking probability always remains high, it decreases
for Pd to about 25%. The calculated sticking probability for Pd(100) agrees with the
experimental results semi-quantitatively and reproduces the general trend, namely the
initial decrease of sticking followed by an increase at higher kinetic energies. It was
believed, that the initial decrease of the sticking probability at low kinetic energies
corresponds to a situation in which molecular adsorption is involved, cf. Fig. 2.2. In
the so-called precursor model the molecule would not directly dissociate, but is first
trapped molecularly in a precursor state before it dissociates. This trapping process
would then be less efficient at higher kinetic energies and thus results in the initial drop
of the sticking probability.

0.0 0.1 0.2 0.3 0.4 0.5
Kinetic energy Ei (eV) 

0.0

0.2

0.4

0.6

0.8

1.0

S
tic

ki
ng

 p
ro

ba
bi

lit
y

0 500 1000 1500 2000 2500

Temperature (K)

Rh(100) QMD

Pd(100) QMD

Pd(100) Experiment

Figure 2.6: Sticking probabil-
ity for a H2 beam under nor-
mal incidence on a Pd(100)
and Rh(100) surface. Theory: 6-
d quantum molecular dynamics
(QMD) with H2 molecules in
their rotational and vibrational
ground state. QMD for Rh and
Pd by Eichler et al. [73], molec-
ular beam experiment by Ren-
dulic et al. [75].

However, the ab initio calculations did not find a molecular adsorption well, i.e. no
precursor state. Furthermore, in the quantum dynamical calculation no energy transfer
from the molecule to the substrate is considered. The reason for the initial decrease is a
purely dynamical effect, the so-called steering effect. Although the majority of pathways
exhibits energy barriers to dissociation with a rather broad distribution of heights and
positions, slow molecules can be very efficiently steered to the non-activated sites on
the surface and dissociate. This process is illustrated in Fig. 2.7 (from [16]). For both
parts of the plot the initially non-vibrating and non-rotating molecule impinges on the
surface under the same conditions, except for the kinetic energy. Far away from the
surface both molecules are oriented almost perpendicular to the surface, a position in
which they would not be able to dissociate. Yet, due to the anisotropy of the PES, forces
can reorient the molecule to a parallel configuration. The slow molecule in Fig. 2.7(a)
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reaches this orientation and dissociates, whereas the molecule with the higher kinetic
energy in Fig. 2.7(b) is too fast to be fully-reoriented, it hits the repulsive wall of
the PES before it can dissociate and is scattered back into the gas phase. Hence, it
is a purely dynamic effect which leads to a high sticking probability at low kinetic
energies. At higher energies the steering is less efficient causing the drop of the sticking
curve. At even higher kinetic energies the dissociation follows the typical scenario for
activated dissociative adsorption, the molecules simply have enough energy to overcome
the barriers, compare with Fig. 2.3.
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Figure 2.7: Steering effect. Snapshots of ab initio molecular dynamics trajectories for
H2 molecules on Pd(100). The molecules are initially not vibrating and not rotating.
For both trajectories the initial conditions are the same, except for the kinetic energy.
A molecule with a low kinetic energy (a) can be steered towards more favourable
geometries and dissociates. With higher Ei (b) the “steering” effect is less efficient, the
molecule hits the repulsive part of the PES and is scattered back. From Groß [16].

These studies established the importance of high-dimensional dynamical calcula-
tions for dissociative adsorption reactions. In a static picture as discussed before, the
high reactivity of Pd at low kinetic energy cannot be understood. The efficiency of
steering depends on the speed of the incoming molecule and on the shape of the PES.
Therefore, to evaluate the sticking probability as a measure of the surface reactivity,
it is important to consider all degrees of freedom of the incoming particle. Neglecting
any of them in lower-dimensional studies would lead to a steering which is much less
efficient or even not present at all. Thus high-dimensional simulations not only lead to
progress in the quantitative, but also in the qualitative understanding of processes on
surfaces. We note, as much as “steering” is important to understand the high reactivity
of Pd at low Ei, for other systems, which on the grounds of the electronic structure
alone may be expected to exhibit a high reactivity, an “anti-steering” may occur, which
drives approaching particles not toward the best configuration but rather against an
energy barrier.
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2.3.2 Dissociation on an adsorbate covered metal surface

Adsorbates can have a strong influence on the reactivity of a particular surface. They
can act as a promoter or a poisoner of the reaction, they can enhance or decrease the
reaction rate. Such additives are of great technological importance, e.g. in designing
better catalysts. It is well known that the activity of car-exhaust catalysts is signifi-
cantly reduced by the presence of lead, but also sulphur poisons the catalyst.

It is generally the case that electropositive adsorbates like alkali atoms tend to
act as promoters, while electronegative species like sulphur are poisons [1]. In the
ammonia synthesis, for instance, alkali atoms like Cs and Na promote the dissociation
of N2 on Ru-based catalysts, whereas S poisons the reaction [31]. However, this simple
picture breaks down for hydrogen dissociation. Potassium is indeed a promoter for the
dissociation on Cu(110), yet on a number of other surfaces it acts as a poisoner, see
table 2.1. Electronegative sulphur poisons the hydrogen dissociation on Pd(100) [75],
but oxygen is found to act as a promoter on Ni(111) up to a coverage of one eighth
of a monolayer. Poisoning and promoting effects of adsorbates have been explained
by an ensemble of mechanisms, for an overview we refer, e.g., to Bird et al. [36].
They range from direct and indirect chemical interactions, the modification of the
local density of states, especially at the Fermi-level, and electrostatic effects like dipole-
dipole interactions. Yet, in this work we will focus on the dynamical consequences of
the promoting or poisoning effect of an adsorbate only.

Promoter Poisoner

Molecule Adsorbate Surface Molecule Adsorbate Surface

N2 Cs Ru(0001) [31] N2 S Ru(0001) [31]

N2 Na Ru(0001) [31] CO S Ni(100) [1]

N2 K Fe(111) [76] H2 K W(100) [77]

CO K Pd(100) [1] H2 K Pd(111) [78]

CO K Ni(100) [1] H2 K Pt(111) [79]

H2 K Cu(110) [80] H2 K Fe(100) [76]

H2 O (Θ < 1/8) Ni(111) [81] H2 K Ni(111) [81]

Table 2.1: Promotion and poisoning of molecular and dissociative adsorption rates of
molecules by adsorbates (Θ refers to the coverage of the adsorbate on the surface).

H2 dissociation over S(2×2)/Pd(100)

For the Pd(100) surface it is experimentally well known that sulphur adsorbates lead to
a reduction of the hydrogen dissociation probability. At a kinetic energy of Ei=0.05 eV
the dissociation probability at the clean surface is about 60%, at the sulphur covered
surface it decreases to a value below 1% [4]. Density functional theory calculations
have shown that the dissociation of hydrogen on the sulphur covered Pd(100) surface is
activated, i.e. the dissociation is hindered by energy barriers [33]. In Fig. 2.8 three elbow
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plots on the six-dimensional PES are plotted, where the molecular axis is kept parallel
to the surface. Due to the presence of the sulphur atoms the dissociation over the
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Figure 2.8: Contour plots through the six-dimensional ab initio PES of H2 dissociation
over (2×2)S/Pd(100). Insets: geometries of the dissociation pathways. Contour lines
in eV/H2 molecule. From Wei et al. [33].

bridge site between the palladium atoms exhibits now a barrier of 0.16 eV (Fig. 2.8(a)),
whereas this site was non-activated on the clean Pd surface (Fig. 2.1). The reaction is
indeed poisoned by the adsorbate on the surface. Furthermore, the PES is now highly
corrugated. If we look at the dissociation over the on top site on a palladium atom,
the barrier rises from 0.15 eV over the clean surface (Fig. 2.4) to 1.3 eV on the sulphur-
covered surface (Fig. 2.8(b)). The minimum pathway towards dissociation is now the
fourfold hollow site, where the distance of the hydrogen molecule from the sulphur
atoms is at its maximum, see Fig. 2.8(c). The energy barrier in this configuration is
0.11 eV. The building up of a barrier is related to an indirect interaction with the
sulphur atoms. They cause a downshift of the Pd d-bands at the surface which leads
to the population of anti-bonding molecule-surface states [33].

An analytical fit to the ab initio PES has been performed and employed in quantum
mechanical and classical dynamical calculations [51]. The results are plotted in Fig 2.9.
The theoretical results are significantly larger than the experimental results, which has
been proposed to be due to the presence of subsurface sulphur in the experimental
samples. Furthermore it has been found that steering is also operative on the activated
potential-energy surface. Moreover, Fig. 2.9 shows that the classical molecular dynamics
calculations over-estimate the sticking compared to quantum results. This suppression
is a consequence of the strong corrugation and anisotropy of the PES which gives rise
to large zero-point energies. This energy needs to be taken from the incident beam and
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therefore the effective kinetic energy of the impinging molecule is reduced. Consequently
the fraction of the molecules which are able to overcome a certain barrier towards
dissociation is reduced and the sticking probability is lower. However, the overall trend
of the sticking curve with increasing kinetic energy is well reproduced also by classical
dynamics.
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Figure 2.9: Sticking probability
versus kinetic energy for a H2

beam under normal incidence on
a (2×2)S/Pd(100) surface. The-
ory: six-dimensional quantum and
classical dynamics on an analytical
PES by Groß et al. [51]. Experi-
ment: from [4].

H2 dissociation over K(2×2)/Pd(100)

It has been found experimentally that the Pd(100) surface is poisoned for hydrogen
dissociation in the presence of a K adlayer [34]. At a potassium coverage of Θ= 0.25
the sticking probability is 30 times less than that on the clean surface. The influence
of potassium adatoms on the dissociative adsorption of hydrogen on Pd(100) has also
been addressed theoretically by Wilke and Cohen [37]. The calculations showed that
indeed potassium adsorbates hinder hydrogen dissociation by forming energy barriers.
In comparison to the sulphur-covered Pd(100) surface, the corrugation is less strong in
the presence of potassium adsorbates. The authors report that changes of the electro-
static potential, the modification of the electronic states at the surface, and changes in
the local density of states near the Fermi-level are simultaneously present. All appear
to play a role at the various stages of the dissociation.

However, Wilke and Cohen focused in their work on the system (2×2)K/Pd(100)
only on two dissociation pathways, the fourfold hollow site and the potassium bridge
site. The information they collected is not sufficient for a study of the dynamical con-
sequences of the poisoning effect with a weaker corrugation as in the case with sulphur
adsorbates. A comparison of the sticking probability for H2 dissociation on a metal sur-
face like Pd(100) with an electronegative adsorbate like sulphur and an electropositive
adsorbate, as for instance potassium, is still lacking. Since the dissociation event is a
dynamical process and is often the rate limiting step in heterogenous catalysis, we will
re-address this issue and extend the ab initio calculations of Wilke and Cohen [37] to
various adsorption sites.
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Chapter 3

Ab initio total energy calculations and the

FP-LAPW method

Theoretical studies of reaction dynamics on surfaces, like the dissociative adsorption of
diatomic molecules on metal surfaces, require a knowledge of the potential energy of the
moving nuclei taking part in the process. Ab initio total energy calculations have proven
to be a powerful and accurate tool to calculate such properties. Different quantum
mechanical methods, like Hartree-Fock, configuration interaction and coupled cluster
approaches, are being used in electronic structure theory for decades. In recent years
much progress in the description of processes on surfaces has been made through density
functional theory and its practical implementations. In the following sections we will
briefly describe the theoretical foundations of this framework and its implementation
in the WIEN 97-code [82,83,84].

3.1 Density-functional theory

For a theoretical description of chemical reactions a quantum mechanical many-body
problem including all electronic and ionic degrees of freedom needs to be solved. How-
ever, for complex systems it is not possible to obtain this solution in closed form. A
practical implementation requires the introduction of certain approximations.

In many chemical reactions one can assume that the dynamics of the electrons and
the nuclei decouple due to their large mass mismatch: this basically means that the
electrons are assumed to follow the movements of the nuclei instantaneously. Whatever
the configuration and the dynamics of the nuclei are, the electrons will be in the ground
state of that geometry. This is the Born-Oppenheimer-approximation [85], which we
consider to be valid throughout the following. This means that in a first step the
electronic problem for a particular configuration will be solved, and then in the second
step the dynamics of the nuclei have to be considered.

Even with this simplification one has to deal in the many-body Schrödinger equation
with a wave function Ψ ({ri}) depending on all coordinates of the N electrons of the
system. This problem remains formidable. The major achievement of density-functional
theory (DFT) is the replacement of the wave function Ψ ({ri}) by the electron density
n(r) of theN -electron system as the varying property. The density depends - in contrast
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to the multi-dimensional wave function - only on three variables, which is an enormous
reduction of complexity.

The foundations of DFT are formulated in the Hohenberg-Kohn theorem [86]. The
main idea is that physical quantities as expectation values of quantum-mechanical
operators are functionals of the electron density. In particular the energy functional of
the system is minimised by the ground state electron density n0(r) [86]. With this the
variational problem of the many-body Schrödinger equation for the electrons can be
transformed into a variational problem of an energy functional:

E0 = 〈Ψ0|H|Ψ0〉 ≤ 〈Ψ|H|Ψ〉 = E[Ψ] = E[n] , (3.1)

with E0 the energy of the ground state, Ψ0 the ground state wave function, and n(r)
is the electron density of the N -electron system.

Starting from here the idea of Kohn and Sham [87] was to map the many-particle
problem onto a single particle problem retaining the exact description of the many
body effects. They wrote the energy functional E[n] in the form:

E[n] = Ts[n] + U [n] + Exc[n] , (3.2)

where

2 Ts[n] is the kinetic energy of a system of non-interacting particles,

2 U [n] is the average Coulomb-interaction of the electrons:

U [n] =
e2

8πε0

∫

dr
∫

dr′
n(r)n(r′)

|r− r′| +
∫

drVext(r)n(r) , (3.3)

with Vext being the external potential in which the electrons move, i.e. the
Coulomb potential due to the nuclei,

2 Exc[n], the exchange-correlation functional, accounts for the Pauli principle, dy-
namical correlations due to the Coulomb repulsion, and the correction of the
self-interaction present in Eq. 3.3.

3.1.1 Exchange-Correlation functional

The exchange-correlation functional Exc contains the quantum mechanical many-body
effects. It is an universal functional, i.e. it is independent of the particular system con-
sidered. However, this functional is not known and therefore needs to be approximated.
In the local-density approximation (LDA), the non-local exchange correlation energy
is locally described by the exchange- and correlation energy density of a homogenous
electron gas:

LDA : Exc[n] =
∫

dr n(r)εxc(n(r)) . (3.4)

The system is composed of small systems with a locally constant density. Exc(n) can
be exactly determined for the homogeneous electron gas. As an example of the LDA
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please refer to Perdew and Zunger [88]. Within the LDA lattice constants of solids agree
well with experimental values. However, for binding energies of solids and molecules,
and most prominently for barriers of chemical reactions [18], the LDA results are not
sufficiently accurate.

A natural approach to improve the exchange-correlation functional is to include
information about the gradient of the density. This is done in the generalised gradient
approximation (GGA) [89,90,91,92,93]:

GGA : Exc[n] =
∫

dr n(r)εxc(n(r),∇n(r)) . (3.5)

Binding energies and energy barriers are clearly improved within the GGA (error ≤
0.1−0.2 eV for many systems [18, 94]). Since we are interested in such quantities, the
GGA [91] will be used in the following.

3.1.2 Kohn-Sham equations

What remains to be expressed in equation (3.2) is the kinetic energy operator Ts[n].
This operator is not known explicitly in a closed form, but it can be evaluated exactly
as follows, if ϕi are the wave functions of the non-interacting particles:

Ts =
∑

i

〈ϕi| −
h̄2

2m
∇2|ϕi〉 . (3.6)

The variational problem of the energy functional (3.2) under the constraint of constant
particle number (N =

∫

dr n(r)) leads to:

δ
[

E[n]− µ(
∫

dr n(r)−N)
]

= 0 =⇒ δE[n]

δn(r)
=
δTs[n]

δn(r)
+ Veff = µ , (3.7)

where µ is the associated Lagrange multiplier, or the chemical potential. The effective
potential Veff is given by:

Veff = Vext(r) + Vxc(r) + VH(r) = Vext(r) +
δExc

δn(r)
+

e2

4πε0

∫

dr′
n(r′)

|r− r′| , (3.8)

where n(r) is now the ground-state density of a non-interacting electron system. The
density is expressed as a sum over single-particle states with wave functions ϕi(r) and
occupation numbers fi:

n(r) =
∑

i=1

fi|ϕi(r)|2 . (3.9)

Since Ts(n) is the kinetic energy of non-interacting electrons, Eq. 3.7 is solved by:

[

− h̄2

2m
∇2 + Veff (r)

]

ϕi(r) = εiϕi(r) . (3.10)
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The single-particle states ϕi(r) are obtained by self-consistently solving these effec-
tive single-particle equations, the Kohn-Sham equations, together with Eq. (3.8) and
Eq. (3.9). Self-consistency means an iterative procedure: from an initial guessed elec-
tron density the potential is generated and then the eigenfunctions are obtained as
a solution of the Kohn-Sham equations. These eigenfunctions define the new density,
which serves mixed together with the old one as the input for the next iteration. This
procedure is repeated until convergence of the density and hence the energy is reached.

3.2 Full potential linear augmented plane wave

method FP-LAPW

Different methods have been developed to solve the Kohn-Sham equations (3.10), for
instance the pseudo potential plane wave method (PPW) [11, 10, 9], the linear muffin-
tin orbital method (LMTO) [95, 96, 97] and the linear augmented-plane-waves method
(LAPW) [8,98]. For a numerical solution the wave functions ϕ is expanded into a basis
set of functions Φ:

ϕ =
∑

i

ciΦi . (3.11)

The methods differ by the choice of the set of basis functions. In the PPW method
plane waves are used in the expansion. They have the advantage that they form a
complete set, they fulfil Bloch’s theorem and they are easy to implement. The potential
of the crystal is replaced by a norm-conserving pseudopotential [99], which exploits the
fact that the core electrons are hardly involved in binding processes. The influence of
the core electrons is represented by an effective potential. This approach reduces the
number of electrons that have to be taken into account explicitly. However, for the
description of very localised states, like the valence electrons of transition metals, a
large number of plane waves have to be applied.

The LMTO and the LAPW method are all-electron methods. The phrase all-electron

Muffin
Tin

Interstitial 

Figure 3.1: Space
divided into muffin-
tin spheres and an
interstitial region

refers to the calculation of every electron state in contrast to the
PPW method with pseudo wave functions and pseudo states. In
both the LMTO and the LAPW method space is divided into
spheres - so-called muffin-tins - around each nucleus and an
interstitial region in between (Fig. 3.1). This allows the use of
different sets of basis functions in the different regions. Within
the muffin-tin spheres atomic like basis functions are being used,
whereas in the interstitial region the LMTO method applies
Hankel & Bessel functions and the LAPW method plane waves.
We will now discuss the LAPW method, which we will use in
this work, in more detail, starting with its historic precursor,
the augmented plane wave method (APW).
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3.2.1 APW and the LAPW method

The APW method [100, 101] by Slater was motivated by the fact that near an atomic
nucleus the potential and wave functions vary strongly and look rather atomic-like,
whereas further away they are much smoother. Therefore Slater divided space into
regions - muffin-tins (MT) and interstitial (I) - and used different basis functions in
these regions: inside each muffin-tin radial solutions of the Schrödinger equation and
plane waves in the interstitial region:

ΦAPW
G (k, r) =











ei(k+G)·r : r ∈ I

∑

lmAlm ul(r, ε) Ylm(r) : r ∈ MT
, (3.12)

where k is the Bloch vector, G the vector of the reciprocal lattice. The coefficients Alm

are determined by the requirement of a continuous wave function at the sphere bound-
ary. The function ul(r, ε) is the regular solution of the radial Schrödinger equation:

[

− ∂2

∂r2
+
l(l + 1)

r2
+ V00(r)− ε

]

rul(r, ε) = 0 , (3.13)

where the term V00(r) is the spherical part of the expansion of the potential into
spherical harmonics:

V (r) =
∞
∑

l=0

l
∑

m=−l

Vlm(r)Ylm(r) : r ∈ MT . (3.14)

The APWs are solutions of the Schrödinger equation inside the sphere at the energy
ε, and only there. Its value must be set equal to the band energy. This explicit energy
dependence makes the APWs rather inflexible as the band energy is not known a priori,
but one of the quantities sought after. In order to increase the variational freedom of
the APWs, to allow for changes in the wave function as the band energy deviates
from this reference energy, the linear APW method (LAPW) [102, 103, 8, 98] has been
introduced. Its wave function is constructed of the radial function ul and an additional
term, the energy derivative u̇l(r):

ΦAPW
G (k, r) =











ei(k+G)·r : r ∈ I

∑

lm[Alm ul(r) +Blmu̇l(r)] Ylm(r) : r ∈ MT
. (3.15)

The coefficients Alm and Blm are determined by matching the value and the slope of the
basis functions at the sphere boundary. For this purpose the plane waves are expanded
into Bessel functions jl(|k+G| |r|) and spherical harmonics Ylm(r):

ei(k+G)·r = 4π
∞
∑

l=0

∑

|m|≤l

iljl(|k+G| |r|)Y ∗lm(k+G)Ylm(r) . (3.16)

In practice the wave function is expanded only up to a parameter lwavmax.
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Having defined the LAPWs (3.16) we can now rewrite the solutions of the Kohn-
Sham equations (3.11) as:

ϕk =
∑

|G|<Gwav
max

cGk ΦG . (3.17)

Together with lwavmax, G
wav
max is another so-called cut-off parameter which determines the

size of the basis set and hence the quality of the calculation.
The Taylor expansion of the radial function around an energy El introduces an

error in the wave function of O([ε− El]
2):

ul(r, εl) = ul(r, El) + u̇l(r)(ε− El) +O([ε− El]
2) . (3.18)

The corresponding error in the energy is of fourth order. Due to this high order error,
the LAPW basis functions form a good basis set for a reasonable choice of the energy
parameter El.

One difficulty remains: each reference energy can only be chosen once per angular
momentum l. Thus bands with the same quantum number l but different energies,
like 1s- or 2s-states, can not be calculated in one step. In order to circumvent this
problem, local orbitals [104], which are completely localised inside the MTs, have been
introduced. The idea is to add an additional radial function ul(r,

∼
εl) at a different

linearisation energy
∼
εl with coefficients Clm to the LAPWs (3.16) inside each MT. The

coefficients Clm are calculated by the requirement of a vanishing wave function of these
orbitals at the sphere boundary.

3.2.2 FP-LAPW method

The APW and the LAPW method use only the spherical part of the potential inside
the muffin-tins (see (3.13)) and a constant potential in the interstitial region. In the
full potential LAPW method no shape approximations are performed. The potential
inside each sphere is expanded into spherical harmonics and in the interstitial into
plane waves:

V (r) ≡











∑

G VGe
iG·r : r ∈ I

∑

lm Vlm(r)Ylm(r) : r ∈ MT
. (3.19)

The representation of the density follows analogous. As in the case of the wave function,
the expansions are truncated by the cut-off parameters Gpot

max for the plane waves in
the interstitial region and lpotmax, which limits the number of non-spherical components
to the potential in the muffin-tins.

It is advantageous to take account for the symmetry of the system in the calculation.
Not all components in the potential and density expansion need to be calculated in one
step. The interstitial density has the symmetry of the space group, inside the sphere
the density has the site symmetry and the density within atomic spheres related by a
symmetry operation are identical, apart from a rotation. This is exploited using the
so-called stars in the interstitial and lattice harmonics within the muffin-tins [104].
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3.2.3 Atomic forces

For the minimisation of the total energy with respect to the coordinates of the nuclei
the atomic forces need to be calculated. The force on atom i is based on the total
derivative of the energy, including implicit dependencies, with respect to the atomic
position Ri:

Fi = −
∂E

∂Ri

−
∑

i

∂E

∂ϕi

dϕi
dRi

−
∑

i

∂E

∂ϕ∗i

dϕ∗i
dRi

. (3.20)

Only the first term is of physical nature the others derive from an incomplete basis set.
The changes in the electronic wave functions when one ion moves from one position to
another contribute to the force on the ion. However, for plane wave basis sets these last
two terms in equation (3.20) vanish if each electronic wave function is an eigenstate
of the Hamiltonian, i.e. at the end of the self-consistent cycle. In this case the partial
derivative of the Kohn-Sham energy with respect to the position of an ion gives the
physical force on the ion, which is referred to as the Hellmann-Feynmann theorem [105].

The forces are very sensitive to errors in the wave functions. Therefore accurate
forces can only be calculated close to self-consistency. The error in the energies is only
second order with respect to errors in the wave function, whereas the error in the forces
is first order. Consequently the cost is significantly lower to calculate an accurate total
energy than an accurate force.

In quantum mechanical calculations with position dependent basis sets, additional
terms to the forces appear to represent the derivative of the basis set with respect
to the position of the ion (Pulay force [106]). For plane wave basis sets these forces
vanish [107], for atomic-like orbitals as used in the LAPW method they need to be
considered. In the WIEN 97-code the calculation of the forces has been successfully
implemented by Kohler et al. [83].

3.2.4 Super-cell approach

Density-functional theory allows us to map the many-body problem onto a single-
particle problem. In a solid we still have to find the solution for a system of an infinite
number of non-interacting particles moving in the static potential of an infinite number
of nuclei. However, one can take advantage of the periodicity of a crystal. Plane-wave
based methods are ideally suited to treat periodic systems because the plane waves
automatically fulfil Bloch’s theorem [108] which states that for a periodic system the
wave function can be written as a product of a phase factor eik·r and a lattice periodic
function wk(r):

ϕk(r) = eik·rwk(r) . (3.21)

In a bulk material Bloch’s theorem can be applied due to the three dimensional
periodicity of the lattice. We are interested in the study of a dissociation process
on a surface, where the translational symmetry of the system normal to the surface
is broken. Still it is desirable to exploit the computational efficiency of plane-wave
methods. This is achieved by artificially restoring the three-dimensional periodicity.
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Figure 3.2: The (2×2)
surface unit cell

In the super-cell approach the surface is described by an
infinite array of slabs separated by vacuum regions (see
Fig. 3.3). The thickness of the each slab is determined
by the requirement that the two surfaces of the slab do
not interact with each other. The separation between the
different slabs has to be chosen large enough to ensure
that the slabs are not interacting. If we place an adsorbate
on the surface the periodicity in the lateral direction is
also broken. In order to recover this periodicity we study
ordered adsorbate layers that are described by laterally
repeated surface unit cells. The size of the cell depends on
the system and problem of interest. In our case we want
to calculate the dissociation of hydrogen on a potassium

covered palladium surface. The potassium coverage is 25% and this is represented by
a (2×2) unit cell as shown in Fig. 3.2.

slab

vacuum 

slab

vacuum 

slab

top view

Figure 3.3: Side view of the super-cell of a 5 mono-layer slab with an adsorbate in a
p(2x2)-unit cell and a diatomic molecule on the surface. Adsorbates are placed on both
sides of each slab. Each slab is separated by a vacuum region. A top view of one slab
is also indicated.
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3.2.5 Brillouin zone integration

In order to determine the charge density or the total energy, it is necessary to evaluate
sums over occupied states, which for crystals become integrals over the Brillouin zone.
Using symmetry this reduces to integrals over the irreducible wedge of the zone. These
integrals are calculated using wave functions and eigenvalues at a finite number of
special k-points in the Brillouin zone (BZ):

∫

BZ

dk

ΩBZ

−→
∑

k

wk , (3.22)

where wk is the weight of each k-point and ΩBZ is the volume of the Brillouin zone.
The generation of the special k-points is done by the Monkhorst-Pack scheme [109],
which generates a uniform k point grid. The size of the number of k-points is a further
parameter of the calculation.

3.3 Mapping of potential-energy surfaces

Density-functional theory and the FP-LAPW method allow us to calculate the energy
of a system for a particular configuration of the nuclei with an error ≤ 0.1 − 0.2 eV
for energy differences. For dynamical studies of dissociation processes with moving
particles we need the energy for many configurations of the nuclei, i.e. the potential-
energy surface as a function of the coordinates of the reactants:

PES: ≡ V ({Rj
i}) ,

where Rj
i is the coordinate of nuclei i of species j taking part in the reaction. As already

discussed, potential-energy surfaces are multidimensional functions. In the calculation
of dissociation processes of H2 on metal surfaces an important approximation can be
applied. Due to the large mass mismatch of the H2 molecules and the substrate atoms,
the surface rearrangement upon adsorption is negligible. Consequently, the PES is a
function of the six degrees of freedom of the molecule alone:

H2/metal-PES : ≡ V (Xc, Yc, Zc, d, θ, φ) ,

whereRc = (Xc, Yc, Zc) is the centre of mass of the hydrogen molecule, d is the distance
between the two hydrogen atoms, θ and φ are the polar and azimuthal angles of the
molecule. This approximation reduces the costs of the calculation, because we are able
to keep the surface fixed. There are different approaches possible in order to describe
potential-energy surfaces with electronic structure calculations. First, the availability of
the forces can be used to follow the moving reactants through configuration space. This
approach gives usually only information about a very limited region of configuration
space, since ab initio total energy calculations are very time consuming and it takes
even longer to converge the forces than the energies.

Another approach, which we will follow in this work, is to study the PES on a
grid of points. Thus, one repeatedly performs ab initio total energy calculations of the
system for different configurations of the nuclei sampled on a grid and fine tunes this
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grid according to the information gained from the sampling. In this way we are able to
obtain information about the PES throughout the whole area of configuration space.
A common concept in mapping out the PES for H2 dissociation on metal surfaces [18,
19, 29, 22, 21, 23, 24, 25] is to keep the surface atoms fixed, to change the location,
bond length and orientation of the hydrogen molecule and to compute the electronic
structure for each geometry. The calculation of a PES mainly reduces to the study
of elbow plots: One chooses a configuration Xc, Yc, θ, φ and varies the coordinates Zc

and d. Another important aspect of ab initio total energy calculations of a PES for the
dissociation process is to concentrate the study on the dissociation over high-symmetric
sites on the surface, i.e. the bridge, hollow and on-top sites as indicated in Fig. 3.4.
This ansatz is motivated by the assumption that due to their distinct symmetry these
points should represent the major features like minimum and maximum energy barriers
of the PES rather well. An important advantage of these sites are the significantly lower
costs of the calculations due to their high symmetry. The usual mapping approach of
a six-dimensional PES can be summarised as follows:

(1) Choose high symmetric sites and fix the four coordinates Xc, Yc, θ, φ.

(2) Scan the other two dimension d and Zc based on a grid.

(3) Adjust the grid in order to scan the energy barriers in detail.

An example of the sampling of the energies within one elbow plot can be found in
Fig. 3.5. We plotted a two-dimensional cut through the PES for hydrogen dissociation
on the potassium covered Pd(100) surface. The region of the energy barrier where the
bond of the molecule starts to break is scanned in more detail.

(a) (b)

(c)

Figure 3.4: Adsorption sites for
an atom on the (1×1) sur-
face. (a): atom above the hol-
low site. (b) atom above bridge
site. (c) atom on top site.
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Figure 3.5: Sampling of an elbow plot of the ab ini-
tio PES for H2 dissociation on a K(2×2)/Pd(100)
surface. The sampling is based on a grid of points.
The region of the energy barrier is scanned in detail.
Inset: orientation of the molecule.
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Chapter 4

Interpolation of potential-energy surfaces

The potential-energy surface is the central quantity in theoretical studies of chemical
processes. Due to the development of efficient algorithms based on density-functional
theory and also due to an improvement of computer power it has been possible to
map out detailed potential-energy surfaces of the dissociation of hydrogen on metal
surfaces in recent years [18,19,29,22,21,23,24,25]. However, ab initio calculations of a
PES are accurate, but also very time-consuming and therefore provide us only with a
limited and discrete set of potential energies. The number of total energies calculated
in theoretical studies ranges typically from 100 to 1000 ab initio energies.

On the other hand, in molecular dynamics simulations we have to solve the
Schrödinger equation, in the quantum-mechanical case, or Newton’s equations of mo-
tion, in the classical approximation, for many different configurations of the atoms.
The statistical nature of the problem can require to evaluate the energy and the forces
of the reactants up to 106−107 times, which is not practical for a direct ab initio ap-
plication. In order to bridge this gap the discrete set of potential energies needs to be
interpolated to a continuous function of the configuration of the reactants, i.e. from a
discrete ab initio PES we want to govern a continuous ab initio PES.

Because of the importance of potential-energy surfaces in theoretical studies of
reaction dynamics, the interpolation scheme should fulfil a number of requirements:

2 The method must be accurate, i.e. its error for energy differences should be in
the range of density-functional theory implementations based on the actual ap-
proximation of the exchange-correlation functional (≤ 0.1−0.2 eV).

2 The evaluation of the interpolated energy needs to be fast to allow immediate
molecular dynamics (MD) calculations.

2 The computation of the forces has to be available to allow MD-calculations.

2 The number of energies required for accurate fitting should be orders of magnitude
lower compared to direct, on-the-fly ab initio MD (≤ 106−107 points).

2 The fitting procedure itself should be automatic, not manual.

2 It should be flexible to allow fitting a detailed high-dimensional PES.

2 It should conceptually allow its extension to high dimensions (≥ 6).
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2 Ideally the method should be general to allow its application to a wide range of
problems.

4.1 Interpolation schemes

Various approaches to fit a PES can be found in the literature. A common feature
is the optimisation of a number of parameters to reproduce the underlying data with
minimum error.

A London-Eyring-Polanyi-Sato (LEPS) form has been used widely in the last
decades [42, 43, 44, 45]. It is a two-state binding model describing the interactions by
Morse-potentials. Coulomb and exchange integrals are chosen such that the potential
describes the intramolecular binding for z →∞ and the atomic chemisorption potential
at large interatomic distances d and small distances from the surface z. An advantage
of this method is its simplicity, which is also a disadvantage, since it is not flexible
enough to describe a detailed high-dimensional PES.

If a large amount of data is available, a fit can be made to very general functions,
such as cubic splines [57]. However, conventional splines are not very robust with respect
to noise in the data and both the effort needed to fit the data with a spline function
and the interpolation error increase rapidly with increasing dimensions.

A genetic algorithm has been proposed for the fitting of a PES [46]. It is designed
to search for the correct functional form of the PES in a tree like structure of simple
basis functions. It is a general scheme and the evaluation of the potential after fitting
is fast. However, it has been successfully employed only for problems with up to three
dimensions. Furthermore a good initial guess of the functional form is needed as a
starting point for the search.

Another approach is to assume a functional form with a modest number of ad-
justable parameters [41, 51]. A well-chosen function may allow effective fits to small
amounts of data, but finding such a function requires intuition and a deep insight into
the problem.

Recently a hybrid scheme using a combination of numerical and analytical inter-
polation techniques has been proposed for hydrogen dissociation processes [48, 28, 27].
Instead of parameterising the ab initio PES directly, the interpolation is done after
subtracting the potential experienced by two isolated H atoms, located at the same
positions as the atoms in the H2 molecule. This results in a smooth and weakly site
dependent function, which is easier to interpolate than the strongly corrugated dis-
sociation PES. The obtained effective six-dimensional potential-energy surface is then
approximated by a combination of splines and analytical functions. The splines are
used to fit the two-dimensional elbow plots, the analytical functions are applied to
represent the other four dimensions. Yet, this approach needs insight and it might be
difficult to apply it to the interpolation of higher dimensional PESs.

As a concrete example of fitting a potential-energy surfaces we will briefly present
the interpolation of the PES of hydrogen on the clean palladium surface, H2/Pd(100),
calculated by Wilke and Scheffler [29, 22] with analytical functions [41] and a tight-
binding scheme [47].
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4.2 H2/Pd(100) Potential-Energy Surface:

Interpolation with analytical functions

Fitting a PES with analytical functions requires the choice of some basis functions. In
order to choose the appropriate functions, exceptional intuition and insight into the
problem is required. An important concept for describing dissociation in the plane of
the elbow plots, the Zd plane, is the introduction of reaction path coordinates [110].
This enables a division of the motion of the molecule into that along the reaction path
(coordinate s), the solid line in Fig. 2.1, p. 14, and into a vibration perpendicular to this
curve (coordinate r). At large distances of the molecule from the surface the vibration
is that of the gas-phase molecule, when the atoms are chemisorbed on the surface it is
that of the products. The potential can then be separated into three parts, one for the
corrugation of the potential in lateral directions, one for the rotation and one for the
vibration [41]:

V (Xc, Yc, s, r, θ, φ) = V corr + V rot + V vib (4.1)

with:

V corr =
2
∑

m,n=0

V (1)
m,n(s) cosmGXc cosnGYc , (4.2)

V rot =
1
∑

m=0

V (2)
m (s)

1

2
cos2 θ (cosmGXc + cosmGYc) (4.3)

+
2
∑

n=1

V (3)
n (s)

1

2
sin2 θ cos 2φ (cosnGXc − cosnGYc)

V vib =
µ

2
ω2(s) [r − ∆r(Xc, Yc, s)]

2 . (4.4)

G = 2π/a is the basis vector of the reciprocal lattice, a is the lattice constant, µ is the
reduced mass of the hydrogen molecule, and ω(s) is the frequency perpendicular to the
reaction path. The functions V (i)

m,n(s), ω(s), and ∆r(Xc, Yc, s) are the ’parameters’ of
the calculation. They are determined such that the difference between the analytical
potential and the 250 ab initio total energies is on the average smaller than 25 meV,
which is within the accuracy of the underlying ab initio data. The sine and cosine terms
represent the symmetry of the surface.

We will not discuss the single parts of the potential in further detail, but rather
point out that the choice of the appropriate basis functions and also of the functions
V (i)
m,n(s), ω(s), and ∆r(Xc, Yc, s) is a formidable task and can be even more cumbersome

for higher dimensions. Furthermore, the fit is tailored to the specific application and
is not a general scheme. If, e.g. the motion of the surface atoms plays a role in the
dissociation process, this parameterisation has to be extended.
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4.3 H2/Pd(100) Potential-Energy Surface:

Interpolation with a tight-binding scheme

Recently the PES for the system H2/Pd(100) has been fitted with a non-orthogonal
tight-binding total energy method (TBTE) [47]. We will briefly introduce the basics of
the TBTE method. For a more detailed description please refer to the publications by
Cohen, Mehl and Papaconstantopoulos [111,112,113].

According to density functional theory, using the Kohn-Sham ansatz for the kinetic
energy, the total energy of a system of electrons moving in a solid can be written as:

E [n(r)] =
∑

i

f(µ− εi)εi + F [n(r)] , (4.5)

where n(r) is the electron density, εi is the Kohn-Sham eigenvalue of the ith electronic
state, µ is the chemical potential and the sum is over all electronic states of the system.
The function f is a Fermi-function. The functional F [n(r)] contains the ion-ion inter-
action energy, the parts of the Hartree and Exchange-Correlation energy not included
in the eigenvalue sums, and corrections for double counting in the eigenvalue sums.
Commonly the eigenvalue sum is calculated by tight-binding methods, and F [n(r)] is
approximated by a sum of pair potentials [112]. The TBTE scheme does not include
a pair-potential term. Instead, the method takes advantage of the fact that the total
energy of a system is independent of the choice of zero of the potential. In the TBTE
method the total energy becomes [112]:

E [n(r)] =
∑

i

f(µ′ − ε′i)ε
′
i , (4.6)

where µ′ is the shifted chemical potential and ε′i are the shifted eigenvalues of a gener-
alised Schrödinger equation:

(Ĥ− ε′iŜ) Ψi = 0 , (4.7)

where Ĥ and Ŝ are the Hamiltonian and overlap matrices in an atomic basis rep-
resentation {Φα}. The Hamiltonian and overlap matrices are assumed to have the
Slater-Koster form [114], which have a physical meaning. The Slater-Koster integrals
are the parameters of this fitting scheme.

An important advantage of the TBTE method is that the quantum-mechanical
nature of bonding is taken into account. Therefore a good fit for the system H2/Pd(100)
has been obtained by using 55 ab initio points only. But since the diagonalisation of
matrices is required the computational effort is two to three orders of magnitude higher
compared to analytical parameterisations.

4.4 Advantages and disadvantages of various inter-

polation schemes

Interpolation of potential-energy surfaces is the key problem for theoretical discus-
sions of reaction dynamics. All interpolation schemes have some advantages and
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disadvantages. In order to give a comprehensive overview over the different methods,
we recapitulated the characteristics of the discussed fitting procedures in table 4.1.
The major disadvantages are that the different methods are either not very flexible,
like the LEPS potential, they are not general like fits with analytical functions,
their evaluation is very time-consuming, like the tight-binding scheme or their error
increases rapidly with increasing dimensions, like cubic splines. It is therefore fair to
say that the issue of finding the optimal interpolation tool despite its importance is
not yet solved.
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Advantages Disadvantages

LEPS potential ◦ simple form ◦ not flexible enough for high
dimensional problems

Splines

◦ general ◦ require large amount of data

◦ very flexible ◦ not very robust against noise

◦ allow fast evaluation of the
energy after fitting

◦ error increases rapidly with
increasing dimension

Genetic
algorithm

◦ general (in principle, but not
yet shown)

◦ good guess of the functional
form needed

◦ evaluation of the potential
fast

◦ only applied to problems
with up to three dimensions

Analytical
Functions

◦ modest number of parame-
ters

◦ often not flexible enough to
fit detailed PES

◦ suitable for calculations of
the potential energy in exten-
sive statistics

◦ choice of set of basis func-
tions in high dimensions diffi-
cult

◦ fast to evaluate after fit ◦ not general

Tight-binding
scheme

◦ treatment of the kinetic and
covalent interactions of elec-
trons chemically more appro-
priate

◦ requires the diagonalisation
of Hamilton and overlap ma-
trices ⇒ slower than other
schemes

◦ low number of points needed
for fit

◦ fitting procedure highly-
nonlinear and difficult

Table 4.1: Comparison of different interpolation tools for potential-energy surfaces:
advantages and disadvantages
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Chapter 5

Neural Networks

Despite its importance a general, fast and accurate interpolation tool for potential-
energy surfaces is still lacking. As an alternative to the fitting schemes discussed in
section 4.1, we will now introduce an interpolation method based on multilayer, feed-
forward neural networks (NN) [52,53,54]. Neural Networks can be described as general,
non-linear fitting functions that do not require any assumptions about the functional
form of the underlying problem. The resulting interpolant is smooth, continuous and
leads to a relatively simple but accurate expression for the PES. Evaluation of the
potential with a fitted neural network is cheap and the derivatives of the potential
surface are easily obtainable. Therefore, if the number of parameters and required
data for a good fit scale favourably with dimension, neural networks will be ideal for
molecular dynamics applications.

Artificial neural networks have been used for many years in physics and chemistry
in a variety of applications. They range from the classification of stars and galaxies,
the classification of mass spectra of organic compounds, the classification of events
in high-energy physics, protein-structure prediction, analysis of DNA sequences, de-
sign of pharmaceuticals, robotics, to the coupling in reaction-diffusion systems and
many more [12,13,14]. Applications in other fields include the prediction of time-series
in finance or geophysics [115, 116], signal processing and process control in engineer-
ing, thinking, consciousness and memory in neuro-physiology and character or speech
recognition for various tasks. Artificial neural networks are also used in a number of
commercial applications.

The main area of research in neural computing is devoted to classification or pattern
recognition problems which is a profoundly different task from the one we are interested
in, the interpolation of a multidimensional function. In the former, where neural net-
works have proven to be extremely useful, the network has to decide whether something
is true or not true, whereas in the latter it has to map a continuous problem. However,
neural networks have also been applied to problems involving function approximation
in general [117, 118] and more recently to the interpolation of potential-energy sur-
faces [57, 58, 59, 60, 61]. These works concentrate on studies of the potential-energy
surface of molecules in the gas phase. We want to extend these applications of the
neural network approach to reactions of molecules on surfaces on a high-dimensional
PES and employ the neural network PES in molecular dynamics simulations.
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It is important to notice that there is no such thing like “the neural network”. Neural
networks are rather a class of algorithms inspired from neuro-science with different
architectures of the nets. They can also be implemented as hardware [119]. We will
focus our work on multilayer feed-forward neural networks, which have proven to be
useful for function interpolation, see e.g. [57]. In feed-forward nets the information is
transmitted through a hierarchical structure of artificial neurons in only one direction.
More general architectures exist. Information can be allowed to travel in both ways
through the net. These nets are usually called recurrent networks and are mainly used
to recognise or reproduce time-series.

The fitting procedure to some specific data set is associated with the optimisation of
the parameters of the network, which is called learning in the neural network context.
Learning can proceed in two different ways, supervised and unsupervised. In supervised
learning the optimisation is done on the basis of direct comparison of the output of
the network with known correct answers. In unsupervised learning the learning goal
is not defined in terms of specific correct examples but rather through correlations
of the input data, which is more difficult. Since for fitting a PES a specific data set
for learning, the energies from the ab initio total energy calculations, is available this
chapter will be concerned with supervised learning in feed-forward neural networks.

5.1 Inspiration from Neuro-science

As the term “neural network” implies, this approach was aimed towards modelling real
networks of neurons in the brain and were inspired by a number of features of the brain
that would be desirable in artificial systems, like its robustness and fault tolerance, its
flexibility, its ability to deal with fuzzy and noisy information and its highly parallel
structure.

The brain is composed of about 1011 neurons. Figure 5.1(a) is a schematic drawing
of a single biological neuron. Networks of nerve fibre called dendrites are connected
to the cell-body. Extending from the cell body is a single long fibre called axon. They
end into the synaptic junctions, or synapses, to other neurons. Transmission of a signal
from one cell to another is a complex chemical process. The effect is to raise or lower
the electrical potential inside the body of the receiving cell. If this potential reaches
a threshold, a pulse is sent down the axon, the neuron fires. Learning means in this
context a strengthening or weakening of the synaptic junctions between the neurons.

McCulloch and Pitts [120] proposed a simple model of a neuron as a binary threshold
unit, see Fig. 5.1(b). The model neuron computes a weighted sum of the inputs from
other units, and either computes a one or a zero according to whether the sum is above
or below a certain threshold µj:

nj(t+ 1) = Θ

(

∑

i

wij ni(t) − µj

)

, (5.1)

where nj(t) is the state of neuron j and time t and Θ(x) is the unit step function or
Heaviside function. The weight wij represents the strength of the synapse connecting
neuron i to neuron j. Of course, real neurons involve many complications omitted in
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the McCulloch-Pitts description. The model is only inspired by the brain but not a
one-to-one description. A network composed of a number of such neurons is able to
describe linear-separable problems only. A simple generalisation of the McCulloch-Pitts
equation (5.1) is the use of a continuous-valued non-linear function f(x), the so-called
activation or transfer function:

nj = f

(

∑

i

wij ni − µj

)

. (5.2)

(a) (b)
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Figure 5.1: Schematic drawing of a biological and an artificial neuron. (a) Schematic
view of a biological neuron from the brain. (b) Schematic diagram of a McCulloch-Pitts
neuron. The unit fires if the weighted sum

∑

iwijni of the inputs reaches or exceeds
the threshold µj.

5.2 Structure of feed-forward neural networks

An artificial neural network is an example of a highly flexible non-linear model. It
consists of a number of artificial neurons or nodes, typically arranged in layers, inter-
connected via a set of links. A schematic representation of such a net is plotted in
Fig. 5.2. Each link multiplies its input by a parameter, the weight, before supplying it
to a new node. Each node sums over its inputs and applies a function to the resulting
value. In the input layer the identity function is used to distribute the information to
the second layer. This layer is called the hidden layer because its input and output is
not visible from to the outside world. The hidden layer is the core of the non-linear
fitting of the data set. The output layer collects the information from the hidden layer
and transforms it again. This network design, in which every node is connected to
every node in the adjacent layers but nodes in the same layer are not connected and
the information is transmitted only in one direction, is called a multilayer feed-forward
neural network.
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Figure 5.2: Schematic architecture of an artificial neural network, here a multilayer feed-
forward net. The neurons are arranged in layers. The bias unit acts as an adjustable
offset. The output function of this network with non-linear basis functions f1,2(x) is:

Vpot(x1, x2) = f2

(

w2
01 +

∑3
j=1 w

2
j1 f1

(

w1
0j +

∑2
i=1 w

1
ijxi

))

.

The output ypj of the jth neuron in layer p, which receives inputs {yp−1
i } via links

with weights {wp
ij} from the previous layer, may be written as:

ypj = f
(

xpj
)

=

(

wp
0j +

∑

i

wp
ijy

p−1
i

)

, (5.3)

where f() is the non-linear activation function. The weight wp
0j is called the bias of

node j in layer p, which acts as an adjustable offset of the activation function. The
input layer is counted as layer 0, the output layer corresponds to layer N . The output
of a fully connected three layer neural network with one input, one hidden and one
output layer and n0, n1 and n2 nodes in each layer, respectively, can be written as:

y2
k = f2



 w2
0k +

n1
∑

j=1

w2
jk f1

(

w1
0j +

n0
∑

i=1

w1
ijy

0
i

)



 ∀ k = 1, 2, . . . , n2 . (5.4)

In the case of fitting a potential-energy surface with a neural network, the {y0
i } represent

the coordinates of the reactants. For hydrogen dissociation the input layer of the net
will consist of six units corresponding to {y0

i } = {Xc, Yc, Zc, r, θ, φ}. In the output layer
we will have just one output node, the potential energy Vpot({y0

i }).
For convenience we have presented in Fig. 5.2 a feed-forward network with only

one hidden layer. However, it should be noted that the number of hidden layers is not
restricted. In fact, we will most often use networks with two hidden-layers.

A generalisation of the network architecture is to employ direct links from the input
to the output units in conjunction with a linear activation function in the outputs. This
can be especially helpful to speed up learning if some linear dependence is present in
the data set.
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5.3 Function approximation and neural networks

In the approximation of functions with neural networks it is a priori not known how
many hidden layers and units the net needs to be composed of. Cybenko showed that
in order to approximate a particular set of functions with arbitrary accuracy at most
two hidden layers with sigmoidal activation functions and a sufficient number of nodes
are necessary [121]. It has also been proven, that only one hidden layer is enough to
approximate any continuous function to given accuracy [55,56]. The results depend, of
course, on how many hidden nodes have to be applied. This is not known in general
and needs to be tested for the particular problem.

5.4 Activation functions

Non-linear activation or basis functions are what give neural networks their non-linear
capabilities. The function must be differentiable for the optimisation of the parameters
and we normally want it to saturate at both extremes. The most common forms of
activation functions are the monotonically increasing sigmoidal or Fermi-like functions,
like the sigmoid or the hyperbolic tangent function:

hyperbolic tangent f(x) = tanh(x) , (5.5)

sigmoid function f(x) =
1

1 + e−x
. (5.6)

These functions are also called squashing functions, because of their asymptotic be-
haviour at ± ∞, see Fig. 5.3 and Fig. 5.4. Such activation functions can be employed
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Figure 5.3: Hyperbolic tangent with
f(x) = tanh(x) ranging from [−1,+1]
for x→ ± ∞.
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Figure 5.4: Sigmoid function with
f(x) = 1

1+e−x ranging from [0, 1] for
x→ ± ∞.

in the hidden layers as well as in the output layer. However, one often doesn’t want to
squash the output values to a certain range and therefore uses a linear output function
as the activation function in the output nodes:

linear function: f(x) = x . (5.7)
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There is a wide-spread use of both sigmoid and hyperbolic tangent functions in ap-
plications published in the literature. However, convergence with functions which are
symmetric about the origin, like the hyperbolic tangent, is often faster [54] and there-
fore will be preferred (for a more detailed discussion see Sec. 5.9, p. 56).

In order to describe the network architecture in a simple way the following notation
is used: the number of nodes in the layers, followed by letters denoting the activation
function, with s for sigmoid, l for linear and t for the hyperbolic tangent. In this
notation, the network in Fig. 5.2 in conjunction with a hyperbolic tangent function in
the hidden layer and a linear function in the output layer has a {2−3−1 tl} structure.

Although most systems use nodes based on dot products and sigmoidals, many other
types of nodes like the radial basis function (RBF) network can be used [122, 123]. In
RBF networks, the dot product of the weight and the input vector (

∑

i=1 w
p
ijy

p−1
i ) is

replaced by an Euclidean distance between the input and the weight ( ‖yp−1
i −wp

ij‖2 ).
Furthermore the sigmoidal function is replaced by a Gaussian. The output ypj of the
j-th neuron in layer p is computed as:

ypj = exp

(

−‖y
p−1
i − wp

ij‖2

2(σpj )
2

)

. (5.8)
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Figure 5.5: Gaussian

The Gaussian function is plotted in Fig. 5.5. Radial ba-
sis function networks form a separate class of nets. The
parameters have a different meaning in comparison to
the sigmoidal networks. The weight w1

ij can now be in-

terpreted as the mean of the j-th Gaussian and σj is the
corresponding standard deviation. They have to be de-
termined by unsupervised clustering algorithms, which
make their application more difficult. Unlike sigmoidal
nodes which can cover the entire space, a single RBF
unit covers only a small region of the input space. This
can be an advantage, because learning can be faster, al-

though this is highly problem dependent. However, the locality property of RBFs may
be a disadvantage particularly in high dimensional spaces because many units are
needed to cover the spaces and the output will be rather bumpy. Therefore RBFs are
more appropriate for low dimensional problems, for fitting high-dimensional PESs we
will prefer sigmoidal activation functions.

5.5 Supervised Learning - parameter optimisation

The training of a feed-forward neural network is equivalent to performing a non-linear
optimisation of the network parameters, the weights. Due to the inspiration from neuro-
science, this process is called learning in the network community. A special form of
parameter optimisation is the so-called supervised learning. The learning is done by
comparing the output with known correct answers. In the case of fitting a PES, the
known answers are the energies obtained from ab initio total energy calculations. The
optimisation of the network weights is performed by some iterative optimisation scheme



5.5 Supervised Learning - parameter optimisation 47

until a desirable solution measured by a scalar cost function E is reached. The cost
function is normally taken as the sum of the squared residuals between the true or
targeted value t({y0

i }) and the actual output of the network y({wij}, {y0
i }) depending

on the inputs and the weights:

E
(

{y0
i }, {wij}

)

=
n
∑

j=1

‖ t({y0
i })− y({wij}, {y0

i }) ‖2 , (5.9)

where n is the number of examples in the data set. In order to minimise the costs the
network cycles repeatedly through the following steps of the learning process:

(1) present the network one example of the set of data,

(2) measure the response of the output layer of the net,

(3) calculate the mean squared error between the output and the target value,

(4) adjust the weights to minimise the cost function

(5) if the mean squared error reaches a desired lower bound, stop the iteration, oth-
erwise go to (1).

The optimisation of the weights is usually done by gradient-based learning methods like
steepest decent, conjugate gradients or quasi-newton algorithms [124]. Two different
update schemes of the parameters in (4) exist. One can first present the network the
whole set of examples, called an epoch, and only then changes the weights accordingly,
known as batch or off-line learning, or the update is performed after the presentation
of every single example, chosen randomly. This is called stochastic or on-line learning.
On-line and off-line learning are compared in table 5.1. There are several advantages of
stochastic over batch learning. It is often faster because redundancy or the presence of

On-line Off-line

usually much faster than batch or off-
line learning

conditions of convergence well under-
stood

results obtained often better in compar-
ison to off-line learning

many optimisation schemes like conju-
gate gradients only operate in off-line
mode

importance of each data point directly
visible

theoretical analysis of convergence rates
simpler

Table 5.1: On-line and off-line learning for feed-forward neural networks

patterns which are very similar lead to slow convergence in off-line learning. Further-
more, it results most likely in better solutions, because updating the weights after each
example increases the probability of getting out of a local minimum of the error surface
before the iteration gets stuck. Off-line learning will discover the minimum wherever
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the weights are. In on-line learning, the noise present in the updates coming from the
numerical calculation of the gradient after each example can result in weights which
are able to find a different minimum. However, this noise, which is so crucial for finding
better local minima also prevents full convergence to the minimum.

5.6 Optimisation algorithms

When each training example is presented to the network, an output value depending on
the current set of weights is predicted and the error to the targeted value is calculated.
The training algorithms adjust the weights to reduce the output error as measured by
the cost function. Given the structure of the network, it is relatively easy to determine
the derivative of the output with respect to the weights. These derivatives can be used
to minimise the output error of the network.

5.6.1 Basics of gradient descent

Let us start with a one-dimensional case, where the update equation for gradient de-
scent can be written as:

w(t) = w(t− 1)− η
∂E

∂w
, (5.10)

where E is the error function of the network, w is the parameter vector and η is the
learning rate. In order to find out something about the optimal learning rate ηopt we
expand the error function E in a Taylor series about the current weight wc:

E(w) = E(wc) + (w − wc)
dE(wc)

dw
+

1

2
(w − wc)

2 dE2(wc)

d2w
+ · · · , (5.11)

with dE(wc)
dw

= dE
dw
|w=wc

. If E is quadratic the second order derivative is constant and
the higher order terms vanish. Differentiating both sides with respect to w then gives:

dE(w)

dw
=
dE(wc)

dw
+ (w − wc)

dE2(wc)

d2w
. (5.12)

Setting w = wmin and noting that dE(wmin)/dw = 0 gives after some rearrangement:

wmin = wc −
(

dE2(wc)

d2w

)−1
dE(wc)

dw
. (5.13)

If we compare this with the gradient update equation (5.10), we find:

ηopt =

(

dE2(wc)

d2w

)−1

(5.14)

If E is not exactly quadratic then the higher order terms in equation (5.11) do not
vanish and (5.13) is only an approximation. However, convergence can still be quite
fast. The right side of equation (5.14) is the inverse of the Hessian matrix H−1, with:

Hij =
∂2E

∂wi∂wj

. (5.15)
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The eigenvectors of H point in the directions of the major and minor axes, the eigen-
values measure the steepness of E along the corresponding eigendirection. In multiple
dimensions it is rather time consuming to calculate the Hessian, therefore the different
minimisation algorithms based on gradient-descent vary by the approximations made
to estimate the learning rate η.

5.6.2 Backpropagation

The simplest minimisation procedure in gradient descent is to take the learning rate
η>0 as a scalar constant:

w(t) = w(t− 1)− η
∂E

∂w
. (5.16)

This minimisation is called backpropagation in the neural network community. It is es-
sentially the standard steepest-descent algorithm [124]. More sophisticated procedures
use variable η. A momentum term can increase the speed of convergence when the cost
surface is highly non-spherical because it damps the size of the steps along directions
of high curvature. Therefore it yields a larger learning rate along the directions of low
curvature. Momentum is a method of averaging the weight changes. We first calculate
the change that would correspond to the direction of steepest descent at the current
weight. But the change we actually make is the average between this indicated change
and the last actual change. We accomplish this by using an exponential average:

∆w(t) = (1− µ) η
∂Et

∂w
− µ ∆w(t− 1), (5.17)

For the update of the weights in (5.16) and (5.17) the partial derivative of the error
function with respect to the weights needs to be calculated. We will now sketch how
this can be done and why this gradient-descent algorithm is called backpropagation.

The cost function of the neural network is the sum over the squared residuals of the
target value tk and the current value yN=2

k of the k-th output node for each example p:

E =
∑

p

Ep

(

w,y0
)

, (5.18)

with:

Ep =
1

2

∑

k

(

tk − yNk (w,y
0)
)2

. (5.19)

This cost function needs to be minimised with respect to the weights, i.e.:

∂E

∂w
=
∑

p

∂Ep (w,y
0)

∂w
= 0 . (5.20)

Therefore we need to calculate the derivatives ∂Ep

∂w
. In order to derive this derivative,

let us assume a three-layer network as plotted in Fig. 5.2, p. 44. In the network, the
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following relationships hold for the first and the second layer respectively, where the
input layer is counted as the 0-th layer:

Input - hidden layer























x1
j

(

w,y0
)

=
n0
∑

i

w1
ijy

0
i

y1
j

(

w,y0
)

= f 1
j

(

x1
j

)

, (5.21)
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where we dropped the bias terms for simplicity. The output of each neuron depends on
the network input vector y0 and the current weight vector w. The partial derivative
of the error function (5.19) with respect to a weight leading into an output node can
be calculated using the chain rule:

∂Ep

∂w2
jk

=
(

tk − y2
k(w,y

0)
) ∂y2

k

∂w2
jk

=
(

tk − y2
k(w,y

0)
) ∂f 2

∂x2
k

∂x2
k

∂w2
jk

. (5.23)

Consequently, the partial derivative of the error function with respect to a weight
leading into a hidden node is (with n2 output nodes):

∂Ep

∂w1
ij

=
n2
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k=1

(
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k(w,y
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) ∂f 2

∂x2
k
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j
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j
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j

∂w1
ij

. (5.24)

In order to calculate the error derivative, the error is propagated back through the
network and on the way the partial derivatives are being collected. This is why this
gradient-descent based minimisation scheme is called backpropagation in the neural
network community. For a more general derivation of the backpropagation update
formulas please refer to Appendix A, p. 149.

5.6.3 Conjugate Gradients

Conjugate gradient is a standard first order optimisation scheme, see [124], i.e. it uses
information on the first derivative of the error function only. Its main properties are:

2 it is an O(n) method,

2 it attempts to find descent directions that try to minimally spoil the result
achieved in the previous iterations,

2 it uses a line search, a one-dimensional sub-minimisation,

2 it works only for batch learning .

It has been applied with success in multi-layer network training on problems that are
moderately sized with rather low redundancy in the data. However, its main disadvan-
tage remains that it is an off-line method only.
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5.6.4 Newton and Quasi-Newton methods

We have seen that the weight update can be computed in the following way:

∆w = η

(

dE2(w)

d2w

)−1
dE(w)

dw
= η (H(w))−1 J(w) , (5.25)

where J is the Jacobi matrix,H is the Hessian matrix and η must be chosen in the range
of 0 < η < 1, since E is in practice not perfectly quadratic. The Newton algorithm uses
the Hessian matrix explicitly. However, one of the main drawbacks is that an N×N
Hessian matrix, where N is the number of weights, must be stored and inverted, which
takes O(N 3) iterations. Furthermore, there is no guarantee of convergence. Since the
error function is in general not quadratic, the Hessian might not be always positive
definite and the algorithm diverges. In Quasi-Newton algorithms, the inverse Hessian
is estimated by some positive definite matrix, which ensures convergence. In the Gauss-
Newton algorithm the Hessian is approximated by the square Jacobian matrix [124,54]:

Ĥ(w) = J(w) JT (w), (5.26)

and the update is therefore:

∆w = η
(

J(w) JT (w)
)−1
J(w) . (5.27)

Optimisation schemes which approximate the Hessian of the system are called second
order algorithms, since the Hessian is the matrix of the second derivatives. Most im-
portantly, Quasi-Newton algorithms are designed for off-line learning. The update step
is taken at the end of an epoch, i.e. after presentation of the whole data set.

5.6.5 Extended Kalman filter

The Kalman filter is a digital filter, an algorithm expressed in state space notation
which comes from optimal estimation and control theory [125]. It is designed to filter
out noise from time series, e.g. sequences of measurements. However, it has also been
applied recently for the optimisation of the weights in neural networks [126, 127, 128].
The Kalman filter exhibits optimal statistical properties when applied to linear dynamic
systems containing white noise. It recursively computes minimum variable estimates of
the state variables, i.e. the weights. However, feedforward neural network output func-
tions are nonlinear and therefore represent a nonlinear system. The extended version
of the Kalman filter models such systems by a local linearisation of the system model
around the current estimates of the state variable. Feedforward neural networks can be
regarded as a static, non-linear dynamic system, where the optimal weight vector wopt

is assumed to be invariant with time. For an application of the extended Kalman filter
(EKF) to the optimisation of neural networks, we view the presentation of input and
output data, and the associated weight estimates, as an evolving time series. In the
Kalman filter approach the target output value at presentation k, t(x(k)), is assumed
to be equal to the sum of the output from the trained network y(wopt,x(k)), depending
on the weight and the input vector, and the vector of modelling errors, e(k):

t(k) = y(wopt,x(k)) + e(k) . (5.28)
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The extended Kalman filter equations are derived by expanding the nonlinear output
function y around the current estimate parameter vector ŵ(k − 1):

t(k) = y (ŵ(k − 1),x(k)) + JT (k) (wopt − ŵ(k − 1)) + ρ(k) + e(k) , (5.29)

where J(k) is the Jacobi matrix given by:

J(k) =
∂y (w,x(k))

∂w

∣

∣

∣

∣

∣

w=ŵ(k−1)

, (5.30)

and ρ(k) is the residual of the Taylor expansion of the network output function y. The
estimate ŵ(k) is obtained by the optimal regression of wopt, i.e. we minimise:

ε(k) =
k
∑

p=1

‖e(p)‖2 λ
k−p , (5.31)

where an exponential weighting of the sequence of filter errors is produced by the factor
λk−p. The cost function is determined by summing over all previous iterations, but
the weighting factor provides significant weighting only for more recently encountered
examples [127]. The time varying forgetting schedule changes the value of λ before the
presentation of each training sample according to:

λ(k) = λ0 λ(k − 1) + 1− λ0 , (5.32)

where λ0 is typically a constant between 0.99 and 0.9995 and the initial value of λ,
λ(0), is chosen between 0.95 and 0.99. The idea behind the use of a weighting term is
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Figure 5.6: Forgetting factor λk−p for two
different values, λ=0.980 and λ=0.995
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Figure 5.7: Forgetting schedule λ(k),
with λ(k) = λ0 λ(k − 1) + 1 − λ0, for
λ(0)=0.98 and λ0=0.9994

twofold. First, one wants to make any contribution from previous iterations negligible
at the beginning of the minimisation in order not to get trapped in a local minimum
too early during the process. The forgetting factor λk−p has been plotted in Fig. 5.6
for two different values. At the beginning of the optimisation λ is smaller and fewer
examples are taken into account, because λ drops faster to zero. As the number of
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epochs increases the weight estimates approach the region of a minimum that corre-
sponds to an acceptable level of error. But then it is advantageous to make use of all
available information in the optimisation. Due to the special form of the forgetting
schedule λ(k), more and more examples are included in the cost function as training
proceeds. As the number of iterations increases, λ also increases, see Fig. 5.7, and this
leads correspondingly to a less pronounced drop in the forgetting factor in Fig. 5.6.

The extended Kalman filter equations are derived from the minimisation of equa-
tion (5.31), i.e. by setting

∇wopt
ε(n) = 0 . (5.33)

The derivation can be found in Appendix B, p. 151. It follows mainly that of the
recursive least square algorithm [129, 130]. The EKF recursions for a neural network
are:

K(n) = λ−1 P(n− 1) J(n)
[

I+ λ−1JT (n)P(n− 1)J(n)
]−1

, (5.34)

ŵ(n) = ŵ(n− 1) +K(n) (t(n)− y(ŵ(n− 1),x(n))) , (5.35)

P(n) = λ−1 P(n− 1)− λ−1 K(n) JT (n) P(n− 1) , (5.36)

where n is the number of iterations, K(n) is the so-called Kalman gain matrix, P(n) is
the state covariance matrix, J(n) is the Jacobi matrix and I is the identity matrix. In
order to proceed in the minimisation we need to cycle through these recursively defined
equations. The extended Kalman filter allows us to perform on-line learning, i.e. the
weight vector can be updated after presentation of each example, which is superior to
off-line learning, e.g. in the Gauss-Newton algorithm.

It is informative to compare the extended Kalman filter recursions with the update
formulas in second order algorithms of the previous section. Let us rewrite the update
of the weight vector in the EKF in equation (5.35) as:

∆w(n) = η(n) K(n) , (5.37)

with η(n) = t(n)−y(ŵ(n−1),x(n)). For the Kalman gain matrix we are able to write:

K(n) = ρ(n) P(n− 1) J(n) , (5.38)

where ρ(n) = λ−1
[

I+ λ−1JT (n)P(n− 1)J(n)
]−1

. The inverse in the definition of ρ is
just a factor for a network with only one output node. From these two equations the
weight update in the EKF looks now as follows:

∆w(n) = γ(n) P(n− 1) J(n) , (5.39)

with γ(n) = η(n) ρ(n). If we compare this update with the Quasi-Newton update:

∆w = η
(

Ĥ(w)
)−1

J(w) , (5.40)
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it is evident, that the EKF is essentially a Quasi-Newton optimisation algorithm, but
now for on− line learning. The inverse of the matrix P(n) in the EKF is defined as:

P−1(k) =
k
∑

p=1

J(p)JT (p) λk−p . (5.41)

The state covariance matrix P(n) is expressed as a weighted history of Gauss-Newton
approximations to the inverse Hessian, see eq.(5.26). The diagonal elements determine
the strength of the update step and can be viewed as approximations of the uncertainty
in the current weight estimates.

In order to reduce the computational burden imposed by updating the parameter
vector after presentation of each example and rather not only once at the end of one
epoch, an adaptive EKF algorithm has been proposed [127]. The reduction is achieved
by setting a threshold, defined as a fraction of the current root mean squared error, on
the filter update step. Only when the output error exceeds this threshold, the update
is performed. Through this adaptive filtering, the number of unproductive steps can
be greatly reduced.

In fitting potential-energy surfaces some parts of the surface may be more impor-
tant than others, e.g. the region where a bond breaks. We have changed the original
recursions of the extended Kalman Filter slightly to allow for a separate weighting of
each example. The corresponding equations can be found in Appendix B, p. 151.

Furthermore, if information about the forces of the moving nuclei is obtainable,
it may be advantageous to take account of this information. Since the neural network
output function is an analytical representation of the inputs, its derivatives with respect
to the inputs can be computed, see Appendix C, p. 157. In order to minimise the output
of the net along with its derivatives, we have imposed the following cost function:

ε(n) =
n
∑

j=1

αj

[

‖e(j)‖2 +
N
∑

i=1

∥

∥

∥

∥

∥

∂t(j)

∂xi(j)
− ∂y(w,x(j))

∂xi(j)

∥

∥

∥

∥

∥

2

]

λn−j , (5.42)

where n is the number of iterations, N is the number of input nodes, (x(j), t(j)) is the
sequence of input/output patterns, αj is a weighting parameter for each example, e(j)
is the sequence of errors and y(w,x(j)) is the nonlinear output function of the neural
network. If we minimise this error function, we obtain the following EKF recursions:

K(n) = α(n) λ−1 P(n− 1) J(n)
[

I+ λ−1JT (n)P(n− 1)J(n)
]−1

, (5.43)

ŵ(n) = ŵ(n− 1) +K(n) (t(n)− y(ŵ(n− 1),x(n)))

+
N
∑

i=1

α(n)P(n)
∂J(n)

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)

, (5.44)

P(n) = λ−1 P(n− 1)− λ−1 K(n) JT (n) P(n− 1) . (5.45)

For the complete derivation of these equations please refer to Appendix B, p. 151. The
update of the weight vector in (5.44) is now influenced by the error of the output and
its derivatives.
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5.7 Generalisation

When training a neural network, one does not really want to reach full convergence to
the minimum but is rather interested in obtaining a network with optimal generalisation
performance. Generalisation means that the network should not only represent the
fitted data set very well but is also able to predict new data points reliably.

During optimisation often overfitting occurs. This refers to the situation that while
the network seems to get better and better and the error on the training data set
decreases, the error on unseen examples increases as plotted in Fig. 5.8, i.e. globally
the network is getting worse again.

Figure 5.8: Evolution of the error for
a typical neural network. The error
of the trained data set decreases con-
tinuously, whereas the error of unseen
examples, the test error increases at
some point. This behaviour is called
overfitting.
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Typically the generalisation error is estimated by a validation or test error, i.e. the
average error on a validation or test set, a fixed set of examples not present in the
training set. In order to improve the generalisation of the network the most commonly
used technique is early stopping:

2 Split the training data into a training and a test set.

2 Train only on the training set but monitor the error on the test set during opti-
misation

2 The error on the training set will decrease, whereas the error on the test set will
first decrease and then increase.

2 Stop training as soon as the error on the validation set is higher than it was
before. It is here that the network weights provide the best generalisation.

Early stopping is widely used because it is simple to understand and implement. Besides
early stopping one should also try to keep the dimensionality of the network as low as
possible in order to avoid extreme overfitting.
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5.8 Regularisation

In order to achieve good generalisation with neural networks overfitting needs to be
controlled. This can be achieved by early stopping, as previously discussed, or also by
an application of weight penalty factors or regularisation parameters, i.e. a constraint
is put on the parameters of the network. That is, instead of only minimising the usual
root mean squared cost function, we augment it with a regularisation µR(w):

E(w) =
1

N

N
∑

n=1

[t(x(n))− y(w,x(n))]2 + µR(w) , (5.46)

where R(w) is a function of the network parameters. Regularisation is usually per-
formed by weight decay [52]. Since overfitting occurs when weights of the network
become too large, one uses a penalty term in the cost function for large parameters:

E(w) =
1

N

N
∑

n=1

[t(x(n))− y(w,x(n))]2 + µ‖w‖2 . (5.47)

With weight decay the network itself removes non-useful connections during training
by giving each connection a tendency to decay to zero, so that they dissappear unless
reinforced. The simplest way to apply weight decay is to use a scalar weight decay
parameter µ, but also more sophisticated approaches exist [131, 132]. The extended
Kalman filter can be viewed as a general case of the weight decaying method, when
initialised with weights close to zero [133]. Therefore, we need to apply weight decay
only to optimisation schemes like backpropagation and conjugate gradients.

5.9 Normalising the data

Gradient-descent based minimisation algorithms like backpropagation can be very slow,
particularly for a multi-layer neural network where the cost function is typically non-
quadratic, non-convex, and high dimensional with many local minima and flat re-
gions. [54]. It is therefore recommended to pre-process the input and output data.

Normalising the inputs

Convergence is usually faster if the average of each input variable over the training set
is close to zero. The reason is that a nonzero mean in the input variables creates a
very large eigenvalue of the Hessian matrix. This means, the condition number will be
large, i.e. the cost surface will be steep in some directions and shallow in others so that
convergence will be very slow. Therefore it is recommended to preprocess the inputs
by subtracting their means. This is also the reason why the tanh-function usually
converges better than the sigmoidal function. The hyperbolic tangent is symmetric
about the origin and is therefore more likely to produce outputs, which are also inputs
to the next layer, that are on average close to zero.
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Convergence is also faster if the inputs are scaled so that all have about the same
covariance Ci:

Ci =
1

P

P
∑

p=1

(zpi )
2 , (5.48)

where P is the number of training examples, Ci is the covariance of the ith input
variable and zpi is the ith component of the pth training example. Scaling helps because
it balances out the rate at which the weights learn. Inputs that have a large variation in
spread along different directions of the input space will have a large condition number
and slow learning.

Normalising the outputs

If one uses a non-linear activation function in the output layer, then it is necessary
to normalise the output variables in order to match the output range of the units.
However, it is not recommended to set the maximum and minimum target values at
the value of the activation functions asymptotes. One reason is that instabilities can
result. The training process will try to drive the output values of the units as close as
possible to the target values, which can only be achieved asymptotically. As a result,
the weights are driven to larger and larger values, where the derivative of the activation
function is close to zero. The weights may become stuck. A solution to this problem
is to set the target values to be within the range of the activation functions, rather
than at their asymptotic values. But care must be taken to insure that the node is not
restricted to only the linear part of the activation function. Setting the target values
to the point of the maximum second derivative on the transfer function is the best way
to take advantage of the nonlinearity without saturating the activation function.

5.10 Weight initialisation

The starting values of the parameters can have a significant effect on the learning
process. The weights in the neural network should be chosen randomly but in such
a way that the transfer function is activated in its linear region. Taking the weights
in this intermediate range has the advantage that learning can proceed, because the
gradients are large enough, and the activation function of each node will be far away
from the region of saturation. However, achieving this means to coordinate between
the normalisation of the data, the choice of the transfer function and the choice of
the weight initialisation. Having normalised the inputs and outputs as described in the
previous section, the weights should be randomly drawn from a uniform distribution
with mean zero and standard deviation, where m is the number of connections reaching
into the specific node [54]:

σw = m− 1
2 . (5.49)
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5.11 Ill-conditioning

The minimisation of the neural network cost-function is, more often than not, an ill-
posed problem, i.e. it does not meet the following requirements:

2 The network can learn the desired function, i.e. a solution exists.

2 The solution is unique.

2 The solution is stable under small variations in the training data set.

The first requirement can be achieved by using many hidden nodes, since any contin-
uous function can be constructed with a single hidden layer with sigmoidal functions.
Furthermore, we may be happy with any solution and ignore the second requirement
and questions on uniqueness. However, a network that has learned the training data
perfectly will be very sensitive to changes in the training data, the third requirement. A
solution which changes significantly with slightly different training sets will have poor
generalisation properties. This problem can be solved by applying early-stopping and
regularisation techniques like weight-decay as discussed before.

However, an important problem for gradient-based learning methods is the particu-
lar form of the error function that represents the learning problem. It is well known that
the derivatives of the error function are usually ill-conditioned. This ill-conditioning is
reflected in error landscapes which contain many saddle points and flat areas where
the Hessian matrix is bad conditioned. It appears that feed-forward learning tasks are
generally characterised by having a singular or near-singular Hessian [134], which leads
to inaccuracies due to the limited floating point accuracy of the digital computer. One
reason is the ill character of the incorporated transfer function, the sigmoidal functions.
They saturate at larger input values leading to nearly-zero derivatives and therefore
singularity. Also, bad conditioning can be the result of uncentred data, which can be
alleviated by normalising the inputs and outputs as already discussed.

However, there is another important reason for singularity stemming from the struc-
ture of the feed-forward network. When a multi-layer network has a small weight leaving
from a hidden unit, the influence of the weights that feed into this hidden unit is sig-
nificantly reduced. Due to the chain rule the derivative will be close to zero, leading
to near-null rows in the Jacobi matrix and a near-singular Hessian. This kind of sin-
gularity is very common in neural network learning: The gradients in the lower-layer
weights are influenced by the higher-layer weights.

One should keep in mind that ill-conditioning is a characteristic problem in feed-
forward network learning.

5.12 Fortran program

In the scope of this work we have written a Fortran90 multi-layer feedforward neural
network program. The results we will present throughout the following chapters have
been obtained using this computer program.
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The main features of the neural network program are:

2 adjustable number of hidden layers,

2 adjustable number of nodes in each layer,

2 direct links between input and output nodes possible,

2 random weight initialisation,

2 flexible choice of activation functions for hidden and output layer,

2 implemented activation functions:

– linear functions,

– sigmoid function,

– hyperbolic tangent function,

– sine functions,

– Gaussian-like functions,

2 random choice of training examples,

2 optimisation algorithms:

– adaptive backpropagation with momentum

– conjugate gradients

– adaptive global extended Kalman filter

2 weighting of the input data set can be applied,

2 “forces” can be included in the minimisation,

2 weight decay,

2 pre-conditioning of the data set.

The neural network program can be used in two different modes, the training and the
production mode. In the first one the minimisation of the cost function is performed,
whereas in the latter the already trained network can be used to produce new data,
e.g. in molecular dynamics or for the plotting of iso-surfaces through the configuration
space of the network function.
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Chapter 6

Ab initio molecular dynamics

In ab initio on-the-fly molecular dynamics the forces acting on the molecule are deter-
mined by density functional theory. One approach is to first solve the Kohn-Sham equa-
tions self-consistently to obtain the electronic ground state and the forces of the nuclei
as described in Chapter 3. In a second step these forces are used to integrate the equa-
tions of motion for the nuclei for the next time step (see, e.g., Bockstedte et al. [11]).
Car and Parrinello followed a different approach to ab initio MD [135]. They treat the
electronic and nuclear degrees of freedom together at the same time by simulating a
fictitious classical dynamical system. Both approaches to ab initio MD simulations are
accurate and do not require any fitting of the PES. However, since for each step the
forces are determined by a new DFT calculation, they are very time-consuming. Their
application is limited to problems where a small number of trajectories is sufficient to
gain insight into a particular process, e.g. for an investigation of the adsorption and
desorption mechanism of molecules on semiconductor surfaces [39].

However, for a theoretical description of sticking probabilities of molecules on metal
surfaces we need to consider a good statistical average over the different initial con-
figurations of the molecule approaching the surface [40]. This may require 106−107

evaluations of the potential and the forces. Ab initio on-the-fly molecular dynamics
simulations are not applicable to problems with extensive statistics. Therefore Groß
and Scheffler proposed a “divide and conquer” approach for ab initio molecular dy-
namics which is built on three independent steps [40]: first, one determines the ab
initio PES by DFT. In a second step an interpolation between the actually calculated
ab initio energies is performed. The last step consists of a molecular dynamics calcula-
tion on this continuous representation of the ab initio PES. Throughout the following
we will assume that we have solved the problem of evaluating the potential energies,
have furthermore developed a suitable model-form for the PES, and now wish to de-
termine the final arrangement of the molecules given their initial configuration and
momenta. This will be done by performing MD calculations on the continuous Neural
Network potential-energy surface.

Since atoms and molecules are quantum particles, reaction probabilities should
in principle be determined quantum mechanically, i.e. by solving the time-dependent
or time-independent Schrödinger equation. However, these calculations are very time-
and/or memory-consuming. It is often sufficient to perform classical molecular dynam-
ics by solving Newton’s or Hamilton’s equations of motion.



62 Ab initio molecular dynamics

6.1 Quantum dynamics

One common approach in quantum dynamics is to solve the time-independent
Schrödinger equation:

[ H ({R}) − E ] Ψ ({R}) = 0 . (6.1)

Here H ({R}) is the Hamilton operator for the nuclei of the system, where the po-
tential energy entering the Hamiltonian is the DFT energy, and {R} are the ionic
coordinates. The corresponding wave function Ψ needs to be expanded in a finite basis
set. The problem is that even for the six-dimensional model of hydrogen dissociation on
metal surfaces up to 21000 basis functions, so-called channels, need to be employed in
the calculation. Therefore six-dimensions are currently the cutting-edge for theoretical
quantum dynamics of reactions on surfaces [41,40]. The movement of substrate atoms
which is important for the description of the desorption of H2/Si is so far not possible
to be incorporated in quantum dynamical calculations.

The same holds for time-dependent or wave-packet dynamics where the time-
dependent Schroedinger equation is solved:

ih̄
∂

∂t
Ψ(R, t) = H Ψ(R, t). (6.2)

Here the wave function and the potential needs to be described on a finite grid of points.
The number of points becomes rather large with increasing dimension and therefore
limits the application to problems with up to six degrees of freedom [63,64].

Quantum calculations for hydrogen dissociation on metal surfaces have proven that
indeed quantum effects play a role in this dissociation process. The initial sticking
probability of H2 molecules impinging at the clean Pd(100) surface has been predicted
to have an oscillatory structure, reflecting the quantum nature of the scattering pro-
cess [41, 40, 136]. However, up to now these oscillations have not been detected in
molecular beam experiments due to incoherence effects and a finite temperature and
resolution of the experimental setup [137, 138]. In a study of the dissociative adsorp-
tion of hydrogen on a sulfur covered Pd(100) surface it has been found that quantum
calculations tend to shift the sticking curve to lower results in comparison to classical
calculations [51]. The reason is that the interaction of a H2 molecule with the substrate
gives rise to zero-point energies and this energy needs to be taken from the incident
beam and therefore the effective kinetic energy of the impinging molecule is reduced.
Consequently the fraction of the molecules which are able to overcome a certain bar-
rier towards dissociation is reduced and the sticking probability is lower. However, the
overall trend of the sticking curve with increasing kinetic energy is well reproduced by
classical dynamics. Furthermore, in the case of heavier molecules like CO the quantum
effects should not play a significant role due to the larger mass and the smaller de
Broglie wavelength of the CO molecule. For these reasons classical molecular dynamics
calculations give results that are qualitatively and even semi-quantitatively in agree-
ment with molecular beam experiments for the adsorption of molecules on surfaces.
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6.2 Classical dynamics

The classical-dynamics calculations are performed by solving the Hamilton equations
of motion:

q̇i =
∂H

∂ṗi
, (6.3)

ṗi = −∂H
∂q̇i

, (6.4)

where H is the Hamiltonian for the nuclei of the system and the qi and pi are the
generalised coordinates and momenta, respectively. The equations of motion can be
numerically integrated with standard integration schemes, like Runge-Kutta or the
Burlish-Stoer method [124]. There is no problem of incorporating higher dimensions
into the dynamics since no expansion of a wave function into basis functions or repre-
sentation on a grid is requested.

The Hamiltonian of a hydrogen molecule interacting with a rigid surface, i.e. moving
on a PES depending on the six degrees of freedom of the hydrogen molecule V (R, r),
can be written as:

H =
1

2M
∇2

R +
1

2µ
∇2

r + V (R, r) , (6.5)

where R = (r1 + r2)/2 = (Xc, Yc, Zc) and r = (r2 − r1) are the centre-of-mass and
relative coordinates of the hydrogen molecule, M = 2m and µ = m/2 are the total
and reduced mass of the hydrogen molecule with m the mass of one hydrogen atom.
Writing the relative part of the Hamiltonian in spherical coordinates gives:

H =
1

2M

(

p2
Xc

+ p2
Yc

+ p2
Zc

)

+
1

2µ

(

p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)

+ V (R, r) . (6.6)

Inserting this Hamiltonian into Hamilton’s equations of motion, see equations (6.3)
and (6.4), we get the following equations:

φ̇ =
1

µ

pφ
r2 sin2 θ

,

θ̇ =
1

µ

pθ
r2

,

ṙ =
1

µ
pr ,

Ẋc =
1

M
pXc

,

ṗφ = −∂V
∂φ

,

ṗθ =
1

µ

p2
φ cos θ

r2 sin2 θ
− ∂V

∂θ
,

ṗr =
1

µ

p2
θ

r3
+

1

µ

p2
φ

r3 sin2 θ
− ∂V

∂r
,

ṗXc
= − ∂V

∂Xc

,
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Ẏc =
1

M
pYc

,

Żc =
1

M
pZc

,

ṗYc
= − ∂V

∂Yc
,

ṗZc
= − ∂V

∂Zc
,

In this work the equations of motion are numerically integrated with the Burlish-Stoer
method with a variable time step [124].

We point out that there is no unambiguous definition of the sticking probability in
the calculation. Because we do not account for energy dissipation to the substrate, after
the bond-breaking the two hydrogen atoms will continue to travel on the surface. In
reality, the atomic fragments will transfer their kinetic energy to substrate excitations
like electron-hole pairs or phonons and come to rest on the surface. However, especially
in the case of light molecules such as hydrogen dissociating on metal surfaces the energy
transfer to the substrate is very small due to the large mass mismatch. Whether a
molecule sticks on the surface or not is almost entirely determined by the bond-breaking
process. In our calculations we will therefore count the molecule as dissociated on the
surface if the bond length between the two atoms is significantly stretched (≥ 300 %)
and the two fragments remain close to the surface.

Another important point is the sampling of the initial configurations. Sticking corre-
sponds to a process in which statistically distributed particles hit the surface. Therefore
the determination of classical sticking probabilities requires an average over typically
thousands of trajectories. In this work we chose the initial conditions by some Monte-
Carlo sampling and stop the calculation when convergence of the sticking probability
as a function of the number of initial configurations is achieved.

Furthermore we will restrict ourself to calculations of the sticking probabilities for
normal incidence of the molecule, i.e. with a momentum perpendicular to the substrate.
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Chapter 7

Neural Network tests: Simple analytical functions

As a first test of the generalisation and interpolation ability of neural networks (NN)
we studied simple low dimensional analytical functions. We will present results for
the approximation of trigonometric functions in one and two dimensions and the one
dimensional harmonic oscillator based on a discrete set of points. These functions are
often employed in analytical fits to potential-energy surfaces, e.g. for the dissociation
process of hydrogen on Pd(100) [41].

Before doing interpolations with neural networks it is necessary to choose the struc-
ture of the network and the optimisation algorithm. For the basic test problems pre-
sented in this chapter any minimisation routine, like backpropagation, conjugate gra-
dients or the adaptive extended Kalman filter can be used with equal success. Their
performance and the application of different activation functions in the neural network
context will be discussed in detail for a more difficult and realistic six-dimensional
problem in the next chapter. Throughout the following we will always use the adaptive
extended Kalman filter as the optimisation method, hyperbolic tangents as activation
functions in hidden nodes and a linear function in the output layer.

If information about the value of the desired function and its derivative at a discrete
number of points is available simultaneously, it might be advantageous to employ this
knowledge in the interpolation. We have rewritten the extended Kalman filter equations
to include the derivatives along with the value of the function in the error function as
explained in section 5.6.5, p. 51. Since the derivatives of analytical functions can be
calculated in a straightforward manner, we will test also their influence on the neural
network performance.

7.1 Trigonometric function (1D)

A basic one dimensional function, which is often used in analytical fits of potential-
energy surfaces, is the trigonometric sine function:

f(x) = sin(x) . (7.1)

The interval [−180◦, 180◦] has been divided into a set of three, five and seven points.
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Neural network fit with values only

We chose a 1−2−1 tl neural network for the interpolation, i.e. with one input node
representing the values of x, one hidden layer with two hyperbolic tangent nodes t
and one linear output node l with the activation function f(x) = x. Accordingly, the
network consists of seven parameters, four connecting the input plus the bias node
with the hidden nodes and three from the hidden nodes as well as the bias to the single
output node (for an illustration see Fig. 5.2, p. 44).

We have plotted the development of the root mean squared error (RMSE) as a func-
tion of the number of presentations of the whole data set, called an epoch, in Fig. 7.1(a).
The neural network interpolation is based on five or seven points obtained from the
analytical function. The test set consists of 100 points in the interval [−180◦, 180◦].
The training error drops fast and levels off around 600 epochs for both fits. However,
the error on the test set for the fit with five points starts to grow again around 400
epochs, the network is not able to generalise well. This can be seen by looking at the
neural network output in Fig. 7.1(b). The network fit to five points of the sine function
approximates the given values of the function very well, however the maxima and min-
ima have a higher value and their location is shifted. With two more points included
in the fit the sine function is well represented. Test and training error are below 1%.
The runtime of the NN-program on a IBM RISC 6000 machine is a few seconds.
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Figure 7.1: 1−2−1 tl Neural Network fit of f(x)=sin(x). The training set consists of
either 5 or 7 points, the test set corresponds to 100 points in the interval [−180◦, 180◦].
One epoch is the presentation of all training points. The Kalman filter parameters are
λ(0)=0.98, λ0=0.99926 and the adaptive threshold ν=0.3RMSE.

Neural Network fit with values and derivatives

The derivatives of the desired function - if available - can be approximated along with
the value of the function by minimising the following error function:

ε = ε(f) + wf ′ ε(f
′) , (7.2)
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where ε(f) is the error corresponding to the value of the function and ε(f ′) is the
error connected to the derivatives. The factor wf ′ can be used to switch on or off
the information about the derivatives. We allowed the neural network to have greater
flexibility in correspondence to the higher information available through the derivatives
and used a 1− 3−1 tl network with 10 parameters. The training and test set error
in Fig. 7.2(a) for a neural network fit of the sine function with 5 function values and
5 derivatives continues to go down even at 1500 epochs without showing any signs
of overfitting. Hence, the use of the derivatives in the extended Kalman filter update
equations allows to produce a perfect fit with only five points, whereas without the
derivative seven points were required to achieve equal accuracy. Even with three points,
see Fig. 7.2(b), a qualitatively good approximation can be obtained.
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Figure 7.2: Neural network fit of f(x)=sin(x) with information on the value and the
derivative. The training set consists of three and five points, the test set corresponds to
100 points in the interval [−180◦, 180◦]. The Kalman filter parameters are λ(0)=0.98,
λ0=0.99926 and the adaptive threshold ν=0.3RMSE.

The factor wf ′ in equation (7.2) can be used to weight
the influence of the derivative information in the cost
function. With a higher factor than “1” the locations
of the maxima are perfectly represented. A factor be-
tween 0.1−1 produces very well results on both the
potential and the derivatives, whereas any lower value
over-favours the value of the function. This can be seen
from Fig. 7.3 where a zoom into the maximum of the
sine function at x = 90◦ has been plotted. It is some-
times necessary to set the weighting factor to a value
lower than “1”, because the differences between the es-
timated and the desired derivatives can be significantly
larger than the difference in the potential. This can lead
to an exponential growth of the elements in the Kalman
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state covariance matrix and hence to numerical instabilities, see section 5.6.5, p. 51.
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7.2 Harmonic Oscillator (1D)

A simple physical meaningful test function is the harmonic oscillator:

f(x) = x2 . (7.3)

For the approximation we have divided the interval [−4, 4] into a set of three, five
and seven points and performed a neural network fit with a 1−2−1 tl net with seven
parameters on the value of the harmonic oscillator only and on the value and the
derivative df

dx
= 2x. If we employ information on the value of the function only in the
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Figure 7.4: Neural network fit to f(x)=x2 with 3 and 5 points in the interval [−4, 4].
The approximations have been performed with a 1−2−1 tl net using either the value
only or the value & the derivative. Parameter: λ(0)=0.98, λ0=0.99946 and wf ′=0.1.

optimisation procedure we need - as in the case of the one dimensional sine function
- seven points, whereas with knowledge about the derivative five points are enough to
produce a perfect fit. The neural network output function for the fits to three and five
points can be seen in Fig. 7.4. With derivative information already three points give a
qualitatively good approximation. The errors for the different interpolations have been
listed in table 7.1. The best fits with minimum complexity have been marked bold.

Fit with value only Fit with value and derivative

Training set Test set Training set Test set

Data RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

# f(x) df/dx f(x) df/dx f(x) df/dx f(x) df/dx

3 5·10−4 5.99 3.77 3.65 1·10−3 8·10−3 1.47 1.39

5 2·10−5 4.72 1.75 2.93 5·10
−2

2·10
−1

4·10
−2

9·10
−2

7 6·10
−2

6·10
−1

1·10
−1

3·10
−1 3·10−2 5·10−2 3·10−2 5·10−2

Table 7.1: RMS errors for the approximation of the harmonic oscillator with a 1−2−1 tl
network. Fits with information on the value only and with value and derivative data.
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7.3 Trigonometric function (2D)

As a two dimensional test problem we took the function:

f(x) = sin2(x) + cos(2y) . (7.4)

We have chosen the fitting interval to be x ∈ [0◦, 360◦] and y ∈ [0◦, 180◦] in order to see
if symmetry can be reproduced by the network. The test function is plotted in Fig. 7.5.
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Figure 7.5: Neural Network test function : f(x)=sin2(x) + cos(2y).

Neural network fit with values only

As different network architectures have been used, we will always present the best
result for each training set. The neural network training set consist of 16, 25 and 36
points corresponding to a 4×4, 5×5 and 6×6 grid in the two dimensions. The test
set is created on a 41×41 grid. Fitting the value of the function only requires to use
a 6×6 grid as plotted in Fig. 7.6(b), a lower number of points does not generate a
satisfactory result, see Fig. 7.6(a). The given values of the functions in Fig. 7.6(a) are
approximated well, but the symmetry is not reproduced.
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Figure 7.6: Neural Network fit of the function f(x)=sin2(x) + cos(2y) with information
about the value of the function only. The different grids of data points are indicated
by white circles in (a) and (b). Parameter: λ(0)=0.98, λ0=0.9989.
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Neural network fit with values and derivatives

If we include again the information about the two derivatives ∂f
∂x

= 2 sin(x) cos(x) and
∂f
∂y

= −2 sin(2y) in the fit procedure, already a 4×4 grid gives good results as plotted
in Fig. 7.7. From the previous examples we can conclude that the necessary number
of points for a satisfactory approximation with a neural network can be reduced by at
least two points per dimension if the fitted data set consists of values and derivatives
of the desired function.
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Figure 7.7: Neural Network fit with value
and derivative information on a 4×4 grid.
The net is a 2−15−15−1 tl net. Training
time is about 2 minutes on an IBM RISC
6000 machine.
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ent Neural Networks. The net with
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Another approach of including the derivatives in the approximation is to use them
explicitly as additional outputs of the neural network rather than incorporating them in
the cost function. In our example this translates to a network with three output nodes,
one for the value of the function f(x), one for the derivative ∂f

∂x
and one for the other

derivative ∂f
∂y
. We have tested this approach with an interpolation based on a grid of

5×6 points. The training errors on the three different quantities for (a) a network with
the derivatives as output nodes and (b) for a network with the derivative information
incorporated in the cost function can be minimised in both cases to values below 1%.
However, there is a significant difference between these two approaches which can be
seen by looking at the error on the test set of points in Fig. 7.8. The generalisation
ability of the network with the derivatives as additional outputs (grey bars) is clearly
worse in comparison to the network with the derivative included in the Kalman filter
update equations (white bars). This can be understood as follows. In the former case
the network does not know that the partial derivatives of the first output, the value
of the function, are equal to the values of the other outputs. At the beginning of the
optimisation they are independent, their dependency needs to be learned. With our
approach of using the partial derivatives of the output node representing the value of
the desired function explicitly in the error function, we guarantee that the full knowledge
is available from the start of the iterations which leads to clearly improved results.
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Chapter 8

Neural Network test:

6-D analytical PES for H2/Pd(100)

In principle, neural networks can fit any continuous function with arbitrary accuracy.
However, it is a priori unknown how many parameters and data points are necessary to
obtain a good solution. We are interested in the adsorption probability of H2 molecules
on a potassium covered Pd(100) surface. Up to now, neural networks have not been
applied in dynamical calculations of such reactions. In order to learn more about their
practical approximation ability it is essential to find realistic test problems.

Analytical potential-energy surfaces for the sticking of H2 on metal surfaces provide
ideal test cases for the neural network approach for different reasons. First of all, the
energy of an analytical PES is fast to evaluate. This allows us to study the influence of
the sampling of the data points on the quality of the NN-approximation as measured
by the root mean squared error (RMSE) in great detail. Secondly, analytical PESs have
proven to describe such adsorption events realistically [26, 41, 51]. Furthermore, as an
additional check of the accuracy of the obtained NN-model besides the RMS-error, we
are able to compare the results of classical molecular dynamics (MD) calculations using
the neural network representation to MD-calculations performed on the analytical PES.
Namely, we can use the sticking probability - calculated with the neural network and
the analytical PES - as a further test of the accuracy of the approximation.

The symmetry of the problem is not represented automatically by neural networks.
In the mapping of PESs by DFT-calculations one takes excessive advantage of this
symmetry by studying unit-cells and focusing on high-symmetric sites. We will discuss
how the symmetry can be incorporated explicitly prior to the interpolation. In the last
chapter we have seen that symmetry can also be learned by an implicit use of the forces
during the optimisation. The application of the derivatives in the fitting of the simple
test functions resulted only in a small reduction of training points per dimension. This
effect will be even smaller with an explicit incorporation of the symmetry, because
much of the information provided by the forces will be redundant due to symmetry
constraints. Therefore and since the convergence of the forces in ab initio calculations
takes a factor of 2−5 times longer than the convergence of the energy, we will not
employ the forces in the approximation throughout the following. However, if they are
available the developed neural network program is ready to use them.
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8.1 Ab initio and analytical PES

The potential-energy surface of hydrogen dissociation on the clean palladium surface,
H2/Pd(100), has been calculated by Wilke and Scheffler within density functional the-
ory [29,22]. We discussed this PES already in the introduction for hydrogen dissociation
on metal surfaces in Sec. 2.3, p. 17. The dissociation is non-activated, pathways to dis-
sociation exist with no energy barrier, the molecule can freely dissociate above certain
sites. The PES has been mapped out following the usual approach of calculating 2D
cuts through the configuration space above high-symmetric geometries as presented
in Sec. 3.3, p. 33. The equilibrium position of a hydrogen atom is the surface hollow
site with a small adsorption height of 0.1 Å above the topmost palladium layer. The
reaction is exothermic, hydrogen gains energy on adsorption. The minimum pathway
for the dissociation of H2 molecules is above the bridge site with the H-atoms oriented
towards the hollow site.

The ab initio PES has been fitted with analytical functions by Groß et al. [41],
which we described in Sec. 4.1, p. 36. The potential-energy surface is expressed as a
function of the six degrees of freedom of the hydrogen molecule, the surface is kept
rigid: V (Xc, Yc, Zc, d, θ, φ), where Xc, Yc and Zc are the centre of mass coordinates of
the hydrogen molecule, d is the distance between the two hydrogen atoms, θ and φ
are the polar and azimuthal angles of the molecule. The potential in the Zd plane is
described in reaction path coordinates s along the reaction path and r perpendicular
to it [110, 41]. The fit has been performed by a least square method such that the
difference between the analytical potential V (Xc, Yc, s, r, θ, φ) and the ab initio total
energies, which have been calculated for more than 250 configurations, on the average
is smaller than 25meV. In Fig. 8.1 two cuts through the six-dimensional configuration
space of the analytical interpolation have been plotted. Fig. 8.1(a) shows the analytic
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Figure 8.1: Contour plots through the 6-D analytical PES of H2/Pd(100) from [41].
Insets: Configuration of the dissociation pathways. The solid line in (a) marks the
minimum path towards dissociation. The energy spacing of the contour lines is 0.1 eV.
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interpolation of the minimum path which should be compared to the ab initio cut in
Fig 2.1, p. 14. The solid line marks the dissociation pathway, it exhibits no barrier
towards dissociation. However, if we turn the molecule around by 90◦, keeping the
molecular axis parallel to the surface, a distinct energy barrier of Ebarr>0.5 eV exists
(Fig 8.1(b)). Only one of the six coordinates has been changed and a qualitatively
different dissociation behaviour of the molecule has been obtained. Both elbow plots
differ only in the small region of the PES where the bond of the hydrogen molecule
breaks. The entrance channels with the centre of mass of the molecule more than z=1 Å
above the surface are very similar, as well as the exit channels with a molecular bond
length r> 1.50 Å. The crucial bond-breaking process of the molecule takes place in a
relatively small region of the potential-energy surface. Throughout the following, we
will often refer to these two-dimensional cuts through the configuration space, but one
should always keep in mind that the complete PES is six-dimensional. In summary,
the PES for the dissociation of hydrogen on the clean Pd(100) surface exhibits the
following features:

2 Minimum dissociation pathway:

– Molecule dissociates with its molecular axis parallel to the surface.

– Configuration: Centre of mass of the molecule over the bridge site with the
atoms dissociating to the hollow site.

– No energy barrier for dissociation.

2 PES is strongly corrugated and anisotropic:

– High energy barriers on-top sites.

– No barrier for Pd bridge site, with the molecules oriented to the hollow site.

2 Co-existence of activated and non-activated pathways, with the majority of paths
being activated.

8.2 Tests of the Neural Network structure

In the following paragraphs we will check the influence of the choice of optimisation
algorithms on the approximation ability and the training time of neural networks. We
will then discuss the use of various activation functions and their performance for fitting
potential-energy surfaces. We will further address the issue of ill-conditioning and the
incorporation of symmetry constraints into neural networks before we summarise these
results.

8.2.1 Optimisation algorithms

We have tested the performance of the backpropagation algorithm (BP), conjugate
gradients (CG) and the extended Kalman filter (EKF) on a training set of 1560 data
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points and 7200 test points obtained from the six-dimensional analytical PES. We
choose a 6−16−16−1 tl network with 401 parameters.

The backpropagation algorithm and the conjugate gradient method are designed
for offline optimisation, i.e. the network weights are updated after a presentation of
the whole data set to the neural network. However, backpropagation can also be used
in online mode, i.e. when the parameters are being changed after the presentation of
each example of the training set. The extended Kalman filter algorithm is especially
designed for online minimisation. We have discussed these issues in Sec. 5.6, p. 48.

The evolutions of the test set errors with the number of epochs for the different
optimisation schemes have been plotted in Fig. 8.2. The EKF algorithm is clearly
superior to the other methods. It reaches a better minimum and shows a steep drop
of the error function. One reason for its performance is the use of an approximation of
the Hessian matrix, the matrix of second derivatives, for the weight update.

Furthermore, the improved results are due to the choice of online optimisation.
Changing the weights after each example leads to a quick decrease of the error and
increases the chances of not getting trapped in a local minimum at early stages of the
optimisation. This is also supported by the fact that the BP minimisation exhibits an
earlier drop of the error in online than in offline mode. It also reaches a slightly better
minimum. The noise in the BP online update reflects that the algorithm it designed
for offline mode. The CG method cannot compete with the EKF algorithm. It is an
offline scheme using only the Jacobian matrix, the matrix of first order derivatives,
for the parameter update. However, it leads to improved results in comparison to
backpropagation in offline mode due to a more sophisticated weight update.
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The superior performance of the Kalman filter algorithm has to be paid with longer
training times of the neural network as plotted in Fig. 8.3. Since the EKF takes ad-
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vantage of second order derivatives the training time as a function of the parameters,
the weights, increases quadratically. The BP and the CG use only information on first
derivatives and show therefore a linear behaviour. However, the calculation of the ab
initio energies for a potential-energy surface takes several CPU years, whereas the
fitting of these data using the EKF algorithm takes between minutes and hours, de-
pending on the number of parameters and the size of the training set. The training time
is thus just a fraction of the costs of the underlying DFT calculations and negligible.

Adaptive Kalman filtering

The training time with the extended Kalman filter (EKF) can be reduced by applying
an adaptive scheme: The weight update is only performed for those examples which
exceed a certain threshold during each epoch [127]. The threshold can be defined as a
fraction of the current root mean squared error. This algorithm is called the adaptive
global extended Kalman filter (AGEKF). The percentage of the minimisation costs of
the AGEKF compared to the EKF in Fig. 8.4 reveal that an adaptive threshold of
0.3×RMSE reduces the training time to 80% and a value of 0.9 to 50% of the EKF’s
costs. The development of the test error with the number of epochs in Fig 8.5 drops
less quickly for the different adaptive filter parameters than the error for the EKF.
However, with factors up to a value of 0.9 one gets similar or even better results as
compared to the EKF.

The adaptive filter helps to concentrate on the most valuable examples during
each epoch and decreases the chance of getting stuck in a local minimum of the error
surface too early during the minimisation. At the same time the AGEKF reduces
the minimisation costs. We will therefore always apply the adaptive global extended
Kalman filter for the optimisation of the network weights with adaptive parameters
between 0.3 and 0.9.
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Kalman filter forgetting schedule

The forgetting schedule improves the approximation ability of the extended Kalman
filter algorithm. It has been described in Sec. 5.6.5, p. 51. The neural network cost
function is determined by summing the error over all previous iterations multiplied by
a weighting factor λ(k) [127]. The time varying forgetting schedule changes the value of
λ before the presentation of each training sample according to λ(k) = λ0 λ(k−1)+1−λ0,
where λ0 is typically a constant between 0.99 and 0.9995 and the initial value of λ, λ(0),
is chosen between 0.95 and 0.99. At the beginning of the minimisation the forgetting
schedule is designed to take only the most recent examples into account for the weight
update. This avoids too early trapping into local minima. When the process continues,
all information available is used to improve the result.

The evolution of the training error with the number of epochs for a network with
two different forgetting schedules is displayed in Fig. 8.6. The parameter set with the
values λ(0) = 1.0 and λ0 = 1.0 implies that all presented examples contribute to the
cost function from the beginning of the iteration, i.e. the network is trained with full
memory and without forgetting. It is clearly visible from Fig. 8.6 that this approach
cannot avoid trapping into local minima of the error surface. In comparison, a forgetting
schedule with parameters λ(0) = 0.98 and λ0 = 0.9994 improves the results by orders
of magnitude within 30 epochs. Smaller values of λ0 for the same λ(0) produce a less
pronounced drop of the error, higher values can lead to numerical instabilities. The
weight changes become very large, some activation functions get saturated and the
Jacobi and Hessian matrix become singular. The change in the forgetting factor λ0

should be set so that controlled growth and collapse of the covariance matrix, the
approximation of the Hessian matrix, occurs within 30 epochs of the training set. For
a more detailed discussion please refer to Ref. [57].

Due to its strong influence on the obtained results it is recommended to perform
a short number of iterations for different forgetting schedule parameters for each new
problem. For potential-energy surfaces we obtained good approximations with an ini-
tialisation value of λ(0)=0.98 together with λ0 between 0.9982 and 0.9994.
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8.2.2 Activation functions

The flexibility of neural networks originates from the non-linear activation functions of
its hidden layers. Sigmoidal functions like the hyperbolic tangent are the most common
forms of transfer functions, but also sine-functions and more recently Gaussians have
been applied. A general concept of approximation with neural networks is to choose
one certain class of activation functions a priori and to stick to them. The fitting boils
then down to find the appropriate number and values of parameters for an optimal
solution. However, we wanted to test the different choices of activation functions for
the approximation of potential-energy surfaces. As the training set we employed 1560
examples of the six-dimensional analytical PES. The test set consists of 7200 exam-
ples. The desired accuracy of our interpolations was a RMSE of 0.1 eV, which is the
corresponding accuracy of density functional theory calculations.

Fig 8.7 displays the root mean squared error after 100 epochs for the different
activation functions. For sine functions a number of 453 parameters was necessary to
achieve a RMSE of the training set below the desired threshold of 0.1 eV. However, the
value of the test set error of 0.49 reflects a poor generalisation ability of networks with
these basis functions. This is clearly visible in the two elbow plots of the neural network
PES in Fig. 8.8. A comparison with the underlying analytical PES in Fig. 8.1, p. 74,
reveals a locally good, but globally not smooth enough approximation of a network
with trigonometric activation functions. It fits the training set well, but produces a
rather bumpy output function. A higher number of parameters decreases the training
error further but also leads to even more pronounced overfitting.

Figure 8.7: Training and
test root mean squared
error for different activa-
tion functions. Training set:
1560 examples. Test set:
7200 examples. The number
of parameters of the differ-
ent networks is indicated in
the legend. The number of
epochs is 100.
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With the explicit use of Gaussians as activation functions we were not able to
obtain a good fit at all. Such radial basis function networks (RBFN) need a different
initialisation scheme for the network weights, a clustering algorithm. With a random
choice of the initial parameter set as employed in our program a minimisation to a
satisfactory level of error for RBFN’s is difficult to achieve. However, Flake proposed
an easy trick to simulate Gaussian-like functions [139]. Let us consider the following
functions: sigmoid(x) = 1/(1 + exp(−x)) and gauss(x) = exp(−x2). We can define a
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quasi-Gaussian as q(x) = 2−2/(gauss(x)+1) = 2−2sigmoid(x2). This means that
a gaussian-like function can be formed from an affine transformation of a sigmoid
whose input has been squared. A similar transformation can be applied to a hyperbolic
tangent. Hence, with a simultaneous presentation of x and x2 to the network, the
architecture has the localised properties of an RBFN in addition to the usual global
properties. In practice, the test error has indeed reduced to 0.29 eV for such a network
with 407 weights (Fig. 8.7). However, this level of error is still not acceptable.

The sigmoidal functions are the most common forms of activation functions. The
training error in Fig. 8.7 for a network with hyperbolic tangents and a parameter
number comparable to the last examples, namely 401, reaches again values within
the desired ab initio accuracy. More importantly, the test error also drops to 0.16 eV,
the generalisation ability is significantly improved. A closer look at the PES in Fig. 8.9
demonstrates that the network output function with sigmoidal functions is very smooth.
However, the network is not able to distinguish between the two adsorption configu-
rations. Both plots exhibit a barrier to dissociation, but only the right elbow should
have one, see Fig. 8.1, p. 74. The corresponding region is the most important part
of the PES where the bond of the molecule breaks. A deviation of the NN-PES from
the analytical PES in this region will have important dynamical consequences. Even
with a higher weighting of the bond-breaking data points the network was not able
to reproduce the correct co-existence of activated and non-activated paths. A different
sampling of the points with a concentration on the most important parts of the PES
did neither lead to a satisfactory result. The described neural network is not flexible
enough to fit such a detailed PES. Even though the approximation error lies within the
range of the ab initio accuracy, the PES is not represented correctly in its most crucial
part. From this we deduce that it is not always sufficient to judge an optimal fit from
the RMSE alone. This is a very important point and should be kept in mind. Since the
training and test set will always result from a similar sampling of the problem, one has
to be very careful in the interpretation of the RMSE.

If we increase the number of parameters to a value of nearly 3000, the training error
as displayed in Fig. 8.7 drops by an order of magnitude to 0.004 eV without leading to
an increase of the test error. The elbow plots in Fig. 8.10 give evidence of the global and
local approximation ability of neural networks. Although a large number of parameters
are utilised in the fit, the output function stays rather smooth and very importantly,
distinguishes now between the two adsorption configurations. These results can be
explained as follows. The dissociation PES consists of numerous local bumps in the
bond-breaking region, one in each 2D cut of the 6D PES. In order to form a peak
with sigmoidals many of them - rotated around the centre of the hill - are necessary.
Consequently, in order to properly describe the process of bond-breaking within a very
localised region of a detailed PES and at the same time modelling a smooth function
outside that region, a large number of Fermi-like basis functions is required.

Furthermore, we found that a detailed PES can be fitted with less complexity if
a network with two hidden layers is chosen as presented above. In N dimensions 2N
nodes in the first hidden layer and one node in the second hidden layer can form one
bump [52]. Of course, such a function can also be approximated to arbitrary accuracy
with only one hidden layer, but in this case even more units have to be employed.



8.2 Tests of the Neural Network structure 81

-0.9 eV
-0.8 eV
-0.7 eV
-0.6 eV
-0.5 eV
-0.4 eV
-0.3 eV
-0.2 eV
-0.1 eV
 0.0 eV
 0.1 eV
 0.2 eV
 0.3 eV
 0.4 eV
 0.5 eV

0.25 1.50 2.75
-0.25

0.25

0.75

1.25

1.75

2.25

-0.2

-0.3

-0.1

0.0

0.2

0.2

-0.8

-0.1

-0.9

Pd

2

H−H distance (A)

H
  d

is
ta

nc
e 

fr
om

 th
e 

su
rf

ac
e

(A
)

-0.9 eV
-0.8 eV
-0.7 eV
-0.6 eV
-0.5 eV
-0.4 eV
-0.3 eV
-0.2 eV
-0.1 eV
 0.0 eV
 0.1 eV
 0.2 eV
 0.3 eV
 0.4 eV
 0.5 eV

0.25 1.50 2.75
-0.25

0.25

0.75

1.25

1.75

2.25

-0.1

0.0

0.5 0.4

-0.3

-0.7 0.1

-0.9

Pd

2

H−H distance (A)

H
  d

is
ta

nc
e 

fr
om

 th
e 

su
rf

ac
e

(A
)

Figure 8.8: Neural Network fit with sine functions as activation functions in hidden
layer. The fit is performed with 453 parameters and a 6−45−1 net.
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Figure 8.9: Neural Network fit with hyperbolic tangents as hidden layer activation
functions. The fit is performed with 401 parameters and a 6−16−16−1 tl net.
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Figure 8.10: Neural Network fit with hyperbolic tangents as hidden layer activation
functions. The fit is performed with 2951 parameters and a 6−50−50−1 tl net.
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8.2.3 Ill-conditioning

Neural networks approximation problems are - as explained in Sec. 5.11, p. 58 - nearly
always ill-conditioned. We will now discuss a trick to reduce this problem for gradient-
based learning methods by v. d. Smagt and Hirzinger [134].

One reason for ill-conditioning stems from the structure of neural networks itself.
Due to the chain rule for calculating the Jacobian, the gradients in the lower-layer
weights are related to the higher-layer weights. If a node has a very small outgoing
weight then the influence of the incoming weights to that unit will be diminished. This
results in flat spots in the error surface, which translates into slow training. The solution
is to add linear shortcut connections from the input to the output nodes to create the
linearly augmented feed-forward network. These connections share the weights with
the input to hidden connections so that no new weights are added as displayed in
Fig. 8.11. This trick enhances the sensitivity of the network to those incoming weights
thus reducing the flat spots in the error surface. The condition number of the Hessian
approximated by the squared Jacobian can be many orders of magnitude smaller with
a network inhibiting shortcuts, see Fig. 8.12. In the presented example for a 6−30−1 tl
net and the same data set as before, the condition number without shortcuts reaches
a value of 1016, which results in numerical instabilities. The test error with direct links
reaches a value of 0.21 eV compared to 0.3 eV for a network without shortcuts. However,
the training does not often lead to such high condition numbers. Only in rare cases
direct links improve the training results.

Within the EKF algorithm the growth and shrinkage of the covariance matrix, which
is an approximation of the Hessian, can be controlled by the parameters of the weighting
scheme [127]. An unwilling growth of the condition number of the approximated Hessian
can also be suppressed by choosing smaller forgetting schedule parameters. With this
approach, we were able to improve the results more efficiently than with the application
of direct links.
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8.2.4 Incorporation of the symmetry

The computational effort in DFT calculations can be enormously reduced by taking ad-
vantage of the symmetry of the underlying problem. With the simple two dimensional
trigonometric function in Sec. 7.3 we demonstrated the ability of neural networks to
learn symmetry. Yet, since we know the surface symmetry beforehand it will be advan-
tageous to include this knowledge into the approximation prior to the minimisation. In
this way we let the network concentrate on the crucial process, the bond-breaking of
the molecule. In order to do so we pre-process the coordinates of the problem.

The original set of coordinates Xc, Yc, Zc, d, θ, φ describe the six degrees of freedom
of the molecule. Due to the high costs of ab initio calculations information on the clean
Pd(100) has been determined only on the edges of the irreducible part of the unit
cell, the filled area in Fig. 8.13 [29, 22]. In order to represent the whole surface area
the analytical fit assumed a certain set of symmetry operations to be valid [41]. We
point out that the applied symmetry introduces artificial features into the PES. For
instance, the molecule in the analytical PES does not have any φ dependency on the
diagonals of the unit cell. However, this affects only a small part of the configuration
space. Furthermore, the analytical PES has already proven to represent the dissociation
process correctly [41]. Since this PES serves as a test problem for our neural network
approach, we employed the same symmetry and transformed the original coordinates
into a set of eight inputs to the neural network:

X1 = d,

X2 = d2,

X3 = Zc,

X4 = sin2(θ) cos(2φ) [cos(G ·Xc)− cos(G · Yc)],

X5 = sin2(θ) cos(2φ) [cos(2G ·Xc)− cos(2G · Yc)],

X6 = cos2(θ),

X7 = cos(G ·Xc) + cos(G · Yc),

X8 = cos(2G ·Xc) + cos(2G · Yc).

Pd

Pd

Pd

X

Y

ϕ

H2

Pd

Figure 8.13: Surface unit
cell and coordinates of the
system H2/Pd(100). The
filled area marks the irre-
ducible part of the unit cell.

The transformations are based on Fourier terms in the lateral coordinates Xc and Yc
up to a reciprocal lattice vector of 2G representing the periodicity of the surface, with
G = 2π/a and the lattice constant “a”. The term cos(2φ) [cos(G ·Xc)− cos(G · Yc)]
in the fourth coordinate reflects the four-fold symmetry of the surface. The factor
sin2(θ) weights this term, since the energy of an upright molecule should not have any
azimuthal dependency. It also reflects the internal symmetry of the diatomic molecule.
From the theoretical ab initio calculations it has been found that the energy increases
like cos2(θ) [29], which we included as one input. There is no symmetry within the



84 Neural Network test: 6-D analytical PES for H2/Pd(100)

coordinates d and Zc. However, the vibration of the molecule in the gas phase can
be described by a harmonic oscillator and therefore we incorporated an additional
coordinate d2.

Instead of presenting the original six degrees of freedom of the molecule to the
neural network we now apply this new set of eight inputs representing the symmetry
of the surface. The neural network performs a non-linear fit on these new inputs. The
transformation needs to be done only once per surface symmetry.

8.2.5 Optimised neural network structure

In summary, our neural network approximations to potential-energy surfaces will be
based on several features. As an optimisation algorithm of the network weights we
will employ the adaptive global extended Kalman filter (AGEKF) with two forgetting
schedule parameters λ(0), λ0 and an adaptive threshold of ath×RMSE.

The activation functions of the hidden layers are hyperbolic tangents and linear
functions in the output layer. The neural network structure will mainly consist of one
input layer, two hidden layers and one output layer with a high number of parameters.

The input data are pre-conditioned as described in the theoretical part, i.e. we
subtract the means and normalise the variances. Furthermore, we pre-process the data
and transform the inputs to include the surface symmetry.

In order to ensure a most accurate representation of the potential we use individual
weighting of each energy. For instance, the dissociation dynamics depend crucially
on the region in which the bond of the molecule breaks, whereas the part where the
potential is already elevated is of less importance. We will associate the former region
with weights which are up to ten times higher than the rest of the geometries.

8.3 Neural Network PES

We will now present six dimensional interpolations of the analytical potential-energy
surface for the dissociation of hydrogen over Pd(100) with neural networks. Open ques-
tions are the necessary number of training points and their sampling for obtaining a
good description of the PES.

The usual approach in theoretical ab initio studies of dissociation processes is based
on the calculation of 2D sections of the 6D energy surface, the elbow plots. For one
such section, the orientation of the molecule (θ and φ) and the coordinates of the
centre of mass in the surface plane (Xc, Yc) are kept fixed. Only the height Zc and
the bond length d vary. Commonly these elbow plots are evaluated with the molecule
above high-symmetric sites as discussed in detail in Sec. 3.3, p. 33. We will adopt this
approach here as well and sample the points from the analytical PES in the same way.
The neural network is then used to interpolate between these sections.

The accuracy of neural network models is usually measured by the root mean
squared error (RMSE) alone. As an additional check of the accuracy we will compare
the sticking probability for the analytical and the neural network PES determined by
classical molecular dynamics calculations.
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8.3.1 Neural Network fit of a 2D elbow plot

As a first test of the neural network approach to fitting an analytical PES we approx-
imated a two-dimensional elbow plot, namely the minimum pathway for the dissoci-
ating hydrogen molecule. In the corresponding configuration the molecule approaches
the substrate over the bridge site with its molecu-
lar axis parallel to the surface. We obtained a good
interpolation with 31 training points sampled along
and perpendicular to the reaction path as shown in
Fig. 8.14. The white circles indicate the positions
of the training points obtained from the analytical
PES, cf. the analytical cut in Fig. 8.1(a), p. 74. The
interpolation has been performed with a 1−7−7−1 tl
network with 29 parameters. Since the analytical
PES is formulated in reaction path coordinates, we
were able to weight the data points along the reac-
tion path differently (10 times higher) than the other
examples. The training error after 1000 epochs mea-
sured 0.044 eV and the test error calculated with a
set of 150 points was 0.053 eV and therefore within
the range of ab initio accuracy.
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Figure 8.14: 2D neural net-
work fit to the analytical elbow
plot of Fig. 8.1(a).

8.3.2 NN-fit based on high-symmetric configurations

We trained a 8−50−50−1 tl neural network with 1560 examples calculated from the
analytical PES. The elbow plots were evaluated above different high-symmetric sites,
i.e. top, bridge and hollow sites and one intermediate configuration at (Xc=0.25a, Yc=
0.25a, a: lattice constant). At each site the energies were collected for five different
angles φ with the molecule upright, 45◦ tilted and parallel to the surface. For a single
elbow plot we used 30 points along and perpendicular to the reaction path. The test
set consists of 5200 energies sampled from the same elbow plots as the training set. The
training error after 50 epochs and two hours runtime on an IBM-SP2 node measured
0.1meV with a test error of 0.15 eV. From the information of the root mean squared
error alone we would judge this approximation as being satisfactory.

The obtained neural network served as an input to classical molecular dynamics
calculations. Fig. 8.15 illustrates the adsorption process over one particular site, the
bridge site with the hydrogen atoms pointing towards the on-top sites. The molecule
approaching the surface under normal incidence with its axis parallel to the surface
at an energy of 0.5 eV is not able to overcome the barrier for dissociation. Due to the
highly repulsive palladium top sites it is scattered back into the gas phase (Fig. 8.15(a)).
With a kinetic energy of 0.9 eV the molecule has enough momentum to overcome the
energy barrier and dissociates (Fig. 8.15(b)).

From the molecular dynamics simulations we calculated the sticking probability
of the impinging hydrogen molecule as a function of the initial kinetic energy. The
dissociation process is highly site dependent which requires to consider a good statistical
average over the initial configurations for the determination of the sticking coefficient.
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Figure 8.15: Two classical molecular dynamics trajectories (dashed lines) on a NN-PES.
The initial conditions of the molecules are the same except for their kinetic energy. The
simulation time was (a) 52 fs and (b) 40 fs. Insets: configuration of the molecule.

For each kinetic energy we need to calculate 500−1000 trajectories with random sampled
initial configurations until convergence of sticking is attained. The error of the sticking
coefficient is corresponding to 1/

√
n, where n is the number of trajectories. For each

sticking curve the sticking probability has to be evaluated at a number of energies
depending on the energy range of interest. For the presented adsorption coefficients we
performed MD calculations with 10000−30000 trajectories.

Fig. 8.16 compares the sticking probability obtained from the neural network PES
with the dynamical result from the underlying analytical PES. The neural network
PES interpolating high-symmetric sites reproduces the increase of the sticking prob-
ability at energies larger than 0.2 eV qualitatively, but it fails to reproduce the high
sticking probability at low kinetic energies. It has been shown that this feature of the
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Figure 8.16: Sticking probability
versus kinetic energy for the sys-
tem H2/Pd(100). The sticking has
been calculated by classical molec-
ular dynamics on a six-dimensional
analytical and neural PES, respec-
tively. Training set: 1560 examples.
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dissociation process is due to the steering effect. At low energies the forces can reorient
the molecule towards the minimum path for dissociation. At higher energies steering
is less effective leading to a drop of the sticking probability.

Fig. 8.17(b) and Fig. 8.17(c) show the corrugation of the barrier heights calculated
from the analytical and neural PES, respectively. The plots have been obtained by fixing
the hydrogen molecule at a height of z=1.6 Å above the surface with an intramolecular
distance of r=1.0 Å and angles φ=π/2, θ=π/2 while changing the lateral coordinates
across the unit cell as illustrated in Fig. 8.17(a). The configuration of the molecule
corresponds to the region where the bond already started to break.

In the analytical corrugation of Fig 8.17(b) there is a high barrier for dissociation
present if the molecule approaches the surface above the top site. Above the bridge
and the hollow site the molecule is able to dissociate freely. Furthermore, the energy
barrier decreases monotonically from the top site to the bridge site. A slow molecule
is able to move from the top site where it experiences a high barrier to the favourable
dissociation configuration above the bridge site. It is also able to reach the bridge site
from the hollow site. This is not true for the neural network PES interpolating the
top, bridge, hollow and one intermediate site as illustrated in Fig 8.17(c). The PES
exhibits a small barrier of 0.1 eV between bridge and top site and a large barrier of
1.0 eV between bridge and hollow site. These artificial barriers diminish the steering
effect and thus cause a monotonically increasing sticking curve as shown in Fig. 8.16.

We conclude that for interpolations of potential-energy surfaces with neural net-
works it is essential to include more than the usual calculated elbow plots above high-
symmetric sites in the training and test sets. For instance, if we apply additional
configurations in the test set of the above presented NN-approximation we get a test
error of 0.32 eV, which is clearly above the desired accuracy. Hence, with the use of
additional configurations also the RMSE reflects the unsatisfactory interpolation based
on high-symmetric sites only.
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Figure 8.17: Corrugation of the energy across the unit cell. (a) Schematic drawing of
the configurations used for scanning the barriers. The molecule is oriented parallel to
the surface with its bond axis parallel to Xc at a height z=1.6 Å with a bond length
d=1.0 Å. (b) and (c): Potential energies as a function of the lateral coordinates Xc

and Yc. The contour spacing is 0.1 eV. The circles in (c) mark the NN training points.
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8.3.3 NN-fit based on an enhanced lateral grid

In order to achieve a better representation of the steering effect with neural networks we
increased the number of training points in the lateral directions of the unit cell. Instead
of applying only four lateral configurations we used ten different adsorption sites in the
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Figure 8.18: Corrugation of
the Neural Network PES based
on an enhanced lateral grid.

irreducible part of the unit cell. The lateral mesh is
indicated by the white circles in Fig. 8.18 where we
plotted the corrugation of the energy barriers for a
NN-PES based on the enhanced mesh. The energies
have been obtained in the same way as described in
Fig. 8.17. The corrugation is now well represented,
cf. the analytical corrugation in Fig. 8.17(b).
We performed a number of interpolations of the
analytical PES with different training sets using a
9−50−50−1 tl neural network. Fig. 8.19 displays
the dynamical results of two of them. For the
interpolation with 3270 training points with the
above introduced enhanced lateral grid - while
keeping the sampling of the other dimensions as

described in the previous section - the sticking probability of the analytical PES is
well reproduced. The training and test error after 20 epochs were 2meV and 0.1 eV.

In Fig. 8.19 we have also plotted the result obtained from a less good neural network
fit. The training and test errors with 6meV and 0.15 eV based on a training set of
8850 energies were slightly worse. The higher training and test errors lead to a larger
deviation of the sticking probability from the analytical PES. We point out that it may
always be possible that a better neural network fit with a different set of Kalman filter
parameters and a different number of weights exists. Yet, it will be difficult to judge
an optimal interpolation without knowing the dynamical result a priori.

We emphasise that the NN-PES with this finer lateral grid is not uniquely defined.
An increase of the number of points in the other degrees of freedom as done for the
training set with 8850 energies, does not necessarily lead to a better fit. All degrees of
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versus kinetic energy for the system
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ing and test errors for each fit are in-
dicated in the graph. Higher errors
lead to a less good sticking curve.
Neural Network: 8−50−50−1 tl.
Extended Kalman Filter parameter:
λ(0)=0.98, λ0=0.99936, ath=0.6.
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freedom play a role and the mesh is not dense enough to reflect that a higher number
of points should lead to a quantitatively better dynamical result. In any case, the NN-
models based on an enhanced lateral mesh reproduced the steering effect in all cases
qualitatively.

8.3.4 NN-fit based on a dense grid of configurations

In order to get also quantitative agreement with the underlying analytical PES we
further increased the density of the mesh for the data sampling. We will now present
the results of a neural network fit based on a dense grid of potential energies taken
from the analytical potential-energy surface. The corresponding training set is by an
order of magnitude larger than before and consists of 80685 energies evaluated above
55 adsorption sites. For the test set we collected 91665 points. After 20 epochs the
training error measured 9meV with a test error of 46meV. Both errors lie well below
the desired ab initio accuracy of 0.1 eV.

With this dense grid in all six degrees of freedom of the hydrogen molecule we
were able to get perfect agreement between the analytical and neural sticking curve as
displayed in Fig. 8.20. Both the initial high adsorption probability followed by a drop of
sticking due to the steering effect and the increase with higher kinetic energies typical
for dissociative adsorption are well reproduced. The differences between the analytical
and neural sticking curve are smaller than 5% over the presented energy range. The
results demonstrate that the steering effect involves all six degrees of freedom of the test
problem and underline the importance of high-dimensional studies in order to predict
reaction probabilities.

Figure 8.20: Sticking probability ver-
sus kinetic energy for the dissoci-
ation of hydrogen on the Pd(100)
surface. The training set consists of
80685 training points sampled on a
dense grid in all six dimensions, with
e.g. 55 lateral configurations. The fit
is based on a 8−50−50−1 tl neural
network. Parameter set: λ(0)=0.98,
λ0=0.99936, ath=0.6.
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Due to the numerical costs the mapping of potential-energy surfaces with density
functional theory methods is currently limited to a number of the order of 102−103

energies. Direct molecular dynamics simulations of dissociation reactions on surfaces,
where the potential energy and the forces are being evaluated on the fly, can thus
require to calculate a number of the order of 107 total energies. We have shown that
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an interpolation with neural networks of the discussed detailed PES requires to con-
sider a number of 104−105 points. The costs for a description of such reactions with
neural networks are therefore orders of magnitude smaller compared to direct ab initio
dynamics.

Fig. 8.21 illustrates the accuracy of the obtained neural network model. It shows
the distribution of prediction errors for the test set. 94% of the test examples have an
error smaller than 0.1 eV and already 99% do not exceed a threshold of 0.2 eV. The
distribution of errors as a function of the potential energy in Fig. 8.22 reveals that
larger error occur only at values above 1 eV. This is the region far away from the valley
of the elbow plots. The errors were influenced by the imposed higher weighting of the
points close to the minimum dissociation pathway. However, the results support that
indeed the regions of higher potential energies have almost no influence on the reaction
probabilities as plotted in Fig. 8.20.
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Figure 8.21: Number of test examples ver-
sus prediction error for the training with
a dense mesh of energies.
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Figure 8.22: Prediction error of the test
set versus potential energy for the training
with a dense mesh of energies.

This is an important issue for the fitting of potential-energy surfaces. Not all con-
figurations are equally important for the determination of the sticking probability. For
instance, at lower kinetic energies the adsorption dynamics depend crucially on whether
there is a small energy barrier in the entrance channel, where the centre of mass of the
molecule is still far away from the surface, or not. Yet, the region where the poten-
tial is already elevated might have almost no influence on the dissociation probability.
Consequently, the root mean squared error, which is usually used as a measurement of
the accuracy of the fit, is of less significance. The developed neural network program
allows individual weighting of each input energy. We will therefore always weight the
configurations close to the valley of each dissociation pathway up to 10 times higher
than the rest of the geometries.
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Chapter 9

Neural Network test:

6-D analytical PES for H2/(2×2)S/Pd(100)

In the previous chapter we discussed a system in which activated and non-activated
pathways towards dissociation existed on the same surface, with the former ones being
a minority but having important dynamic consequences. We showed that in order to
obtain a very good agreement between the analytical and neural sticking probability
a high number of training points and parameters were required. Still, in comparison
to direct ab initio molecular dynamics orders of magnitude fewer density functional
theory calculations were necessary to gain reliable dynamical properties.

As a second test problem for the interpolation of the PES in dissociation reac-
tions with neural networks we investigated a system with activated paths only: The
dissociation of H2 over a sulphur covered Pd(100) surface. It is experimentally well
known that sulphur adsorbates hinder the H2 dissociation process on Pd(100) [4]. This
observation was verified by density functional theory studies [29, 30, 33]. It was found
that the reaction is still exothermic. Thus, the poisoning effect of sulphur adatoms for
H2 dissociation at low sulphur coverages (ΘS ≤ 0.25) is governed by the formation of
energy barriers and not by blocking of adsorption sites.

A study of an activated system with neural networks will be interesting for various
reasons. First of all, a PES with energy barriers in every adsorption geometry may
be easier to interpolate instead of fitting a coexistence of pathways with and with-
out barriers. Furthermore, we are interested in the sticking probability of the system
H2/Pd(100) with potassium adsorbates. Therefore it will be ideal to test the fitting for
the same surface with a different adsorbate, i.e. sulphur. Moreover, it has been shown
by ab initio calculations that the dissociation on the potassium covered and on the
sulphur covered Pd(100) are both activated processes [29, 37].

For the sampling of the data from the analytical PES we will follow the common
scheme of calculating two dimensional cuts in the Zd coordinates while keeping the
other coordinates fixed. We will then interpolate these cuts with neural networks. How-
ever, we will also present a modified sampling scheme for dissociative reactions which
allows to obtain reliable dynamical results with a small number of energies. Further-
more, we will present a constrained fitting approach with neural networks tailored to
the specific needs of dissociative reaction dynamics.
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9.1 Ab initio and analytical PES

Density functional theory calculations of the system H2/(2×2)S/Pd(100) revealed that
the PES is changed significantly compared to the dissociation on the clean Pd(100)
surface [29,30,33]. While the process on the latter surface is non-activated, for a (2×2)
sulphur adlayer corresponding to a coverage of ΘS = 0.25 it is inhibited by energy
barriers. Their heights depend strongly on the distance between the hydrogen and the
sulphur atoms leading to a highly corrugated PES. Due to the strong repulsion between
sulphur and hydrogen the largest barriers are in the vicinity of the sulphur atoms. The
minimum barrier towards dissociative adsorption has a height of 0.1 eV, while close to
the adsorbate atoms the barriers become larger than 2.5 eV. The adsorption height of
the sulphur atoms is 1.31 Å above the surface. The adsorption energy at all sites close
to sulphur atoms is reduced in comparison to the clean surface. But still, H2 adsorption
into all hollow sites not occupied by sulphur remains an exothermic process.

For the theoretical investigation of the high-dimensional PES the common strategy
of the computation of 2D cuts through the 6D configuration space has been followed.
These cuts have been interpolated analytically. The representation is based upon the
analytical PES for the clean Pd(100) surface [33]. Due to the larger unit cell some higher
Fourier coefficients have been included in the lateral directions. Also in the azimuthal
dependence a higher order term has been introduced. Again, the coordinates in the
Zd plane have been transformed into reaction path coordinates. The parameters of the
interpolation have been determined such that the difference to the ab initio calculations
on the average is smaller than 50meV.

Fig. 9.1 shows two 2D-cuts through the six-dimensional configuration space, com-
pare with the corresponding ab initio cuts in Fig. 2.8, p. 23. Whereas on the clean
surface the molecule over the palladium bridge site was able to dissociate freely, due
to the presence of sulphur the molecule experiences a barrier of 0.16 eV. The minimum
pathway is now over the fourfold hollow site with an energy barrier of 0.11 eV.
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Figure 9.1: Contour plots through the six-dimensional analytical PES of the dissociation
of H2 over (2×2)S/Pd(100). Insets: geometry of the dissociation pathways.
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9.2 Incorporation of the symmetry

In order to a priori represent the symmetry within the neural network we used the same
terms as on the clean Pd(100) surface but added one higher order term for the azimuthal
dependency. In analogy to the analytical PES we employed reaction path coordinates
in the Zd plane. Furthermore, we did not employ the distance of the hydrogen molecule
from the surface as an input to the neural network, but rather an exponential decay of
that coordinate. In reaction path coordinates this translated to the term e(−s/2), where
s is the coordinate along the reaction path. The transformation reflects that far away
from the surface the molecule is in the gas phase and any dependency on the distance
from the substrate should vanish. Moreover, in the gas phase the potential energy is
isotropic. Only the bond length of the two hydrogen atoms should play a role, and
therefore we weighted all other terms with the same factor e(−s/2).

However, we point out that these transformations are not a requirement for fitting
PESs with neural networks. The network will be able to learn the desired dependency
during minimisation without explicit information. But it is always advantageous to use
all the physical knowledge available and to let the neural network concentrate on the
unknown part of the problem. The new set of nine coordinates, i.e. the inputs to the
neural network, are:

X1 = d,

X2 = d2,

X3 = e(−s/2),

X4 = sin2(θ) cos(2φ) [ cos(G ·Xc) − cos(G · Yc) ] e(−s/2),

X5 = sin2(θ) cos(2φ) [ cos(2G ·Xc) − cos(2G · Yc) ] e(−s/2),

X6 = cos2(θ) e(−s/2),

X7 = [ cos(G ·Xc) + cos(G · Yc) ] e(−s/2),

X8 = [ cos(2G ·Xc) + cos(2G · Yc) ] e(−s/2),

X9 = sin4(θ) cos(4φ) [ cos(2G ·Xc) + cos(2G · Yc) ] e(−s/2).

9.3 Neural Network PES

On the clean Pd(100) surface it was necessary to use a high number of training points
along with a high number of parameters to represent the detailed potential-energy
surface with activated and non-activated paths towards dissociation. Correspondingly,
the first test of a neural network approximation of the analytical PES for the sulphur
covered Pd(100) will be based on a dense grid of points.
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9.3.1 NN-fit based on a dense grid of configurations

We fitted a number of 43928 examples from the analytical PES on a dense grid of
configurations in all six degrees of freedom of the hydrogen molecule. The network
consists of two hidden layers with fifty nodes in each of them (9−50−50−1 tl). For
the test of the accuracy of the interpolation we used 5891 energies. After 40 epochs
the training and test error were 0.033 eV and 0.043 eV. The neural network PES has
subsequently been used in classical molecular dynamics calculations to determine the
sticking probability. Fig. 9.2(a) displays these results. The neural network sticking curve
agrees very well with the analytical sticking coefficient, their values differ by less than
3%. In comparison, for a good fit on the clean surface a number of examples twice as
large was required.

Furthermore, for the sulphur poisoned surface the number of weights in the approxi-
mation can be greatly reduced without loosing much of the networks performance. The
sticking probability in Fig. 9.2(b) for a 9−20−20−1 tl network differs from the value
based on the analytical PES by less than 5%. The training and test error (0.068 eV
and 0.081 eV) were slightly higher than for the network with 3101 parameters, but
still within the desired ab initio accuracy. The training time with such a high num-
ber of examples but only 641 weights reduces to seven hours on an IBM-SP2 node in
comparison to several days for the 3101 parameter case.

On the clean surface a neural network with such a small number of parameters was
not able to describe the correct coexistence of activated and non-activated pathways.
We conclude, with respect to the number of training points and the complexity of the
appropriate neural network, that fitting a strictly activated potential-energy surface is
a profoundly easier task.
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(a) 9−50−50−1 tl Neural Network
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Figure 9.2: Sticking probability versus kinetic energy for H2/(2× 2)S/Pd(100) for two
different Neural Networks. The data sampling from the analytical PES is based on a
dense mesh of configurations in all six degrees of freedom of the H2 molecule. Parameter:
λ(0)=0.98, λ0=0.99906, ath=0.6.
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9.3.2 NN-fit based on eleven elbow plots

Currently, a dense grid of energies as presented in the previous section will not be
available due to the high numerical costs of ab initio calculations. Commonly, density
functional theory studies of PESs concentrate on two-dimensional cuts through the
configuration space with the molecule above high-symmetric sites. We will therefore
discuss how reliable reaction probabilities with neural network based on such two-
dimensional cuts are.

In Fig 9.3 we plotted eleven such configurations of the system H2/(2×2)S/Pd(100).
The molecule approaches the surface above the fourfold hollow site, the palladium
bridge site, the sulphur bridge site, on-top of a palladium atom and on-top of a sulphur
atom. The orientation of the molecule is either parallel or perpendicular to the surface.
These high-symmetric positions should represent the major features of the PES.

Figure 9.3: Eleven adsorption configurations of the system H2/(2×2)S/Pd(100).

The NN interpolation based on a dense grid of points revealed that a network even
with 650 parameters is able to determine the sticking curve of an activated system
accurately. Though the performance of the neural network with a very large number
of weights was slightly superior, such a network will also be prone to overfitting. We
performed a 9−20−20−1 tl neural network interpolation based on 1189 training and 471
test energies obtained from the analytical PES in the configurations of Fig. 9.3. The test
and training error after 100 epochs measured 0.078 eV and 0.096 eV, respectively. The
resulting neural sticking coefficient in Fig. 9.4 exhibits the same increase of sticking with
kinetic energy as the corresponding analytical curve but its value is strongly reduced.
A neural network fit based on 1778 training examples from the same cuts resulted in a
description of the PES which was too reactive at high kinetic energies (see Fig. 9.4).

Figure 9.4: Sticking probability ver-
sus kinetic energy for the system
H2/(2×2)S/Pd(100) for the analyt-
ical PES and a neural network
PES based on the eleven config-
urations in Fig. 9.3. Neural Net-
work: 9−20−20−1 tl. Parameter:
λ(0)=0.98, λ0=0.99906, ath=0.3.
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9.3.3 NN-fit based on eleven elbow plots and corrugation

In order to get a reliable description of dynamical properties for dissociation processes
with neural networks it is not sufficient to follow the usual approach of restricting the
calculations to 2D-cuts above high-symmetric sites. We need to add information about
the PES which is not present in the elbow plots. Numerical calculations based on the
analytical PES revealed that the steering effect is not only present on the clean Pd(100)
surface, but also on the sulphur covered sample [51]. Molecules approaching the surface
above sites with a high barrier to dissociation can be reoriented by the forces to more
favourable adsorption configurations. The distribution of the barriers within the unit
cell may be important for the reproduction of the steering effect and we have therefore
tested how the incorporation of the energetic corrugation improves the interpolations.

The H2 molecule dissociates with its axis oriented parallel to the surface, the mini-
mum path is located above the fourfold hollow site. Fig 9.5 displays the variation of the
energy barriers the H2 molecule experiences during adsorption for two angular orien-
tations above different lateral positions. In Fig 9.5(a) the molecule is oriented parallel
to the surface above the sulphur bridge site with the hydrogen atoms pointing towards
the fourfold hollow site. In order to scan the barriers we fixed the (Zc, d, θ, φ) config-
uration for two different bond lengths d and heights Zc and moved the molecule from
the sulphur bridge site to the fourfold hollow site. The same is done in Fig 9.5(b) but
now the H-atoms point initially in the direction of the sulphur atoms.

The configuration of the hydrogen molecule for the solid lines in Fig 9.5 correspond
to the position of the maximum barrier in the entrance channel above the fourfold
hollow site. In Fig 9.5(a) the energy barrier decreases monotonically from a value
of 0.3 eV above the sulphur bridge site at (Xc, Yc) = (0 a, 0.5 a) to 0.1 eV above the
fourfold hollow site at (0.5 a, 0.5 a), where “a” defines the length of the (2×2) unit cell.
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Figure 9.5: Corrugation of the energy barriers for the system H2/(2×2)S/Pd(100) with
H2 in two different orientations and its axis parallel to the surface. The energies are
calculated for two different heights and bond lengths of the molecule. In both plots the
molecule is moved from the sulphur bridge site to the fourfold hollow site.
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The steady decrease of the energy barriers enables the molecule to approach the most
favourable dissociation configuration above the hollow site even when it approaches
the surface above, say, the palladium bridge site at (Xc, Yc) = (0.25 a, 0.5 a). If we
further stretch the bond length of the hydrogen molecule and decrease the distance to
the surface we obtain again a monotonic decrease of the energy (see the dashed line
in Fig 9.5(a)). However, the energy barrier at the sulphur bridge site has significantly
increased due to the shorter distance to the repulsive sulphur atoms. Above the fourfold
hollow site the energy is now negative, the molecule has started to dissociate. If we
let the bond length stretch further and allow the atoms to approach the surface the
energy at the fourfold hollow site would further decrease reflecting that the dissociation
process even on the sulphur covered Pd(100) surface is exothermic.

In Fig 9.5(b) the hydrogen molecule has been rotated by 90◦ in the azimuthal
direction. For the configuration corresponding to the solid line again the energy barriers
decreases monotonically as a function of the distance from the sulphur atoms. With
a stretched bond length of d=0.9 Å and a distance from the surface of z =1.1 Å the
picture has changed. Now the barriers are at its heighest value above the Pd bridge site.
This is due to the repulsive character of the palladium atoms at which the hydrogen
atoms point at in this configuration. Again, at the fourfold hollow site the potential
energy is already negative.

To improve the neural network approximation and to facilitate its ability of rep-
resenting the steering effect we included the information about the variation of the
energy barriers within the unit cell from Fig 9.5 in the training examples. We added 66
potential energies related to the corrugation of the barriers to the information governed
from the previously discussed eleven 2D cuts. Namely, instead of optimising the neural
network with 1189 and 1778 training examples based on the elbow plots only as shown
previously in Fig. 9.4, p. 95, we use 1255 and 1844 points, respectively. The stick-
ing probability for both training sets in Fig 9.6 agrees now semi-quantitatively with
the underlying analytical potential-energy surface. Thus, incorporating only a small
number of additional information to the calculated elbow plots can lead to significant
improvement of the dynamical result.

Figure 9.6: Sticking probabil-
ity versus kinetic energy for
H2/(2×2)S/Pd(100) calculated
from the analytical PES and two
neural network PESs. The neural
PESs are based on the eleven
configurations in Fig. 9.3 and the
corrugation in Fig. 9.5
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Fig 9.6 demonstrates that the incorporation of available physical knowledge about
the system of investigation improves the interpolation considerably. Today it is well
known that steering in dissociation dynamics is present and can be essential for the
calculation of a dynamical property like the sticking probability. It is clear that the
reorientation of the molecule is affected by the distribution of the energy barriers on the
surface. Together with the knowledge about the favourable dissociation configuration
of the studied molecule which can be gained from DFT-calculations we were able to
calculate a small number of additional energies. With this new information the neural
network was able to reproduce the adsorption coefficient with an error of less than 6%.

To conclude, we described that the fitting of a strictly activated PES with neural
networks is significantly easier than the fit of a detailed PES with a coexistence of
activated and non-activated pathways. In order to obtain reliable dynamical properties
without any a priori knowledge of the reaction besides the symmetry a dense grid
of points in all degrees of freedom is necessary. We pointed out that the number of
energies required for extensive molecular dynamics with neural network is orders of
magnitude smaller in comparison to on-the-fly ab initio dynamics. However, a number
of 104− 105 ab initio calculations still exceeds the currently available computer power.
Additionally, we discussed that the usual approach of calculating 102 − 103 energies
within two-dimensional cuts above high-symmetric sites is not sufficient for a neural
network application. On the other hand, we demonstrated that the incorporation of
physical knowledge corresponding to a small amount of additional information leads
to a reliable description of the process.

9.4 Constrained Neural Network fitting approach

So far we have fitted the complete six-dimensional potential-energy surface in one
step. Yet, it might also be possible to split the fitting into separate parts or to use a
combination of different methods to approximate a PES.

For instance, a hybrid scheme using a combination of numerical and analytical
interpolation techniques has been proposed recently for the hydrogen dissociation
processes [48, 28, 27]. The method constructs the six-dimensional PES for diatomic
molecule-surface interactions from the low dimensional cuts obtained in ab initio cal-
culations. The authors developed a corrugation-reducing procedure based on the con-
sideration that most of the corrugation in a molecule-surface PES is already embedded
in the atom-surface interactions. The subtraction of the latter leads to a much smoother
function, which is easier to interpolate. The resulting PES is then approximated by a
combination of numerical and analytical methods. The two dimensional Zd cuts are
determined and interpolated by splines, whereas the corrugation in the lateral direc-
tions is described by a Fourier expansion. The proposed method has been applied to
the dissociation of hydrogen on Pd(111) [48, 28], Ni(111), (100) and (110) [27].

We followed a different approach. It is based on the physical consideration that a min-
imum path towards dissociation exists. On the clean Pd(100) this is the Pd bridge
site with the H-atoms pointing to the hollow sites, on the sulphur covered surface it
is the fourfold hollow site with the atoms directed towards the bridge sites. All other
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2D cuts have a higher energy barrier in the region of the cut where the bond breaks.
The idea behind our approach is the recognition that the minimum energy barrier on
an activated surface is very important as it determines the onset of the sticking prob-
ability. The molecule needs the corresponding kinetic energy to overcome this barrier
before it can dissociate. A neural network is not explicitly “aware” of the existence
of a minimum barrier. In principle, the
numerical approximation is free to put a
smaller barrier somewhere else in a two-
dimensional cut which has not been de-
termined by ab initio methods. This will
of course have important dynamical con-
sequences as can be seen from the neu-
ral network sticking curve in Fig. 9.7. At
low kinetic energies the adsorption prob-
ability is much too high because the in-
terpolation produced pathways - which
have not been calculated by density func-
tional theory methods - with a lower en-
ergy barrier than the determined mini-
mum value. This problem vanishes auto-
matically if a very high number of ab ini-
tio data is available, as discussed previ-
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Figure 9.7: Example of a neural network
sticking curve where the minimum barrier
has not been fitted correctly.

ously. Yet, with the low number of information available at the moment one always
has to be very careful in judging the accuracy of the fit. Hence, in order to increase
the reliability of the interpolation it will be advantageous to incorporate the available
physical knowledge about the energy barriers and to fix the minimum barrier in a
neural network interpolation.

In addition, we observed that the ab initio calculated elbow plots either on the clean
or the sulphur covered Pd(100) surface look rather similar. They differ mainly in the
region were the bond breaks (see for instance Fig. 8.1, p. 74,H2/Pd100 and Fig. 9.1,
p. 92). Therefore it might be useful to present the network first the general shape of
these two dimensional cuts before fitting the details of the complete six dimensional
problem. A neural network having learned to represent one of the elbow plots may need
only little additional information, e.g. the energy in the bond-breaking region, to fit
the PES above the other adsorption sites.

The motivation of the constrained fitting approach is therefore twofold: How can we
perform a neural network interpolation which (a) learns first the general shape of the
elbow plots before it tackles the complete 6D problem, and (b) at the same time reflects
a lower bound of the energy barrier, the minimum barrier, for all possible adsorption
configurations? In order to do so we split the fitting of the PES into two parts using
two neural networks. In a first step we fit the most valuable elbow plot, the minimum
pathway to dissociation with the minimum energy barrier, i.e. we perform a 2D neu-
ral network interpolation. In the second step we fit the complete 6D problem under
the requirement that all other elbow plots have a higher energy than the previously
interpolated one. In detail, the constrained fitting approach looks as follows:
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Step I - 2D Fit
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Figure 9.8: The minimum
pathway for the dissociation of
hydrogen on the sulphur covered
Pd(100) surface.

To represent the general shape of the elbow plots
we first perform a 2D interpolation of the most
favourable adsorption configuration with the min-
imum barrier for the reaction. Hence, we use a
neural network with two input nodes to interpo-
late the minimum pathway towards dissociation:

V NN
2D ({aw}, Z, d) ≡ minimum pathway ,

where Z is the distance of the molecule from
the surface, d is the bond length, and {aw} is
the set of neural network weights, which have
to be optimised. For the dissociation of H2 on
a (2×2)S/Pd(100) surface the minimum barrier
above the hollow configuration in Fig 9.8 is 0.1 eV.

Step II - 6D Fit

Having approximated the minimum dissociation pathway and determined the set of
weights {aw} we now want to tackle the full problem under the assumption that all
other 2D cuts can have a higher energy only. We write the following equation for the
six-dimensional problem:

V NN
PES ({bw}, X, Y, Z, d, θ, φ) = V NN

2D ({aw}, Z, d) +
[

V NN
6D ({bw}, X, Y, Z, d, θ, φ)

]2
. (9.1)

This is the constraint under which we perform the 6D approximation of the PES. We
optimise the corresponding set of weights {bw} only, whereas the weight vector for
the elbow plot {aw} remains fixed. The square of the six dimensional neural network
potential V NN

6D ensures that the energy in all other 2D cuts depending on Z and d can
only be higher than the energy within the minimum path V NN

2D . However, we point
out that this equation is not fully motivated by physical considerations. It is true that
a minimum barrier for the dissociation process exists, but in Eq. (9.1) we required
slightly more. The constraint is based on the assumption that the energy in all other
configurations than the most favourable one is higher for all values of the bond length
d and the distance from the surface Z in the Zd plane and not only for one pair of
distances (Z, d) at the location of the barrier. We discuss this assumption in more detail
at the end of this section.

Following the proposed procedure we interpolated the fourfold hollow site con-
figuration using 125 data points and a 2−20−20−1 tl neural network as shown in
Fig. 9.9(a). Based on this interpolation the complete PES has been approximated un-
der the constraint of Eq. (9.1) with a 9−20−20−1 tl net. For this purpose we choose a
small number of 165 energies in the other ten adsorption configurations, see Fig 9.9(b).
Additionally, we included 88 total energies describing the corrugation of the barriers
within the unit cell as discussed previously. The new neural network has been applied
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(b) All other 2D cuts

Figure 9.9: Data sampling (circles) for the constrained fitting approach in reaction path
coordinates along (s) and perpendicular (r) to the reaction path . (a) The NN minimum
path is based on a dense grid. (b) The sampling in the other 2D cuts is sparse.

to classical molecular dynamics calculations and the sticking probability as displayed
in Fig. 9.10 has been determined. The agreement with the underlying analytical PES
is very good, the differences being smaller than 3%. To check our procedure we have
repeated the constrained fitting approach with a slightly different training set of 348
points and achieved similar accuracy.

This demonstrates that the coordinates for a dissociation process of a diatomic
molecule can be efficiently separated. A neural network having learned the shape of
the elbow plots previously can very accurately reproduce other configurations with
only small additional information. We are able to describe the full dissociation problem
reliably with only a small number of ab initio calculations (< 500).

Figure 9.10: Constrained neu-
ral network fitting approach. In
the first step the minimum path
has been approximated by a
2−20−20−1 tl network based on
a training set of 125 energies. Sec-
ondly, the 6D PES under the con-
straint of Eq. (9.1) has been deter-
mined with a 9−20−20−1 tl net
and only 378 examples.
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Discussion of the constraint Eq. (9.1)

The constraint formulated in Eq. (9.1) proved to be very powerful. However, as already
mentioned, the equation is not fully based on physical considerations. We assumed that
the energy in all other configurations than the minimum pathway is strictly higher for
all (Z, d) values and not only for one pair of distances (Z, d) at the location of the
barrier. We shall further elaborate this issue. What if the assumption is wrong and
the fitted 2D plot in the first step is not the lower energy bound for all other 2D
geometries? Does the constrained fitting approach reflect in a way that it is based on
a wrong assumption? In order to test this let us consider the case that we have not
fitted the minimum pathway, but for instance a constant potential with the energy of
the minium barrier, i.e.:

V NN
2D ({aw}, Z, d) = 0.1 eV ∀ Z, d . (9.2)

If we use this constant potential in the first step of the constrained fitting approach
and try now to approximate the full problem under the constraint of Eq. (9.1), it
will be impossible to achieve a new set of weights {bw} which minimises the error to
the desired accuracy. Since Eq. (9.1) assumes that the energy for all (Z, d) values can
only be higher, no accurate interpolation reflected by the root mean squared error
will be possible. The energy in the different elbow plots is not strictly higher than
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Figure 9.11: Test of the constrained fitting
approach using different two-dimensional po-
tentials in Eq. (9.1). Plotted is the RMSE
training error versus the number of epochs.
A wrong 2D potential leads to a high level of
training error for the complete 6D PES.

0.1 eV. For instance, the potential is of
course lower in the gas phase far away
from the surface and also close to
the surface the molecule gains energy
on dissociation, the potential is even
negative. The assumption formulated
in Eq. (9.1) based on the constant
two-dimensional potential in Eq. (9.2)
is obviously wrong.
We have tested how the optimisation
procedure of the neural network
parameter vector {bw} of the six-
dimensional PES is affected if such a
false potential is used. The training
error for a 9−20−20−1 tl neural net-
work using Eq. (9.1) and the constant
2D potential of Eq. (9.2) is shown in
Fig. 9.11. The training error cannot
reach any satisfactory level of error,
because the minimisation is based on

a wrong constraint. Normally, it is always possible to minimise the training error close
to zero, the level of error is just a function of the number of parameters. The problem
is rather to minimise the test error to a desired value. Here, with the use of the
constraint in Eq. (9.1), a wrong assumption is reflected by a high error on the training
examples and can therefore be spotted easily. For comparison, in the previously
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discussed constrained fitting of hydrogen dissociation on the sulphur covered Pd(100)
surface based on 378 potential energies we achieved a training error of 0.023 eV after
a low number of 30 epochs also plotted in Fig. 9.11. This is well below the desired
ab initio accuracy of 0.1 eV and reflects that the two-dimensional minimum pathway
towards dissociation described by the analytical PES is indeed lower in energy than
all other configurations and justifies the proposed assumption for this case.

So far we have discussed what happens if the assumption is wrong that the fitted
2D potential in the first step of the constrained fitting is a lower bound for all other 2D
cuts. We have seen that this case is reflected by a high training error. But a necessary
requirement of the constrained fit is that information about such a lower energy bound
is indeed available. Since this work is concerned with interpolation and not extrapola-
tion the main features of the PES, i.e. the minimum and maximum potential energies,
should be present in the data set. In particular the minimum and maximum values
within the 2D elbow plots should be available. Yet, these extrema do not have to be
located within one single elbow plot. For instance, let us consider the problem that
none of the 2D cuts is strictly lower in energy for all (Z, d) values than the rest of the
cuts. For instance, there may exist an adsorption geometry where the fractions of the
dissociation process, here the H-atoms, are bound more strongly to the surface than
above the site with the minimum barrier to dissociation. In such a case the energy close
to the surface would be lower in the former configuration than in the latter, whereas
in the barrier region the situation might be reversed. How can we incorporate such a
situation in the constrained fit? This is of no problem, since the constraint in Eq. (9.1)
does not require that the lower 2D bound is associated with one single elbow plot. In
fact, one can always construct such a lower bound from the detailed information of
all elbow plots. One just performs a 2D interpolation of each elbow plot, which needs
to be done in any case for the plotting of the elbow cuts, and gains information on
a grid of Z and d values. From this one generates the 2D lower bound by taking the
minimum energy at each (Z, d) pair from all elbow plots. This artificial minimum path
then reflects the minimum energy of all calculated adsorption configurations and serves
as an input for the first step of the constrained fitting approach V NN

2D in Eq. (9.1).
The discussion of this paragraph can be summarised as follows:

2 During the optimisation procedure of the constrained fitting approach a false
two-dimensional lower energy bound V NN

2D is reflected by a high training error.

2 If none of the calculated elbow plots is a strictly lower bound to all other 2D
cuts, one can generate this lower bound as follows:

(1) Perform a 2D interpolation of each calculated elbow plots.

(2) Take the minimum energy on a grid of Z, d values of all interpolated elbow
plots. The generated set of values forms the lower bound.

A schematic representation of the constrained fitting approach of potential-energy sur-
faces with neural networks can be found in Fig. 9.12. We emphasise, that the presented
application of two neural networks for the interpolation of a PES is tailored to the spe-
cific needs of dissociative reaction dynamics and the development of this approach
required insight into the problem, which is not always available.
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Figure 9.12: Constrained Neural Net-
work fitting approach for potential-
energy surfaces of dissociation reactions.
The fitting is based on two separate in-
terpolations with neural networks. First,
a real or an artificial minimum pathway
is approximated before the complete six-
dimensional potential energy is fitted.

9.5 Energetic corrugation and its influence on ad-

sorption probabilities

In the previous sections we discussed how the fitting and the sampling of the data
have to be adapted in order to gain a reliable description of dynamical properties with
neural networks even with a low number of data points. For instance, we have seen
that for an accurate reproduction of the analytical sticking curve it is important to
include information about the corrugation of the potential energy in the fit. Yet, in the
introduction in Sec. 2.3.2 we pointed out that a discrepancy between this analytical
sticking curve and the experimental one [4] exists. We will now discuss this difference
in more detail. This section thus marks an end to the sole reproduction of an analytical
PES of the previous two chapters. In the following we will use the neural network as a
tool to study the influence of the corrugation on adsorption probabilities in general.

Fig. 9.13 compares the quantum mechanical and classical results of the sticking
probability obtained from the analytical PES [33, 51] with the experiment [4]. The
calculated sticking probabilities are significantly larger than the experimental results.
It has been argued that these discrepancies might be caused by the presence of
sub-surface sulphur in the experimental samples [51, 62]. In the experiment by
Rendulic et al. the sulphur adlayer was obtained by heating the sample, which leads to
the segregation of bulk sulphur to the surface. Since the determination of the sulphur
coverage at and below the surface is not very accurate, it might well be that a certain
fraction of sub-surface sulphur is still present in the experimental samples assuming
that the segregation was not fully complete. This will have important consequences
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for the surface reactivity because the species below the surface will bind to the
Pd atoms and hence make the binding of H-atoms to the surface Pd atoms more
difficult. Both the experiment [4] and
the DFT calculations [29] show that the
H2 dissociation on the sulphur-covered
Pd(100) surface depends sensitively
on the actual sulphur coverage. In
an independent experiment Burke
and Madix [140] showed for a higher
coverage of θS=0.5 that H2 dissociation
at this surface is completely suppressed
at thermal energies, whereas Ren-
dulic et al. still observed dissociation
even at this coverage [4]. Therefore
some uncertainties concerning the
preparation of the sulphur adlayer on
Pd(100) in the experiment remains.

Let us now focus on the differences
between the two calculated sticking
curves. The classical treatment of
hydrogen dynamics overestimates the
sticking probability compared to the
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Figure 9.13: Sticking probability ver-
sus kinetic energy for a H2 beam on a
(2×2)S/Pd(100) surface. Theory: quantum
and classical dynamics on an analytical
PES [51]. Experiment: from [4].

quantum mechanical results. For energies larger than the minimum energy barrier the
classical adsorption probability rises to values that are almost 50% larger than the
respective quantum probabilities. The suppression of the quantum result is caused by
the strong corrugation and the anisotropy of the PES. The minimum barrier is rather
localised in the lateral coordinates parallel to the surface and also in the rotational
degrees of freedom of the molecule. Hence, the associated modes become “frustrated”
and the interaction of a H2 molecule with the substrate gives rise to zero-point energies.
These energies need to be taken from the incident beam and therefore the effective
kinetic energy of the impinging molecule is reduced. Consequently the fraction of the
molecules which are able to overcome a certain barrier towards dissociation is reduced
and the sticking probability is lower. However, the overall trend of the sticking curve
with increasing kinetic energy is well reproduced also by classical dynamics.

In addition, also the integrated barrier distribution or the so-called “hole model” is
plotted in Fig. 9.13. It is the fraction of the configuration space for which the dissocia-
tion barrier is less than the initial kinetic energy of the molecule. Since, e.g., pathways
associated with an upright molecule are purely repulsive, the fraction of the configu-
ration space in which the molecule would be able to dissociate without changing its
configuration is rather small. The dynamical results in Fig. 9.13 are much larger than
the integrated barrier distribution. Groß et al. found that also on the S covered Pd(100)
surface steering to configurations and sites with lower barriers [51,62] is effective, which
results in the higher sticking at a given energy. Hence, the adsorption probability probes
the very details of the corrugation of the PES and not only the barriers corresponding
to the initial configuration of the impinging molecule.
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It is striking that the integrated barrier distribution, where no steering is present,
agrees much better with the measured probabilities than the dynamical result. Could
it be, that the re-orientation of the molecules is overemphasised by the analytical in-
terpolation for this system? Since the corrugation is connected with the steering effect
and thus with the difference between the hole model and the dynamical result and
also between the classical and quantum adsorption probabilities, we will now study its
influence in more detail. As an example we will take the corrugation of the H2 molecule
in its most favourable dissociation configuration with the molecular axis parallel to the
surface. Due to the steering effect also molecules approaching the surface in an upright
position will be very efficiently re-oriented and re-directed by the forces towards the
parallel configuration. The corresponding distribution of energy barriers for this geom-
etry will therefore influence the probability for sticking of the molecules.

c
Y

X c

Pd

S

H2

Figure 9.14: H2 ge-
ometries for Fig. 9.15

In order to visualise the analytical variation of the energy
in the lateral directions of the surface we use the same ap-
proach as presented in the discussion of the clean Pd(100)
surface on page 87. We fix the H2 molecule in its most
favourable dissociation configuration, i.e. parallel to the sur-
face, at a position which corresponds to the region where
the H-H bond starts to break, and move the molecule in
this position across the unit cell. Namely, we scan the bar-
rier heights by fixing the distance of the molecule from the
surface at Z = 1.9 Å with a bond length of d = 0.76 Å at
angles (θ, φ)=(90◦, 0◦) and vary the lateral coordinates Xc

and Yc as illustrated in Fig. 9.14.

The energy as a function of the lateral coordinates calculated from the analytical
PES is shown in Fig. 9.15(a). The location of the surface Pd and S atoms have been
indicated by the dark filled circles. If we look e.g. at the variation of the energy along
the diagonal from the sulphur on-top to the hollow site in the middle of this contour
plot, we see that the analytic energy first drops rather steeply reaching values of 0.5 eV
shortly behind the Pd atom and then levels out smoothly to a value of 0.1 eV, i.e. the
minimum barrier above the hollow site. 20% of the area of the unit cell has an energy
barrier lower than 0.2 eV rising to 33% for an energy ≤ 0.3 eV. Hence, if the kinetic
energy exceeds the value of the minimum energy barrier a rather large area of the
surface becomes soon available for sticking. For instance, molecules approaching the
surface upright over a Pd atom with a low kinetic energy do not need to be re-directed
on the surface very far after being reoriented to the favourable configuration in order
to dissociate. This form of the corrugation is therefore connected to the sharp increase
of the sticking probability based on the analytical PES in Fig. 9.13. In addition, we
have also included the calculated ab initio energies in Fig. 9.15(a) marked by the white
filled squares above the high symmetric configurations, the fourfold hollow site, the
Pd bridge site, the other Pd hollow site between the sulphur atoms, and the sulphur
on-top position. This sparse set of energies has been interpolated analytically [33] by
using Fourier terms in the lateral directions to the form presented in Fig. 9.15(a).

Inspired by the fact that the integrated barrier distribution, where steering is not
present, gives good agreement with the molecular beam experiment, we will now discuss
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a modified interpolation of the sparse set of ab initio energies where the steering effect
might be suppressed. Let us consider the case that the potential energy increases more
steadily from the fourfold hollow site to the sulphur on-top site, while at the same time
the energies of the ab initio points are kept fixed as plotted in Fig. 9.15(b)? The area of
the unit cell corresponding to a barrier lower than 0.3 eV is now reduced to half of the
value of the original analytical interpolation. On such a potential-energy surface the
valley in which the molecules have to be steered to for dissociation is much narrower.
The forces acting on a hydrogen molecule approaching the sulphur or palladium on-
top sites are now considerably smaller than the corresponding values on the original
analytical PES. Thus, the re-orientation and re-direction of the impinging molecules
should be much less pronounced and the steering effect might be less efficient. In turn,
this could lead to a reduced dissociation probability.
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Figure 9.15: Corrugation of the energy across the unit cell. The molecule is oriented
parallel to the surface with its bond axis parallel to Yc at a height z=1.9 Å with a bond
length d=0.76 Å as plotted in Fig 9.14. (a) and (b): potential energies as a function of
the lateral coordinates (Xc, Yc). The contour spacing is 0.1 eV. The filled circles mark
the location of the surface atoms, the white squares the calculated ab initio points.

For a test of the influence of the corrugation we performed two separate neural
network interpolations based on two different data sets. First, we fitted 496 energies
obtained from the analytical PES including 72 points corresponding to the original
corrugation of Fig. 9.15(a). Secondly, we used the same 496 configurations but changed
the values of the 72 points associated with the corrugation in accordance to the modified
corrugation of Fig. 9.15(b). For both interpolations we applied the constrained fitting
approach using the same 8−10−10−10−1 tl neural network. In order to check the
accuracy of both fits we applied the identical test set with 117 energies above the
usually calculated high symmetric sites. The neural network interpolations based on
the two different training sets achieved both a training error of 50meV and a test
error of 0.20 eV after 500 epochs. The higher errors occur only for energies where the
potential is already elevated, i.e. not in the region of the valley of each elbow plot. The
latter region has been weighted 10 times higher during the interpolation.
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Fig. 9.16 shows the adsorption probabilities obtained from the two neural network
fits compared to the analytical and the experimental probabilities. The neural network
sticking curve based on the original analytical PES reproduces indeed the analyti-
cal sticking curve very well. Yet, the sticking probability corresponding to the neural
network PES trained with the modified corrugation is significantly lower than the
analytical results and closer to the experimental ones. At an energy of 0.3 eV the cor-
responding adsorption probability is less than half the value of the original analytical
PES, but also still three times as large as the measured result. However, we should keep
in mind that quantum dynamical calculations on such a corrugated PES will further
reduce the results considerably and therefore would further decrease the discrepancy
with the experiment.
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Figure 9.16: Adsorption proba-
bilities as a function of the ki-
netic energy of hydrogen dissocia-
tion on a sulphur covered Pd(100)
surface. Comparison of two neu-
ral network sticking curves based
on the original corrugation of
Fig. 9.15(a) and the modified cor-
rugation of Fig. 9.15(b) with the
analytical [51] and the experimen-
tal result [4].

Hence, the form of the corrugation influences the dynamical result greatly and in
addition to the presence of sub-surface sulphur could also be a source of the discrepancy
between experiment and theory. It has been found theoretically that the poisoning effect
of sulphur on the Pd(100) surface is due to a mixture of a direct interaction between
the adatom and the hydrogen molecule and a sulphur-induced modification of the local
electronic structure at the surface Pd atom [33]. A functional form of such interaction
is not obvious. Without a calculation based on DFT methods it will be difficult to
judge which corrugation is more likely. We therefore recommend to always extend the
theoretical mapping of potential-energy surfaces from the calculation of elbow plots
in the Zd plane above high-symmetric sites to two-dimensional cuts in the lateral
directions of the surface.

We will apply this procedure in the following chapter concerning the ab initio cal-
culation of the PES for the dissociation of hydrogen on a potassium covered Pd(100)
surface. We will then come back to the discussion of this section.
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Chapter 10

Neural Network application:

Hydrogen dissociation on K(2×2)/Pd(100)

Having tested the neural network approach of fitting potential-energy surfaces based
on analytical functions we will now present its application to ab initio data: The disso-
ciation of hydrogen on a potassium covered Pd(100) surface. Experiments by Solymosi
and Kovács have shown that not only sulphur adatoms, but also potassium adsorbates
poison the H2 dissociation reaction [34]. This is of special interest since commonly
electronegative atoms of groups Vb and VIb poison a catalytic process, whereas the
electropositive alkali-metal atoms promote the process, or vice versa. A density func-
tional theory study by Wilke and Cohen revealed that potassium hinders H2 dissoci-
ation by forming energy barriers in the entrance channels, i.e. at large distances from
the surface, where the intramolecular bond is not significantly stretched [37]. In the
exit channels, when the molecules are dissociated, the presence of potassium atoms
tends to stabilise the bond of the hydrogen atoms with the surface. The theoretical
investigation focused on two dissociation pathways with the hydrogen molecule above
hollow sites.

We have now extended this previous work and investigated in detail how the poi-
soning of the H2 dissociation on Pd(100) due to the presence of potassium depends
on position and orientation of the molecule. Overall we calculated eleven elbow plots
with the molecule above high-symmetric sites. Moreover, we analysed the corrugation
of the PES in even more detail by collecting information of the potential energy as a
function of the lateral coordinates within the surface unit cell. The ab initio energies
have been fitted by neural networks in two different ways. First, we performed an inter-
polation of the six-dimensional PES in one step with a single neural network. Secondly,
we applied the previously introduced constrained fitting approach and employed two
different neural networks in the approximation. The neural network PESs have been
utilised in classical molecular dynamics calculations and the sticking probability of the
dissociating H2 molecule as a function of the kinetic energy has been determined.

The structure of the chapter is as follows. We will first introduce experimental find-
ings for hydrogen dissociation on potassium covered palladium surfaces. We will then
describe the computational details of the density functional theory calculations before
we discuss the ab initio PES. Finally, we present the neural network interpolations of
the potential energy and their application to molecular dynamics.
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10.1 Hydrogen on K/Pd surfaces in experiments

It has been found experimentally that potassium adatoms form two ordered structures
on the Pd(100) surface, a p(2×2) corresponding to a potassium coverage of θk=0.25
and a c(2×2) at θk=0.5 [141,142]. The potassium equilibrium adsorption positions are
surface hollow sites which hydrogen also prefers to occupy. Potassium adatoms induce
a strong decrease of the metal work function. For the p(2×2) the work function is
about 4 eV lower than for the clean surface.

The dissociation of H2 and D2 on the K-covered Pd(100) surface has been studied
by Solymosi and Kovács using thermal desorption spectroscopy (TDS), work-function
changes and ultraviolet photoelectron and Auger spectroscopy [34]. At a potassium
coverage of 25% and a temperature of 100K the sticking probability is 30 times less
than that measured for the clean surface. At this temperature the energy distribution
is dominated by low-energy molecules which are particularly sensitive to energy bar-
riers for dissociation. The experiments indicated that on K-covered Pd(100) surfaces,
dissociative adsorption of H2 molecules is kinetically hindered. Whereas the sticking
probability is reduced, at the same time TDS experiments showed a monotonic increase
of the temperature corresponding to the maximum desorption rate of hydrogen with
potassium coverages [34]. This was interpreted as an indication for a stabilisation of
H-atoms by the presence of potassium co-adsorbates. Such a simultaneous poisoning of
H2 dissociation and stabilisation of the H-metal bond on the K-covered Pd(100) sur-
face is at variance from the case of S-covered Pd(100), which we discussed previously.
For the latter system both the dissociation probability of hydrogen molecules and the
strength of the H-metal bond are reduced. Beam experiments revealed that also on
the Pd(110) surface pre-adsorbed potassium acts as an inhibitor to adsorption [143].
However, to our knowledge sticking coefficients for a beam of hydrogen molecules on a
K/Pd(100) surface have not been measured up to now.

10.2 Ab initio potential-energy surface

10.2.1 Computational details

We have used density-functional theory together with the generalised gradient approxi-
mation (GGA) [91] for the exchange-correlation functional. The relativistic Kohn-Sham
equations are solved with the full-potential linear augmented plane-wave (FP-LAPW)
method [82,83]. The parameters used in the FP-LAPW code were similar to those used
in a previous study of the same system by Wilke and Cohen [37]. The FP-LAPW wave
functions in the interstitial region are represented using a plane wave expansion up to
Ewf
max=13Ry. Tests of the convergence of the results have been performed with a higher

cutoff of up to Ewf
max=15Ry, but led to energy difference of less than 20meV. Due to

the small muffin-tin radius around the H atoms of RMT (H) = 0.32 Å in accordance
with the H2 equilibrium bond length of 0.75 Å, it is necessary to take into account
plane waves up to Epot

max=169Ry for the potential representation. Inside the muffin-tin
spheres the wave functions are expanded in spherical harmonics with lmax = 10, and
non-spherical components of the density and potential are included up to lmax=3. The
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k-integration used 32 uniformly spaced points in the two-dimensional Brillouin zone
corresponding to the (2×2) surface unit cell. Wilke and Scheffler [22] tested the inter-
action of the dissociating hydrogen molecules of neighbouring unit cells on the clean
Pd(100) surface using different surface structures. They found that a p(2×2) unit cell
is sufficient to ensure negligible residual-interaction.

The metal substrate was modelled by five layers separated by a 13 Å thick vacuum
region. Adatoms are symmetrically adsorbed on both sides of the slab. Wilke and Cohen
studied the influence of the slab thickness on the potential energy for slabs with up to
seven layers. They found energy differences change by less than 50meV [37]. We have
tested the influence of the size of the vacuum region by expanding it up to a value of
20 Å. The energy differences changed again only by less than 50meV.

The calculated lattice constant of bulk Pd is 3.95 Å which is 1.5% larger than the
experimental value and 2% smaller than the value obtained by a non-relativistic calcu-
lation of the same system [37]. The smaller lattice constant and the better agreement
with the experiment of the relativistic calculation is due to the nature of the Pd d-
states, which are highly localised and therefore should be treated relativistically. The
K-adatoms where placed into the surface hollow sites of the Pd(100) surface [141]. The
calculated adsorption height of potassium forming a p(2×2) structure is hK0 =2.41 Å
which is in agreement with previous results [37]. The energy zero is taken as the en-
ergy of the geometry where the molecule is sufficiently far away form the surface with
Zc=5.05 Å, i.e. where the molecule and the surface do practically not interact. The cal-
culated equilibrium bond length in this configuration is 0.75 Å, which is in agreement
with the experimental value.

10.2.2 Potential-energy surface

Neglecting the surface relaxation effects, the potential-
energy surface for the dissociative adsorption of a hydro-
gen molecule over a potassium covered Pd(100) surface
is six-dimensional. As discussed previously, the six di-
mensions correspond to the six degrees of freedom of the
H2 molecule Xc, Yc, Zc, d, θ, φ. In order to map this high-
dimensional PES we followed the usual approach of com-
puting 2D cuts through the configuration space as dis-
cussed in Sec. 3.3, p. 33. The cuts are defined by the site
(Xc, Yc) and the orientation (θ, φ). Figure 10.1 shows the
(2×2) surface unit cell. Different adsorption sites within
the unit cell exist, namely two bridge sites b1, b2 two hol-
low sites h1 and h2, the top sites above palladium atoms
tP d, and above potassium atoms tK .

Overall, we have calculated 659 ab initio energies. The
majority were sampled within eleven elbow plots above

K

Pd

tK 2

Pd

2b h

1b

h

t

1

Figure 10.1: (2×2) K-
covered Pd(100) surface
with two hollow sites h1,
h2, bridge sites b1, b2 and
top sites tP d, tK .

the high-symmetric sites. These are the same 2D cuts which we used in the discussion
of the sulphur-covered Pd(100) surface. Additionally, we focused particularly on the
energies associated with the corrugation of the energy barriers across the unit cell.
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To distinguish between the different orientations we will characterise them by the
position of the H atoms and the centre of mass of the molecule. For instance, a geometry
h2-b1-h1 denotes the situation were the centre of mass is over the bridge position b1

and the H atoms are oriented towards the hollow sites h1 and h2, respectively.

I. Two-dimensional cuts through the PES at hollow sites

Wilke and Cohen [37] focused in their study of the same system on two adsorption
geometries b1-h1-b1 and b1-h2-b1 above hollow sites. They found that a potassium
p(2×2) adlayer induces energy barriers for the dissociation of hydrogen in the en-
trance channel of the PES, hindering the approach of the molecules to the surface.
The potential-energy surface changes considerably in comparison to the clean surface.
Whereas on the latter surface the reaction was non-activated, on a K-covered surface all
pathways to dissociation are now activated. Their calculations showed that the energy
along the reaction pathways above the different hollow sites differ only marginally. The
barrier height is 0.18 eV, whether the H2 molecule dissociates over the central hollow
site h1 or over the hollow site h2. The top of the barrier was found in the entrance
channel at Zc=1.85 Å, with the H-H bond not yet stretched.

Figure 10.2(a) shows the recalculated PES for the b1-h1-b1 dissociation pathway.
The sampling of the points within the elbow plots can be found in App. D, p. 165. The
calculated energy barrier is 0.18 eV which is consistent with previous calculations [37].
The location of the energy barrier is in the entrance channel with a distance of the
molecule from the surface Zc=1.85 and a bond length d=0.79 Å. On the clean Pd(100)
surface this pathway was non-activated and the dissociation proceeds with a continuous
gain of energy without any hampering barrier [29]. The formation of energy barriers
after adsorption of a potassium adlayer is consistent with the experimentally observed
decrease of the initial sticking probability [34]. It can also explain the observed increase
of the peak temperature of hydrogen desorption in the TDS experiment [34], since the
formation of an energy barrier results in an increase of the energy of activation of
associative hydrogen desorption. The b1-h1-b1 geometry corresponds to the minimum
barrier pathway. This adsorption geometry is the site furthest away from the potassium
atoms, hence one can expect that there is no direct interaction between the hydrogen
and the potassium atoms. On the sulphur covered Pd(100) surface the same configu-
ration associated with the minimum pathway has been obtained, but with a smaller
barrier of 0.1 eV [33]. On the clean surface the minimum pathway was located at the
palladium bridge site [29].

Figure 10.2(b) displays the PES of the tP d-h1-tP d pathway. An activation barrier
of 0.19 eV builds up in the entrance channel at (d, Zc)=(0.79 Å, 1.85 Å). On the sulphur
covered Pd(100) surface a barrier of 0.13 eV has been calculated [33]. On adsorption of
either co-adsorbate - potassium or sulphur - the energy with the molecule above the
h1 position with the atoms pointing towards the surface Pd atoms is slightly higher
than in the b1-h1-b1 adsorption configuration.

Figure 10.2(c) shows the PES for the geometry with the hydrogen molecule adsorbed
at the h1 site in an upright position. As it is evident from the contour plot, this pathway
is repulsive as it is the case on the S(2×2)/Pd(100) surface [33]. There is a shallow



10.2 Ab initio potential-energy surface 115

local minimum at (d, Zc) = (1.06 Å, 0.6 Å) with an energy of 0.26 eV. On the clean
surface there was a local minimum with −0.03 eV. The hydrogen atoms above the h1

position are at least 4 Å away from the co-adsorbed potassium atoms. Therefore, the
increase of the energy with respect to the clean surface should not be caused by a
direct interaction between the H and K atoms, but rather due to a potassium-induced
modification of the local electronic structure at this site, which has been verified by
Wilke and Cohen [37].
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Figure 10.2: 2D cuts through the six-dimensional PES of hydrogen dissociation over
(2×2)K/Pd(100) above the hollow site h1. The energy depends on the distance of
the two hydrogen atoms and the distance of the molecule from the surface. The other
coordinates are kept fixed. The spacing of the energy contours is 0.1 eV.

The PES for the adsorption above the hollow site h2 is illustrated in Figure 10.3.
In the cut for the b2-h2-b2 pathway in Figure 10.3(a) there is a high barrier towards
dissociation of 0.46 eV in the entrance channel. The high barrier in comparison to the
h1 site is due to the smaller distance between the potassium adatoms and the hydrogen
atoms. So far we have noticed that the adsorption of sulphur and potassium induces
similar effects. With both adsorbates energy barriers build up in the entrance channels.
The minimum energy barrier has been found to be higher on the K-covered (0.18 eV)
than on the S-covered surface (0.11 eV). The height of the energy barrier depends on
the distance of the hydrogen atoms from the adsorbate.

However, the b2-h2-b2 pathway is not purely repulsive. There is a minimum of
Epot=−0.51 eV at (d, Zc)=(1.87 Å, 1.0 Å), which is not present on the sulphur covered
surface [33]. The direct repulsion between S and H atoms co-adsorbed on Pd(100)
seems to be stronger than the repulsion between K and H atoms. But one has to
keep in mind that sulphur adsorbs much closer to the surface (Zc=1.24 Å) [33] than
potassium (Zc = 2.41 Å), i.e. the height of the minimum in the b2-h2-b2 pathway is
close to the sulphur adsorption height. In this configuration the H-atoms on the sulphur
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covered surface are roughly 1 Å closer to the co-adsorbate than on the potassium surface
leading to the observed difference.

If we now turn the H2bond around by ninety degrees with the centre of mass
still above the h2 site into the b1-h2-b1 geometry, the energy barrier in Fig. 10.3(b)
decreases to a value of 0.27 eV at (d, Zc) = (0.795 Å, 1.85 Å). The hydrogen atoms
dissociate into the fourfold hollow site h1 with an energy of E=−0.86 eV at (d, Zc)=
(1.1 Å, 2.5 Å). For the other b−h−b adsorption geometry above the hollow site h1 in
Fig. 10.2(a) a similar value has been calculated in the exit channel, where the molecule is
already dissociated. On the clean surface the corresponding energy is only −0.4 eV [29].
This illustrates the opposite effect which potassium adatoms have during the early and
late stages of the dissociative adsorption of hydrogen. They hinder the approach of
the H2 molecule to the surface by inducing energy barriers in the entrance channel.
In the exit channel where the molecule is dissociated, K promotes the bonding of H
to the metal surface. This differs to the influence S adsorbates have on the adsorption
properties of hydrogen. The presence of S adatoms decreases the adsorption energy of
co-adsorbed hydrogen atoms [29,30,33].
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Figure 10.3: Two-dimensional cuts through the six-dimensional PES of hydrogen dis-
sociation over (2×2)K/Pd(100) above the hollow site h2.

Wilke and Cohen reported in their previous study of the K-covered Pd(100) surface,
that the energy along the reaction pathway for H2 dissociation over the two different
hollow sites b1-h1-b1 and b1-h2-b1 differ only marginally [37]. This was a surprising
result, because one would expect that the poisoning depends on the distance of the H
atoms from the co-adsorbate as it is the case on the S-covered Pd(100) surface [29,30,
33]. In contrary, our calculations revealed, that indeed the poisoning effect is a function
of the K-H distance. The barrier in the b1-h2-b1 pathway was found to be 0.09 eV higher
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than in b1-h1-b1 geometry. As can be seen from Table 10.1 this variance is mainly due
to a too large lattice constant in the previous calculation. For the reported relativistic
calculation in this work we determined a bulk lattice constant of 3.95 Å, which is 1.5%
larger than the experimental value. The value obtained by Wilke [22] with a non-
relativistic calculation was 3.5% larger than the experimental one. The corresponding
energy with a cutoff of 12Ry in the first line of Tab. 10.1 is 0.19 eV. If we perform the
same calculation but with the smaller lattice constant reported here, the energy in the
second line of Tab. 10.1 rises to a value of 0.25 eV. Increasing the cutoff in the plane
wave expansion to 13Ry used in this work and performing a relativistic calculation
leads to the energy barrier of 0.27 eV as printed in the last line of the Table.

The degeneracy of the energy barriers over the hollow sites found in the previous
study are therfore an artefact of the extended lattice constant due to the non-relativistic
calculation. The very localised Pd d-states require a relativistic treatment leading to
a lattice constant, which is smaller than the non-relativistic result and agrees better
with the experimental value. This results in a shorter K-H distance in the b1-h2-b1

configuration and to a higher energy barrier. At the same time the energy over the
other hollow site configuration b1-h1-b1 is not influenced by these changes. As in the
non-relativistic calculation the energy barrier was found to be 0.18 eV. This adsorption
site is simply too far away from the K-adatoms to be influenced by the shorter distance.

Ecut Lattice constant non-relativistic relativistic Energy

12Ry 4.03 Å • 0.19 eV

12Ry 3.95 Å • 0.25 eV

12Ry 3.95 Å • 0.26 eV

13Ry 3.95 Å • 0.27 eV

Table 10.1: Dependence of the barrier height for the b1-h2-b1 geometry on the cutoff
energy, the lattice constant and the method of calculation. The first line corresponds
to the result reported in Ref. [37], the last line is the result reported in this work. The
experimental lattice constant is 3.89 Å. All calculations are based on the GGA [91].

II. Two-dimensional cuts through the PES at bridge sites

We will now present the ab initio results of geometries, where the centre of mass of
the molecule is situated at the bridge site b1 of the surface unit cell. In Fig. 10.4(a)
the PES for the h2-b1-h1 pathway is presented. At the clean surface the dissociative
adsorption in this configuration is non-activated, i.e. there is no energy barrier for
dissociation present. On adsorption of a potassium adlayer a barrier of 0.19 eV builds
up at a distance of 2.0 Å of the centre of mass of the molecule from the surface with a
hydrogen bond length of 0.78 Å. The value of the barrier is slightly higher than the one
associated with the b1-h1-b1 configuration and smaller than the barrier of the b1-h2-b1

geometry. The corresponding barrier on the S-covered Pd(100) surface is 0.16 eV.
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The PES for the tP d-b1-tP d geometry is plotted in Fig. 10.4(b). The dissociation
process in this configuration after the co-adsorption of potassium atoms is repulsive. We
obtained the same barrier of 0.19 eV as in the h2-b1-h1 configuration, but now shifted
slightly further away from the surface at Zc = 2.3 Å. There is also a shallow local
minimum of 0.07 eV at (d, Zc) = (1.0 Å, 1.7 Å) present, whereas on the clean surface
a local energy minimum of −0.2 eV exists. This is due to the fact that the hydrogen
atoms dissociate towards the palladium and close to the potassium atoms. The direct
interaction of hydrogen and potassium leads to the increase of the energy in the shallow
minimum. If the bond length stretches further, the energy rises monotonically.
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Figure 10.4: Two-dimensional cuts through the six-dimensional PES of hydrogen dis-
sociation over (2×2)K/Pd(100) above the bridge site b1.

III. Two-dimensional cuts through the PES at top sites

In addition to the dissociation over the hollow and bridge sites, we also considered
configuration of the hydrogen molecule above top sites, i.e. on top of a palladium or
a potassium atom. The potential-energy surfaces associated with on-top geometries in
Fig. 10.5 differ significantly from the previously discussed hollow and bridge sites. On
the clean surface the dissociation pathway h2-tP d-h2 has a local minimum of −0.24 eV
in the entrance channel and an energy barrier of 0.15 eV in the exist channel [22].
From Fig. 10.5(a) it is visible, that due to the presence of potassium atoms the local
minimum disappears and the energy barrier rises to 0.85 eV in the exit channel at
Zc = 2.3 Å. Such a situation can be expected, since the adsorbed potassium atom is
about 2 Å away from the adsorption site tP d and 2.41 Å above the topmost palladium
layer. The hydrogen molecule will therefore interact directly with the K atom before
it reaches the palladium surface. The repulsive interaction between potassium and
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hydrogen then raises the energy of the PES. A similar situation has been found for
the sulphur-covered surface. However, since sulphur adsorbs only 1.24 Å above the
surface, the energy barrier of 1.28 eV is located at a shorter distance from the surface
(Zc=1.4 Å).

In Figure 10.5(b) the molecule approaches the surface palladium atom with its axis
perpendicular to the surface. The interaction is purely repulsive, no dissociation is
possible. At a distance of 2 Å from the surface the energy has increased to a value of
1.1 eV. The repulsion is even stronger if the upright molecule approaches the potassium
co-adsorbate in Fig. 10.5(c). Far away from the topmost palladium layer at Zc=4.3 eV
the energy reaches a value of 1.8 eV. These findings support the observation that an
upright hydrogen molecule is not able to dissociate as it has been reported already in
the studies concentrated on the clean and the sulphur-covered surface [22, 29, 30,33].

Figure 10.5(d) shows the PES over a surface potassium atom within the b2-tK-b2

configuration. In this geometry the molecule approaches the potassium atom directly
which leads to a strong repulsion. On the sulphur-covered surface the corresponding
dissociation process was activated with a barrier of 2.55 eV. However, with potassium
adsorbates the process is purely repulsive. We calculated energies up to 5 eV without
finding a saddle point in the energy landscape. The potassium atoms adsorb far away
on the surface. Although dissociation in this configuration corresponds to a motion of
the hydrogen atoms away from the potassium atom which usually leads to an energy
gain, the distance to the surface is too large to experience the attraction by the metal
atoms.
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Figure 10.5: 2D cuts through the 6D PES of H2 dissociation over (2×2)K/Pd(100)
above the palladium top site tP d in (a)+(b) and the potassium top site tK in (c)+(d).
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IV. Corrugation of the PES

In addition to the calculation of two dimensional cuts above high-symmetric sites we
calculated the corrugation of the energy barriers as a function of the lateral coordinates
for different fixed distances and bond lengths of the molecule from the surface. The
most interesting configuration corresponds to the situation when the molecule is ori-
ented parallel to the surface in the bond breaking region. In such a geometry hydrogen
dissociates on the Pd(100) surface. For H2 above or between hollow and bridge sites
the energy barriers are located at a bond length of d=0.77−0.79 Å and a distance of
the centre of mass from the surface between 1.8 Å and 2.0 Å.

Figure 10.6 shows the corrugation of the energy barriers for the molecule moved
from the b1-h2-b1 geometry, over the b1 site, to the b1-h1-b1 configuration. The polar
and azimuthal angles are fixed at a value of 90◦. The H-H distance is d=0.79 Å. With
the molecule above the h2 site corresponding to X = 0a in Fig. 10.6, where a is the
length of the (2×2) cell, the energy increases while the molecule approaches the surface
from a distance of 2.0 Å to 1.8 Å. If the molecule further moves towards the surface,
the energy decreases again, which can be seen in the elbow plot in Fig 10.3(b), p. 116.
The dissociation is activated. The barrier is 0.27 eV at Z = 1.8 Å. Above the hollow
site h1 (X = 0.5 a in Fig.10.6) the energy changes only slightly for the four different
vertical distances. The maximum is located a Z=1.85 Å with an energy of 0.18 eV. In
an intermediate configuration, e.g. above the b1 site (X=0.25 a), the highest barrier is
situated further away from the topmost Pd layer at Z=2.0 Å, i.e. the surface exhibits
not only energetic but also a slight geometric corrugation. The outward shift of the
barrier is present between X=0.15−0.35 a and is therefore due to the short distance of
the molecule to the Pd atoms. Between the bridge site b1 and the hollow site h1 there is
a slight local minimum atX=0.3 a, followed by a shallow maximum atX=0.4 a, before
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Figure 10.6: Corrugation of
the energy along the x-axis
of the unit cell for a hy-
drogen molecule parallel to
the surface with (θ, φ) =
(90◦, 90◦) at four different
heights Z. The bond length
of the molecule is d=0.79 Å.
The lateral coordinate X is
plotted as a function of the
length of the (2×2) unit cell
a. The H2 molecule is moved
from the b1-h2-b1 (X=0 a)
to the b1-h1-b1 (X = 0.5 a)
configuration.
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the energies drop to the value of the minimum pathway above h1. The reason for the
lower barrier atX=0.3 a is that one H atom gets very close to the favourable adsorption
site h1 and the other is further away from the repulsive K atom. However, this is a
very small effect. If we focus on the outline of the different curves and concentrate on
the highest barriers at each lateral coordinate X, the energy decreases monotonically
from the h2 to the h1 site. The energetic corrugation is not very pronounced, the
difference between the highest and the smallest barrier in Fig. 10.6 is just 0.09 eV. For
comparison, the same difference on the sulphur-covered surface is 0.5 eV [33], i.e. the
corrugation on the K(2×2) is much weaker than on the S(2×2)/Pd(100) surface.

If the we turn the molecular axis of the hydrogen molecule in-line with the surface
potassium atoms, the energetic corrugation is much more pronounced as shown in
Figure 10.7. The molecule is again oriented parallel to the surface, but the azimuthal
angle has been changed from 90◦ to 0◦. The bond length is 0.77 Å and the distances from
the surface are 1.9 Å and 2.1 Å, i.e. corresponding to the region where the H2 bond starts
to break. In this configuration the dissociating H atoms point directly at the repulsing
surface Pd and K atoms, increasing the energy barrier. The difference between the h2

on the left and the h1 adsorption site on the right has been raised to 0.27 eV. Yet, on
the sulphur-covered surface the energy barriers above the hollow configurations in this
geometry differ by 0.65 eV, i.e. the corrugation is again significantly larger. The shape
of the curves is the same as in the previous plot, the highest barriers decrease from the
b2-h2-b2 to the b1-h1-b1 configuration. Again, close to the palladium atoms the energy
barrier is shifted further away from the surface. Indeed, we found for the tP d-b1-tP d

geometry that the energy increases by 20meV up to a distance of Z = 2.3 Å, which
we have not plotted here. We point out, that the shown energies do not necessarily
correspond to the highest barrier above each site. The location of the barrier also
depends on the bond length, which we fixed in Fig. 10.6 and Fig. 10.7.

Figure 10.7: Corrugation of
the energy along the x-axis
of the unit cell for a hy-
drogen molecule parallel to
the surface with (θ, φ) =
(90◦, 0◦) at two different
heights Z. The bond length
of the molecule is d=0.77 Å.
The lateral coordinate X is
plotted as a function of the
length of the (2×2) unit cell
a. The H2 molecule is moved
from the b2-h2-b2 (X=0 a)
to the b1-h1-b1 (X = 0.5 a)
configuration.
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Additionally, we have also calculated the variation of the barrier height as a function
of both lateral coordinates Xc and Yc. We kept the molecule in the same position as
before but now moved the centre of mass across the unit cell and not only along the

Y c H2
Pd

K

Xc

Figure 10.8: H2 ge-
ometries for Fig. 10.9

line between the h1 and the h2 hollow site. The molecule is
fixed at a distance from the surface Zc = 1.9 Å with a bond
length of d=0.77 Å at angles (θ, φ)=(90◦, 0◦) and the lateral
coordinates vary between 0 a and 0.5 a, where a is the length
of the (2×2) cell. Examples of configurations of the hydrogen
molecule are plotted in Fig. 10.8.

The ab initio total energy as a function of the two lat-
eral coordinates in the above configuration can be seen in the
contour plot of Fig. 10.9. The calculated grid points are indi-
cated by the white squares. We have determined energies up
to 3.3 eV at (Xc, Yc)=(0.2 a, 0.2 a). Starting from the hollow

site h1 in the middle of Fig. 10.9 the energy barrier increases rather slowly towards
the palladium on-top site followed by a steep increase to the potassium on-top site.
A quarter of the area of the unit cell exhibits an energy barrier smaller than 0.2 eV,
reaching a value of 43% for an energy of 0.4 eV. Hence, a rather larger area of the
surface is accessible for sticking in the energy range we are aiming at (≤ 1 eV), even if
the steering effect would not be present.
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This also sheds a new light on the discussion of the corrugation of the sulphur
covered Pd(100) surface in Sec. 9.5, p. 104. For this surface, only the high symmetric
configurations have been determined by ab initio methods, whereas the rest of the
corrugation was analytically interpolated. The analytical corrugation “assumed” first
a slow and then a steep increase from the hollow sites towards the top-sites, which
is on the potassium covered surface indeed the case. Hence, the discrepancy between
the analytical and the experimental sticking curve can not be solely due to the form
of the analytical corrugation, but probably rather - as proposed - to the presence of
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sub-surface sulphur in the sample [51]. However, we should keep in mind that the
corrugation on the sulphur covered sample is much more pronounced than on the
potassium surface except for the vicinity of the K or S atoms, respectively. Therefore,
the form of the corrugation can still have an influence on the observed discrepancy and
it will be interesting to calculate this dependency in the future.

V. Summary of the ab initio results

In conclusion, using density-functional theory and the FP-LAPW method we have
investigated the effect of potassium adatoms on hydrogen dissociation over the
(2×2)K/Pd(100) surface over the high-symmetric sites h1, h2, b1, tP d and tK .
We found that the dissociation behaviour depends on the distance between the
hydrogen centre of mass and the adsorbed potassium atoms, and on the orientation
of the dissociating molecule. Potassium adatoms hinder hydrogen dissociation by
forming energy barriers in the entrance channel. Still, the dissociative adsorption is
exothermic, the hydrogen molecule gains energy during the reaction. The minimum
pathway has been determined to be over the surface hollow site h1 with the hydro-
gen atoms oriented towards the palladium bridge sites. The energy barrier in this
configuration is 0.18 eV. In the exit channel, when the molecules are dissociated,
the presence of potassium adatoms tends to stabilise the adsorption of the single
hydrogen atoms, which is in contrast to the sulphur-covered Pd(100) surface [29,30,33].

The results can be summarised as follows:

2 For an upright hydrogen molecule, i.e. with its molecular axis perpendicular to
the surface, the PES is repulsive above all sites (h1, tP d, tK).

2 For adsorption over the hollow site h1 with the molecular axis parallel to the
surface, the PES is activated (b1-h1-b1 and tP d-h1-tP d pathways). The barrier
is located in the entrance channel with an energy of about 0.18 eV resulting form
a potassium-induced modification of the local electronic structure at the surface.
In these geometries the molecule reaches the surface more than 3.5 Å away from
the K atoms.

2 For shorter distances, i.e. if the distance between the adsorption site and the
potassium atom is between 1.5 Å and 3. Å, with the molecule still oriented parallel
to the surface but not approaching the palladium atoms directly, the dissociation
is also activated. The height of the barrier depends on the distance of the hydro-
gens form the K atoms. The energy barrier is in the entrance channel resulting
from a direct interaction of hydrogen with the co-adsorbate. The corresponding
adsorption configurations are b1-h2-b1, h2-b1-h1, b2-h2-b2 and h2-tP d-h2.

2 If the dissociating hydrogen atoms approach the palladium atoms directly, the
PES is repulsive (tP d-b1-tP d). Furthermore, if the adsorption site is close to a
potassium atom the PES is also repulsive (b2-tK-b2).

In Table 10.2 we compare the results of the potassium-covered Pd(100) surface in
eight different configurations with sulphur as an adsorbate [33]. On both surfaces the
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minimum barrier can be found above the hollow site h1. However, the presence of
potassium leads to a higher minimum barrier of 0.18 eV in comparison to 0.1 eV with
sulphur atoms. Furthermore, the corrugation of the energy barriers at the S(2×2)
surface is larger than on the K(2×2), which can be seen from the value of 0.6 eV above
the h2 site for the former system and 0.27 eV for the latter.

Another difference is the adsorption above the hollow site h2 with the H atoms
pointing at the adatoms. If the adsorbate is sulphur, then the PES is repulsive in this
configuration. If it is potassium, the process is activated with a barrier of 0.46 eV.
This variance is due to the different adsorption heights of sulphur and potassium on
the Pd(100) surface. Sulphur binds to the surface more closer, at a height of 1.24 Å,
whereas potassium is more repulsive and adsorbs 1.2 Å further away. The potential
energy for the dissociated hydrogen atoms has its minimum at a distance of about 1 Å
to the surface, i.e. close to the adsorption height of sulphur. This leads to a repulsive
PES on the S(2×2) surface, whereas on the K(2×2) the K-H distance is still large
enough to allow dissociation.

On the other hand, on adsorption of sulphur dissociation over the on-top site with
the H2 axis parallel to the surface (tS, θ = 90◦, φ = 0◦) is still possible, though the
process is activated with a large barrier of 2.55 eV. Over a potassium atom the PES is
purely repulsive. The reason is also related to the adsorption height. Since potassium
is further away than sulphur from the topmost palladium layer, the hydrogen molecule
is not able to experience the attraction of the metal surface for dissociation but only
the repulsion by the adatom.

Site H2 geometry S(2×2)/Pd(100) K(2×2)/Pd(100)

(θ, φ) Energy barrier Process Energy barrier Process

h1 (90◦, 90◦) Eb = 0.10 eV activated Eb = 0.18 eV activated

h2 (90◦, 90◦) Eb = 0.60 eV activated Eb = 0.27 eV activated

h2 (90◦, 0◦) Eb ≥ 0.75 eV repulsive Eb = 0.46 eV activated

h1 (90◦, 135◦) Eb = 0.13 eV activated Eb = 0.19 eV activated

h1 (0◦, 0◦) Eb ≥ 0.25 eV repulsive Eb ≥ 0.34 eV repulsive

b1 (90◦, 90◦) Eb = 0.15 eV activated Eb = 0.19 eV activated

tP d (90◦, 135◦) Eb = 1.28 eV activated Eb = 0.85 eV activated

tS, tK (90◦, 0◦) Eb = 2.55 eV activated Eb ≥ 5.00 eV repulsive

Table 10.2: Comparison of barrier heights for the hydrogen dissociation over the (2×2)
sulphur and potassium covered Pd(100) surface at different adsorption sites and ge-
ometries. The energies are given per H2 molecule. The results for the sulphur covered
surface have been obtained from Ref. [33].



10.3 Incorporation of the symmetry 125

In order to understand the poisoning effect of an adsorbate on a surface different
models have been introduced. For a discussion of the reactivity of clean transition
metal surfaces towards hydrogen dissociation we refer to, e.g., Refs. [20, 36]. For in-
stance, Wilke and Cohen compared the changes of the density of states (DOS) induced
by a potassium and a sulphur adsorbate above the h1 site [22]. Wei, Groß and Schef-
fler extended this work for the sulphur covered surface and studied the DOS in more
detail [33]. We will briefly repeat the results of both works. Wilke and Cohen focused
on the most sensitive region of the PES just before the end of the entrance channel,
where the top of the dissociation barrier of hydrogen dissociation on these surfaces
is situated. They found that both types of adsorbates modify the surface electronic
structure by downshifting and broadening surface Pd d-states. The interaction of hy-
drogen with the broadened band of Pd d-states leads to the occupation of H2-substrate
antibonding states. Thus, a repulsive contribution of the hydrogen-surface interaction
appears and gives rise to the formation of energy barriers. Closer to the adatom a
direct interaction leads to a large energy barrier [33]. The origin of these modifications
of the surface density of states, however, is completely different in the two cases of K
or S adsorbates. Sulphur forms strong covalent bonds with the surface, whereas the
interaction of potassium with the surface has a strong ionic component [37].

In the following sections we will now discuss how the ab initio calculations can
be interpolated with neural networks and what the dynamical consequences of the
poisoning effect of potassium adsorbates on a Pd(100) surface in comparison to the
sulphur-covered sample are.

10.3 Incorporation of the symmetry

In order to a priori represent the symmetry within neural networks we used the same
terms as on the sulphur-covered Pd(100) surface. But instead of using reaction path
coordinates we apply the more natural relative and centre of mass coordinates. Fur-
thermore, we employ a weighting factor of e(−Zc/2), where Zc is the distance of the
centre of mass of the molecule from the surface, in order to ensure, that the energy in
the vacuum only depends on the bond length. The new set of eight coordinates, i.e.
the inputs to the neural network, are:

X1 = d ,

X2 = e(−Zc/2) ,

X3 = sin2(θ) cos(2φ) [ cos(G ·Xc) − cos(G · Yc) ] e(−Zc/2) ,

X4 = sin2(θ) cos(2φ) [ cos(2G ·Xc) − cos(2G · Yc) ] e(−Zc/2) ,

X5 = cos2(θ) e(−Zc/2) ,

X6 = [ cos(G ·Xc) + cos(G · Yc) ] e(−Zc/2) ,

X7 = [ cos(2G ·Xc) + cos(2G · Yc) ] e(−Zc/2) ,

X8 = sin4(θ) cos(4φ) [ cos(2G ·Xc) + cos(2G · Yc) ] e(−Zc/2) .
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10.4 Neural Network PES

To get a continuous representation of the potential-energy surface the ab initio data
have been interpolated with neural networks. We divided the 659 ab initio energies into
a training set of 619 points and a test set containing 40 energies. In addition, 60 energies
representing the vacuum region of the molecule have been used in the training set by
repeating the ab initio calculated energy at Z = 5.05 Å to distances of up to Z=15 Å.
A 8−24−18−1 sl neural network. i.e. with two hidden layers and 685 weights, has
been applied for the interpolation. The Kalman Filter parameters were λ(0) = 0.98 ,
λ0 =0.99903 and the adaptive threshold parameter was 0.1. During the minimisation
of the error function the data corresponding to the valley of each elbow plot have been
weighted five times and the region of the energy barrier 20 times higher than the rest
of the energies. The training and test root mean squared error as a function of the
number of presentations of the whole data set (epoch) to the neural network is shown
in Fig. 10.10. The training and test error drop very fast and start to saturate at around
100 epochs. Both error functions continue to go down with longer training time, but
after 100 epochs the test error decreases only by further 30meV. The training error
after 5000 epochs measured 21meV, the test error on the 40 energies not presented
during the optimisation of the network weights was 74meV. Both errors lie well below
the desired accuracy of 0.1 eV. The training time for the whole 5000 epochs was nine
hours on a IBM-SP2 machine. The first important 100 epochs took only 10minutes.
In any case, the interpolation time is just a small fraction of the underlying density
functional theory calculations.
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Figure 10.10: The training and
test root mean squared errors as a
function of the number of epochs
for the neural network fit of the
ab initio energies of the system
H2/K(2×2)/Pd(100). Inset: zoom
into the error functions for smaller
error values. A 8− 24− 18− 1 sl
neural network has been used to
fit the training set of 679 energies.
The test set consists of 40 ab initio
energies not presented to the net-
work during the optimisation.

Fig. 10.11 illustrates the accuracy of the obtained neural network model. It shows
the distribution of the prediction error for the training and test set, respectively. 99.6%
of the training data have an error smaller than 0.1 eV. Only three examples exceed this
level. The highest absolute error is only 0.12 eV and occurs at an energy of 1.2 eV, i.e.
in a region where the potential is already elevated. This region has been fitted with a
smaller weight during the minimisation of the error function. It cannot be reached in
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our molecular dynamics calculations, which we perform for initial kinetic energies of
the molecule of up to 0.8 eV.

Also the 40 ab initio total energies contained in the test set are well reproduced by
the neural network PES. Already 30 geometries exhibit an error of 0.05 eV and less and
38 energies have an absolute error of less than 0.1 eV. Only two examples exceed the
latter value. Both these geometries correspond again to the region far away from the
valley of the elbow plots. The associated potential energies are 1.4 and 2.8 eV.

>2

[1
,2

)

[0
.5

,1
)

[0
.2

,0
.5

)

[0
.1

,0
.2

)

[0
.0

,0
.1

)

[−
0.

1,
0.

0)

[−
0.

2,
−0

.1
)

[−
0.

5,
−0

.2
)

[−
1.

,−
0.

5)

[−
2.

,−
1.

)

<−
2

Prediction error (eV)

0
50

100
150
200
250
300
350
400

N
um

be
r 

of
 e

xa
m

pl
es

Training set

(a)

−2 −1 0 1 2 3 4 5 6
Potential energy (eV)

−0.2

−0.1

0.0

0.1

0.2

P
re

di
ct

io
n 

er
ro

r 
(e

V
)

Training set

(b)

>2

[1
,2

)

[0
.5

,1
)

[0
.2

,0
.5

)

[0
.1

,0
.2

)

[0
.0

,0
.1

)

[−
0.

1,
0.

0)

[−
0.

2,
−0

.1
)

[−
0.

5,
−0

.2
)

[−
1.

,−
0.

5)

[−
2.

,−
1.

)

<−
2

Prediction error (eV)

0

5

10

15

20

25

30

N
um

be
r 

of
 e

xa
m

pl
es

Test set

(c)

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Potential energy (eV)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

P
re

di
ct

io
n 

er
ro

r 
(e

V
)

Test set

(d)

Figure 10.11: Training and test error of the neural network fit to the ab initio energies
of the system H2/K(2×2)/Pd(100). The training set contains 679 energies, the test
set 40 energies. Fig. (a) and (c) show the number of training and test examples versus
the prediction error. Fig. (b) and (d) display the prediction error of the training and
test set versus the potential energy of the data. Only three training examples or 0.4%
of the training data have an error higher than 0.1 eV, but still smaller than 0.2 eV.
Furthermore, only two test geometries have an error higher than 0.1 eV.
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In Fig. 10.12 we plotted three two-dimensional cuts through the six-dimensional
neural network PES above different adsorption sites: the hollow site h1, the hollow site
h2 and above the potassium on-top site. The elbow plots obtained from the neural
network PES approximate the ab initio cuts of section 10.2.2 very well. Not only the
general shape of the cuts is well reproduced, like the repulsive character above the
potassium on-top site, but also the barriers are fitted nicely. For instance, Fig. 10.12(a)
corresponds to the minimum path towards dissociation with a barrier of 0.18 eV, cf.
with the ab initio cut in Fig. 10.2(a), p. 115.
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Figure 10.12: Two-dimensional cuts through the six-dimensional neural network PES
for the dissociation of hydrogen on a potassium covered Pd(100) surface. The molecule
approaches the surface (a) above the hollow site h1, (b) above the hollow site h2 and
(c) on top of a potassium atom. For comparison, the corresponding ab initio cuts are
Fig. 10.2(a), p. 115, Fig. 10.3(a), p. 116 and Fig. 10.5(c), p. 119, respectively

10.4.1 Constrained fitting approach

The above presented fitting of ab initio total energies with a single neural network
is general and in principle transferable to other problems. Its application is not only
limited to the dissociation of diatomic molecules on a metal surface, as we will show in
the last chapter of this work. Yet, sometimes it may be desirable or even necessary to
include available physical knowledge - as present implicitly in the data - explicitly into
the interpolation. In the discussion of the PES for the sulphur covered Pd(100) surface,
we demonstrated that neural networks can also be used in a more restricted context.
In the constrained fitting approach using two neural networks we explicitly secured by
a constraint, that every elbow plot has a barrier towards dissociation which is at least
as high as the minimum barrier (see Sec. 9.4). This was done by first fitting a two-
dimensional lower bound for the energy of all elbow plots with one neural network.
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Then, in a second step, we fitted the six-dimensional problem with a second neural
network under the constraint:

V NN
PES ({bw}, X, Y, Z, d, θ, φ) = V NN

2D ({aw}, Z, d) +
[

V NN
6D ({bw}, X, Y, Z, d, θ, φ)

]2
, (10.1)

i.e. the energy in the Zd plane was allowed to be only higher than the previously
fitted lower bound. Here the vector aw is the set of weights corresponding to the 2D
lower bound and bw is the weight vector associated with the optimisation of the full
6D problem. We have tested this approach also for the potassium covered surface and
present the results here and in the next subsection. However, we emphasise again that
the constrained fitting approach requires significant insight into the problem, which is
often not available. Therefore the general scheme using only one neural network for the
interpolation of the full problem will be preferred.

The first step of the constrained neural network interpolation approach requires the
fit of a two-dimensional lower bound of all the calculated elbow plots. Yet, the 2D cut
corresponding to the minimum pathway on the potassium covered Pd(100) surface is
not strictly lower in energy compared to all other elbow plots for all Zd values. Recall
that we have not only energetic but also geometric corrugation, i.e. the energy barrier is
not located at the same position in the different 2D cuts. We constructed an “artificial”
lower energy bound from the ab initio data following the rule (see Sec. 9.4):

If none of the calculated elbow plots is a strictly lower bound to all other 2D
cuts, one can generate this lower bound as follows:

(1) Perform a 2D interpolation of each calculated elbow plot.

(2) Take the minimum energy on a grid of Z, d values of all interpolated elbow
plots. The generated set of values forms the lower bound.

The 2D lower energy bound constructed in this
way is shown in Fig. 10.13 (see Sec. 9.4). For the
interpolation of the gridded Zd values we used a
2−24−18−1 sl network.

In the second step we interpolated the full
problem employing a 8− 24− 18− 1 sl network
and the same training and test set of ab initio
energies as before. The root mean squared error
after 500 epochs was 0.072 eV and 0.088 eV for
the training and test set, respectively. The errors
were slightly larger than the ones of the general
fit with one neural network but still within the
desired accuracy range.

We have also tested the convergence of the full
problem if we use the “real” minimum pathway
b1-h1-b1 as the 2D lower energy bound in the
first step of the constrained fitting approach. We
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Figure 10.13: 2D lower energy
bound of the constrained fitting
approach for H2/K/Pd(100).

were not able to achieve convergence to a training error lower than 0.3 eV. This reflects
that the minimum pathway does not exhibit a lower energy for all Zd values compared
to the rest of the elbow plots and the constraint in Eq. 10.1 is violated, as expected.
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10.5 Molecular dynamics with neural networks

Based on the neural network PES, we have performed classical molecular dynamics sim-
ulations of the dissociative adsorption of hydrogen on the potassium covered Pd(100)
surface under normal incidence and determined the sticking probability. For each energy
we calculated 2000 trajectories, i.e. we followed a total number of 76000 trajectories
through the configuration space. The initial geometries were drawn from a random
sampling. The statistical error of the sticking probability at a given energy can be
expressed as 1/

√
N , where N is the number of trajectories. For a number of 1000 tra-

jectories the statistical error is equal to 3.2%, for 2000 trajectories it is 2.2%. The
sticking curve and its error bars are shown in Fig. 10.14. In addition to the neural
network interpolation, A. Groß performed separately an analytical fit to the ab initio
data. The adsorption probability based on this analytical PES with 1000 trajectories
per energy is also plotted in Fig. 10.14. Both dynamical results agree well. Obviously,
both methods are able to describe the dissociation PES reliably. However, we empha-
sise that the neural network approach to the interpolation of ab initio data is general,
i.e. it is not restricted to the application of dissociation problems only. Furthermore,
neural networks can easily be adjusted to higher dimensions. In contrast, the analytical
interpolation is especially designed to represent six-dimensional PESs of the dissocia-
tion of a diatomic molecule and is not immediately transferable to other problems. In
addition, the choice of basis functions with increasing dimensions is very cumbersome.
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Figure 10.14: Sticking proba-
bility versus kinetic energy of
the dissociation of H2 on a
K(2×2)/Pd(100) surface. The
classical molecular dynamics cal-
culations have been performed
on a neural network and an an-
alytical interpolation of the ab
initio calculated energies. The
error bars of the probabilities are
also indicated. The neural net-
work sticking curve is based on
a total number of 76000 trajec-
tories.

A closer look at the probabilities reveals that around 0.3 eV kinetic energy the
difference between the two sticking curves is slightly larger than the statistical errors.
This might be influenced by the form of the corrugation. The analytical interpolation
is based on the ab initio data of the elbow plots only. The corrugation has not been
used for the minimisation of the parameters in the analytical fit. The neural network
corrugation and the analytical corrugation are presented in Fig. 10.15, cf. the ab initio
cut in Fig. 10.9, p. 122. Considering the cut through the neural network PES and also
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Figure 10.15: Corrugation of the energy across the unit cell. The molecule is oriented
parallel to the surface with its bond axis parallel to Yc at a height z=1.9 Å with a
bond length d=0.77 Å as plotted in Fig 10.8, p. 10.8. (a) and (b): potential energies
as a function of the lateral coordinates (Xc, Yc). The contour spacing is 0.2 eV. The
white squares in (a) mark the calculated ab initio points.

through the ab initio PES, the area of the unit cell with a barrier lower than 0.3 eV
is 9% percent larger compared to the analytical cut. Furthermore, it is visible that
the analytical corrugation - being not fitted to the ab initio data - increases slightly
slower than the NN-PES moving from a Pd on-top position to a K on-top site. This
differences may influence the adsorption process. The more open structure of the ab
initio and neural network cut may lead to the slightly higher sticking probability at low
kinetic energies. On the other hand, the less pronounced corrugation of the analytical
cut could cause the slightly higher sticking coefficient at high energies. However, the
differences in the sticking probabilities are too small to draw a conclusion from one
two-dimensional cut through the six-dimensional configuration space. The agreement
between the two interpolation methods for this system is in fact very good.

In Tab. 10.3 we compare some sticking probabilities of the general neural network
with the constrained neural network fitting scheme. The two different approaches also
agree well, the differences do not exceed the statistical errors.

10.5.1 H2 dissociation on K/Pd(100) versus S/Pd(100)

We are now able to compare the dynamical consequences of the adsorption of potassium
and sulphur atoms concerning the dissociation of hydrogen on the Pd(100) surface. In
Fig. 10.16 we plotted the sticking probabilities for both systems as a function of the
kinetic energy. In addition, also the integrated barrier distribution Pb(E),

Pb(E) =
1

2πA

∫

Θ(E − Eb(θ, φ,X, Y )) cos θ dθ dφ dX dY (10.2)
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Sticking probability based on the

Kinetic energy General NN-PES Constrained NN-PES

0.2 eV 6.9 % 3.6 %

0.3 eV 22.7 % 24.8 %

0.5 eV 42.9 % 44.8 %

0.8 eV 52.9 % 52.7 %

Table 10.3: Comparison of the sticking probabilities of the general and the constrained
neural network interpolation approach for H2/K/Pd(100) under normal incidence.

is shown. Here A is the area of the surface unit cell and Eb is the minimum energy
barrier along a cut defined by the quadruple (θ, φ,X, Y ). The quantity Pb(E) is the
fraction of the configuration space for which the barrier towards dissociation is less than
E. It corresponds to the sticking probability in the classical sudden approximation or
the so-called “hole model” [144].
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Figure 10.16: Sticking probability
versus kinetic energy for hydrogen
dissociation on a K and S covered
Pd(100) surface under normal inci-
dence. Also the so-called hole model
or integrated barrier distribution has
been plotted.

The onset of dissociative adsorption is lower for the sulphur covered sample, which
is in agreement with the lower minimum energy barrier. Hence, at low kinetic energies
or temperatures of the H2 beam for up to 2000K, the Pd surface poisoned by sulphur
atoms is more reactive than the same surface with potassium co-adsorbates. At around
0.4 eV and an adsorption probability of 35%, the two sticking curves cross. For higher
energies or temperatures the K-covered surface is more reactive. At a kinetic energy
of 0.7 eV the system K/Pd(100) dissociates 50% of the approaching hydrogen. With
sulphur co-adsorbates the probability is 10% lower. We point out that “reactive” relates
in this context to the dissociation of a diatomic molecule. A catalytic reaction consists
of a concert of events for which the dissociation process is indeed often the rate limiting
step. However, after the dissociation the adsorbed particles should usually be available
for the next step of the process, e.g. the reaction with another ad-particle on the surface.
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In this respect we note that due to the presence of K-adsorbates the adsorbed H-atoms
are more strongly bound to the surface. Potassium co-adsorbates do not only poison
the dissociation process of H2, they also hinder the next step of the reaction.

The crossing of the two sticking curves can be understood in the context of the
“steering effect”. Although the dissociation of hydrogen on the potassium and the
sulphur covered Pd(100) surface in contrast to the clean surface is hindered by en-
ergy barriers, there is also significant steering of the impinging molecules operative.
Molecules approaching the surface in a geometry in which they would not be able to
dissociate can be re-oriented and re-directed by the forces to low barrier sites where
they adsorb dissociatively. For the sulphur covered sample this has been shown al-
ready [51,62]. For the system K/Pd(100) the steering effect is reflected by the fact that
the calculated sticking probabilities are much larger than what one would expect from
the hole model [144] (see Fig. 10.16). In our discussion of the influence of the corruga-
tion on reaction probabilities like the sticking coefficient in Sec. 9.5 we demonstrated
that a stronger corrugation leads to a suppression of the steering effect. If the land-
scape on which the molecule moves is very curvy, the re-orientation of the particle is
less effective; especially at larger kinetic energies the molecule hits a repulsive wall be-
fore it is able to reach a more favourable configuration. Now, the ab initio calculations
revealed that the corrugation after co-adsorption of potassium on the Pd(100) surface
is much weaker than after adsorption of sulphur on the same surface. The road map is
less curvy and hence steering can be operative at even higher energies. Consequently,
the weaker corrugation leads to higher sticking probabilities in the high energy range.

10.5.2 Dissociation and scattering of H2 on K(2×2)/Pd(100)

With classical molecular dynamics simulations we are not only able to calculate an
observable like the sticking probability, moreover they allow us to follow the motion of
a molecule on a PES in detail. An understanding of the various processes connected to
catalysis on an atomistic scale is essential for an improve-
ment in the design of new catalysts. In Fig. 10.18 we have
illustrated the motion of hydrogen molecules on the sur-
face to more favourable adsorption geometries. The plot
is divided into two parts: the left half relates to a dissoci-
ation event at an initial kinetic energy of the H2 molecule
of 0.38 eV. The right half represents a scattering process
at 0.6 eV. The initial configuration of the molecule at
both energies is the same and is shown in Fig. 10.17.
For simplicity, we started the MD run with the molecule
oriented parallel to the surface with the lateral centre
of mass coordinates (Xc, Yc) = (0.35 a, 1.0 a), where a is
the lattice constant of the (2×2) cell. Due to symmetry
constraints, the molecule is not able to rotate in this con-
figuration and the centre of mass can only move along the
K-K line. We focus on the re-direction of the molecule.
The re-orientation has been already discussed in the first

K
Pd

H2

Figure 10.17: Initial
configuration of the hy-
drogen molecule for the
classical molecular dy-
namics runs plotted in
Fig. 10.18.
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chapter of this work. In its initial geometry the molecule is not able to dissociate for
both kinetic energies. The PES is repulsive since the H-atoms point at the Pd surface
atoms and the centre of mass is close to the K adsorbate (see Fig. 10.17).
In the central graph of Fig. 10.18 we projected the motion of the hydrogen molecule onto
the PES of a lateral cut through the configuration space corresponding to the barrier
region (Z=1.9 Å, d=0.77 Å). For dissociation, the molecule needs to traverse one point
of this cut at a certain set of lateral centre of mass coordinates. The black arrows in
Fig. 10.18(c) mark the initial position of the molecule far away from the surface. The
white circles indicate the position of the two H-atoms with an initial energy of 0.38 eV
(left) and 0.6 eV (right) at different stages of the process. The barrier corresponding to
the initial configuration is too high for both energies to allow dissociation.

We will focus first on the molecule with the lower initial kinetic energy. The total
H2 energy and its different contributions as a function of the time of the event are
shown in Fig. 10.18(a). Initially the total energy is equal to the normal energy of the
molecule corresponding to normal incidence. The rotational energy is always zero due
to symmetry constraints. During the first 80 fs the molecule approaches the surface
from the gas phase but does not change its lateral position significantly. After this
period the potential energy rises and some of the normal energy is transferred into
parallel energy of the molecule. It moves down the hill along the K-K line in (c). In
the middle of the trench at (Xc, Yc) = (0.5 a, 1.0 a) the molecule would have enough
energy to overcome the corresponding barrier, but it is too fast to transfer energy
into the vibrational mode and to stretch the bond sufficiently. The centre of mass
continues to move further along the K-K line. After around 160 fs it has nearly reached
the opposite site to its initial configuration and the parallel energy in (a) becomes
zero [(Xc, Yc)=(0.61 a, 1.0 a)]. At this point the bond length is already stretched from
0.75 Å to 0.79 Å. The motion then changes its direction and the molecule approaches
again the middle of the trench. After 190 fs, with the bond now sufficiently stretched,
it re-gained enough kinetic energy to overcome the barrier. The potential energy starts
to drop. At the same time the vibrational energy rises and the hydrogen bond starts to
break. During the following time the molecule moves back and forth with respect to the
surface (see below) which is indicated by the strongly varying potential energy. After
220 fs its value stays negative only and the vibrational energy rises steadily. At around
240 fs H2 is dissociated, the bond length is stretched by more than 400%. The two
H-atoms have moved close to the centre of the (2×2) cells as plotted in (c). In graph
(d) we projected the motion of the centre of mass coordinate onto the elbow plot, i.e.
onto the Zd-cut, in which the molecule overcomes the barrier in the entrance channel.
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Figure 10.18: Dissociation and scattering of a H2 molecule on a K(2×2)/Pd(100)
surface at an initial normal energy of 0.38 eV (left part) and 0.6 eV (right part), re-
spectively. The H2 molecule is both times initially oriented parallel to the surface with
its bond axis along the Yc direction at (Xc, Yc) = (0.35 a, 1.0 a) as indicated by the
black arrow in (c). In Fig. (a) and (b) the different energy contributions as a function
of the time of the molecular dynamics run is shown. Fig. (c) displays the corrugation
of the PES at a distance Zc = 1.9 Å and a bond length of d= 0.77 Å. The motion of
the two H-atoms has been projected into the contour plot of Fig. (c). Fig (d) and (e)
show the variation of the centre of mass of the molecule projected onto the elbow plot
in which (d) the molecule dissociates or (e) is scattered back into the gas phase.
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The corresponding lateral position is (Xc, Yc) = (0.51 a, 1.0 a), i.e. close to the middle
of the trench between the K-atoms. The minimum barrier in this configuration is
located at a distance of 1.8 Å to the topmost palladium layer and has a value of
0.26 eV. After having traversed the bottle-neck, the normal and parallel energy is
transferred into the vibrational mode. The centre of mass is directed around the
curve of the elbow plot and the molecular bond stretches further. We see in the lower
right part of Fig. 10.18(d) that the centre of mass oscillates around the valley of the
elbow plot. This situation corresponds to the oscillations of the potential energy in
Fig. 10.18(a) starting after 200 fs and is a consequence of the curvature of the PES in
this cut together with the kinetic energy of the molecule. The H-H distance continues
to increase and H2 dissociates leaving its fragments on the surface.

At a higher kinetic energy of E = 0.6 eV the re-direction of the molecule to more
favourable dissociation geometries as shown in the previous example is also present.
Again, for a certain time, here 50 fs, the molecule approaches the surface and does
not change its lateral position. After this interval, when the potential energy starts to
rise as shown in Fig. 10.18(b), the centre of mass begins to move from one side of the
trench between two potassium atoms to the other side. However, the major difference
is that the molecule is now too fast for a sufficient transfer of the parallel energy into
the internal degrees of freedom. At the lateral coordinates (Xc, Yc)=(0.52 a, 1.0 a) the
molecule is again able to overcome the barrier in the entrance channel. But as shown
in the corresponding elbow plot in Fig. 10.18(e), it hits a repulsive wall of the PES
before it was traversed around the curve of the elbow. This takes place after 130 fs. The
hydrogen molecule is then scattered back into the gas phase, but slightly vibrationally
exited reflected by the oscillations of the centre of mass in Fig. 10.18(e). 240 fs after the
molecule started to approach the surface the major contribution to the total energy is
again the normal energy, but now the molecule moves away from the surface with its
bond still intact.

The two trajectories reveal that steering is indeed operative on the K(2×2)/Pd(100)
surface. But although it is present even at high kinetic energies, it becomes less effective
for fast molecules. It is the interplay of the different degrees of freedom of the impinging
particle with the topology of the surface which determines the reaction probability. It
is obvious that a static theory is not able to describe the reactivity of such processes on
a catalytic surface. This demonstrates the importance of a reliable, high-dimensional
potential-energy surface. The neural network interpolation of ab initio energies com-
bined with molecular dynamics provides us with a tool that allows us to gain insight
into dynamical processes on an atomistic scale. In addition, since the neural network
output function is just an analytical function and fast to evaluate, the neural network
is ideally suited for problems were extensive statistics are required.
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Chapter 11

Neural Network application:

Photodesorption of CO from Cr2O3

Dissociative adsorption, the bond breaking of a molecule upon adsorbing on a surface
is one of the crucial steps in heterogenous catalysis. Another important part of
a catalytic reaction is the desorption of a molecule from a surface. As a further
application in addition to dissociation processes on metal surfaces we will now present
the neural network interpolation of ab initio data for the photodesorption of CO from
Cr2O3(0001). CO adsorbs molecularly on the Cr2O3(0001) surface. State resolved laser
induced desorption of small molecules from surfaces has been the subject of numerous
experimental studies in the last years. The process is illustrated in Fig. 11.1. An
adsorbed molecule on a surface is excited by a laser pulse and then desorbs into the gas
phase. For the system CO/Cr2O3 it has been found experimentally that CO molecules
with a low rotational excitation desorb like a helicopter, i.e. with the rotational axis
perpendicular to the surface, whereas high rotational excitations lead to a cartwheel
like desorption [145].

Figure 11.1: Laser
induced desorption of
CO from Cr2O3(0001).
The CO molecules
desorb cartwheel- or
helicopter-like, depend-
ing on their angular
momentum.

Helicopter
Cartwheel J small

J big
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Only recently it has been possible to gain fundamental theoretical insight into the mech-
anisms and driving forces of such DIET (Desorption Induced by Electronic Transition)-
processes on oxide surfaces based on ab initio calculations for the first time [146]. For
a theoretical study of such processes it is necessary to determine the ground state
potential-energy surface of the molecule/surface system and also an excited state PES
corresponding to the laser induced transition. The process is simulated dynamically by
transferring a wave packet after propagating it for a certain residence lifetime on the
excited state potential onto the electronic ground state PES. The wave packet is then
propagated under the influence of the ground state PES and the desorbing part of the
wave packet is analysed. This has been done successfully for the desorption of NO from
the NiO(100) surface by Klüner and Freund [146]. Such a dynamical study requires the
interpolation of the ab initio calculated PESs. For the system NO/NiO(100) analytical
functions have been employed for this purpose.

The results presented in this chapter for the desorption of CO from Cr2O3(0001)
have been determined in a collaboration with the Department of Chemical Physics
(CP) at the Fritz-Haber-Institute in Berlin. The ab initio calculations and the wave
packet molecular dynamics have been performed by Pykavy and Thiel. The details
of the theoretical investigation can be found elsewhere [147, 148, 149]. We provided
the interpolation of the ab initio ground state potential-energy surface with neural
networks in order to make a dynamical study feasible. Independently, an analytical fit
of the same ab initio PES has been evaluated [148]. This allows us to compare the
reliability of the neural network potential within dynamical calculations not only to
experimental data but also to results based on the analytical PES.

We point out that a theoretical study of the photodesorption process in addition to
the ground state PES requires the evaluation of an excited state PES. The following
dynamical results are preliminarily in that respect that a simple analytical dependency
has been assumed for the latter. However, in both the calculation with the analytical
and the neural network PES the same excited state potential has been used. Therefore,
we are able to compare both approximations. Recently, also the excited state has been
calculated with ab initio methods [150] and it is planned to extend the neural network
approach to the corresponding PES as well.

11.1 Laser induced desorption experiment

CO adsorbs molecularly, i.e. it does not dissociate on Cr2O3(0001). In the laser induced
desorption experiment pulses of 6.4 eV with a wavelength of λ=193 nm have been used
for 15 ns to excite and desorb the molecules as illustrated in Fig. 11.1. The desorbing
molecules have then been detected quantum state resolved [145].

The experimental study focused on the rotational alignment of the desorbing
molecules, i.e. the direction of angular momentum as a function of the rotational quan-
tum number. The principle of the experiment is to measure the absorption coefficient
depending on different polarisations of the laserlight. The effects can be quantified by
the determination of the quadrupolemoment of the desorbing CO molecule. A positive
quadrupolemoment of A0=2 reflects a pure helicopter-like molecule, a value of A0=−1
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corresponds to a pure cartwheel-like rotation. The quadrupolemoment as a function of
the rotational quantum number has been plotted in Fig. 11.2 for two different des-
orption velocities. We will concentrate on the results for the high desorption velocity
v = 1160m/s. For rotational quantum numbers up to J < 25 the quadrupolemoment
has a value around A0=0.5, whereas at higher numbers the quadrupolemoment drops
until it reaches a value of A0 = −1 at J = 35. The interpretation of this behaviour
is that slowly rotating molecules exhibit a desorption behaviour which is more like a
helicopter motion. At higher J the angular momentum changes into a direction parallel
to the surface plane. For the lower desorption velocity in Fig. 11.2 the shape of the
curve is similar but shifted to lower rotational quantum numbers.

Hence, two different modes of desorption for the CO molecule exist: One corre-
sponding to the helicopter, the other to the cartwheel-like motion. The measurement
of such vector quantities of a desorbate is important since it enlarges the knowledge
about the principles of desorption in addition to the usually measured and calculated
scalar quantities like desorption probabilities.

Furthermore, the velocity distributions of the desorbing molecule in the vibrational
ground state have been measured. We will concentrate on the width of the distributions
in Fig. 11.3. For all angular momentum quantum numbers the velocity ranges from
values of 0 to 2000m/s.
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Figure 11.2: Experiment: Quadrupolemoment ver-
sus rotational quantum number J for the system
CO/Cr2O3. At high angular quantum number CO
desorbes like a cartwheel, at low J the motion is
more helicopter-like.
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Figure 11.3: Experiment: Ve-
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of the rotational quantum num-
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11.2 Ab initio MD with Neural Networks

The ab initio ground state PES of the CO molecule on Cr2O3 has been determined
with a Hartree-Fock cluster calculation [147, 148, 149]. The PES is three-dimensional
depending on the distance of the centre of mass from the surface Z and the angles
θ and φ. In order to include the symmetry of the problem we transformed the three
coordinates into the following inputs to the neural network:

2 x1 = e−Z ,

2 x2 = e−Z cos(φ) sin(θ),

2 x3 = e−Z θ,

where Z ranges between 2.0 and 15.0 a0 (a0=0.529 Å), φ is calculated between 0−360
degrees and θ varies from 0−180 degrees. Again, the term e−Z has been used to reflect
that the molecule in the vacuum far away from the surface should only depend on the
bond length of the molecule and the influence of all other coordinates should vanish.
The molecule is non-vibrating, i.e. the bond length is not included in the interpolation.
Furthermore, since the diatomic molecule consists of different species an azimuthal
symmetry of cos(φ) has been included instead of the cos(2φ) term for the hydrogen
molecule. This term is weighted by the factor sin(θ) since an upright molecule should
not exhibit any azimuthal dependency. We did not apply any θ symmetry for the third
neural network input x3.

745 ab initio total energies of the ground state PES have been determined which are
divided into a training set of 652 and a test set of 93 points. Different neural network
fits have been performed which are listed in Tab. 11.1. We obtained the best result
with a 3−40−40−1 tl network and achieved a test and training error of 0.017 eV
and 0.03 eV, respectively. All the errors lie within the desired ab initio accuracy of
0.1 eV. The interpolation time on one IBM-SP2 node ranged from several minutes for
the smallest network to several hours for the most complex one.

Neural Number of Root mean squared error (RMSE)

Network weights Training Set Test Set

3−10−10−1 tl 161 46 meV 72 meV

3−20−20−1 tl 521 23 meV 52 meV

3−30−30−1 tl 1081 28 meV 54 meV

3−40−40−1 tl 1841 17 meV 30 meV

3−50−50−1 tl 2801 21 meV 44 meV

Table 11.1: Root mean squared error for different Neural Network interpolations of the
ground state PES for the system CO/Cr2O3. The training set consists of 652 ab initio
total energies, the test set of 93. NN-Parameter: λ(0)=0.98, λ0=0.99926, ath=0.6.
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The CO molecule adsorbs on the Cr2O3 surface preferentially with its axis nearly
parallel to the surface. The favourable adsorption site is the Cr bridge site with the
C and O atoms of the molecule oriented towards the Cr atoms. This has been drawn
schematically in Fig. 11.4. The neural network energy as a function of the CO distance
from the surface Z and the azimuthal angle φ above the Cr bridge site has been
plotted in Fig. 11.5. The energy minimum is located at a distance of 4.5 a0 and an
angle φ=180◦.

CO Cr O

Figure 11.4: Top view of the Cr2O3 surface
with a number of adsorbed CO molecules.
The most favourable adsorption site is the
Cr bridge site with the molecule axis par-
allel to the surface and the C and O atoms
oriented towards the Cr atoms.
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Besides the neural network interpolation of the ground state PES an analytical fit
has been determined independently by the theory group of the CP-Department. Wave
packet dynamics has been performed on the analytical and the neural network PES.
A resonance lifetime of τ =70 fs has been used for the movement on the excited state
PES. Fig. 11.6 displays the average value of the quantum number M as a function of
the rotational quantum number J . Here, M is the length of JZ vector, i.e. the length
of the projection of the rotational momentum on the Z-axis. For a helicopter-like
molecule the direction of the angular momentum vector is perpendicular to the bond
axis, i.e. along the Z-axis and we have M=J . This is illustrated in insets of Fig. 11.6
and the described situation corresponds to the dashed line in the same figure. For a
cartwheel-like motion J is perpendicular to the Z-axis and M=0.

For low rotational quantum numbers the values in Fig. 11.6 are indeed close to the
dashed line of the pure helicopter motion. At high J they are far away from this line
and decrease steadily reflecting a more cartwheel-like desorbing molecule. The region
of an intermediated motion starts at a value of J > 30 and therefore in the region
where the same transition has been found in the experimental study, see Fig. 11.2,
p. 139. There are small differences visible for the calculations based on the analytical
and the neural network ground state PES, but their overall trend is similar. Both
fits describe the desorption of CO in the asymptotic regions correctly. Furthermore,
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the calculated velocity distribution in Fig. 11.7 for the non-vibrating molecule moving
on the analytical and the neural PES agree also very well. As in the experiment the
velocities range from 0−2000m/s. The calculated velocity distributions are averaged
over the rotational quantum numbers J .
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Figure 11.6: Theory: Rotational align-
ment as described by the average value of
M as a function of the rotational quan-
tum number J . M is the length of the
projection of the angular momentum vec-
tor onto the Z-axis.
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Figure 11.7: Theory: Velocity distribution
from wave packet dynamics based on a
Neural Network and an analytically inter-
polated ab initio ground state PES. The
velocities are averaged over the rotational
quantum numbers J .

The system will be subject to further investigation. The ab initio calculations have
been extended to the excited state PES and moreover both potential energies have now
been determined depending on one more degree of freedom, the X coordinate along
the Cr-Cr axis.

To conclude, both the analytical and the neural network ground state PES give a
qualitative agreement with the experiment and support the existence of two different
desorption modes of the CO-molecule. The main advantage of the neural network
interpolation over the analytical one is its universality. We used the same program
which has been employed in dissociation reactions. We only needed to adjust the pre-
processing of the input data reflecting the symmetry of the problem. The training of
the neural network took only a few hours.

In the case of the analytical fit a higher insight was necessary to choose appropriate
basis functions and the adaptation of an existing computer program to describe the
discussed desorption system was required. This procedure takes at least several days
depending on experience. Furthermore, the extension of the fit to higher dimensions,
i.e. a 4D approximation, is no fundamental problem to the neural network approach.
One simply has to use a network with four input nodes and needs to adjust the pre-
processing and is ready to start. Yet, the analytical fitting procedure needs to be revised
to include a new coordinate which requires further insight and will lack transferability
to other systems not to mention physical problems.
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Chapter 12

Summary

The objective of this work was to develop an alternative interpolation method for ab
initio potential energy surfaces using feedforward neural networks and to apply the
new method in classical molecular dynamics calculations of surface reaction rates. In
particular we were interested in the poisoning effect of potassium adsorbates to the
dissociative adsorption of hydrogen molecules on a Pd(100) metal surface. The work
was motivated by the fact that due to the statistical nature of dissociation processes
ab initio molecular dynamics do not allow the determination of reaction probabilities.
For the calculation of the sticking probability in dissociative adsorption reactions we
followed a three step approach:

1. the determination of the ab initio potential energy surface by density functional
theory methods, i.e. the FP-LAPW method,

2. a fit of the calculated total energies to a continuous neural networks representa-
tion including all relevant degrees of freedom,

3. a molecular dynamics calculation on the neural network representation of the ab
initio PES with extensive statistics.

We showed that neural networks can interpolate ab initio potential energy surfaces
of several degrees of freedom accurately. The approximation error on the fitted as
well as the non-fitted total energies does not exceed the accuracy of the underlying
ab initio calculations. The computational cost of training a neural network is small
and just a fraction of the costs of the DFT calculations. The resulting neural network
output function, the potential energy, and its derivatives, the forces, are very efficient to
evaluate and allow molecular dynamics calculations with extensive statistics. Besides
being fast and accurate, neural networks are general, i.e. they allow applications to
a range of problems without writing a new code. This has been demonstrated by
employing the neural network approximation approach in six-dimensional dissociative
adsorption processes on metal surfaces as well as three-dimensional photodesorption of
a diatomic molecule from a metal-oxide surface.

Concerning the amount of training data required to obtain a reliable representation
it is not sufficient to perform a neural network fit based on the usually calculated top,
bridge and hollow sites only. Intermediated configurations need to be considered. An
equidistant sampling results in a number of 104−105 total energies for an accurate
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interpolation. The required number of training energies for dissociation processes can
be further reduced by an effective sampling of the configurations. Model calculations
on the system H2/S(2×2)/Pd(100) revealed, that the form of the energetic corrugation
can influence the dynamical result greatly. We therefore proposed a modification of the
usually applied sampling of total energies in DFT calculations of dissociation processes.
In addition to elbow plots above high-symmetric sites we recommend to calculate the
corrugation of the PES in more detail by collecting information of the potential energy
as a function of the lateral coordinates within the surface unit cell. The modified
sampling scheme allows to calculate dynamical results with neural networks based on
103−104 ab initio energies. The costs for a description of dissociation reactions with
neural networks are orders of magnitude smaller compared to direct ab initio dynamics
were up to 107 energies are necessary.

Following the initially proposed three step approach for ab initio molecular dynam-
ics, neural networks have been applied to interpolate ab initio potential energy surfaces.
The ab initio PES for the dissociation of hydrogen on a potassium covered Pd(100)
surface has been studied in detail by density functional theory and the FP-LAPW
method. It was found that potassium adsorbates on Pd(100) poison the dissociation of
hydrogen molecules by the formation of energy barriers in the entrance channel, but
in the exit channel they tend to promote adsorption of H-atoms on the surface. These
findings were in agreement with experiments. The corrugation in the bond-breaking
region was found to be much less pronounced on the potassium covered surface than
on the sulphur covered sample except for the vicinity of the K or S atoms.

Classical molecular dynamics simulations based on a six-dimensional neural network
representation of 659 ab initio energies provided further support to the importance of
dynamical steering. Overall 76000 trajectories have been calculated. The combined
DFT and neural network approach for this system allowed us to present a theoretical
comparison of the dynamical consequences of the adsorption of an electropositive ad-
sorbate like potassium and an electronegative like sulphur on the dissociation of H2 on
the same substrate. At initial kinetic energies lower than 0.4 eV the sulphur covered
Pd(100) surface was found to be more reactive concerning hydrogen dissociation than
the potassium covered sample. At higher kinetic energies or temperatures of the hydro-
gen beam the situation reverses. We were able to associate these findings with the form
of the corrugation of the potential energy for both surfaces. In addition, a detailed inves-
tigation and analysis of single trajectories on the H2/K(2×2)/Pd(100) neural network
PES on an atomistic scale underlined the importance of high-dimensional dynamical
studies. It is the interplay of the different degrees of freedom of the impinging particle
with the topology of the surface which determines the reaction probability.

As a further application in addition to dissociation processes on metal surfaces we
studied the neural network interpolation of ab initio data for the photodesorption of
CO from Cr2O3(0001). This work has been performed in collaboration with the De-
partment of Chemical Physics at the Fritz-Haber-Institute in Berlin. The rotational
alignment of the desorbing molecule has been studied by wave-packet dynamics based
on the three-dimensional neural network PES and also an analytical PES. The dy-
namical results on both representations showed that slowly rotating molecules exhibit
a desorption behaviour which is more like a helicopter motion, whereas fast rotating
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molecule desorb like a cart-wheel. These findings were in agreement with laser-induced
desorption experiments.

To conclude, the neural network interpolation of ab initio energies combined with
molecular dynamics provides us with a tool to study reaction processes where extensive
statistics are required. In addition, neural networks preserve the accuracy of DFT cal-
culations and allow us to gain insight into dynamical processes on an atomistic scale.
In recent years, caused by the development of efficient algorithms and the increase of
computer power, it became possible to obtain detailed potential energy surfaces by
density functional theory calculations. Ab initio based calculations have enormously
enlarged our knowledge about the properties of materials and processes on surfaces.
Still, quantitative simulations of reactions on surfaces are still limited to rather simple
systems. Six- or seven dimensional classical and quantum dynamics based on DFT are
the cutting-edge of dynamical studies. Yet, the structure of neural networks is not lim-
ited with respect to the input degrees of freedom. When detailed higher-dimensional
potential energy surfaces based on DFT calculations become available, it will be in-
teresting to extend the neural network studies to problems involving more than six
degrees of freedom in the future.
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Chapter A

Derivation of Backpropagation

For the update of the weights in gradient-descent based algorithms the partial deriva-
tives of the error function with respect to the weights need to be calculated. The cost
function of the neural network is the sum over the squared residuals of the target value
tk and the current value yN=2

k of the k-th output node for each example p:

E =
∑

p

Ep

(

w,y0
)

with: Ep =
1

2

(

∑

k

(

tk − yNk (w,y
0)
)2
)

. (A.1)

This cost function needs to be minimised with respect to the weights, i.e.:

∂E

∂w
=
∑

p

∂Ep (w,y
0)

∂w
= 0 . (A.2)

Therefore the computation of the derivatives ∂Ep

∂w
is required. In order to derive this

derivative, let us assume a three-layer network as plotted in Fig. 5.2, p. 44. In the
network, the following relationships hold for the first and the second layer respectively,
in which the input layer is counted as the 0-th layer:

Input - hidden layer
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=
n0
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ijy

0
i
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w,y0
)

= f 1
j

(

x1
j

)

, (A.3)

Hidden - output layer























x2
k

(

w,y0
)

=
n1
∑

j

w2
jky

1
j

y2
k

(

w,y0
)

= f 2
k

(

x2
k

)

, (A.4)

where we dropped the bias terms for simplicity. The output of each neuron depends on
the network input vector y0 and the current weight vector w. The partial derivative
of the error function (A.1) with respect to a weight leading into an output node can
be calculated using the chain rule:

∂Ep

∂w2
jk

= −
(

tk − y2
k(w,y

0)
) ∂y2

k

∂w2
jk

= −
(

tk − y2
k(w,y

0)
) ∂f 2

∂x2
k

∂x2
k

∂w2
jk

. (A.5)
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Let us define the following:

δk =
(

tk − y2
k(w,y

0)
) ∂f 2

∂x2
k

. (A.6)

With this and

∂x2
k

∂w2
jk

= y1
j , (A.7)

we can rewrite equation (A.5) as:

∂Ep

∂w2
jk

= −δk y1
j . (A.8)

Consequently, the partial derivative of the error function with respect to a weight
leading into a hidden node is (with n2 output nodes):

∂Ep

∂w1
ij

= −
n2
∑

k=1

(

tk − y2
k(w,y

0)
) ∂f 2

∂x2
k

∂x2
k

∂y1
j

∂f 1

∂x1
j

∂x1
j

∂w1
ij

. (A.9)

= −
n2
∑

k=1

(

tk − y2
k(w,y

0)
) ∂f 2

∂x2
k

w2
jk

∂f 1

∂x1
j

y0
i (A.10)

= −∂f
1

∂x1
j

y0
i

n2
∑

k=1

δk w
2
jk . (A.11)

If we further define:

δj =
∂f 1

∂x1
j

n2
∑

k=1

δk w
2
jk , (A.12)

we get for ∂Ep/∂w
1
ij, compare to equation (A.8):

∂Ep

∂w1
ij

= −δj y0
i . (A.13)

These derivations can be generalised to networks with more than three layers. The
result is the following set of formulas. The first one specifies the weight changes for
weights leading into unit j in layer m, no matter what layer m actually is. The second
formula specifies the error signal for the output layer N and the third formula gives
the error signal for unit j, in a hidden layer with units k above:

∆wm
ij = η δj y

m−1
i , (A.14)

δmj = (tk − ymk )
∂fm

∂xmj
m = N (output layer) , (A.15)

δmj =
∂fm

∂xmj

nm+1
∑

k=1

δm+1
k wm+1

jk m 6= N (hidden layer) . (A.16)
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Chapter B

Extended Kalman filter equations

We will follow here the derivation of the Kalman filter equations presented by Shah
et al. [126]. However, we will apply different cost functions as proposed in the original
paper. We will first introduce the Kalman filter equations with a weighting parameter
for each example. In the second section we will then derive the equations for optimising
the potential and the forces simultaneously.

B.1 Kalman filter equations with weighting

Let (x(j), t(j)) be a sequence of nonrandom input/output pairs in iteration j of a
network with T weights and L output nodes. We will consider on-line minimisation,
i.e. we want to change the weights after presentation of each example. We view the
synaptic weight vector w as the state of a static nonlinear dynamic system described
by the following equations:

w(j + 1) = w(j) = wopt

t(j) = y (wopt,x(j)) + e(j) , (B.1)

where j is the time index, y (wopt,x(j)) is the time-varying neural network output
function and e(j) is the sequence of modelling errors. The extended Kalman filter
equations are derived by expanding the non-linear function y(w,x(n)) around the
current estimate parameter vector ŵ(n−1), estimated from all data up to time (n−1).
The state model is accordingly:

w(n) = w(n− 1) = wopt

t(n) = y (ŵ(n− 1),x(n)) + JT (n) (wopt − ŵ(n− 1)) + ρ(n) + e(n) , (B.2)

where J(n) is the T × L Jacobi matrix given by:

J(n) =
∂y (w,x(n))

∂w

∣

∣

∣

∣

∣

w=ŵ(n−1)

, (B.3)

and ρ(n) is the residual of the Taylor expansion of the network output function y. The
state model can be rewritten as:

w(n) = w(n− 1) = wopt

t(n) = JT (n) wopt + ξ(n) + e(n) , (B.4)
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with

ξ(n) = y (ŵ(n− 1),x(n))− JT (n) ŵ(n− 1) + ρ(n) . (B.5)

The estimate ŵ(n) is obtained by the optimal regression of wopt, i.e. we minimise:

ε(n) =
n
∑

j=1

α(j) ‖e(j)‖2 λ
n−j , (B.6)

where α(j) is a weighting parameter for the examples in the data set. Minimisation
means, we need to calculate:

∇wopt
ε(n) = 2

n
∑

j=1

α(j) J(j)
(

t(j)− JT (j) wopt − ξ(j)
)

λn−j = 0 . (B.7)

This gives after rearrangement:

ŵ(n) = Φ−1(n) r(n) , (B.8)

with:

Φ(n) =
n
∑

j=1

α(j) J(j)JT (j) λn−j , (B.9)

r(n) =
n
∑

j=1

α(j) λn−j J(j) (t(j)− ξ(j)) . (B.10)

In order to get an iterative minimisation scheme we rewrite equation (B.9):

Φ(n) = λ
n−1
∑

j=1

α(j) λn−1−j J(j)JT (j) + α(n) J(n)JT (n) , (B.11)

Φ(n) = λ Φ(n− 1) + α(n) J(n)JT (n) . (B.12)

Similarly we get from eq. (B.10):

r(n) = λ r(n− 1) + α(n) J(n) (t(n)− ξ(n)) . (B.13)

With the matrix inversion lemma:

A = B−1 + α(n) CCT , (B.14)

A−1 = B− α(n) BC
(

I+CTBC
)−1
CTB , (B.15)

with B = Φ−1(n− 1) λ−1, and C = J(n) we get:

Φ−1(n) = λ−1 Φ−1(n− 1)− α(n) λ−2 Φ−1(n− 1)J(n)

×
[

I+ α(n) λ−1JT (n)Φ−1(n− 1)J(n)
]−1
JT (n)Φ−1(n− 1) . (B.16)

We now define the matrix P(n) = Φ−1(n), and the Kalman gain matrix K(n):

K(n) = α(n) λ−1 P(n− 1)J(n)
[

I+ α(n) λ−1 JT (n)P(n− 1)J(n)
]−1

. (B.17)
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Equation (B.16) can be rewritten as:

P(n) = λ−1P(n− 1)− λ−1K(n)JT (n)P(n− 1) , (B.18)

and for equation (B.17) follows:

K(n)
[

I+ α(n)λ−1JT (n)P(n− 1)J(n)
]

= α(n)λ−1P(n− 1)J(n) , (B.19)

K(n) + α(n)λ−1K(n)JT (n)P(n− 1)J(n) = α(n)λ−1P(n− 1)J(n) , (B.20)

or

K(n) =
[

α(n)λ−1P(n− 1)− α(n)λ−1K(n)JT (n)P(n− 1)
]

J(n) . (B.21)

With equation (B.18) the Kalman gain matrix can now be expressed as:

K(n) = α(n) P(n) J(n) . (B.22)

The parameter estimate ŵ(n) in (B.8) can now be written as:

ŵ(n) = P(n) r(n) ,

= P(n)λr(n− 1) + α(n)P(n)J(n) (t(n)− ξ(n)) . (B.23)

Substituting (B.18) in the first term of (B.23) gives:

ŵ(n) = P(n− 1)r(n− 1)−K(n)JT (n)P(n− 1)r(n− 1)

+ α(n)P(n)J(n) (t(n)− ξ(n)) . (B.24)

From (B.8) and (B.22):

ŵ(n) = ŵ(n− 1) +K(n)
(

t(n)− ξ(n)− JT (n)ŵ(n− 1)
)

, (B.25)

ŵ(n) = ŵ(n− 1) +K(n) (t(n)− y(ŵ(n− 1),x(n))) . (B.26)

The Kalman filter recursion for a network with T nodes and L output nodes are the
equations (B.17), (B.18) and (B.26):

K(n) = α(n)λ−1P(n− 1)J(n)
[

I+ λ−1JT (n)P(n− 1)J(n)
]−1

, (B.27)

ŵ(n) = ŵ(n− 1) +K(n) (t(n)− y(ŵ(n− 1),x(n))) , (B.28)

P(n) = λ−1P(n− 1)− λ−1K(n)JT (n)P(n− 1) . (B.29)

For minimisation we have to cycle through these equations until convergence of the
weights in (B.28) is reached. The Kalman gain matrix K is a T × L matrix and the
matrix P is a T × T matrix. The algorithm can be initialised with P(0) = δ−1I, with
δ > 0 a small arbitrary value. Complexity is of the order LT 2 multiplications per time
step. One also has to compute the inverse of the L× L matrix

[

I+ λ−1JTPJ
]

. In our
case with one output node L = 1 this is just a division by a factor. The derivation of
the Jacobi matrix in the neural network can be found in Appendix C, p. 157.
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B.2 Kalman filter equations with forces

Since the neural network output function is an analytical function of the inputs, the
derivatives of the output with respect to the inputs can also be easily computed. In
order to minimise the potential and the forces simultaneously, we rewrite the original
error function in equation (B.6), p.152, as follows:

ε(n) =
n
∑

j=1

αj

[

‖e(j)‖2 +
N
∑

i=1

∥

∥

∥

∥

∥

∂t(j)

∂xi(j)
− ∂y(w,x(j))

∂xi(j)

∥

∥

∥

∥

∥

2

]

λn−j , (B.30)

where n is the number of iterations, N is the number of input nodes, (x(j), t(j)) is
the sequence of input/output patterns, αj is a weighting parameter for each example,
e(j) is the sequence of errors as in (B.6), p.152, and y(w,x(j)) is the nonlinear output
function of the neural network. The solution is derived analoguesly to the last section
from:

∇wopt
ε(n) = −2

n
∑

j=1

αj λ
n−j

[

J(j)
(

t(j)− JT (j) wopt − ξ(j)
) dy

dxi

+
N
∑

i=1

∂

∂xi

(

∂y(w,x(j))

∂w

)(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)]

= 0 . (B.31)

With the Jacobi matrix J(j) = ∂y(w,x(j))
∂w

and some rearrangement we get:

ŵ(n) = Φ−1(n) r(n) , (B.32)

with:

Φ(n) =
n
∑

j=1

αj J(j)J
T (j) λn−j , (B.33)

r(n) =
n
∑

j=1

αjλ
n−j

[

J(j) (t(j)− ξ(j)) +
N
∑

i=1

∂J

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)]

.(B.34)

Rewritten for iterative minimisation gives from (B.33):

Φ(n) = λ Φ(n− 1) + α(n) J(n)JT (n) , (B.35)

and from (B.34):

r(n) = λ r(n− 1) + α(n) J(n) (t(n)− ξ(n))

+
N
∑

i=1

α(n)
∂J(n)

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)

. (B.36)

Since equation (B.35) is the same as equation (B.12), p.152, in the previous section and
only the definition of r(n) changed, everything from equation (B.14) up to equation



B.2 Kalman filter equations with forces 155

(B.22) does not change. We will just repeat these equations:

Φ−1(n) = λ−1 Φ−1(n− 1)− α(n) λ−2 Φ−1(n− 1)J(n)

×
[

I+ α(n) λ−1JT (n)Φ−1(n− 1)J(n)
]−1
JT (n)Φ−1(n− 1) . (B.37)

K(n) = α(n) λ−1 P(n− 1)J(n)
[

I+ α(n) λ−1 JT (n)P(n− 1)J(n)
]−1

. (B.38)

P(n) = λ−1P(n− 1)− λ−1K(n)JT (n)P(n− 1) . (B.39)

K(n) =
[

α(n)λ−1P(n− 1)− α(n)λ−1K(n)JT (n)P(n− 1)
]

J(n) . (B.40)

K(n) = α(n) P(n) J(n) . (B.41)

The parameter estimate ŵ(n) in (B.32) can now be written as:

ŵ(n) = P(n) r(n) ,

= P(n)λr(n− 1) + α(n)P(n)J(n) (t(n)− ξ(n))

+
N
∑

i=1

α(n)P(n)
∂J(n)

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)

. (B.42)

Substituting (B.39) in the first term of the last equation gives:

ŵ(n) = P(n− 1)r(n− 1)−K(n)JT (n)P(n− 1)r(n− 1)

+ α(n)P(n)J(n) (t(n)− ξ(n))

+
N
∑

i=1

α(n)P(n)
∂J(n)

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)

. (B.43)

From (B.32) and (B.41):

ŵ(n) = ŵ(n− 1) +K(n) (t(n)− y(ŵ(n− 1),x(n)))

+
N
∑

i=1

α(n)P(n)
∂J(n)

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)

. (B.44)

The new extended Kalman filter recursions for minimising the error of the output of
the network and its derivative are the following equations:

K(n) = α(n)λ−1P(n− 1)J(n)
[

I+ λ−1JT (n)P(n− 1)J(n)
]−1

, (B.45)

ŵ(n) = ŵ(n− 1) +K(n) (t(n)− y(ŵ(n− 1),x(n))) (B.46)

+
N
∑

i=1

α(n)P(n)
∂J(n)

∂xi

(

∂t(j)

∂xi
− ∂y(w,x(j))

∂xi

)

,

P(n) = λ−1P(n− 1)− λ−1K(n)JT (n)P(n− 1) . (B.47)

The formulas for calculating the Jacobi matrix J(n), the derivatives of the Jacobi ma-
trix (∂J/∂xi) and the derivatives (∂y/∂xi), i.e. the forces, can be found in Appendix C,
p. 157. The matrix P can be initialised as in the previous section.
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Chapter C

Neural network derivatives

For the Kalman filter update equations the computation of the partial derivative of
the neural network output function with respect to its parameters, the weights, is
necessary. Furthermore, in fitting potential energy surfaces one may want to fit the
energy along with the forces, i.e. the derivative of the output with respect to the
inputs. In order to derive these derivatives, let us first assume a three-layer network
as plotted in Fig. 5.2, p. 44. In the network, the following relationships hold for the
first and the second layer respectively, where the input layer is counted as the 0-th layer:

Input - hidden layer























x1
j

(

w,y0
)

= w1
0j +

n0
∑

i

w1
ijy

0
i

y1
j

(

w,y0
)

= f 1
j

(

x1
j

)

, (C.1)

Hidden - output layer























x2
k
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= w2
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w2
jky

1
j

y2
k

(

w,y0
)

= f 2
k

(

x2
k

)

, (C.2)

where i is the index over the n0 input nodes, j is the index for the n1 hidden nodes
and k stands for the n2 output layer nodes. The output of each neuron depends on the
network input vector y0 and the current weight vector w.

C.1 First derivatives with respect to the weights

The partial derivative of the output function yN=2
k̃

in (C.2) with respect to a weight
leading into an output node can be calculated using the chain rule:

∂y2
k̃

∂w2
jk

=











∂f 2
k

∂x2
k

∂x2
k

∂w2
jk

: k̃ = k

0 : k̃ 6= k

. (C.3)
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If the output node in which the weight feeds-in is not the output node of which we
want to calculate the partial derivative, the derivative is obviously zero. We define:

δ2
k̃,k

=











∂f 2
k̃

∂x2
k

: k̃ = k

0 : k̃ 6= k

. (C.4)

With the following partial derivative of the output node with respect to the weights
from the previous layer and the bias weight respectively

∂x2
k

∂w2
jk

=

{

y1
j : j 6= 0
1 : j = 0

, (C.5)

and (C.4) we can rewrite (C.3) as follows:

∂y2
k̃

∂w2
jk

=











δ2
k̃,k

y1
j : j 6= 0

δ2
k̃,k

: j = 0
. (C.6)

Consequently, the partial derivative of the output function with respect to a weight
leading into a hidden node is (with n2 output nodes):

∂y2
k̃

∂w1
ij

=
n2
∑

k

∂f 2
k̃

∂x2
k

∂x2
k

∂y1
j

∂f 1
j

∂x1
j

∂x1
j

∂w1
ij

. (C.7)

With the following derivatives:

∂x2
k

∂y1
j

= w2
jk , (C.8)

∂x1
j

∂w1
ij

=

{

y0
i : i 6= 0
1 : i = 0

, (C.9)

we get from (C.7):

∂y2
k̃

∂w1
ij

=



































∂f 1
j

∂x1
j

y0
i

n2
∑

k

δ2
k̃,k

w2
jk : i 6= 0

∂f 1
j

∂x1
j

n2
∑

k

δ2
k̃,k

w2
jk : i = 0

, (C.10)

If we define now (compare with C.4):

δ1
k̃,j

=
∂f 1

j

∂x1
j

n2
∑

k

δ2
k̃,k

w2
jk (C.11)

we can write, see also (C.6):

∂y2
k̃

∂w1
ij

=











δ1
k̃,j

y0
i : i 6= 0

δ1
k̃,j

: i = 0
. (C.12)
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With equations (C.4), (C.11), (C.6) and (C.12) we are now able to extend our results
to a neural network with N layers. We define as above ∀ k̃=[1, nN ]:

δp
k̃,j

=











∂f p
k̃

∂xpj
: k̃ = j

0 : k̃ 6= j

for p = N, ∀ j = [1, np] ,

δp
k̃,j

=
∂f pj
∂xpj

np+1
∑

k

δp+1

k̃,k
wp+1
jk for p 6= N, ∀ j = [1, np] .

(C.13)

The first part of equation (C.13) is valid for the output layer only, the second part
holds for all other layers. The deltas are defined recursively, i.e. use the first part of
eq. (C.13) for p = N to obtain the delta in the second part for p = N−1, use this
expression again in the second part but now for p=N−2, and so on until one arrives
at the output layer. For the calculation of the deltas we need to know the derivative of
the activation functions in the net. Given these, we are now able to write the general
formula for the derivative of each output node yN

k̃
with respect to the weight wp

ij:

∂yN
k̃

∂wp
ij

=















δp
k̃,j

yp−1
i : i 6= 0, ∀ p, k̃, i, j

δp
k̃,j

: i = 0, ∀ p, k̃, i, j
, (C.14)

with p = [1, N ], i = [1, np−1], j = [1, np], k̃ = [1, nN ]. The left side of equation (C.14)
is defined as the Jacobi matrix, the matrix of the first derivatives:

J =
∂yN

k̃

∂wp
ij

. (C.15)

C.2 First derivatives with respect to the inputs

We are now going to derive the partial derivatives of the network outputs with respect
to the network inputs. However, we will consider the first derivatives of each nodes
output with respect to the input of the network, and not only derivatives of the output
layer. Again, let us first assume a three-layer network as plotted in Fig. 5.2, p. 44, with
the corresponding equations in (C.1) and (C.2). The derivative of the outputs of the
hidden nodes with respect to the inputs is:

∂y1
j

∂y0
i

=
∂f 1

j

∂x1
j

∂x1
j

∂y0
i

. (C.16)

The derivative of the networks output with respect to the inputs is:

∂y2
k

∂y0
i

=
n1
∑

j=1

∂f 2
k

∂x2
k

∂x2
k

∂y1
j

∂y1
j

∂y0
i

. (C.17)
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Therefore we obtain the following recursions (k=[1, np] , i=[1, n0]):

∂ypk
∂y0

i

=
∂f pk
∂xpk

∂xpk
∂y0

i

p = 1 ∀ k, i (input layer) , (C.18)

∂ypk
∂y0

i

=
np−1
∑

j=1

∂f pk
∂xpk

∂xpk
∂yp−1

j

∂yp−1
j

∂y0
i

p ≥ 2 ∀ k, i (hidden, output layer) . (C.19)

With the partial derivatives (p=[1, N ], j=[1, np], i=[1, n0]):

∂xpj

∂yp−1
i

= wp
ij ∀ p, j, i , (C.20)

we are able to compute the following recursions, with k=[1, np] and i=[1, n0]:

∂ypk
∂y0

i

=
∂f pk
∂xpk

wp
ik p = 1 ∀ k, i (input layer) ,

∂ypk
∂y0

i

=
np−1
∑

j=1

∂f pk
∂xpk

wp
jk

∂yp−1
j

∂y0
i

p ≥ 2 ∀ k, i (hidden, output layer) .

(C.21)

The equations are again recursively defined, i.e. in order to calculate the forces one has
to start with the first part of equation (C.21) for p = 1, then uses this expression in the
second part for p = 2 and then cycles through the latter equation until the output layer
is reached. The last obtained partial derivative is then the derivative of the network
output with respect to its input, i.e. the forces if the output is the potential and the
inputs are the coordinates.

These are the straightforward determined forces. However, for calculating the sec-
ond derivatives in the next section, we need to define them differently. Let us start
with (C.18) but now valid for all layers, with p=[1, N ], j=[1, np], i=[1, n0]:

∂ypj
∂y0

i

=
∂f pj
∂xpj

∂xpj
∂y0

i

∀ p, j, i , (C.22)

The first term is the derivative of the transfer function and the second term remains
to be determined. If we define (m=[1, np], l=[1, n0]):

γpml =
∂xpm
∂y0

l

=























wp
lm : p = 1 ∀ m, l

np−1
∑

k

wp
km

∂f pk
∂xpk

γp−1
kl : p ≥ 2 ∀ m, l

, (C.23)

we can now rewrite the definition of the partial derivatives of each layers output node
with respect to the network inputs, with p=[1, N ], j=[1, np], i=[1, n0]:

∂ypj
∂y0

i

=
∂f pj
∂xpj

γpji ∀ p, j, i . (C.24)
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C.3 Second derivatives with respect to the weights

and inputs

For the minimisation of the forces along with the potential in Appendix B, p. 151, the
derivative of the Jacobi matrix with respect to the inputs {xm} = {y0

m} is required:

∂J

∂y0
m

=
∂2yN

k̃

∂y0
m∂w

p
ij

. (C.25)

The Jacobi matrix is (∀ i = [1, np−1], ∀ j = [1, np],∀ k̃ = [1, nN ]):

J =
∂yN

k̃

∂wp
ij

=















δp
k̃,j

yp−1
i : i 6= 0

δp
k̃,j

: i = 0
. (C.26)

We therefore need to calculate:

∂J

∂y0
m

=































∂

∂y0
m

(

δp
k̃,j

yp−1
i

)

= yp−1
i

∂δp
k̃,j

∂y0
m

+ δp
k̃,j

∂yp−1
i

∂y0
m

: i 6= 0

∂

∂y0
m

(

δp
k̃,j

)

: i = 0

. (C.27)

The derivatives of each nodes output with respect to the network inputs ∂yp−1
i /∂y0

m

have been already calculated in the recursions of equation (C.21) in the last section.
The deltas δp

k̃,j
are defined by the recursions in (C.13). The term which is left to be

determined is therefore ∂δp
k̃,j
/∂y0

m. Left us first consider the output layer:

∂δp
k̃,j

∂y0
m

=
∂

∂y0
m











∂f p
k̃

∂xpj
: k̃ = j, p = N, ∀ m, j, k̃ ,

0 : k̃ 6= j, p = N, ∀ m, j, k̃ ,

(C.28)

which gives with m=[1, n0], j=[1, np], k̃=[1, nN ]:

∂δp
k̃,j

∂y0
i

=















∂2f p
k̃

∂2xpj

∂xpj
∂y0

i

: k̃ = j, p = N, ∀ i, j, k̃ ,

0 : k̃ 6= j, p = N, ∀ i, j, k̃ .

(C.29)

The first part is the second derivative of the transfer function and the second part has
been defined previously in equation (C.23):

∂δp
k̃,j

∂y0
m

=















∂2f p
k̃

∂2xpj
γpjm : k̃ = j, p = N, ∀ m, j, k̃ ,

0 : k̃ 6= j, p = N, ∀ m, j, k̃ .

(C.30)

For the hidden layers we get (∀ m, j, k̃):
∂δp

k̃,j

∂y0
m

=
∂

∂y0
m

(

∂f pj
∂xpj

np+1
∑

k

δp+1

k̃,k
wp+1
jk

)

p 6= N , (C.31)
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∂δp
k̃,j

∂y0
m

=
∂2f pj
∂2xpj

∂xpj
∂y0

m

np+1
∑

k

δp+1

k̃,k
wp+1
jk +

∂f pj
∂xpj

np+1
∑

k

wp+1
jk

∂δp+1

k̃,k

∂y0
m

p 6= N , (C.32)

which leads with the definition of γ in equation (C.23) to:

∂δp
k̃,j

∂y0
m

=
∂2f pj
∂2xpj

γpjm

np+1
∑

k

δp+1

k̃,k
wp+1
jk +

∂f pj
∂xpj

np+1
∑

k

wp+1
jk

∂δp+1

k̃,k

∂y0
m

p 6= N , (C.33)

where δp+1

k̃,k
/∂y0

m has been calculated before. We define:

ρp
k̃,j,m

=



































∂2f p
k̃

∂2xpj

∂xpj
∂y0

m

: p = N, k̃ = j ,

0 : p = N, k̃ 6= j ,

∂2f pj
∂2xpj

γpjm

np+1
∑

k

δp+1

k̃,k
wp+1
jk +

∂f pj
∂xpj

np+1
∑

k

wp+1
jk

∂δp+1

k̃,k

∂y0
m

: p 6= N .

(C.34)

Every term in this equation is now known and therefore the second derivatives in
equation (C.27) can be computed, with ∀ m = [1, n0], i = [1, np−1], ∀ j = [1, np],∀ k̃ =
[1, nN ]:

∂J

∂y0
m

=
∂2yN

k̃

∂y0
m∂w

p
ij

=































yp−1
i ρp

k̃,j,m
+ δp

k̃,j

∂yp−1
i

∂y0
m

: i 6= 0

∂δp
k̃,j

∂y0
m

: i = 0

. (C.35)

C.4 Derivatives of the transfer functions

The derivatives of the usually applied transfer functions, the sigmoid and the hyperbolic
tangent, can be expressed in terms of the transfer functions themself.

Linear function

For the linear transfer function, preferentiably used in output nodes, we have:

f(x) = x , (C.36)

df

dx
= 1 , (C.37)

d2f

d2x
= 0 . (C.38)
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Sigmoid function

The sigmoid or logistic function is defined as:

f(x) =
1

1 + e−x
. (C.39)

Its first derivative is:
df

dx
= e−x

(

1 + e−x
)−2

,

= f(x) (1− f(x)) . (C.40)

The second derivative is:

d2f

d2x
= f(x) (1− f(x)) (1− 2f(x)) . (C.41)

Hyperbolic tangent

The hyperbolic function with two constant scalars a and b is:

f(x) = a tanh(b x) . (C.42)

The first derivative can be written as:
df

dx
=

b

a

(

a2 − f 2(x)
)

. (C.43)

And the second derivative evolves as:

d2f

d2x
= −2b2

a2
f(x)

(

a2 − f 2(x)
)

. (C.44)

Recommended values for the parameters are a=1.7159 and b= 2
3
. When this function

is used with transformed inputs, the variance of the output will be close to 1 because
the effective gain of the function, the first derivative around x=0, is roughly 1. Fur-
thermore, f(±1) =±1 and the second derivative has its extremes at x= 1, i.e. when
using it in an output node one should scale the target outputs to the range ±1.

Figure C.1: Activation function
f(x) = 1.7159 tanh( 2

3
x) and its

first and second derivatives.
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Chapter D

Sampling of the ab initio PES for

H2/(2×2)K/Pd(100)

In this appendix we present the sampling of the points in the two-dimensional cuts
for the six-dimensional ab initio PES of hydrogen dissociation on the K(2×2)/Pd(100)
surface. The displayed two dimensions are the distance of the molecule to the surface
and the H-H distance. The ab initio cuts have been calculated with the FP-LAPW
method as implemented in the WIEN 97-code [82]. We have discussed the PES in detail
in Sec. 10.2. The black dots in the following graphs correspond to the ab initio total
energies. For visualisation these points have been interpolated in two dimensions with
the Fortran routine LOTPS from CMLIB which
performs a smooth interpolation of scattered data
by local thin plate splines [151]. The gridded out-
put of LOTPS is then plotted with the software
package xfarbe [152].

The different adsorption sites are illustrated in
Fig. D.1. The (2×2) potassium covered Pd(100)
surface exhibits two inequivalent hollow sites h1,
h2, two bridge sites b1, b2 and two top sites tP d,
tK above a palladium and a potassium atom.
Eleven configurations of the H2 molecule above
these sites have been calculated. Overall, we have
calculated 659 ab initio total energies. The ma-
jority, i.e. 575 points, were sampled within the
eleven elbow plots. Additionally, we determined
84 energies associated with the corrugation of the
energy barriers across the unit cell as discussed in
Sec. 10.2, which we will not repeat here.
To distinguish between the different orientations
we will characterise them by the position of the

K

Pd

tK 2

Pd

2b h

1b

h

t

1

Figure D.1: Surface geometry
of the (2×2) potassium covered
Pd(100) surface with two inequiv-
alent hollow sites h1, h2, two
bridge sites b1, b2 and two top
sites tP d, tK above a palladium
and a potassium atom.

two H-atoms and the centre of mass of the molecule. For instance, a geometry h1-b1-h2

denotes the situation were the centre of mass is over the bridge site b1 and the H-atoms
are oriented towards the hollow sites h1 and h2, respectively.
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Figure D.2: 2D contour plots of the PES of H2 dissociation on the K(2×2)/Pd(100)
surface for different geometries. The black dots indicate the ab initio calculated energies.
(a)+(b)+(c): H2 above the hollow site h1. (d)+(e): H2 above the hollow site h2.
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Figure D.3: 2D contour plots of the PES of H2 dissociation on the K(2×2)/Pd(100)
surface for different geometries. The black dots indicate the ab initio calculated energies.
(a)+(b): H2 above the bridge site b1. (c)+(d): H2 on top Pd. (e)+(f): H2 on top K.
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Chapter E

Neural Network PES for H2/(2×2)K/Pd(100)

The ab initio PES for the dissociation of H2 on a potassium covered Pd(100) surface has
been interpolated with neural networks. The 659 ab initio energies have been divided
into a training set of 619 points and a test set containing 40 energies. In addition to the
ab initio energies we used 60 energies representing the vacuum region of the molecule
in the training set. Far away from the surface the molecule is in the vacuum, i.e. the
energy does not depend on the distance of the centre of mass from the surface. In
order to include this in the fit we repeated the ab initio calculated vacuum energy at
Z = 5.05 Å for values up to Z=15 Å. A 8−24−18−1 sl neural network, i.e. with two
hidden layers and 685 weights, has been used for the interpolation. The Kalman Filter
parameters were λ(0) = 0.98, λ0 =0.99903 and the adaptive threshold parameter was
0.1. The training error on the 679 examples measured 0.021 eV after 5000 epochs, the
test error of 0.074 eV was also within the desired ab initio accuracy.

The following cuts should be compared to the contour plots of the previous ap-
pendix. However, we emphasise that the elbow plots presented here have been obtained
from the six-dimensional neural network interpolation of the ab initio data. In contrast,
the cuts of App. D show two-dimensional interpolations of the ab initio energies.

Figure E.1: Potential energy as
a function of the lateral coordi-
nates Xc and Yc. The molecule
is oriented parallel to the surface
at a height z=1.9 Å with a bond
length d=0.77 Å and angles φ=0◦

and θ=90◦ as plotted in Fig 10.8,
p. 122. The contour spacing is
0.2 eV. The white squares mark
the calculated ab initio points. a:
length of the (2×2) cell.
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Figure E.2: 2D cuts through the 6D NN-PES of hydrogen dissociation on the
K(2×2)/Pd(100) surface. (a)+(b)+(c): H2 above the hollow site h1. (d)+(e): H2 above
the hollow site h2.
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Figure E.3: 2D cuts through the 6D NN-PES of hydrogen dissociation on the
K(2×2)/Pd(100) surface. (a)+(b): H2 above the bridge site b1. (c)+(d): H2 on top
Pd. (e)+(f): H2 on top K.
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Chapter F

Abreviations

AGEKF Adaptive Global Extended Kalman Filter

APW Augmented Plane Waves

BP Backpropagation

CG Conjugate Gradients

EKF Extended Kalman Filter

FP-LAPW Full Potential - Linear Augmented Plane Wave method

GGA Generalised Gradient Approximation

LAPW Linear Augmented Plane Waves

LDA Local Density Approximation

MD Molecular Dynamics

NN Neural Network

PES Potential Energy Surface

RMSE Root Mean Squared Error

TDS Thermal desorption spectroscopy
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