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ABSTRACT

The study of cohesion in solids is among the most fundamental research
subjects in condensed-matter physics. The search for a deeper understanding of
cohesion has lead to a steady progress in electronic-structure methods, enabling
us to better understand structural, electronic, and mechanical properties of
solids. The quantitative description of cohesion in solids requires solving
the many-body Schrödinger equation and such exact treatment remains an
unsolved problem. In this context, the correct treatment of cohesive properties
(lattice constants, cohesive energies, and bulk moduli) requires an accurate
description of the long-range electron correlation. In particular, van der Waals
(vdW) interactions, being ubiquitous and arising from correlations between
electrons, have been proposed to affect the cohesion in solids since a long
time. This leads to two unsolved questions: (1) How to properly and effectively
model vdW interactions in solids?, and (2) What is the quantitative role of vdW
interactions in the cohesive properties of different types of solids? In this thesis,
we address both questions by developing novel methods for vdW interactions
in solids and assessing the role of the long-range vdW energy for a wide variety
of non-metallic solids in the context of density-functional theory (DFT).

Among first-principles approaches to the many-body Schrödinger equation,
DFT has become the method of choice for obtaining ground-state properties of
molecules and materials. A great advantage of DFT is that it is in principle an
exact theory and the complexity of the full many-body problem is replaced by
the electronic exchange-correlation (XC) functional. However, this functional
is only known approximately and all widely employed (semi-)local and hybrid
functionals suffer from the so-called self-interaction errors and lack the long-
range vdW energy tail, often yielding noticeable deviations from experimental
data. This issue will be illustrated in my thesis by assembling a large database
of 64 solids and employing the LDA, PBE, and M06-L functionals to study their
cohesive properties. This assessment shows that none of these functionals is
sufficient to describe the cohesion for a broad range of solids, leading us to
propose that the missing long-range vdW interaction accounts for part of the
deviations found in approximate XC functionals.

To assess the role of vdW interactions in solids, we develop the so-called
DFT+vdWTS+SCS method that accurately models the electrodynamic response
effects in the polarizability and vdW coefficients. This method is essentially free
of adjustable parameters; the only necessary ingredients are the electron density
and reference polarizabilities for free (isolated) atoms in the gas phase. Together
with a benchmark study based upon experimental and time-dependent DFT
optical spectra, I show that the concept of atoms-in-solids can be successfully
utilized to define polarizabilities for finite-gap materials. Remarkably, my
analysis demonstrates the validity of the Clausius-Mossotti relation for linking
the macroscopic dielectric function to the microscopic response in covalently-
bonded semiconductors – a matter of long debate in the literature.

Upon the inclusion of long-range vdW interactions on top of the non-
empirical PBE functional, a factor-of-two improvement is found in the cohesive
properties with respect to the standard PBE values. I conclude that the vdW
energy plays a crucial role in the cohesion of semiconductors and ionic solids.
The proposed DFT+vdWTS+SCS approach represents a promising way towards
extending the applicability of standard density functionals, and thus will be
useful for a wide variety of applications in molecules and materials.





ZUSAMMENFASSUNG

Die Bindungskräfte in Festkörpern sind von grundlegendem Interesse in der Physik
kondensierter Materie. Eine quantitative Beschreibung von Kohäsion in Festkörpern
bedarf der Lösung der Vielteilchen-Schrödinger-Gleichung, die allerdings meist nicht
exakt lösbar ist. Für die Kohäsions-Eigenschaften ist eine genaue Beschreibung
der langreichweitigen Korrelation der Elektronen maßgeblich. Insbesondere können
van der Waals (vdW) Wechselwirkungen, die durch Korrelationen zwischen Elek-
tronen auftreten, die Kohäsion in Festkörpern beeinflussen. Es stellen sich zwei
Fragen: (1) Wie können vdW-Wechselwirkungen in Festkörpern präzise und effektiv
modelliert werden?, und (2) Welche quantitative Rolle spielen sie? In dieser
Arbeit werden beide Fragen behandelt, indem neue Methoden zur Beschreibung
von vdW-Wechselwirkungen in Festkörpern entwickelt werden und die Rolle der
langreichweitigen vdW-Energie für eine Vielzahl von nicht-metallischen Festkörpern
im Kontext der Dichtefunktionaltheorie (DFT) untersucht wird.

Unter den ab initio Ansätzen zur Lösung der Schrödinger-Gleichung hat sich die
DFT zur Methode der Wahl entwickelt, um die Grundzustands-Eigenschaften von
Molekülen und Materialien zu bestimmen. Ein bedeutender Vorteil der DFT liegt
darin, dass es sich im Prinzip um eine exakte Theorie handelt, wobei die Komplexität
des vollen Vielteilchen-Problems durch das elektronische Austausch-Korrelations-
Funktional ersetzt wird. Allerdings ist dieses Funktional nur näherungsweise bekannt
und alle (semi-)lokalen und Hybrid-Funktionale, die breite Anwendung finden,
sind mit sogenannten Selbstwechselwirkungsfehlern behaftet und berücksichtigen
außerdem nicht die langreichweitigen vdW-Energiebeiträge, was oft zu merklichen
Abweichungen im Vergleich zu experimentellen Messwerten führt. Diese Problematik
wird in meiner Arbeit erläutert, indem die Bindungseigenschaften von 64 Feststoffen
unter Verwendung von LDA, PBE und M06-L Funktionalen untersucht werden. Es
wird gezeigt, dass keines der Funktionale ausreichend ist, um Kohäsion in Festkörpern
für einen weiten Bereich von Materialien zu beschreiben. Wir folgern, dass dies zum
Teil auf das Fehlen der vdW-Wechselwirkung zurückzuführen ist.

Zur Untersuchung der vdW-Wechselwirkungen in Festkörpern entwickeln wir die
sogenannte DFT+vdWTS+SCS Methode für eine genaue Modellierung der elektro-
dynamischen response-Effekte in der Polarisierbarkeit und den vdW-Koeffizienten.
Diese Methode ist im Wesentlichen frei von anzupassenden Parametern; einzig die
Elektronendichte und Referenz-Polarisierbarkeiten für freie Atome in der Gasphase
werden benötigt. Zusammen mit einer Benchmark-Studie, die auf experimentellen
und mit zeitabhängiger DFT bestimmten, optischen Spektren basiert, zeigen wir, dass
das Konzept atoms-in-solids (Atome im Festkörper) erfolgreich verwendet werden
kann, um Polarisierbarkeiten für Materialien mit endlicher Bandlücke zu definieren.
Besonders bemerkenswert ist, dass meine Analyse die Gültigkeit der Clausius-Mossotti
Relation für die Verknüpfung der makroskopischen dielektrischen Funktion mit der
mikroskopischen Antwort in kovalent gebundenen Halbleitern zeigt – dies war
Gegenstand langer Diskussionen in der Literatur. Durch die Einbeziehung von lang-
reichweitigen vdW-Wechselwirkungen wird eine Verbesserung um einen Faktor zwei
in der Beschreibung der Bindungs-Eigenschaften mit Bezug auf die entsprechenden
Standard-PBE-Ergebnisse erreicht. Wir schließen daraus, dass die vdW-Energie eine
entscheidende Rolle für die Kohäsion in Halbleitern und ionischen Festkörpern spielt.
Die vorgestellte DFT+vdWTS+SCS Methode zeigt einen vielversprechenden Weg auf,
um die Anwendbarkeit von Standard-Dichtefunktionalen zu erweitern, und wird
folglich für eine Vielzahl von Anwendungen in Molekülen und Materialien nutzbar
sein.
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1 INTRODUCTION

A prominent area of solid-state physics is the search for an understanding of
cohesion in solids. Cohesion is an intrinsic property of matter that measures
the binding experienced by one particle (atom, ion, or molecule) arising from
the rest of the solid. The forces leading to cohesion are often classified into
five idealized types according to the nature of bonding in a solid, namely ionic
bonding, covalent bonding, metallic bonding, hydrogen bonding, and van der
Waals (vdW) interactions. In realistic solids, the situation is typically more
complex, with different forces all contributing to their cohesion. A prototypical
example of vdW-bonded solids are noble-gas crystals, where the vdW energy
provides the only stabilizing contribution to cohesion. In other solids, the
role of the vdW energy is less clear. For example, the seminal textbook Solid
State Physics by Ashcroft and Mermin [1] states “the van der Waals part of the
attractive interaction in ionic crystals makes a relatively small contribution to the
cohesive energy in ionic crystals, of the order of 1 or 2 percent”. However, other
published literature starting with the seminal work of Mayer [2] advocates a
much larger contribution of vdW interactions to cohesion in ionic solids [3–7].
Nowadays, the study of cohesion in solids still receives significant attention due
to its fundamental relevance for a wide range of condensed-matter applications
and other related fields. Indeed, the importance of cohesive properties (e.g.,
the lattice constant, the bulk modulus, and the cohesive energy) can hardly
be overestimated. For instance, the cohesive energy of different phases of a
solid will ultimately account for its behavior under changing thermodynamic
conditions, i.e., determine its phase diagram. The bulk modulus will determine
how hard or soft the material is, i.e., its response to an externally applied
pressure.

Many difficulties have been encountered in attempts to accurately determine
cohesive properties using quantum-mechanical methods that are computa-
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2 Introduction

tionally feasible to be applied to solids. In particular, the qualitative and
quantitative role of vdW interactions in the cohesive properties has frequently
been a recurring question. It has long been recognized that vdW interactions
may contribute to the cohesion of not only noble-gas and molecular crystals, but
also many other crystalline solids. However, due to the difficulty of an accurate
treatment of such interactions, it is typically assumed that they play a minor role
in the cohesion of, e.g., ionic and covalently-bonded solids. It is now becoming
clear that vdW interactions cannot be neglected for describing the structure,
stability, and function of a wide variety of materials [8–11]. In particular,
vdW interactions are ubiquitous and dependent upon the polarizability of
valence electrons. An accurate description of vdW interactions has become
an increasingly important effort to improve our understanding of a number
of problems in physics, chemistry, and biology.

Since vdW interactions arise from electron density fluctuations, they are
a quantum-mechanical phenomenon which require the solution of the many-
electron Schrödinger equation. The description of vdW forces was first
formulated in 1930 by R. Eisenschitz and F. London [12, 13] based on second-
order perturbation theory. The leading term of the long-range part of these
interactions is the instantaneous dipole-dipole interaction, exhibiting the well-
known −C6R

−6 asymptotic behavior for the vdW energy with interatomic
separation R. The C6 constant is called the dispersion coefficient, which
characterizes the interaction strength between a given pair of atoms, ions,
or molecules. An accurate calculation of C6 coefficients plays a central role
in studying vdW forces. This explains the existence of a large number of
approaches devoted to the precise evaluation of C6 values [14, 15].

Density-functional theory (DFT) is among the most widely used electronic-
structure methods for modeling ground-state properties of molecules and
condensed matter. The popularity of DFT arises mainly from its fair degree
of accuracy at feasible computational cost for a wide range of practical
applications. A great advantage of DFT is that this theory is in principle exact
and the complexity of the many-body problem is replaced by the exchange-
correlation (XC) functional, which must be approximated in practice. In the last
few decades, DFT has been shown to be a very powerful technique for solving
problems in quantum chemistry and condensed-matter physics, particularly
for large systems. Unfortunately, approximate DFT functionals can yield large
deviations from experiment in many situations. For instance, it is known
that the commonly used XC functionals (i.e., local, semi-local, and hybrid
functionals) do not uniformly show good performance for the prediction of
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cohesive properties, when applied to a broad range of bulk solids, such as those
considered in the present thesis. One prominent limitation of these functionals
is that they are unable to describe the long-range electron correlation, and
therefore lack the vdW energy tail. The reliable description of vdW interactions
is one of the most significant challenges within the modern DFT framework.

In the last decade, many encouraging ideas and methods have been proposed
for approximately accounting for vdW interactions based on DFT approaches
(e.g., see recent review articles [8–11]). The basic requirement for any DFT-
based vdW scheme is that it yields the correct R−6 decay for the interaction at
long distances. Such a correction involves the addition of the vdW energy term
to the DFT total energy. One popular way consists in adding the vdW energy
by summing over all pairs of atoms using a multipolar expansion (termed as
DFT+vdW in the thesis). The pair-wise vdW energy is often (but not always)
evaluated with the leading −C6R

−6 term, coupled with a damping function
that is used to avoid singularities at short range and minimize double counting
of correlation at intermediate range. The concept of DFT+vdW has gained great
attention due to its ability to include vdW interactions in an effective way, and
is becoming an increasingly active field of research. Several approaches have
been developed, aiming at an improved evaluation ofC6 dispersion coefficients
and the resulting vdW energies. Some of these methods have been shown to
provide reliable dispersion coefficients when applied to a diverse range of small
molecular systems.

Treating vdW interactions in more complex systems (such as large molecules
and solids), is a very difficult task and remains challenging. It has been shown
by numerous studies that the crystalline environment has a significant impact
on the polarizability and C6 dispersion coefficients. This can be best illustrated
by a direct comparison of C6 dispersion coefficients between in-crystal atoms
(or ions) and isolated counterparts. A prototypical example of ionic crystals
is alkali halides, e.g., sodium chloride (NaCl), whose free-atom and free-ion
C6 values are available from highly accurate ab initio calculations (Na–Na: 1556;
Cl–Cl: 94.6; Na+–Na+: 1.6; Cl−–Cl−: 267; in hartree·bohr6) [16, 17]. For isolated
cations, their C6 values are considerably smaller – much less polarizable –
than those of neutral atoms, due to the less extended wave functions; in
contrast, isolated anions are more polarizable, due to the expansion in their
electron density tails. Turning to solids, it has been evident for many years
that in-crystal dispersion coefficients differ from the corresponding free atoms
or free ions values [17–19]. However, precisely modeling various crystalline
effects that act in solids is a big challenge; and those effects, such as crystal-
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field effect, overlap compression, and charge transfer, arise from both nearby
and far-distance neighbors in the solid. Indeed, there is a large discrepancy
in the evaluation of the dispersion coefficients for anions and cations of the
alkali halides in the literature. It is clear that more efforts are needed to
obtain environment-dependent vdW parameters. Two main problems are
encountered in practical calculations: the neglect or only effective treatment of
the electrodynamic response and the neglect of non-additive many-body vdW
energy contributions beyond pair-wise approximations [20]. To overcome these
obstacles, one has to develop a proper microscopic description of the frequency-
dependent polarizability, rooted in local and nonlocal fluctuations, in which the
full electrodynamic response of the system is accounted for.

The aim of this thesis is to gain a deeper understanding of the role of
vdW interactions in the cohesion of various bulk solids, on the basis of
accurate and efficient first-principles calculations. The present work employs
the DFT+vdW concept to develop a new approach for treating vdW forces
for “atoms-in-materials”, particularly for large and complex systems. The
first step towards our goal is to assess the performance of standard XC
functionals applied to solids for describing their cohesive properties, using the
full-potential all-electron Fritz-Haber-Institut ab initio molecular simulations
(FHI-aims) package [21]. For a precise assessment of different functionals, two
aspects need to be addressed: (i) a large database, which must contain cohesive
properties of a diverse range of bulk materials, with reliable experimental data,
measured at low temperature and extrapolated to zero temperature; (ii) the
nuclear zero-point vibrational energy, which is known to contribute to cohesion
in solids.

The second step is a benchmark study of vdW parameters and vdW
energies based upon a combination of the DFT+vdW scheme with time-
dependent density-functional theory (TDDFT) calculations of optical spectra
of semiconductors and ionic crystals.

The third step is devoted to develop a general DFT-based model for
accurately and efficiently studying vdW interactions from the microscopic
theory of polarization. Finally, a database of 23 semiconductors is used for
assessing the proposed DFT+vdW approach, and the role of long-range vdW
interactions is evaluated using this method to obtain the cohesive properties of
these solids.

The outline of this thesis is as follows:

Chapter 2 gives a textbook picture of cohesion in solids. The historical
advances to understand the role of vdW interactions are reviewed, together
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with existing challenges for a reliable treatment of cohesive properties from a
theoretical point of view.

Chapter 3 summarizes the theoretical background used in this thesis. The
formulation of DFT is given, together with the challenges for developing
improved XC functionals. In particular, the state of the art for treating vdW
interactions will be discussed, with regard to the advantages and shortcomings
of the most popular methods.

In Chapter 4, the cohesive properties (lattice constants, cohesive energies,
and bulk moduli) are investigated for a database of 64 solids using local
and semi-local density functionals. Systematic deviations caused by these
functionals will be carefully examined, especially regarding the relationships
between pairs of the cohesive properties.

In Chapter 5, a benchmark study of vdW coefficients is performed using a
combined DFT/TDDFT approach for six ionic and semiconductor solids. It
is shown that the consideration of the chemical environment and the local
field acting on a given atom in a dielectric medium, is crucial for an accurate
treatment of vdW interactions in a solid.

Chapter 6 presents an extension of the Tkatchenko/Scheffler (TS) [22]
method to large molecules and finite-gap solids by including electrodynamic
response effects (DFT+vdWTS+SCS), aiming at ab initio modeling and quantita-
tive understanding of vdW interactions in complex systems. A brief discussion
about the implementation of this method for solids is also given.

In Chapter 7, the proposed DFT+vdWTS+SCS method is assessed, in com-
bination with the DFT/TDDFT benchmark study and available experimental
information. Then, the applicability of the current approach is tested by
extending it to 23 semiconductor solids. Finally, the role of vdW interactions
in the cohesive properties is illustrated by adding long-range pair-wise
interactions on top of the DFT-PBE functional.

In the final chapter, I shall summarize the main findings of the current work,
together with an outlook for future studies.





2 TEXTBOOK PICTURE OF COHESION IN

SOLIDS

The purpose of this chapter is to provide an overview of the current
understanding of cohesion in crystalline solids. A central property of a crystal
is its cohesive energy, E0, which is the energy required to dissociate the
constituent particles (atoms, ions or molecules) of a compound, e.g., AB, to
infinite separation

AB(solid) → A(gas) + B(gas). (2.1)

The magnitude of E0 tells us about the stability and bonding of a solid, and
ultimately, it is the quantity that determines the equilibrium structure. To
understand the cohesive energy as well as other related properties, one should
look at the forces acting on the atoms upon forming a crystal. In the following,
we shall begin with a description of the classification of solids on the basis of
the nature of the interatomic and intermolecular forces operating between the
particles, that is, the bonding types of crystals. Then, a brief history of the van
der Waals (vdW) interaction contribution to cohesive energies will be outlined,
as this is the main subject of this thesis. Finally, we will discuss cohesion in bulk
solids, with regard to the relationships between different bulk quantities (lattice
constant, cohesive energy, and bulk modulus), and conclude with the current
challenges for the reliable prediction of cohesive properties in solids.

2.1 BONDING IN CRYSTALLINE SOLIDS

A crystal or crystalline solid is composed of atoms, ions, or molecules arranged
in an ordered pattern that is repeated in three dimensions. The study of a
crystal is based on investigating the microscopic arrangement of atoms inside
it, which is closely related to an intrinsic property of a substance sticking

7
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together, cohesion. Since the year 1913 [23], in which Bragg diffraction was
first used to show characteristic patterns of reflected X-rays of crystalline
solids, crystallography has begun its explosive growth. These patterns lead
to a number of questions regarding the nature of cohesion in solids. What
holds a crystal together? To what extent do the atoms in the solid resemble
neutral atoms, held together by covalent bonds, and to what extent do they
resemble ions, held together by electrostatic forces? Why does diamond have a
tetrahedrally coordinated structure? Can the equilibrium geometry be modeled
accurately, and how? In order to answer these questions, one first needs to
have a clear understanding of different bonding scenarios. Loosely speaking,
bonding in solids may be classified into five idealized types, namely ionic,
covalent, metallic, hydrogen, and van der Waals (vdW) interactions. In realistic
solids, the situation is typically more complex, with different forces all playing
a role in their cohesion.

IONIC BONDING

Ionic bonding arises from the classical Coulomb attraction between two
oppositely charged ions, and it is responsible for the formation of the so-called
ionic crystals. Typically, among this family are compounds formed by alkali
and alkaline-earth atoms in combination with halogens, in which there is a
large difference in electronegativity between the components. The resulting
crystal structures arise from optimal packing of differently sized ions, and
mainly adopt a face-centered cubic (fcc) rock-salt lattice. A classic example
of an ionic crystal is sodium chloride (NaCl). Doubly ionized elements from
the IIA and VIA columns of the periodic table can also form ionic crystals, and
almost all these compounds favor the sodium chloride structure.1 Ionic solids
are typically very stable and extremely brittle (soft), and the cohesive energy
per atom is of the order of several electron volts.

COVALENT BONDING

While ionic bonding arises from an almost complete transfer of electrons
between the atoms involved in a bond, covalent bonding is held by the sharing
of electrons between the bonding participants through the overlap of orbitals on
adjacent atoms. Typically, covalent bonding is strong and the cohesive energies
are as large as several electron volts. In fact, purely covalent or ionic bonding
is rare: many covalent compounds have some degree of ionic character, and

1Except for BeS, BeSe, and BeTe (zincblende), and BeO, MgTe (wurtzite).
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vice versa. In solids, dominantly covalent bonding is found for the elements
from the IVA column of the periodic table: carbon, silicon, germanium, and tin.
These elements all crystallize in a tetrahedrally coordinated diamond structure.
The crystals that contain elements from the IIIA and VA columns of the periodic
table are partially ionic and partially covalent substances,2 and they typically all
adopt a zincblende structure. It is noteworthy that tetrahedrally coordinated
structures (diamond, zincblende, and wurtzite structures) tend to be primarily
covalently bonded. In addition to the crystal structure, continuous variation in
the nature of the charge distribution can be found from the dominantly ionic
IA–VIIA compounds through the progressively mixed bonding nature of IIA–
VIA and IIIA–VA compounds over to the mainly covalent elements from the
IVA column.

METALLIC BONDING

Metallic solids are held together by a “glue” of shared and delocalized electrons,
resulting in metallic bonding. In metals, the outer valence electrons “separate”
from the ion cores, but in contrast to ionic solids, there are no electronegative
ions to bind them. As a consequence, they are not localized on one particular
atom or pair of atoms, but free to hop between the ion cores, which are then
embedded in a “sea” of electrons. The prime examples of metallic solids
are the alkali metals of the IA column of the periodic table, in which the
valence electrons can be considered as being separated from the core electrons.
Metallic solids mainly crystallize in A1-fcc and A2-bcc (body-centered cubic)
arrangements, adopting closed-packed structures. Although metallic bonding
is typically less strong than ionic or covalent bonding, it can also amount to a
few eV per atom. Particularly in transition metals, the filled d shells are not
very tightly bound, such that the d electrons become more localized and lead
to hybridization between localized and delocalized states.3 This is reflected
by the fact that transition metals are typically stable and hard (with large
bulk modulus or compressibility), resulting from a mix of ionic, covalent, and
metallic characters.

HYDROGEN BONDING

As well as interatomic forces, there are also intermolecular interactions in
solids. Hydrogen bonding is the attraction between an electronegative atom
2The IIIA–VA compounds are conventionally considered as primarily covalent, as they are still
less ionic in character.
3The hybridization in transition metals can be considered as partially covalent in nature.
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and a covalently-bonded hydrogen atom that is bonded with an electronegative
atom. It is often represented as A–H· · ·B, in which both A and B will be
electronegative elements (e.g., C, N, O, and F). Compared with covalent or
ionic bonds hydrogen bonds are weaker, but in some case the cohesive energy
can be up to 1 eV per bond. In general, hydrogen bonding is discussed as an
electrostatic interaction, between the partially positively charged hydrogen and
the partially negatively charged electronegative elements. However, it can also
show some covalent and vdW characters, being directional and stronger than
vdW interactions. Therefore the modern picture of hydrogen bonding is much
more complex — it is a mixture of electrostatics, induction, and dispersion
effects. An example of such type of bonding in the solid state is water ice, where
hydrogen bonds are responsible for the dominant intermolecular attraction.

VAN DER WAALS INTERACTION

van der Waals interaction (here used to signify London dispersion interaction)
arises from fluctuating multipole moments in atoms and molecules. It is a
purely quantum-mechanical phenomenon and exists ubiquitously in molecules
and solids. Nowadays, it is becoming evident that vdW interactions are
responsible for many phenomena in physics, chemistry, and biology. While
vdW interactions are typically much weaker than ionic, covalent, or metallic
bonding (the vdW energy rarely exceeds a few hundred meV per atom),
the relatively small contribution of the vdW energy plays a major role in
determining the structure and stability of a wide variety of materials. The
prototypical examples of vdW interactions in solids are the solid noble gases
residing in the VIIIA column of the periodic table, which all crystallize as fcc
Bravais lattices. In fact, vdW interactions are the only attractive intermolecular
forces that hold neutral atoms together. It was suggested that vdW interactions
contribute considerably to the cohesion in many other molecular crystals as
well [1, 24, 25]. In addition, they hold the layers of carbon in the graphite
structure together and can also play a role in the cohesion of other type of bulk
solids.

2.2 REVIEW OF VAN DER WAALS FORCES IN SOLIDS

It has long been recognized that vdW forces may contribute to bonding in
solids [2, 26, 27], and thus can play a role in determining their cohesive, elastic,
dielectric, lattice-dynamical properties, etc. The most direct evidence of the
existence of vdW forces is the fact that noble gases can be condensed into the
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solid state. The historical understanding of vdW forces in solids can be traced
back to the 1920s, when the earliest X-ray measurements of the noble-gas solid
structure showed the lattice to be fcc for neon [28], argon [29, 30], krypton [31],
and xenon [32]. Thereafter, several studies have shown that the attractive vdW
interactions can also contribute to the bonding in some ionic and metallic solids.

2.2.1 NOBLE-GAS CRYSTALS

The first explanation of a fluctuating dipole-dipole attractive potential was
given by Fritz London [12, 13] from a quantum-mechanical treatment based
on perturbation theory (see reviews by Margenau [33, 34] and the textbook
by Kaplan [15]). Using second-order perturbation theory and assuming that
the attracting particles (atoms, ions, or molecules) have spherical charge
distributions,4 the formula for the attractive energy between the two particles
A and B at a large distance RAB can be written as

EvdW = −C
AB
6

R6
AB

, (2.2)

where the factor C6, known as the dispersion coefficient, which depends on
dipolar polarizabilities of isolated particles A and B, is the crucial quantity for
an accurate determination of the energy. This attractive energy is frequently
called the vdW dipole-dipole energy, dispersion energy, or simply the vdW
energy.

Concerning the noble-gas solids, the correct theoretical treatment of vdW
interactions has long been debated [35–38]. Early calculations predicted a
hexagonal close-packed (hcp) structure [39–41], in disagreement with the
fcc structure observed from experiment [36, 42–44]. Afterwards, a series
of studies showed that the inclusion of three-body terms [45, 46], instead
of only a two-body potential, yielded an fcc crystal structure for noble-gas
solids in quantitative agreement with the experimental observations [47–53].
It has been acknowledged that many-body effects need to be considered to
correctly describe the lattice constant, the cohesive energy, as well as, the bulk
modulus of noble-gas crystals, which brought about significant progress in
understanding the role of vdW interactions in the solid state.

4They have neither a permanent dipole nor any higher multipole, e.g., noble-gas atoms are
spherically symmetrical.
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2.2.2 ALKALI HALIDES

vdW interactions in ionic crystals were first studied by Born and Mayer [54]
using the London approximation given by Eq. (2.2) for alkali halides. Mayer
developed an approach to compute dispersion coefficients using the knowledge
of absorption spectra and refractive-index data, and concluded that the vdW
energy accounts for the stability of, e.g., the CsCl-type lattice for CsX (X=Cl,
Br, I) crystals over the NaCl-type lattice [2]. This method was applied to other
ionic solids, such as copper [55], silver and thallium halides [56]. In Mayer’s
approach, the free-ion polarizabilities reported by Pauling were used for cations
and the values for anions were estimated from corresponding optical data.
This was an important step for studying the vdW interactions in ionic solids.
Following this work, it was realized that the crystalline environment has a large
impact on the in-crystal polarizability, and later work focused on developing
possible methods to improve upon the estimated results by Mayer.

May [3] proposed the possibility of much stronger vdW interactions than
those predicted by Mayer [2] in order to explain the thermal phase transition of
a CsCl crystal from the CsCl to NaCl structure. Tessman et al. [26] computed
ionic polarizabilities from the fits of the experimental molar polarizabilities
of alkali halides, and they showed that it is inappropriate to use free-ion
polarizabilities of cations and anions for crystals. Subsequent improvements
have been made in the polarizabilities since new optical data became available
within improved accuracy of experimental measurements. Lynch [5] used
optical data of potassium halides and silver chloride up to nearly 30 eV and
computed vdW dipole-dipole coefficients using the method introduced by
Mayer. He pointed out that it is difficult to separate the crystal polarizability
into cationic and anionic contributions in an unambiguous way, and that local-
field effects (which is the actual field acting on particles in a dielectric medium)
play an important role in determining the vdW energy. Bakhshi revised
Mayer’s results for the copper, silver and thallium halides and emphasized
that the vdW energy resulting from in-crystal polarizabilities is larger than
that obtained from free-ion values [7]. As a result, the larger values of vdW
energies, due to the larger vdW coefficients, yielded cohesive energies in better
agreement with experiment than those reported by Mayer [55, 56].

The foregoing discussion thus reveals that there is considerable uncertainty
in polarizability data used in the literature for calculating vdW energies. It has
been evident from numerous studies of ionic solids that the polarizability and
vdW coefficients depend on the structure and environment of the crystal [4,
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5, 7, 26, 57–61]. More recently, since the beginning of 1980s, much work has
been performed by Pyper, Fowler, Madden, et al. [17–19, 62–68] for accurate
treatments of the polarizability and thus the resulting vdW energy in ionic
solids, and this research area still remains active [22, 69–72].

2.2.3 NOBLE METALS

From the point of view of vdW interactions, metals are difficult to treat
theoretically, because of the coexistence of localized and delocalized electronic
states. It has long been recognized that the attractive vdW interaction between
ions in a metal may contribute to the total cohesive energy [27]. However,
the magnitude and the relative importance of this contribution remains an
unresolved issue. For noble metals, estimates of the vdW energy have ranged
from being of negligible importance to contributing roughly a third of the
total cohesive energy, which is typically 3 to 4 eV per atom [24, 73–75]. This
large variation reflects discrepancies in the estimate of the ionic polarizability
and differences in the calculation of the conduction-electron screening of
polarization forces [74, 76]. For example, copper and gold have been the subject
of several studies [74, 75], with the vdW contribution to binding estimated as
0.2–0.6 eV for Cu and 0.6–1.2 eV for Au. Meanwhile, it was found that the
inclusion of vdW interactions is necessary for obtaining reasonable structures
observed from experiment for noble metals [75], and the same conclusion also
applies to alkali metals [60, 77]. More recently, the need to include nonlocal
correlation in density-functional theory (DFT) semi-local functionals has been
discussed for heavy alkalis [71, 78, 79].

Therefore the following conclusions can be drawn regarding the understand-
ing of vdW interactions in solids:

• van der Waals forces make a considerable contribution to the stability
of noble-gas solids, ionic crystals, and noble metals, and thus play an
important role in controlling phase transitions;

• although the van der Waals contribution to the total cohesive (binding)
energy may not be the most significant component, it is typically
important to determine the correct structure;

• the quantitative role of the van der Waals energy contribution in the
cohesive properties (lattice constants, cohesive energies, and bulk moduli)
has remained an unresolved question for many classes of solids;
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• the large discrepancy in determining the van der Waals energy reflects
the difficulty of obtaining the dynamic polarizability and the resulting C6

dispersion coefficients for atoms (ions or molecules) in solids.

In order to address the above mentioned issues, it is necessary to have
a reliable method for computing dispersion coefficients for atoms in solids.
The work presented in this doctoral thesis is focused on qualitatively and
quantitatively evaluating the influence of vdW interactions on the cohesive
properties of ionic and covalently-bonded solids. We now turn to some of the
elementary qualitative insights of various cohesive properties of bulk solids.

2.3 COHESIVE PROPERTIES

The relation between the properties of bulk materials and their electronic
structure is a matter of considerable fundamental and applied interest. In
particular, there have been significant efforts to understand structurally related
properties of bulk solids from a total-energy point of view. These properties
include the cohesive energy, the lattice constant, the bulk modulus, the shear
modulus, Grüneisen parameters, and the critical pressure involved in pressure-
induced phase transitions between different structures, to mention just a few.
Here we only focus on the lattice constant, the cohesive energy, and the bulk
modulus, and will introduce the basic theory of these properties in this section.

2.3.1 LATTICE CONSTANT

The equilibrium lattice constant of a solid can be measured via X-ray diffraction
with high accuracy,5 usually at finite temperature and extrapolated to absolute
zero using thermal expansion data. Figure 2.1 shows the correlation between
the experimental lattice constant and atomic weight for selected metals. It can
be concluded that for a given type of solid, the lattice constant increases with
the increase of nuclear charges, e.g., along the series of Li-Na-K-Rb, Rh-Pd-Ag,
and W-Ir-Pt-Au-Pb. In principle, many properties of a crystalline solid can be
related to its lattice constant, and some can be very sensitive to it. Thus the
accuracy of the measured lattice constant from experiment or predicted one
from theory is the key to other structurally related properties, such as the bulk
modulus.
5For instance, the uncertainty for diamond crystal was 1.2 × 10−6% in a recent X-ray
measurement [80].
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The equilibrium lattice constant is the one that minimizes the cohesive
energy. From theoretical point of view, Kohn-Sham density-functional theory
(KS-DFT) has become one of the most powerful tools for predicting ground-
state properties and has long been used to calculate the equation of state (EOS),
which reflects the dependence of the energy of a solid upon the lattice constant
(or the volume of a unit cell) of the solid. Therefore the accuracy of the predicted
lattice constant is a test of the accuracy of the KS-DFT approach (see more
details of DFT in Section 3.2).
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Figure 2.1: The experimental lattice constant as a function of atomic weight for selected
main-group metals and transition metals.

2.3.2 COHESIVE ENERGY

The cohesive energy is defined as the difference between the energy per atom of
bulk material at equilibrium and energy of the free atoms in their ground states

E0 =
1

N

(
Etotal −

N∑
i

Ei

)
, (2.3)

where i symbolizes the constituent atoms of the solid and N equals the number
of the atoms in a unit cell. This energy is one of the parameters used to
understand the bonding nature of solids, and its magnitude tells us about the
stability of a given solid. Along with the lattice constant, the cohesive energy
allows us to calculate the transition pressure between different solid structures.

Empirical relations are an important tool for understanding solid-state
properties. In many cases empirical relations do not give highly quantitative
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results for each specific material, but they allow to understand qualitative
trends. Empirical concepts, such as valence, empirical radii, electronegativity,
ionicity and plasma frequency, are very often used to understand condensed-
matter materials. These concepts are directly associated with the character
of the bonding and thus provide means for explaining and classifying many
fundamental properties of molecules and solids.

There have been quite a number of studies on the relationship between
the cohesive energy and structural parameters, such as the distance between
atoms in a solid. Aresti et al. [81] studied the zincblende solids and proposed
an empirical expression for cohesive energy in terms of the nearest-neighbor
separation d

E0d ≈ constant. (2.4)

Schlosser and co-workers also showed that the constant product of the cohesive
energy with the nearest-neighbor distance is a good approximation for some
families with common crystal structures, e.g., alkali chalcogenides and halides,
group-II chalcogenides and halides, alkali hydrides, ammonium halides, and
iron-group transition-metal oxides [82, 83].
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Figure 2.2 shows the lattice constants of selected non-molecular crystals
versus their cohesive energies. The definitions of five classes of solids are given
as main-group metals (MM), transition metals (TM), simple semiconductors
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(SC), transition metal carbides and nitrides (TMCN), and ionic crystals (IC).
It can be seen that the general tendency observed in experiment is replicated
by the proposed empirical relations: there is a decrease in the cohesive energy
upon going from smaller unit-cell volume crystals to larger ones, e.g., along the
series of Li-Na-K-Rb, Al-Pb-Ba-Ca-Sr, and C-SiC-Si-Ge. However, this is only a
very rough trend.

2.3.3 BULK MODULUS

The bulk modulus, B0, characterizes the response of a material to an applied
pressure, and is defined as

B0 = −V dP/dV = V d2E/dV 2, (2.5)

where E is the total energy, P is the pressure, and V is the volume. Both theory
and experiment suggest that the bulk modulus is a critical thermophysical
and mechanical property, particularly in the area of high-pressure and high-
temperature science [84]. A precise knowledge of this quantity thus is central
to the EOS of any material.

The bulk modulus is commonly related to the geometrical properties of
solids, such as the nearest-neighbor distance and the lattice constant, and
trends can be found for the solids belonging to a similar bound group. It has
been proposed that the equilibrium bulk modulus is inversely related to the
structural parameters mentioned above. Anderson and Nafe [85] first proposed
an empirical relationship between bulk modulus and unit-cell volume with
the form of B0 ≈ V −x

0 , where x depends on the bonding type of the solid.
Cohen and co-workers [86, 87] studied a number of covalent and ionic crystal,
and deduced an analytical expression for the relationship between the bulk
modulus and the nearest-neighbor separation d for diamond and zincblende
structures

B0d
3.5 = (1971− 220λ) ≈ constant, (2.6)

where λ is an empirical ionicity parameter accounting for the effect of ionicity.
This relationship is appropriate for group IVA (λ=0), IIIA–VA (λ=1), and
IIB–VIA (λ=2). For the IA–VIIA rock-salt compounds, Cohen proposed the
following relation

B0d
3 = 550 ≈ constant. (2.7)

A similar scaling of B0d
3.5 for the rock-salt structure was suggested by

Schlosser [82, 83], and the cohesive energy was discussed in terms of d as well.
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Figure 2.3 illustrates the correlations of the experimental lattice constants
with the bulk moduli for the five studied classes of solids: SC, MM, TM, TMCN,
and IC (as defined above). Together with Fig. 2.2, it can be concluded that for
SC the crystals with smaller lattice constants tend to have a higher stability
(more negative cohesive energy), while the bulk moduli increase as the unit cell
becomes smaller. The same conclusion can be made for MM (group IA and
IIA), TM (noble metals: Rh, Pd, and Ag; Ir, Pt, and Au), and IC. This correlation
strongly depends on the crystal structure and the bonding character [82, 83, 85–
87]. Cohen et al. [86, 87] investigated the contribution of covalency to the bulk
modulus by using the so-called ionicity parameter λ in Eq. (2.6). Combined
with Eq. (2.7), it shows that the bulk modulus is more sensitive to the structural
change for covalent solids than ionic compounds, in good agreement with the
experimental observations in Fig. 2.3. A likely origin for this is the increase of
ionicity (λ) and loss of covalency in going from the group IVA to the almost
fully ionic group IA–VIIA, with the sequence of IVA<IIIA–VA<IIB–VIA<IIA–
VIA<IA–VIIA.
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2.4 FIRST-PRINCIPLES MODELING OF EQUILIBRIUM

PROPERTIES

To go beyond simple qualitative understanding, the need for reliable and
quantitative treatments is clear for describing bonding in solids and predicting
equilibrium cohesive properties. Various kinds of difficulties have arisen in
attempting to calculate and elucidate the cohesive and structural properties
by quantum-mechanical methods. Firstly, to completely describe the physical
behavior of electrons in a solid, one needs to compute the ground-state wave
function of the system, which (in principle) might be achieved by solving
the time-independent Schrödinger equation. However, this is not feasible
for realistic system, as around 1023 electrons per cm3 are involved in such a
calculation for a solid. In a practical way, KS-DFT simplifies the difficulty to a
tractable one-body problem (a single electron in a periodic potential), with the
approximation solely made in the exchange-correlation (XC) energy functional
term. Secondly, even though the effective single-particle Schrödinger equations
are solved in a self-consistent manner, to develop accurate XC functionals for a
diverse range of solids is still a big challenge. A brief description of the total-
energy DFT method is given in this section, together with the current challenges
for an accurate prediction of the cohesion in solids.

2.4.1 TOTAL-ENERGY CALCULATIONS WITHIN KS-DFT

A central task for modeling ground-state properties of materials is to solve
the non-relativistic time-independent Schrödinger equation (see Chapter 3,
Section 3.1), with the Hamiltonian

H = Tnucl + Telec + En−e + Ee−e + En−n, (2.8)

where the first two terms are for the kinetic energy of the nuclei and electrons
respectively; the last three terms refer to the Coulomb attraction between
electrons and nuclei, and the repulsion between electrons and between nuclei,
respectively.

For realistic solids, solving the Schrödinger equation is an intractable
problem, because of the electron-electron interaction that contains all the non-
trivial many-body effects. Over several decades, total-energy DFT calculations
have received great attention due to the growth of computing capability, and
among modern computational methods, KS-DFT has no doubt become central
to investigating ground-state properties, especially for large systems, e.g.,



20 Textbook picture of cohesion in solids

biomolecules, solids, and surfaces. As the main tool of this thesis, KS-DFT will
be introduced in Chapter 3.

Once the Schrödinger equation has been solved approximately, the total
energy of a system can be determined and hence various other properties. For
instance, the cohesive properties of a solid can be obtained using an EOS curve
fitted to the energy versus volume. One of the most popular equation is the
third-order Birch-Murnaghan EOS that has the form [88]

E(V ) = E0+
9V0B0
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(2.9)
where V0, E0, B0, and B′

0 correspond to the equilibrium unit-cell volume, the
cohesive energy, the bulk modulus (at V0), and the pressure derivative of the
bulk modulus (at V0), respectively. This is also the EOS employed throughout
the current work.

2.4.2 THE (DIS)AGREEMENT BETWEEN THEORY AND EXPERIMENT

During the last decade KS-DFT [89] has had a rapidly growing impact not only
on qualitative, but also quantitative predictions of materials properties [90–93].
The advantage of KS-DFT is that the formalism is in principle exact and the
complexity is hidden in one term, the XC functional that determines the success
or failure of approximate DFT calculations. Despite the great popularity and
widespread use of DFT, it can still fail to predict properties quantitatively or
even qualitatively for many systems. Some of the issues involved in practical
calculations are summarized as follows.

TREATMENTS OF THE EXCHANGE–CORRELATION POTENTIAL

Widely used local and semi-local approximations to the XC functional lead
to systematic errors in cohesive properties of solids. For example, the local-
density approximation (LDA) [89] and the gradient-corrected Perdew-Burke-
Ernzerhof (PBE) [94] functionals, yield average errors of approximately 1–2%
in lattice constants: LDA underestimates, while PBE overestimates with the
errors systematically increasing with increasing nuclear charges [95–100]. In
addition, the LDA functional severely overestimates the cohesive energies and
underestimates the bulk moduli, with average errors around 20% and 16%,
respectively. The results are improved when using PBE, particularly in the
description of the cohesive energies (leading to 5.5% underbinding), however,
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the error in the bulk moduli remains as large as 10%. Further developments
have been attempted by adding additional semi-local information6 beyond
the first-order density gradient or including a fractional exact exchange in
functional forms, which produces the meta-GGA [95, 101, 102] and hybrid
functionals [103–105], respectively. Though these methods tend to describe
some properties better than GGA functionals, they worsen the description of
other properties. All of these (semi-)local and hybrid functionals share the same
problem — long-range correlation, including the vdW energy tail, is not treated
at all in these functionals. Methods for including vdW interactions in DFT are
of great current interest, and presently these methods are being extended for
describing the properties of bulk solids [22, 71, 72, 78, 79, 106–110].

BALANCE BETWEEN ACCURACY AND EFFICIENCY

The success of KS-DFT arises from the fact that clear approximations are made,
and it performs remarkably well for many problems in chemistry and physics.
Although recent developments in methodology and computing capability
make it possible to carry out high-level quantum-chemical calculations,
using coupled-cluster theory [111–114] or full configuration interaction (FCI)
techniques, applications of these methods to solids are still in their infancy,
mainly due to their massive computational resources required.7 The first
publication applying the FCI quantum Monte Carlo (FCIQMC) technique to
realistic solids, which essentially enables one to capture the “exact” correlation
energy, appeared in 2013 [110].

A more feasible way is to employ the so-called random-phase approxi-
mation (RPA) [115–117] for treating the electron correlation energy in solids.
RPA calculations require the evaluation of the density response function;
therefore they are more expensive than standard DFT calculations. Recent
studies show that the usage of RPA yields significantly improved cohesive
properties for a wide variety of solid-state systems over local and semi-local
DFT approximations [107, 108], which also suggests that the long-range vdW
forces may play an important role in the description of the cohesion in solids.
However, a quantitative estimation of the long-range vdW contribution in

6The ingredients could be such as higher-order density gradients or the kinetic-energy density,
which involves derivatives of the occupied Kohn-Sham orbitals (see details in Chapter 3,
Section 3.3).
7The computational cost grows rapidly with the number of electrons N as well as the basis
set size. Traditional full configuration interaction can be applied to at most some ten electrons
with a small basis set; and coupled-cluster methods are also extremely expensive, scaling as N7

[CCSD(T)].
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different solids is lacking so far.

THE IMPORTANCE OF THE NUCLEAR ZERO-POINT VIBRATIONAL ENERGY

The final aspect to be addressed in this section is the contribution of the nuclear
zero-point vibrational energy (ZPVE) effects, which need to be considered for
comparing theoretical predictions with experimental measurements. The zero-
point vibrational energy is the lowest possible vibrational energy for a quantum-
mechanical system. According to the uncertainty principle, all physical systems
undergo fluctuations even at zero temperature. The energy of the vibrational
ground-state is often referred to as “zero-point vibration”, while for a periodic
solid, vibrations are characterized by normal modes, known as phonons [118].
The study of phonons is a subject of importance in solid-state physics, and a
detailed discussion will be presented in Section 3.7.

There are several reasons why ZPVE should be taken into account in
theoretical calculations of solids. Firstly, experimental lattice constants
contain contributions from phonon zero-point vibrational energies; thus an
unbiased comparison with experiment requires the inclusion of ZPVE in theory
explicitly. Secondly, ZPVE influences not only the absolute energy, but also
the EOS (energy versus unit-cell volume curve), as the phonon frequency
changes with unit-cell volume, typically decreasing with increasing volume.8

The ZPVE contribution is known to be inversely proportional to atomic mass,
illustrating its greater importance for lighter atoms. Thus the inclusion of ZPVE
effects becomes very important for an accurate comparison of theoretical and
experimental lattice constants, cohesive energies, and bulk moduli. In addition,
ZPVE tends to expand the lattice constant and reduce the stability of solids in
most cases; therefore the neglect of ZPVE will introduce a systematic bias in
the appraisal of different DFT functionals. Although recent calculations [96–
98, 119] have been carried out for estimating the influence of ZPVE on
lattice constants, a detailed study of the impact of ZPVE on bulk moduli
and cohesive energies for a wide variety of bulk solids is still lacking. In
this thesis, systematic calculations have been performed for 64 non-molecular
solids, including metals and non-metals (covalent and ionic crystals). The
methodology used for the phonon calculations will be introduced in Chapter 3
and the discussion of the results follows in Chapter 4.

8This is known as anharmonicity, the dependence of the phonon frequency on the unit-cell
volume.



3 THEORETICAL BACKGROUND

This chapter focuses on introducing the theoretical methods used in this thesis
to describe cohesive properties of solids. It starts with the derivation and
formalism of density-functional theory (DFT), the most widely used electronic-
structure method for (approximately) solving the many-body problem of
quantum mechanics. The features of the DFT framework are given together
with the challenges of developing approximate exchange-correlation (XC)
functionals. In particular, an accurate treatment of long-range van der Waals
(vdW) interactions represents a crucial theoretical challenge, as dispersion
energy is ubiquitous in molecules and condensed matter, but not explicitly
included in most DFT calculations that employ (semi-)local and hybrid XC
functionals. Then, the state-of-the-art theoretical methods will be discussed
for describing vdW interactions. Finally, the importance of vibrational
contributions to cohesive properties of solids is addressed, followed by a
description of approaches for phonon calculations.

3.1 THE SCHRÖDINGER EQUATION

One of the major targets of electronic-structure calculations is to solve the non-
relativistic time-independent Schrödinger equation

Ĥψ = Eψ, (3.1)

where Ĥ is the Hamilton operator (Hamiltonian), which is described by
coordinates of the particles in the system, and ψ and E are the wave function
and the ground-state energy of the system, respectively. For a system consisting
of M nuclei and N electrons, the distance between the ith electron and Ith

nucleus is represented by position vectors ri and RI . The distance between

23
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the ith and jth electron is described by vectors ri and rj . For the Ith and J th

nuclei, RI and RJ are used. The Hamiltonian, in atomic units,1 is given by

Ĥ = −1

2

M∑
I=1

∇2
I

MI
−1

2

N∑
i=1

∇2
i−

N∑
i=1

M∑
I=1

ZI

|ri − RI |
+

N∑
i=1

N∑
j 6=i

1

|ri − rj |
+

M∑
I=1

M∑
J 6=I

1

|RI − RJ |
,

(3.2)
where ZI is the charge of nucleus I , and MI is the ratio of the mass of nucleus
I to the mass of the electron. In short, the above Hamiltonian can be re-written
as

Ĥ = T̂nucl + T̂elec + V̂n−e + V̂e−e + V̂n−n, (3.3)

where the first two terms describe the kinetic energy of the nuclei and
electrons respectively; the final terms refer to the Coulomb attraction between
electrons and nuclei, and the repulsion between electrons and between nuclei,
respectively.

The solution to a non-relativistic time-independent Schrödinger equation
involving the Hamiltonian,

Ĥψ(r,R) = Eψ(r,R), (3.4)

is the many-body wave function ψ(r,R), which describes wave-like motion
and explicitly depends on the coordinates of all particles in the system, and
E is the ground-state energy. Therefore solving the exact equation involves a
problem with (3N+3M ) degrees of freedom. To turn the problem into a feasible
enterprise (not only for the simplest hydrogen-atom case), approximations are
required.

The first and the most common approximation is made to treat nuclei and
electrons on a different footing, which is known as the Born-Oppenheimer
approximation (BOA) [120]. The success of BOA lies in the large difference
between the masses of the nucleus and the electron,MI shown in Eq. (3.2), such
that the electrons typically respond almost instantaneously to any change in the
nuclear positions. In other words, one can consider the electrons as moving in
the field produced by the fixed nuclei. Within this approximation, the nuclear
kinetic-energy term can be neglected and the nuclear-nuclear repulsion term
can be considered as a constant for a given set of coordinates. If one writes
Eq. (3.3) with only the electronic term, the Hamiltonian becomes

Ĥelec = T̂elec + V̂n−e + V̂e−e. (3.5)

1In this thesis, unless otherwise stated, Hartree atomic units are utilized.
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Solving the time-independent Schrödinger equation,

Ĥelecψelec(r,R) = Eelecψelec(r,R), (3.6)

one arrives at the electronic wave function ψelec(r,R) that describes the motion
of electrons and depends on the electronic coordinates and the nuclear positions
only parametrically. Eelec is known as the electronic total energy in Eq. (3.5),
including the kinetic energy and Coulomb energies. The total energy is
regained by adding the constant nuclear-nuclear repulsion term for the nuclei,
and is written as

Etotal = Telec + En−e + Ee−e +En−n. (3.7)

The work presented in this thesis is entirely within BOA, in the following,
the “total” and “elec” subscripts will be dropped for simplicity; and only
electronic Hamiltonians and wave functions will be considered. Although the
assumption of BOA remarkably reduces the complexity of solving the many-
body Schrödinger equation, the resulting electronic Schrödinger equation is
still extremely complex. Many approximate electronic-structure methods have
been developed to solve the so-called “Schrödinger-like” equations. Density-
functional theory (DFT) is currently among the most popular and most widely
used quantum-mechanical methods, accounting for approximately 90% of all
calculations today in condensed-matter physics, computational physics, and
computational chemistry [90–93]. The formulation of DFT follows in the next
section.

3.2 BASICS OF DENSITY-FUNCTIONAL THEORY

One of the major reasons for the popularity of DFT lies in its excellent
compromise between accuracy and feasibility. DFT avoids the expense of
quantum-chemical methods, determining the energy directly from the electron
density n(r), rather than the many-electron wave function ψ(r1, r2, . . . , rN )

(such as in Hartree-Fock and post-Hartree-Fock theories). Thus the many-body
problem is shifted to the problem of solving a set of equations that depend
solely upon the three spatial coordinates of the electron density.

3.2.1 THE THOMAS-FERMI THEORY

The concept of using the electron density rather than the wave function can be
traced back to the work of Thomas [121] and Fermi [122] in 1927. In the original
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Thomas-Fermi (TF) theory, the kinetic energy of electrons is approximated
as an explicit functional of the density based on non-interacting electrons in
a homogeneous gas. Within this model, the kinetic energy of electrons is
expressed as

T [n(r)] = CF

∫
n5/3(r)dr, (3.8)

whereCF = 3
10(3π

2)2/3 = 2.871, and n(r) defines the electron density and yields
the total number of electrons N by integration∫

n(r)dr = N. (3.9)

In the TF theory, the exchange and correlation among the electrons is
neglected. When electron-nucleus and electron-electron interactions are
included, the total energy is obtained

ETF[n(r)] = CF

∫
n5/3(r)dr − Z

∫
n(r)

r
dr +

1

2

∫∫
n(r)n(r′)
|r′ − r|

drdr′, (3.10)

where the second and third terms correspond to the electron-nucleus and the
Coulomb part of the electron-electron interactions, respectively. Although it
is an important first step, the TF model remains a fairly crude approximation
for most circumstances not only because of the poor description of the uniform
gas in the representation of the kinetic energy, but also the complete neglect of
exchange and correlation terms in the electron-electron interaction.

3.2.2 THE HOHENBERG-KOHN THEOREMS

Modern density-functional theory, building upon the ideas of Thomas [121],
Fermi [122], and many others, was born in 1964, with the work of Hohenberg
and Kohn [123]. The approach of Hohenberg and Kohn (HK) is to formulate
DFT as an exact theory of many-electron systems, where the Hamiltonian of
interacting particles can be written as

Ĥ = −1

2

∑
i

∇2
i −

∑
i

υext(ri) +
∑
i

∑
j 6=i

1

|ri − rj |
; (3.11)

υext(ri) = −
∑
I

ZI

|ri − RI |
. (3.12)

Here υext(ri) is an external potential that includes interactions between
electrons and nuclei. The HK approach is based upon two theorems [123]:
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Theorem I: For any system of interacting particles in an external potential
υext(r), the total energy is determined uniquely (up to an additive constant) by
the ground-state particle density n0(r).

Theorem II: A universal functional for the energy in terms of the density
n(r) can be defined, valid for any external potential υext(r). For any particular
potential, the exact ground-state energy of the system is the global minimum of
this functional, and the density n(r) that minimizes the functional is the exact
ground-state density n0(r).

As a result, the energy functional has the following form

E[n(r)] = FHK[n(r)] +
∫
υext(r)n(r)dr, (3.13)

and the universal HK functional reads as

FHK = T [n(r)] + Ve−e[n(r)], (3.14)

where T [n] is the kinetic-energy functional and Ve−e[n] is the electron-electron
interaction functional.

The HK theorems tell us there is a one-to-one correspondence between the
external potential and the ground-state density. Thus a universal functional
can be defined for any density, and by minimizing this functional one would
find the exact density and energy of the true interacting many-body system:
E0[n0(r)] ≤ E0[n(r)].

The original proofs for these theorems are readily available (e.g., the original
literature [123] or a standard textbook [124]), and thus will not be presented
here. The HK theorems, however, are no nearer to a practical method, as the
exact evaluation of the HK functional FHK would require us to solve the many-
electron Schrödinger equation. Assuming one has a functional that is a good
approximation to FHK[n(r)] and that can be treated in a practical manner, a
search for the density that minimizes this functional should then yield a good
approximation to the ground-state density as well as the energy. This provides
the fundamental concept upon which all practical DFT calculations are built up.
The most practical scheme is known as the Kohn-Sham (KS) method, proposed
by Kohn and Sham in 1965 [89].
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3.2.3 THE KOHN-SHAM METHOD

Kohn and Sham developed a method based on the HK theorems that allows
one to minimize the functional by varying n(r) over all densities of N electrons.
Essentially, the universal functional FHK, given by Eq. (3.14), is separated into a
set of energy components, each of which has a clear physical origin, and some of
which have explicit forms. Approximation is only required for the components
that cannot be readily evaluated.

KOHN-SHAM SYSTEM

“ The Kohn-Sham system is defined as a fictitious system of non-interacting particles
(typically electrons) that generate the same density as any given system of interacting
particles ” [125]:

nKS(r) = n(r).

Kohn and Sham considered a fictitious auxiliary system, aiming at modeling
the true many-electron system. This fictitious system consists of independent
electrons, each of which experiences the same external potential (denoted as
the effective potential, which will be discussed in further detail in this section).
This assumes that the ground-state density of a non-interacting system nKS(r) is
equal to the true ground-state density n(r). Within this assumption, the ground-
state wave function of the system can be written in terms of single-particle wave
functions.

KOHN-SHAM HAMILTONIAN

From the HK theorem, one can determine the ground-state energy by
minimizing the energy functional,

E[n(r)] = T [n(r)] + Ve−e[n(r)] +
∫
υext(r)n(r)dr, (3.15)

where the sum of the first and second terms defines the universal functional
FHK. Kohn and Sham [89] wrote FHK in three terms, so that the energy
functional becomes

E[n(r)] = Ts[n(r)] +
1

2

∫∫
n(r)n(r′)
|r − r′|

drdr′ + Exc[n(r)]︸ ︷︷ ︸
FHK

+

∫
υext(r)n(r)dr. (3.16)
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In a concise manner, the energy functional can be expressed as

E[n(r)] = Ts + VH +Exc + Vext, (3.17)

• Ts is the kinetic energy of non-interacting electrons with the density n(r);
for such a system, the kinetic energy and the density can be described in
terms of single-particle orbitals;

• VH is the Hartree (or Coulomb) energy corresponding to the electron-
electron interaction, equal to the classical electrostatic energy of the charge
distribution n(r), with the Hartree potential being

υH =

∫
n(r′)
|r − r′|

dr′; (3.18)

• Exc is the non-trivial exchange-correlation energy that goes beyond the
Hartree approximation;

• Vext is the external potential energy acting on the electrons,

Vext =

∫
υext(r)n(r)dr. (3.19)

KOHN-SHAM EQUATIONS

The next step is to evaluate each term in Eq. (3.16). For a system of N
electrons, one can construct the wave function from the single-particle orbitals
ψi(r)(i = 1, 2, . . . , N) using a single Slater determinant. The kinetic energy and
the electron density are then given by

Ts[n] = −1

2

N∑
i=1

〈ψi|∇2|ψi〉; (3.20)

n(r) =
N∑
i=1

|ψi|2. (3.21)

Writing Eq. (3.16) in terms of single-particle orbitals, one can arrive at the central
equation in KS-DFT expressed as

ĥKS
i ψi(r) = εiψi(r), (3.22)
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with the one-electron Hamiltonian being of the following form

ĥKS
i = −1

2
∇2 + υH(r) + υxc(r) + υext(r). (3.23)

At this stage, one can define an effective single-particle potential υeff ,

υeff = υH + υxc + υext, (3.24)

with the exchange-correlation potential υxc given by

υxc(r) =
δExc[n(r)]
δn(r)

. (3.25)

Furthermore, one can rewrite the KS equation as(
−1

2
∇2 + υeff

)
ψi = εiψi. (3.26)

Practical KS-DFT calculations involve searching for the electron density that
minimizes this functional, such that the ground-state energy and the density
can be obtained by solving the N single-particle equations. Note that υeff is
still a functional of the electron density n(r) from its definition, hence these
equations must be solved iteratively. Up to this point, the KS-DFT formalism is
“exact” within the non-relativistic Born-Oppenheimer approximation. In fact,
the only remaining part is the explicit evaluation of the exchange-correlation
functional Exc[n(r)], for which approximations are necessary.

3.3 APPROXIMATE EXCHANGE-CORRELATION

FUNCTIONALS

The KS equations expressed in Eq. (3.26) are so far exact within non-relativistic
quantum mechanics: no approximations have yet been made, except for BOA.
It should be noted that the kinetic energy Ts defined via Eq. (3.16), is not the
true kinetic energy, but the non-interacting kinetic energy. Combining Eq. (3.15)
with (3.16), one can re-write the exchange-correlation energy as

Exc[n(r)] = (T − Ts) + (Ve−e − VH), (3.27)

where T and Ve−e represent the exact kinetic and electron-electron interaction
energies, respectively; and VH, the Hartree energy term, is the Coulomb self-
energy of a stationary, non-quantized, distribution of electric charge of density
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n(r). Physically, Exc contains contributions of exchange and correlation to the
system energy followed below.

THE EXCHANGE ENERGY Ex

This term accounts for the fact that the wave function is anti-symmetric with
respect to the exchange of any two particles’ coordinates due to the Pauli
exclusion principle. The difference in the electrostatic energy due to the anti-
symmetrization, known as the exchange energy, can be written directly in terms
of occupied KS orbitals as

Ex = −1

2

∑
ij

∫∫
ψ∗
i (r)ψi(r′)ψ∗

j (r
′)ψj(r)

|r − r′|
dr dr′. (3.28)

The explicit calculation of Ex is computationally very expensive for solids,
so approximations are needed in practice. Efficient approximations to the
exchange energy often lead to a notorious deficiency in KS-DFT approaches, the
so-called self-interaction error (SIE), which arises from the spurious interaction
of an electron with itself and does not completely cancel in approximate
DFT functionals. SIE is typically considered as the cause of many failures
of KS-DFT, e.g., in charge transfer processes and transition states of chemical
reactions [126].

THE CORRELATION ENERGY Ec

This term accounts for the fact that electrons are not independent, but correlated.
The correlation energy is formally defined as the difference between the exact
non-relativistic energy and the energy in the Hartree-Fock limit. By definition,
the correlation energy has both potential and kinetic components, and the
resulting physical effects are: (i) the potential energy is reduced; (ii) the kinetic
energy is increased.

In contrast to the exchange energy, no general analytical expression is known
for the electron correlation energy. It can only be calculated exactly by solving
the many-electron Schrödinger equation of Eq. (3.2); therefore it is always
approximated in practical calculations. Usually, the exchange and correlation
terms are grouped together as

Exc = Ex + Ec. (3.29)

Since the actual form of Exc is unknown, to describe this term, one must
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introduce approximate functionals based upon the electron density. In this
section, we shall discuss the most popular formalism in the field of DFT
functional development, climbing the so-called “Jacob’s ladder” [90, 127]
with the goal of obtaining an accurate total energy: the local (spin) density
approximation, generalized gradient approximation, meta-generalized gradi-
ent approximation, hybrid functionals and the random-phase approximation.
Of course, the computational cost grows as more ingredients are added for
evaluating Exc.

3.3.1 THE LOCAL (SPIN) DENSITY APPROXIMATION

The simplest approximation to the XC functional is the local-density approx-
imation (LDA), which assumes the electron density can be treated locally as
a uniform electron gas (UEG), so that the XC energy can be evaluated from
the charge density at the point under consideration. LDA was first formulated
by Kohn and Sham [89] and holds for systems with slowly varying densities.
Within this approximation, the XC energy for a density n(r) is written as

ELDA
xc [n(r)] =

∫
n (r) εunifxc [n(r)]dr, (3.30)

where εunifxc is the XC energy per electron of an electron gas with uniform density.
The exchange-energy density of a UEG is known analytically, thus yielding a
simple expression for the exchange energy [128]

ELDA
x [n(r)] = −3

4

(
3

π

)1/3 ∫
n4/3(r)dr. (3.31)

The exact functional form for the correlation energy density of a UEG is
unknown (except in the limits of the infinitely-weak and infinitely-strong
correlation cases) and has been numerically evaluated with quantum Monte
Carlo (QMC) calculations in Ref. [129]. These data have then been used to
parametrize an interpolated analytic form for ELDA

c in several ways, with the
widely used parameterizations due to the work by Vosko et al. [130] and Perdew
et al. [131, 132] found in most DFT computer codes. The local spin-density
approximation (LSDA) is a straightforward generalization of LDA to include
electron spin, written as ELSDA

xc [n↑, n↓], and it provides an improvement for
systems where the spin of electrons is important.

Despite the fact that n(r) of a system varies with position, L(S)DA performs
remarkably well in practical applications. Its success, besides its validity for
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very slowly varying densities, can be attributed to compensation between
exchange and correlation holes [133], which explains to some extent its good
performance in describing structural and elastic properties of both bulk solids
and surfaces [134]. In fact, the prediction of geometries in LDA has been one
of its great advantages. In many cases, LDA gives bond lengths of molecules
and solids better than GGA functionals, as can be seen from the T-96 set of
Scuseria and co-workers [135], which contains covalently-bonded diatomic
molecules and simple polyatomic molecules. However, the LDA functional
often leads to significant errors for the bonding of both molecules and solids.
For instance, L(S)DA atomization energies (also known as cohesive energies in
solids) are very inaccurate, typically off by 20–30%. Typically, it is found that
L(S)DA yields overbinding — too large cohesive energies and too short bond
lengths [98, 108, 136]. Therefore an accurate description of material properties
requires functionals that go beyond L(S)DA.

3.3.2 THE GENERALIZED GRADIENT APPROXIMATION

An improvement over L(S)DA can be made by introducing one additional
ingredient to the energy functional, the density gradient ∇n(r), accounting for
“non-locality” in realistic systems. This yields a group of functionals, called the
generalized gradient approximation (GGA),

EGGA
xc [n(r)] =

∫
n(r)εGGA

xc [n(r),∇n(r)]dr; (3.32)

or more typically expressed as

EGGA
xc [n(r)] =

∫
n(r)εunifxc Fxc[n(r),∇n(r)]dr, (3.33)

where Fxc is known as the enhancement factor, a dimensionless parameter
accounting for the gradient dependency, and εunifxc is the XC energy density
inherited from the LDA formalism. Note that XC functionals based on GGA
are typically referred to as semi-local functionals, as the non-locality is only
partially captured by the density gradient.

Unlike εLDA
xc , the functional εGGA

xc lacks a uniquely justifiable form. Thus
the form is often chosen to satisfy various physical constraints. However, it is
impossible to satisfy every constraint simultaneously, such that the functional
form is typically (but not always) chosen according to the nature of the system
under consideration. This leads to many different parameterizations of GGA
based on the choice of Fxc. Within the condensed-matter-physics community,
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one of the most commonly used GGAs is that proposed by Perdew, Burke, and
Ernzerhof [94], the PBE functional. It is a revised version of the PW91 [137]
functional with a simplified form for the enhancement factor. Both of these
functionals have no empirical parameters. To evaluate Fxc, it is generally split
into its exchange and correlation terms. The PBE exchange can be expressed as

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (3.34)

with κ and µ being constants, and s is defined as the dimensionless reduced
density gradient, |∇n|/2(3π2n)4/3. In contrast, the expression for the GGA
correlation energy is more complex, due to the scaling relations and the
treatment of spin polarization.

GGA functionals often show a better performance than LDA for molecular
structures, hydrogen bonds, and other weakly bonded systems. However, it
does not yield a uniform improvement over LDA for solids. Though PBE often
gives lattice constants in better agreement with experiment, the same is not
true for bulk moduli [98, 108, 136]. It has been found that the PBE functional
describes reasonably good lattice constants, but exhibits a general behavior
(opposed to LDA) of underbinding. Many variations to the functional form
of Fx in Eq. (3.34) have been proposed to cure the shortcomings of PBE. For
example, revPBE [138] changes one parameter on the exchange enhancement
factor Fx by fitting exchange energies to reference data of atoms and molecules;
RPBE [139] changes Fx aiming to improve the adsorption energy of small
molecules on surfaces; PBEsol [140] recovers the second-order density gradient
expansion for the UEG limit in the exchange term and describes geometries
better for solids and surfaces, however, bulk moduli and cohesive energies are
poorly predicted for some systems compared with PBE results [98, 99, 141, 142].

3.3.3 THE META-GENERALIZED GRADIENT APPROXIMATION

Adding more local ingredients beyond the first-order density gradient yields
meta-GGA (or MGGA) functionals [95, 101, 102], which are located on the
third rung of “Jacob’s ladder”. Besides ingredients already contained in GGAs,
additional semi-local information could be higher-order density gradients and
the kinetic-energy density, which involves derivatives of the occupied KS
orbitals ψi(r). A general form used for MGGA functionals is

EMGGA
xc [n(r)] =

∫
n(r)εMGGA

xc [n(r), ∇n(r), ∇2n(r), τ(r), µ(r), ..., γ(r)]dr,

(3.35)
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where ∇2n(r) corresponds to the Laplacian of the density, τ(r) =
1

2

occ∑
i

|∇ψi(r)|2

is known as the non-interacting kinetic-energy density, and µ(r),...,γ(r)
represent other possible semi-local arguments (i.e., defined locally at r) that
could be used in MGGAs.

Several MGGA forms have been constructed on the basis of theoretical
constraints (in some cases) in combination with fits to chemical data, and
among those the highlights are the TPSS functional [95] and its revised version
revTPSS [143, 144], and the M06-L functional [145, 146]. TPSS, devised by
Tao, Perdew, Staroverov, and Scuseria, is a nonempirical MGGA functional.
It predicts lattice constants slightly better than those of PBE, good surface
energies, as well as good atomization energies [95, 135]. To further improve
the performance on lattice constants, revTPSS was proposed but at the cost of
worsening the energies compared with those of original TPSS [136]. Truhlar
et al. developed MGGAs based on flexible functional forms parametrized on
high-quality benchmark databases, and weak interactions for organic systems.
MGGAs are also often coupled with fractional (0% to 100%) Hartree-Fock
exchange. These functionals are known as hybrid MGGA functionals, such as
the M06 family, including M06 [147], M06-2X [147], and M06-HF [148]. M06-
L is the local MGGA (with 0% of Hartree-Fock exchange), and incorporates
the ideas of physical constraints, modeling the exchange-correlation hole, and
empirical fits in the functional form. At present most studies of the performance
of M06-L are based on molecular systems, which shows better agreement with
experiment than Becke-3-Lee-Yang-Parr (B3LYP) [104, 149] (the most widely
used functional in the field of chemistry). In this thesis, we shall examine the
performance of M06-L for a large database of crystalline solids, as presented in
Chapter 4.

Although many improvements have been made to the XC functional,
MGGAs still do not perform uniformly better than GGAs. Another point to
highlight is that many MGGAs are constructed using experimental data to
define the functional forms (except TPSS, which is a nonempirical MGGA),
leading to the issue of many empirical parameters.

3.3.4 HYBRID FUNCTIONALS

So far with L(S)DA, PBE, and TPSS, the first three rungs of the nonempirical
ladder are essentially completed. Further developments can be achieved by
adding “nonlocal” terms into the XC energy, aiming at reducing self-interaction
errors present in (semi-)local functionals. In principle, any exchange functional
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can be combined with any correlation functional. As already mentioned
above, a fraction of exact exchange (EXX) can be added to conventional GGAs
or MGGAs. These functionals are known as hybrid functionals, originally
proposed by Becke [103, 104]. A general form for hybrid GGAs can be written
as [105],

Ehybrid
xc = αEEXX

x + (1− α)EGGA
x + EGGA

c (3.36)

where EEXX
x represents the exact exchange given by Eq. (3.28), and the

coefficient α reflects the amount of the exact-exchange mixing, which can be
defined semi-empirically or using perturbative arguments from the adiabatic
connection formalism.

Hybrid functionals (such as B3LYP [104, 149]) have gained wide popularity
in quantum chemistry, due to their improved predictions for many molecular
properties (e.g., bond lengths, atomization energies and vibrational frequencies)
relative to local and semi-local functionals. However, the application of hybrid
schemes to extended systems is computationally challenging. Recently, a set of
screened hybrid functionals, obtained by the use of a screened Fock exchange
operator, such as HSE06 [150](revised from HSE03 [151] proposed by Heyd et
al.) and HSEsol [142] (proposed by Kresse et al.), addressed this problem by
separating the exchange interaction into a short-range (SR) and a long-range
(LR) part. These developments allowed hybrid functionals to become popular
in solid-state physics [106, 152–158].

The expression for the HSE XC energy is

EHSE
xc = αEEXX,SR

x (ω) + (1− α)EωPBE,SR
x (ω) + EωPBE,LR

x (ω) + EPBE
c , (3.37)

where EEXX,SR
x is the SR exact exchange, EωPBE,SR

x and EωPBE,LR
x are the SR

and LR components of the PBE exchange, and EPBE
c is the full PBE correlation.

The parameter ω is known as the range-separation parameter, governing the
extent of the SR interactions. The admixture constant α is set to be 0.25 that
was derived from perturbation theory [159]. There are some improvements
over traditional hybrids by introducing the range-separation concept to treat
the exact exchange, with less computational cost. For instance, HSE06 was
benchmarked for a variety of metallic, semiconducting, and insulating solids,
and the results showed a substantial improvement over the standard LDA
or GGAs for some cohesive properties as well as band gaps [153, 154].
However, there are still two issues concerning the use of hybrid functionals
in solids. Firstly, metallic (including small-gap) systems cannot be treated
well, in particular for the case of transition metals [142, 155, 157]. Secondly, in
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general hybrid functionals cannot reproduce cohesive energies as well as PBE
does [142, 155, 158]. An important reason is that the LR correlation in the XC
energy is not included in any of hybrid functionals.

3.3.5 THE RANDOM-PHASE APPROXIMATION FOR ELECTRON

CORRELATION

The random-phase approximation (RPA) is located on the fifth rung of “Jacob’s
ladder”, where the unoccupied orbitals and eigenvalues are involved. RPA is
one of the oldest methods for computing the ground-state correlation energy
of many-electron systems, and it treats long-range correlation seamlessly.
Consequently, the vdW energy is naturally included in the RPA approach.
The interested reader is referred to two recent review papers [160, 161] and
references therein.

Some attractive features of RPA are the following:
• it is based on many-body perturbation theory and is free from empirical

parameters;
• it dramatically improves over semi-local density functionals for non-

covalent interactions [161, 162];
• it can be coupled with exact exchange, and sometimes is able to capture

some static correlation [160, 161];
• it is computationally feasible for molecules with over 100 atoms.

RPA is presently among the best choices for predicting properties of
molecules, solids, and surfaces. It has been shown that the RPA approach
predicts accurate lattice constants and bulk moduli for a diverse range of
bulk solids, including semiconductors, insulators, as well as metals, with
mean absolute relative errors (MAREs) being 0.4% and 4% for the two
properties respectively [108].2 However, cohesive energies are typically
disappointing (with even more underbinding than PBE) [108]. A very recent
development going beyond RPA, the renormalized second-order perturbation
theory (rPT2) [163] approach, has shown great promise in resolving the
underbinding problem in standard RPA. While this is only based upon
some preliminary results of the cohesive energies of small copper clusters,
a systematic investigation of this issue is greatly needed. In addition,
RPA (and its variants) calculations are more demanding than conventional
DFT calculations due to the evaluation of the response function. Thus the

2RPA outperforms both LDA and PBE approximately by 1% and 6% for lattice constants and
bulk moduli respectively, obtained from a database of 24 solids [108].
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computational cost needs to be addressed for its widespread use in future
applications.

The original scheme was first formulated by Bohm and Pines during the
years between 1951 and 1953 [115–117]. There have been many developments
beyond standard RPA in the last half century, and a more detailed discussion of
this method will follow in Section 3.4.2.

The success of RPA (and beyond) tells us that the long-range correlation
energy is critical for approaching the “heaven” of chemical accuracy (within
1 kcal/mol for energetics). This motivates the need for adding the long-range
vdW energy on top of local and semi-local KS-DFT calculations and assessing
potential methods that are feasible for complex materials.

3.4 METHODS FOR TREATING VAN DER WAALS

INTERACTIONS

Generally, the term “vdW interactions” can refer to different types of
interatomic and intermolecular interactions, e.g., electrostatics, induction, and
dispersion. The term “dispersion energy” is often used interchangeably
with “vdW energy”, and corresponds to the attractive interaction between
fluctuating multipoles. In this thesis, we follow this convention. vdW
interactions arise from the correlated motion of electrons; thus the vdW energy
constitutes a large part of the long-range electron correlation energy. These
interactions are inherently quantum mechanical in nature, the exact treatment
of which must be performed using many-electron quantum mechanics. Here
we will only focus on the discussion of DFT-based vdW inclusive theories,
upon which this thesis is founded. The quantum-chemical wave function
approaches (e.g., coupled-cluster and configuration-interaction methods) are
not yet feasible for practical calculations of solids.3

3.4.1 INTERACTION BETWEEN FLUCTUATING DIPOLES

Dispersion interactions were explained by London [12, 13] from a quantum-
mechanical treatment based on second-order perturbation theory, and are also
known as London (dispersion) forces in his honor. The long-range multipolar
expansion for the pair-wise vdW energy is frequently written in terms of

3The computational cost grows rapidly with the number of electrons N as well as the basis set
size. Traditional full configuration interaction can be applied to at most some ten electrons with a
small basis set; and even coupled-cluster methods are extremely expensive, scaling like N7. The
reader is referred to Refs. [111–114, 164–167] for more information.
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interatomic separation R as a series with coefficients Cn denoted as dispersion
coefficients [15, 168]

EvdW = −
∞∑

n=6,8,10,...

Cn

Rn
. (3.38)

THE C6 DISPERSION COEFFICIENT

The first nonvanishing term of the above expression, C6R
−6, corresponds to the

interaction between two fluctuating dipoles, and is typically (but not always)
the dominant contribution. Therefore in many applications, vdW interactions
can be approximated by the first term of the multipolar expansion, with the
error rapidly diminishing as the distance increases. This explains the fact
that there are a large number of methods aiming to evaluate C6 dispersion
coefficients accurately.

In order to compute the vdW energy, the necessary ingredients are the
dynamic dipolar polarizability and C6 dispersion coefficients. Both of them
are dependent upon the oscillator strength [169] distribution that describes the
transition from state ψ0 to state ψn, as defined by

fn0 =
2

3
ωn0|dn0|2, (3.39)

where ωn0 is the transition frequency between the two states, and dn0 is the
associated dipole-moment matrix element.

According to second-order perturbation theory, the C6 dispersion coefficient
of the dipole-dipole interaction between two isolated particles A and B can be
expressed as

CAB
6 =

3

2

∑
n,m 6=0

fAn0f
B
m0

ωA
n0ω

B
m0(ω

A
n0 + ωB

m0)
. (3.40)

Thus the difficulty of a straightforward evaluation of the perturbation
expression arises from the requirement of complete knowledge of all excited
states. In practice, a more convenient mathematical form to Eq. (3.40) can be
expressed in terms of the dynamic dipolar polarizability, yielding the so-called
Casimir-Polder formula [170].

DIPOLAR POLARIZABILITY

Polarizability is an intrinsic property of matter, and it measures the change in
the charge distribution of an atom (ion or molecule) with respect to an applied
electric field. The quantity of primary interest here is the dipolar polarizability,
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the response of the dipole moment to the electric field, from which one can
obtain C6 dispersion coefficients. We note that the field can be either external or
internal, stemming from other atoms or electrons inside a molecule or material.
For more details, the reader is referred to a comprehensive review article [171].

According to second-order perturbation theory, the average dynamic
polarizability is defined as

α(iω) =
∑
n6=0

fn0
ω2
n0 + ω2

, (3.41)

where the oscillator strength fn0 is given by Eq. (3.39). The above definition
allows Eq. (3.40) to be rewritten in terms of dynamic polarizabilities, arriving at
the Casimir-Polder formula

CAB
6 =

3

π

∫ ∞

0
αA(iω)αB(iω)dω, (3.42)

where the integrand contains the averaged dipolar polarizability as a function
of imaginary frequency.4 This integral expression is often used as a starting
point for developing various approximate methods to determine C6 dispersion
coefficients.

On the experimental side, the dynamic polarizability can be obtained from
dielectric-function measurements [172], Rayleigh scattering [173], molecular
beam methods [174, 175], and other related methods. Thus an accurate
theoretical treatment of the polarizability can improve our understanding of
many properties, such as the dielectric constant and the refractive index (see
Table 3.1 and more discussion below in Section 3.5). Once the dynamic
polarizability and the resulting dispersion coefficients are known, the next
question is how to calculate the vdW energy in practical calculations.

Table 3.1: The relationship between the dipolar polarizability α and other physical
quantities, where V is the unit-cell volume of a crystal.

Quantity Relation to α
Dielectric constant, ε ε−1

ε+2 = 4πα
3V

∗

Refractive index, n n2−1
n2+2

= 4πα
3V

∗

dispersion coefficient, C6 Eq. (3.42)

∗ Valid for dilute systems and ionic and semiconductor solids with cubic
symmetry.

4The equivalence of Eqs. (3.40) and (3.42) can be obtained by means of the definite integral:
2
π

∫∞
0

ab
(a2+x2)(b2+x2)

dx = 1
a+b

.
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3.4.2 INCLUSION OF THE LONG-RANGE VDW ENERGY IN DFT

Numerous promising ideas have been proposed for including the vdW energy
in DFT calculations motivated by the need to treat large and complex molecular
and condensed-matter systems. As discussed in Section 3.3, many commonly
used exchange-correlation functionals (LDA, GGAs, etc.) provide a route to
the inclusion of electron-correlation effects in an effective way, with a relatively
low computational cost. The basic concept for any DFT-based vdW method is
to add an additional term that accounts for the missing long-range correlation
energy to the DFT energy, as simply expressed by

Etot = EDFT + EvdW, (3.43)

where EDFT is the KS-DFT total energy computed with a given (semi-)local or
hybrid XC functional. Many DFT-based vdW methods have been developed,
which differ from one another in the way of obtaining the polarizability as
well as coupling with the underlying functional. Here we focus on the most
widely used methods, namely, RPA, vdW-DF, and DFT+vdW; for an extended
discussion, we refer the reader to recent review articles by Grimme [8], Johnson
et al. [9], Tkatchenko et al. [10], and Klimeš and Michaelides [11].

RANDOM-PHASE APPROXIMATION

RPA [115–117] explicitly computes the electron correlation energy, and it can
be formulated within different theoretical frameworks.5 Presented here is the
formulation based on the adiabatic-connection fluctuation-dissipation theorem
(ACFDT), with the RPA correlation energy written on the imaginary frequency
axis as follows

ERPA
c =

1

2π

∫ ∞

0
dωTr

[
ln(1− χ0(iω)υ) + χ0(iω)υ

]
, (3.44)

where υ is the Coulomb potential, and χ0(iω) is the non-interacting density
response function of the KS system, having an explicit form in terms of single-
particle orbitals ψi(r), orbital energies εi, and Fermi occupation factors fi

χ0(r, r′, iω) = 2
∑
i,j

(fi − fj)
ψ∗
i (r)ψj(r)ψ∗

j (r
′)ψi(r′)

εi − εj − iω
. (3.45)

5RPA can be derived from many-body perturbation theory or from coupled-cluster theory,
which will not be discussed, but redirected to, e.g., a very recent review by Ren et al., Ref. [160].
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Within this approach, the XC energy in RPA is obtained by coupling the exact
exchange energy together with the RPA correlation energy

ERPA
xc = EEXX

x + ERPA
c . (3.46)

Note that RPA is very commonly used in a post-processing fashion, that is, the
exchange and correlation terms for the RPA total energy are evaluated using KS
orbitals (LDA, PBE, etc.).

The inclusion of the correlation energy within RPA can yield better
agreement with experiment than (semi-)local functionals. RPA provides
excellent bond lengths, very good heats of formation, accurate adsorption
and surface energies for some systems [176]. In addition, RPA remedies part
of problems associated with LDA or GGAs for cohesive properties of solids,
showing the significance of the long-range correlation energy in extended
systems. RPA predicts accurate lattice constants and bulk moduli (with
MAREs of 0.4% and 4% respectively) for insulators, semiconductors, and
metals [107, 108]. Still, several shortcomings of RPA need to be pointed out.
Firstly, consistent improvements of all cohesive properties remain a big issue.
Although RPA provides a well-balanced description of lattice constants and
bulk moduli, cohesive energies are even more underestimated with respect
to PBE results (MAE 0.30 eV versus 0.17 eV per atom) [107, 108]. Attempts
have been made to go beyond standard RPA (such as RPA+SOSEX [177],
RPA+rSE [178], and rPT2 [163]), however, insofar systematic studies on a broad
range of materials are still lacking [160, 162]. Furthermore, calculations of RPA
and beyond require the evaluation of the KS response function, and thus are
more expensive than standard DFT computations.

VDW-DF FUNCTIONAL

The so-called van der Waals density functional (vdW-DF), originally developed
by Langreth, Lundqvist and co-authors, aims to approximate the nonlocal
correlation energy from the electron density. The growing family of vdW-DFs
(vdW-DF-04 [179], vdW-DF-09 or VV09 [180], vdW-DF-10 or vdW-DF2 [181],
VV10 [182], etc.) share the same root – the correlation energy is split into
two contributions: (i) a long-range part, Enl

c , which is a nonlocal two-point
functional of the electron density; (ii) a short-range part from a local or semi-
local density functional. In the general vdW-DF framework, the XC energy
takes the form

Exc = E0
x + E0

c + Enl
c , (3.47)
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where E0
x and E0

c are the exchange and correlation terms from (semi-)local
functionals respectively, and Enl

c is the nonlocal part accounting for long-range
vdW interactions. The quantity E0

c is typically chosen to give the correlation
energy in the uniform density limit. Moreover, Enl

c is constructed to vanish for
a uniform electron density, such that no double-counting appears in the UEG
limit [179].

The simplest form for the nonlocal correlation energy in vdW-DF reads

Enl
c =

1

2

∫∫
drdr′n(r)φ(r, r′)n(r′), (3.48)

where the correlation kernel φ(r, r′) depends upon |r−r′|, and the charge density
and density gradients at r and r′. The interaction kernel φ(r, r′) is governed by
two properties: at what separation the interaction appears and the difference
in electron density at interacting points. Note that the “choice” of the kernel
function is one of the most important aspects of the evaluation of different
variants of vdW-DFs [182–185]. For the mathematical derivation, we refer the
reader to the original papers [182–185], where the numerical evaluation of the
kernel function was also discussed.

The vdW-DF functional has a number of features. For instance, the Enl
c

term accounts for two-body contributions to the vdW energy at long distances,
but neglects non-additive many-body contributions, such as the three-body
Axilrod-Teller [45] terms those can become significant in realistic materials
[20, 186]. Deriving an expression for the three-body correction is possible,
however, at the expense of significantly increased computational cost.

In addition, the accuracy of the vdW-DF framework at short and intermedi-
ate ranges depends not only upon the quality of the Enl

c component, but also
on the combination of E0

x and E0
c . Improvements have been found when using

the vdW-DF-04 functional within revPBE exchange [109], and vdW-DF-10 [181]
and VV10 [182] within PW86R exchange.

The nonlocal vdW-DF functional has been applied to a broad range of
molecules and materials [187], and has already provided useful predictions
for weakly interacting systems, such as molecular complexes, polymer crystals,
and molecules adsorbed on surfaces. Recently it has also been examined
for bulk crystals [71, 79]. These studies have shown that many challenges
still remain, particularly in more complex systems, including solids. For
instance, vdW-DFs overestimate lattice constants for solids as well as binding
distances for gas-phase dimers in comparison with their experiment, and they
underestimate bulk moduli and cohesive energies (only slightly better than
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PBE) [71]. In addition, it was found that the errors obtained from various vdW-
DF descendants are very sensitive to choices of each terms in the functional
form given by Eq. (3.47). While the vdW-DF functional divides the correlation
energy into two parts based on particular treatment, other ways of splitting the
correlation are also possible.

DFT+VDW

Within this approach, termed as “DFT+vdW”, one can write a general form of
adding the long-range pair-wise vdW energy to the DFT energy as

EDFT+vdW = EDFT − 1

2

∑
A

∑
B

fdamp(RAB)
CAB
6

R6
AB

. (3.49)

EDFT is still obtained from standard KS-DFT calculations, employing a local,
semi-local or hybrid XC functional. Having determined CAB

6 coefficients for
interacting atom pair A and B (with an interatomic distance RAB), the leading
term of the vdW energy of the system can be estimated as a sum of pair-wise
potentials CAB

6 R−6
AB over all interacting pairs. In addition, a damping function

fdamp is used to avoid singularities at short distances and ameliorate double-
counting of correlation at intermediate distances [8–11].

Different variants of the DFT+vdW approach have been proposed, differing
in the way they define the damping function or obtain C6 dispersion
coefficients. The most popular ones are those introduced by Grimme (DFT-D1,
DFT-D2 and DFT-D3) [70, 188, 189], Becke and Johnson (XDM) [190–192], as
well as, Tkatchenko and Scheffler (TS) [22].

In the first two methods by Grimme (DFT-D1/2), the C6 dispersion
coefficients are calculated by making use of ionization potentials and static
polarizablities of isolated atoms as inputs [70, 188]. The two main disad-
vantages of these approaches are the fixed dispersion coefficients independent
upon chemical environment and the empirical parameters invoked in damping
functions. The latest version, DFT-D3 [189], was proposed to improve over
DFT-D1/2, by using new sets of cutoff radii and dispersion coefficients
determined from KS-DFT and time-dependent density-functional theory
(TDDFT) calculations. In this approach, the environmental dependence of C6

coefficients is captured by considering the coordination number of a given atom
with its bonding partners. A range of C6 reference values are precalculated
that correspond to different hybridization states for each pair of atoms. Based
on the coordination of an atom, the C6 dispersion coefficient is interpolated
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accounting for different chemical environments. Despite the simplicity of this
approach, DFT-D3 has been shown to provide reliable dispersion coefficients
when applied to small molecular systems. A MARE of 8.4% was found on
a database of 174 pairs of molecular C6 coefficients [189], referenced to data
of Meath and co-authors derived from experimental dipole oscillator strength
distribution (DOSD) [193–196].

The environmental dependence of dispersion coefficients has also been
addressed by Becke and Johnson [190–192, 196, 197] in their exchange-dipole
moment (XDM) method. In this approach, dispersion coefficients vary with the
chemical environment through the Hirshfeld partitioning (e.g., see Ref. [196–
199]) of the dipole-moment density into atomic terms, in combination with the
relationship between polarizability and volume. Thus the inputs required in
XDM are KS or HF orbitals, the density of a system, and the polarizability of
free atoms. The XDM approach has advantages over empirical schemes, with
no empirical fitting of C6 coefficients and a well-defined partitioning scheme
using the electron density. The big challenge in the XDM approach is how to
precisely quantify atomic volumes and the exchange hole (approximating the
XC hole), which are known to affect results to some extent [11, 102, 200, 201].
Nevertheless, the overall accuracy of the C6 coefficients computed using this
model is still reasonable, with a MARE of 12.2% for the 174-pairs molecular C6

data of Meath and co-workers [189, 196]. In addition to the determination of
C6 coefficients, the damping function remains an empirical component in the
XDM method, with one [190, 196] or two free parameters [197]. Concerning
the computational cost, calculations with XDM are more demanding compared
with the DFT-D-type approaches (similar to the cost with hybrid functionals).
This is due to the requirement of HF orbitals (preferable to KS orbitals according
to the authors) for evaluating dipole moments.6

The approach used in this thesis is the Tkatchenko/Scheffler (TS) [22]
method, employing the electron density to evaluate system-dependent C6

dispersion coefficients for atoms-in-materials. The idea of this method is to
compute the relative rather than absolute polarizability and C6 dispersion
coefficients of atoms inside a molecule (or a solid), referenced to highly accurate
free-atom values. Similar to the XDM approach, molecular polarizability and
C6 coefficients are decomposed by making use of the Hirshfeld partitioning
scheme and the direct relationship between polarizability and volume. The TS

6Becke and Johnson [190–192, 196, 197] initially chose to use HF, instead of KS orbitals, with
the aim of avoiding the long-range deficiency of LDA and GGAs potentials for evaluating the
exchange hole that is sensitive to orbital behavior at long distances.
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method computes the vdW energy for atoms in molecules via the summation
of pair-wise interactions from the ground-state electron density, thus adding no
additional computing time to standard KS-DFT calculations. In the TS scheme,
C6 dispersion coefficients vary according to the chemical environment of atoms
in molecules; in particular, hybridization effects are accurately accounted for.
This can be shown from its remarkable performance on a database of 1225
intermolecular C6 coefficients, with a MARE of 5.5% when compared with
reliable experimental data [22]. The TS approach can be readily used and
compatible with a range of XC functionals (LDA, GGAs, MGGAs, and hybrid
functionals). Last but not least, although damping functions remain as a shared
“drawback” in the DFT+vdW family of methods, TS is less empirical than
other approaches, with only a single adjustable parameter sR that adapts the
damping function to a particular XC functional. As one of the main methods
used in this thesis, details of the TS approach will be presented in next section.

3.4.3 THE CONCEPT OF “ATOMS-IN-MATERIALS”: THE TS APPROACH

Adding pair-wise interatomic C6R
−6 terms to the DFT energy was introduced

in the previous section, denoted as DFT+vdW in this thesis. A serious
shortcoming of many DFT+vdW approaches to the vdW energy is their
empirical nature, as the vdW parameters (i.e., the polarizability, the C6

coefficient, and the vdW radius) do not depend on the electronic structure. To
improve this situation, Tkatchenko and Scheffler [22] developed a method to
obtain accurate C6 dispersion coefficients and vdW radii R0 directly from the
ground-state electron density.

The C6 dispersion coefficient for a pair of spherically symmetric atoms (ions
or molecules) A and B can be expressed in terms of frequency-dependent
dipolar polarizabilities αA/B(iω) through the Casimir-Polder formula given by
Eq. (3.42). Several useful expressions can be derived for CAB

6 with a simplified
model for α(iω). An important derivation is the London formula, expressed in
terms of the static polarizability and effective frequency of interacting particles.
Using the leading term in the Páde series [202], the polarizability of atom A at
imaginary frequencies reads as

αA(iω) =
α0
A

1 + (ω/ωA)2
, (3.50)

where α0
A is the static polarizability and ωA is an effective frequency. Upon

substitution in the Casimir-Polder integral, this yields the London formula [12,
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13]
CAB
6 =

3

2
[ωAωB/(ωA + ωB)]α

0
Aα

0
B. (3.51)

For A=B, one finds

ωA =
4

3

CAA
6

(α0
A)

2
. (3.52)

Combining Eqs. (3.51) with (3.52) and expressing CAB
6 in terms of homomolec-

ular parameters, one arrives at

CAB
6 =

2CAA
6 CBB

6

(
α0
B

α0
A
CAA
6 +

α0
A

α0
B
CBB
6 )

. (3.53)

ATOMS-IN-MATERIALS

The TS approach starts from high-level reference data for free atoms taken from
self-interaction corrected TDDFT calculations in Ref. [16], and uses the direct
relation between polarizability and volume [203] to define vdW parameters for
atoms in molecules (or solids). This is achieved by the definition of the effective
volume, referenced to free-atom values [22]. Changes in the effective volume
rescale the vdW parameters through the Hirshfeld partitioning [196–199] of the
electron density for an atom inside a molecule,

V eff
A

V free
A

=

∫
r3wA(r)n(r)d3r∫
r3nfreeA (r)d3r

,

wA(r) =
nfreeA (r)∑
B n

free
B (r)

,

(3.54)

where n(r) is the total electronic density, nfreeA (r) is the density of the free atom,
wA(r) is the Hirshfeld atomic partitioning weight for a given atom A, r is
the distance from the nucleus of atom A, and the sum over B runs over all
atoms of the system, taken as free atoms and placed at their positions in the
molecule. Both n(r) and nfreeA (r) are computed from standard DFT calculations.
The effective vdW parameters are then determined by making use of the direct
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relation between the volume V and the polarizability α

κeffA
κfreeA

αeff
A

αfree
A

=
V eff
A

V free
A

;

ωeff
A

ωfree
A

(
κeffA
κfreeA

)2
Ceff
6AA

C free
6AA

= (
V eff
A

V free
A

)2;

R0
eff

R0
free

= (
V eff
A

V free
A

)1/3.

(3.55)

In this way, C6 dispersion coefficients become functionals of the electron
density. In the above equations, there are two additional unknowns. First, κ
is the proportionality constant between V and α, written as κfreeA and κeffA for
free atoms and atoms in materials, respectively. Second, ωA is the effective
frequency. In the TS method, ωeff

A

ωfree
A

(
κeff
A

κfree
A

)2 is assumed to be unity. It has been
shown that this choice is appropriate for a large variety of molecules. A MARE
of 5.5% was found for 1225 intermolecular C6 dispersion coefficients [22], with
respect to the values determined from experimental dipole oscillator strength
distribution data [193–196]. It is noteworthy that this assumption can be
derived from the quantum harmonic oscillator model, which shall be presented
in Chapter 6.

THE VDW ENERGY AND THE DAMPING FUNCTION

Once the polarizability and C6 dispersion coefficients are determined, the vdW
energy can be computed by summing pair-wise interatomic C6R

−6 terms over
all pairs of atoms. In the TS approach, the vdW energy is written as

EvdW = −1

2

∑
A

∑
B

fdamp(RAB, R
0
AB)

CAB
6

R6
AB

, (3.56)

where RAB is the interatomic distance between atoms A and B, R0
AB is the vdW

radius, CAB
6 is the corresponding coefficient, and fdamp is the damping function.

In principle, the accuracy of any DFT-based vdW method depends solely on the
coefficients used and the choice of the damping function. Considering that the
C6 coefficients in the TS approach are calculated from the Hirshfeld-volume
partitioning based on the electron density, the damping function is the only
ingredient that requires introducing empirical parameters.

There are two reasons for using a damping function in the vdW energy
expression. Firstly, theR−6 term diverges at short distances. Secondly, although
the long-range correlation tail is completely missing, short-range correlation
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effects are already contained in local and semi-local density functionals. By
using a damping function that equals unity at sufficiently large distances and
zero at small distances, double-counting effects are minimized.

There are several damping functions suggested in the literature [38, 70, 188,
189, 195, 204–207], and some representative ones are given in Appendix D. A
Fermi-type function is used in the TS method

fdamp(RAB, R
0
A, R

0
B) =

1

1 + exp[−d( RAB

sRR0
AB

− 1)]
, (3.57)

where RAB is the interatomic distance, R0
AB = R0

A + R0
B is the sum of the

effective atomic vdW radii of atoms A and B, and d and sR are free parameters
that need to be chosen.

The vdW radii require a careful treatment, and it should be noted that they
are not experimental observables. There is a rigorous theoretical definition for
noble-gas atoms, namely that the vdW radius, R0

AB, corresponds to half of the
equilibrium distance of a rare-gas dimer where the Pauli repulsion balances the
London dispersion attraction. For other elements, consistent definition is to
choose the distance where the electron-density contour value of a spherical free
atom equals that of the noble-gas atom in the same row of the periodic table,
and it will correspond to the vdW radius. This was proposed in the TS method
as the free-atom reference for the vdW radius [22].

The d parameter adjusts the damping function’s steepness, and has been
shown to have a negligible influence on the structural and energetic properties
of molecules [70, 188, 189, 205]. A choice of d = 20 offers a good compromise
and minimizes double-counting effects [22, 70]. The scaling factor sR adapts
the damping function to a particular DFT functional, and is the only freely
adjustable parameter in the TS method. The sR parameter scales vdW radii
and reflects the range of the electron correlation covered by a given functional
in terms of the distance. The values of sR coupling to different functionals in the
TS method (which were determined from the S22 database [208]) are tabulated
in Appendix D.

To summarize, the TS approach computes the vdW energy for atoms-
in-materials from the ground-state electron density and accurately includes
the local chemical environment by utilizing the Hirshfeld partitioning of
the electron density. This method yields remarkably accurate C6 dispersion
coefficients for a diverse range of small molecules (5.5% accuracy). Concerning
the computational time, there is a negligible additional cost beyond standard
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DFT calculations. However, TS lacks the description of the long-range
electrodynamic response, which arises from interactions with more distant
fluctuating dipoles and becomes crucial for large systems (including solids) [20].
Nevertheless, the TS method improves the prediction for weakly-bonded small
systems over local and semi-local density functionals, and we will show that
it is an important first step towards further developments for more complex
systems, such as large molecules, bulk solids, and surfaces [20, 72, 209].

3.4.4 CHALLENGES OF COMPUTING ACCURATE VDW ENERGY

So far the state of the art for the treatment of vdW interactions in DFT has
been reviewed, now we shall address the remaining challenges for the three
different methods (i.e., RPA, vdW-DF, and DFT+vdW) when applied to solid-
state materials. RPA is a natural way for accounting for vdW interactions from
many-body theory. RPA calculations suggest that nonlocal correlations are
important for accurate predictions in many applications, and their inclusion
can yield cohesive properties of solids in better agreement with experiment.
However, the improvements are not consistent among the cohesive properties
of solids (semiconductors, ionic crystals, and metals) [107, 108]. The high
computational cost due to the evaluation of the response function limits its
application for large systems, including solids. Turning to vdW-DF family,
the big advantage of these methods over other pair-wise approaches is that
long-range vdW interactions are included in the XC functional; thus the charge
redistribution due to electron correlations is taken into account. Unfortunately,
vdW-DFs do not offer a good performance for a wide range of applications,
mainly due to the challenge of combining the nonlocal correlation with an
exchange functional.

The simplicity and low computational cost of DFT+vdW approaches make
them easy to use; thus they have become quite popular [8, 10, 11]. It should
be noticed that remarkable performance of DFT+vdW methods (e.g., DFT-D3,
XDM, and TS) has been acknowledged on structural and energetic properties
for a diverse range of molecular systems. In contrast, knowledge of the use
of those methods for condensed-matter materials is rather limited, reflecting
the difficulty in obtaining reliable polarizability and C6 dispersion coefficients
for atoms in solids. Within the DFT+vdW framework, it is clear that efforts
are required to (i) accurately and efficiently compute environment-dependent
vdW coefficients from the electron density of a system; and (ii) employ a
damping function that can be related to the electron density (instead of only
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being fitted to theoretical data of the S22 test set). In practice, both of these
aspects are not trivial for realistic systems. In particular, capturing environment
effects in solids requires a proper understanding of the connection between the
microscopic polarizability and the macroscopic dielectric properties, which will
be the topic of the next section.

3.5 POLARIZATION OF A DIELECTRIC MEDIUM

In classical electromagnetism, electric polarization of dielectrics is the vector
field that expresses the shift of dipoles in response to an applied electric field.
When a dielectric is placed in a time-dependent external field, the medium
will adapt to the perturbation by varying the positions of positive nuclei
and negative electrons. The resulting displacement generates electromagnetic
fields; thus the system consists of coupled motions of oppositely charged
particles. As a consequence, the charge density will be distorted, producing
electric polarization. Polarization describes how a material responds to an
applied electric field and the way the material influences the electric field, and
thus can be used to study the forces that result from this response acting on
constituent atoms of the dielectric material [210]. This phenomenon is known as
dielectric polarization and the reader is referred to standard textbooks, e.g., by
Jackson [211], and lecture notes by Dresselhaus [212] for a detailed discussion.

3.5.1 ELECTRIC POLARIZATION IN MAXWELL’S EQUATIONS

ELECTRIC POLARIZATION (P)

Supposing a dielectric medium contains many particles (atoms or molecules)
in an average continuum approximation for describing the polarization and
no multipole moment is present. By definition, the electric dipole moment
induced per unit volume of the dielectric is called the electric polarization (or
polarization density, or simply polarization) of the dielectric

P(r) =
∑
i

Ni〈pi〉, (3.58)

where pi is the dipole moment of the ith type of individual particle in the
dielectric medium, the average is taken over a small volume centered at
position r and Ni is the average number per unit volume of the ith type of
particle at the point r.

In practice, it is necessary to establish a connection between the applied
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electric field E producing the polarization P and the resulting magnitude of
the polarization. In a homogeneous and isotropic dielectric medium, a linear
relationship exists between them, with a coefficient of proportionality

P = χeE. (3.59)

The coefficient χe is called the electric susceptibility of the medium, and it is
time-dependent quantity and can be related to the relative permittivity via

ε = 1 + 4πχe. (3.60)

ELECTRIC DISPLACEMENT (D)

The electric displacement is a quantity that is used to connect the polarization
or electric susceptibility with the macroscopic Maxwell’s equations, and its
definition is given by

D(r) = E(r) + 4πP(r). (3.61)

Together with Eqs. (3.59) – (3.61), one arrives at the expression of P in terms of
E at position r:

P(r) =
ε− 1

4π
E(r). (3.62)

DIELECTRIC FUNCTION (ε) AND ATOMIC POLARIZABILITY (α)

The above relations deal with the polarization density and the relative
permittivity (also called the dielectric constant for the static zero-frequency
value) in terms of the applied macroscopic electric field. The relative
permittivity is a function of the frequency of the applied field, also called
the dielectric function ε(ω).7 In general, the fundamental electronic excitation
spectrum of a substance is described in terms of the complex frequency-
dependent dielectric function given by

ε(ω) = ε1(ω) + iε2(ω). (3.63)

Either the real part or the imaginary part contains all the desired response
information, as they can be related to each other by the causality condition:
the real part of the dielectric function in the imaginary frequency axis iu can be

7Here the spatial arguments are omitted for simplicity.
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obtained by performing the Kramers-Kronig transformation

ε1(iu) = 1 +
2

π

∫
dω

ε2(ω)

ω2 + u2
, (3.64)

under the condition that the absorption spectra has been measured or
calculated over a large enough spectral range.

The microscopic counterpart to the relative permittivity is the polarizability
α, defining the induced dipole moment in response to the electric field that
produces the dipole moment. For instance, if the electric dipole moment
induced at atom i is proportional to the electric field E, the coefficient gives
the atomic polarizability

pi = αiE. (3.65)

For a crystal of N atoms in a unit volume V, supposing that the average
continuum of polarization is valid (as introduced in the beginning) one can
then write the polarization density as

P =

N∑
i=1

pi/V =

N∑
i=1

αiE/V. (3.66)

Polarization is an intrinsic property of matter, and it plays a very important
role in evaluating many properties, including polarizability, dielectric constant,
refractive index, and dispersion coefficients. It should be remarked that a
proper connection is required between the polarizability and the dielectric
function, such that a bridge between macroscopic and microscopic scales can be
built. To achieve this target, one has to look at the macroscopic and microscopic
fields that act on a particle in an actual material.

3.5.2 LOCAL FIELD AND THE CLAUSIUS-MOSSOTTI RELATION

In a dielectric medium, an individual particle (atom, ion, or molecule) not
only feels the external macroscopic field, but also the internal microscopic
field generated by the dipoles induced by the electric field coming from other
particles. The effective electric field, the macroscopic field plus the fields
from all other dipoles, is frequently called the local field, Eloc, and the proper
evaluation of this is crucial for studying the interactions between constituent
atoms in a molecule or a crystal.

Considering a crystal of N polarizable atoms with the unit-cell volume V
subject to an external field E, the local field acting on atom i at position r can be
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expressed as a summation of two components

Eloc
i (r) = E(r) + LP(r), (3.67)

where P is the polarization density, i.e., the dipole moment per volume given
by Eq. (3.58). The constant L is known as the Lorentz factor, which is related
to ionicity and crystal symmetry and varies from 0 to 4π/3, yielding the two
limits for the relation between the dipolar polarizability α and the dielectric
function ε. In the case L = 0, in which the local field is simply the macroscopic
applied electric field in the medium, gives rise to the Drude-Sellmeier model;
and substituting Eq. (3.66) with Eq. (3.62), one finds the polarizability for the
unit cell of a crystal in terms of the dielectric function as

α

V
=

P
E
=
ε− 1

4π
. (3.68)

In the case L = 4π/3, which yields the local field Eloc = E+4πP/3, the Clausius-
Mossotti (CM) relation is recovered

α

V
=

P
Eloc

=
3

4π

ε− 1

ε+ 2
. (3.69)

It has been shown in numerous studies of the local field,8 that Eq. (3.68) is valid
for free electrons in a metal, which can be qualitatively understood by the fact
that a free electron has a uniform charge distribution and therefore can merely
feel the average field in a dielectric medium. In contrast, Eq. (3.69) is exact for
non-overlapping atoms in cubic solids.

In the following, we derive the Clausius-Mossotti relation9 between
microscopic polarizability α and the dielectric function ε. In doing so, the
so-called Lorentz sphere, a sphere large enough to contain sufficiently many
neighboring atoms but small compared with the wavelength of electromagnetic
radiation, is employed, as depicted in Fig. 3.1. Thereby, the electric field
that an individual atom feels in a dielectric medium can be divided into two
regions: the nearby region within the sphere and the far away region that can
be described by a continuous medium. Based upon this consideration, one can

8Among these we would like to mention the work by Mott [213, 214], Darwin [215, 216], de
Wette [217, 218], and Tessman [26].
9Also known as Lorentz-Lorenz formula, when the polarizability is formulated in terms of the
refractive index n by making use of the relation n =

√
ε.
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divide the local field given by Eq. (3.67) into three components

Eloc = E + Ein − Esph. (3.70)

This first component E is the applied macroscopic electric field, containing all
external sources of the applied field and the field due to the surface charge
density outside the sample. The second term Ein arises from the induced
dipoles inside the sphere and can be taken into account through a dipole-
interaction term. The last component Esph, frequently called Lorentz (cavity)
field, is considered to eliminate the contribution from the continuous dielectric
medium within the cavity by subtracting a term due to the polarization of a
spherical medium. If one treats the polarized elements as point dipoles and
assumes a lattice of cubic symmetry, Esph will be the macroscopic field due
to a uniformly polarized medium, with the magnitude 4πP/3. The above
assumption of cubic symmetry at each lattice site, makes the contribution from
nearby dipoles within the sphere cancel out, so that Ein = 0. Now, the local field
in a dielectric medium can be expressed as

Eloc = E +
4π

3
P, (3.71)

which leads to the well-known Clausius-Mossotti equation, also called the
Lorentz-Lorenz relation. Note that the above expression for the local field is
just reformulating Eq. (3.67) with the Lorentz factor L = 4π/3 being equal in all
directions. It has been extensively shown that the CM relation is very successful
for connecting macroscopic and microscopic properties [18, 26, 62, 63, 67, 219–
221]. Most calculations in non-metallic solids use the Lorentz effective field,
and many properties of solids, e.g., lattice vibrations and oscillator strengths in
ionic crystals, depend on the magnitude of the effective field.

= + -

E
loc

E E
in

E
sph

Figure 3.1: Contributions to the local field acting on a particle (atom, ion, or molecule)
inside in a cavity surrounded by a continuous dielectric medium: the macroscopic
electric field E from the dielectric medium, the microscopic field due to all other
particles inside the cavity Ein, and the “double counting” field due to the dielectric
medium within the cavity Esph.

The validity of the use of the CM relation for obtaining microscopic
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properties has been debated for a long time when applied to realistic solids. The
CM relation clearly fails in the case of free electrons in a metal, where instead
one must employ the Drude-Sellmeier model given by Eq. (3.68). Another issue
arises from the fact that most solids, even non-metallic ones, do not obey the
point dipole or cubic symmetry assumptions used in the derivation of the CM
relation. In particular, Mott [213, 214], Darwin [215, 216], Bonneville [222–
224], and many others, have argued that the overlap of electronic charge
distributions will lead to reduction of the Lorentz factor L from 4π/3. In
this thesis, we will present a benchmark study for several cubic solids, ionic
crystals (NaCl and MgO) and semiconductors (C, Si, Ge, and GaAs), using
time-dependent DFT calculations to obtain the optical spectra and the dielectric
function. By applying the CM relation to all solids studied, the frequency-
dependent polarizabilities can be calculated. Our purpose is to examine the
applicability of the CM equation in covalently-bonded solids, where the overlap
(hybridization) is important. We will show that the CM relation holds for all of
the systems considered, and detailed results will be discussed in Chapter 5.

Although numerous studies (including this thesis) have shown the success
of using the Clausius-Mossotti relation for describing many properties of non-
metallic materials, one may immediately note that the calculation of the Lorentz
field relies upon the assumption of point dipoles within a cubic lattice, limiting
the transferability to more general materials, such as non-cubic crystals [217].
Further aim of this work is thus to develop a method that can generalize the CM
model to treat non-cubic solids. This can be accomplished from the microscopic
equations for interacting dipoles.

According to classical electrodynamics, the polarization density (dipole
moment per unit volume) in a system of N polarizable atoms interacting with
an applied electric field E satisfies the equation

P(r) = α(r)E + α(r)
∫

T(r − r′)P(r′)dr′. (3.72)

Explicitly, the induced dipole moment µi at atom i is given by

µi = αi[Ei +

N∑
i6=j

Tijµj ], (3.73)

where Ei is the constant applied electric field, αi is the dipolar polarizability
tensor of atom i. The dipole-dipole interaction tensor (or propagator) Tij is
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defined as
Tij = ∇ri ⊗∇rjV (rij), (3.74)

where V (rij) is the Coulomb potential at the distance rij between atoms i

and j, and ri and rj are their corresponding positions. One of the aims
of the microscopic theory is to find an expression for the dipole interaction
tensor valid for model charge distributions. In this thesis, we shall present a
method based on classical electrodynamics, in which the dipolar polarizability
is defined by modeling the interaction between a collection of coupled quantum
harmonic dipole oscillators. This will be the subject of Chapters 6 and 7.

3.5.3 MODEL FOR CLUSTER POLARIZABILITY

An alternative way of computing the polarizability for atoms-in-materials is to
use the cluster extrapolation (CE) model, in which the polarizability is defined
in terms of atoms, instead of unit cells, as in the CM approach. This can be
achieved by performing cluster calculations within the framework of TDDFT.

VAN DER WAALS INTERACTION BETWEEN TWO CLUSTERS

The ingredients in determining dispersion coefficients for atoms in molecules
or solids have been introduced in Section 3.4.3, as given by Eqs. 3.50 – 3.53. An
extension to the case between large molecules or clusters would be to sum over
contributions from individual polarizable entities by using the approximation
of additivity for the screened polarizability [225, 226].

ADDITIVITY PROCEDURE

The total molecular polarizability is frequently approximated by summing over
the contributions from individual entities, e.g., covalent bonds or atoms. We
shall illustrate this procedure for silicon to derive the general expressions for
inter-cluster dispersion coefficients. In the case of a finite cluster cut from Si
bulk (A4-diamond structure) and saturated with hydrogen atoms, symbolized
as SiiHj, there are four types of tetra-coordinated silicon atoms, the “bulk-
like” silicon atoms, and surface silicon atoms bonded to one, two, or three
H atoms. To model bulk properties, one needs to use a cluster that contains
sufficient “bulk-like” silicon atoms. One can employ an additivity procedure
to estimate the static polarizability [225, 226], i.e., the total polarizability of the
cluster is given by the sum over the contributions from the averaged individual
components. Therefore the total static polarizability of a semiconductor cluster
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SiiHj can be written as
αcluster ' i αSi + j αH, (3.75)

where i and j are the numbers of Si and H atoms in the cluster, respectively, and
αSi and αH denote the average static polarizabilities.

In second-order perturbation theory, the C6 coefficients are additive [15],
and the inter-cluster coefficient is then expressed by the sum of all interatomic
contributions

Ccluster
6 =

∑
A

∑
B

Catom
6 . (3.76)

Combining with the Casimir-Polder integral, one finally arrives at

Ccluster
6 = i2CSiSi

6 + j2CHH
6 + 2ijCSiH

6 , (3.77)

with

CSiH
6 =

2CHH
6 CSiSi

6

(αSi
αH
CHH
6 + αH

αSi
CSiSi
6 )

. (3.78)

On the basis of the above Eqs. (3.75) – (3.78), the atomic static polarizability,
together with the C6 dispersion coefficients between, e.g., Si atoms, can be
extracted by performing TDDFT calculations for a set of clusters. In this thesis,
calculations are performed for C, Si, and Ge clusters using the CE approach,
and technical details and corresponding results shall be presented in Chapter 5.

3.6 TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

3.6.1 TIME-DEPENDENT KOHN-SHAM FORMALISM

Time-dependent density-functional theory extends ground-state DFT to the
treatment of time-dependent properties, including excitations. The time-
dependent analogue of the Hohenberg-Kohn-Sham theory was first formally
developed by Runge and Gross in 1984 [227]: in a time-dependent quantum
problem, all observables are functionals of the time-dependent electron density
n(r, t) (under certain conditions), which is known as the Runge and Gross (RG)
theorem. For the formal derivation we refer the reader to the original
paper [227] and textbooks [228–230].

The time-dependent electronic Schrödinger equation is written as

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t), (3.79)

in which the Hamiltonian and wave function evolve with time. The RG theorem
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implies there is one-to-one correspondence of the time-dependent external
potential and time-dependent density, by which one can construct the time-
dependent KS equation

i
∂

∂t
ψi(r, t) =

(
−1

2
∇2 + υTD

eff (r, t)
)
ψi(r, t), (3.80)

where υTD
eff is the effective single-particle potential extended from Eq. (3.24) and

evolving with time

υTD
eff = υH(r, t) + υxc(r, t) + υext(r, t). (3.81)

The time-dependent density can thus be computed from the time-dependent
KS orbitals by solving Eq. (3.80), n(r, t) =

∑
|ψi(r, t)|2. As in the static DFT

case (see Section 3.3), the exact functional form of the time-dependent exchange-
correlation potential,

υxc(r, t) =
δExc[n(r, t)]
δn(r, t)

, (3.82)

is unknown, and thus has to be approximated. The first and simplest functional
is the adiabatic local-density approximation (ALDA), where the value of
potential υxc at position r and time t is equal to that of a static UEG at that
time, with density n(r, t). This approximation can also be extended to adiabatic
GGA, MGGA, and hybrid functionals [231].

One of the most prominent applications of TDDFT is to calculate excited-
state energies of atoms, molecules, and solids, based on the linear response
of the system to a time-dependent electric field, that is, how the electron
density changes in response to time-varying external potential. This allows
the treatment of response properties such as dynamic polarizabilities and thus
dispersion coefficients as well. Practical calculations employ the adiabatic
approximation, and almost all use the same approximation of the XC potential
for both the ground-state and the excited-state calculations. Thus the accuracy
of any TDDFT calculation is also limited by the approximation used for the XC
functional.

3.6.2 LINEAR-RESPONSE THEORY

The key quantity in the linear-response theory is the response function
χ(r, r′, t − t′), which describes the change of the density δn at (r, t) in response
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to a small change of the external potential δυext at (r′, t′)

δn(r, t) =
∫∫

χ(r, r′, t− t′)δυext(r′, t′)dr′dt′;

χ(r, r′, t− t′) =
δn(r, t)

δυext(r′, t′)
.

(3.83)

In the KS TDDFT framework, δυext is substituted using the effective time-
dependent potential δυTD

eff (defined by Eq. (3.81)) evaluated to first order in the
perturbing potential

δυTD
eff (r, t) = δυH(r, t) + δυxc(r, t) + δυext(r, t), (3.84)

and the density response function is rewritten as

χKS(r, r′, t− t′) =
δn(r, t)

δυTD
eff (r′, t′)

. (3.85)

In order to relate the KS response to the true response, it is convenient to
define an XC kernel as the functional derivative of the time-dependent XC
potential with respect to the time-dependent density evaluated at the ground-
state density [228]

fxc[n0](r, r′, t− t′) =
δυxc(r, t)
δn(r′, t′)

|n=n0 . (3.86)

Combining Eqs. (3.83) to (3.86) and taking time-frequency Fourier transforms,
one arrives at a Dyson-like equation for the interacting response function

χ(r, r′, ω) = χKS(r, r′, ω)+∫
dr1dr2χKS(r, r1, ω)

(
1

r1 − r2
+ fxc(r1, r2, ω)

)
χ(r2, r′, ω),

(3.87)

with the independent-particle response function written in terms of the KS
energies and orbitals through Eq. (3.45). The previous equation is formally the
central equation of TDDFT linear-response theory, with χKS obtained from the
ground-state KS calculation. Thus any evaluation of the true response function
of an interacting system will involve a two-step calculation: one first needs
to calculate the independent-particle response function, finding all occupied
and unoccupied KS orbitals at the ground-state KS potential; afterwards the
interacting response function is computed using the Dyson-like equation given
by Eq. (3.87) with an approximated XC kernel. In this thesis, we shall focus
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on linear-response calculations for two situations: (i) extended systems and (ii)
finite systems.

3.6.3 TDDFT IN EXTENDED SYSTEMS

Concerning solids, the optical response properties provide important infor-
mation, including energy band structure, impurity levels, excitons, lattice
vibrations, etc. From experimental measurements, such as transmission,
absorption, and reflectivity, one can deduce the frequency-dependent complex
dielectric function. On the theory side, it is the microscopic dielectric function
ε(r, r′, ω), which is directly accessible in ab initio calculations.

Within the linear-response theory, the inverse of the microscopic dielectric
function of a periodic system is linked to the response function (in momentum
space)

ε−1
G,G′(q, ω) = δG,G′ + υG,G′(q)χG,G′(q, ω), (3.88)

where q is a vector in the first Brillouin zone, G and G′ are reciprocal lattice
vectors, and υ is the bare Coulomb interaction. In a long-wavelength limit (G =

G′ = 0), the macroscopic dielectric function εM(q, ω) can then be obtained by
inverting the resulting matrix of the microscopic ε−1

G,G′(q, ω) [232, 233]

εM(q, ω) = lim
q→0

1

ε−1
00 (q, ω)

, (3.89)

by which optical phenomena are described.

In a practical calculation, the response function is most readily calculated
using Eq. (3.87); the essential ingredient, in addition to the XC functional for
the ground-state density, is the XC kernel, fxc, which is defined in Eq. (3.86)
and contains all non-trivial many-body effects. The simplest approximation
for fALDA

xc yields very good results for finite systems, however, it fails to
describe absorption spectra of solids, especially for systems such as wide-
band gap semiconductors [228–230, 234]. Two reasons typically accounts for
this discrepancy: fALDA

xc lacks self-energy corrections and excitonic effects
(electron-hole interactions), causing a redshift and underestimation of the low-
energy part in the spectrum. Within many-body perturbation theory, the GW
approximation [235] is used to obtain accurate quasiparticle (removal and
addition) energies and a subsequent solution of the Bethe-Salpeter equation
(BSE) [236] offers a way of including the electron-hole interaction. The above
two-step approach leads to much better overall agreement with experiment.
However, the two-particle nature of BSE requires solving four-point equation;
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thus the calculations are much more demanding than standard KS-DFT.
Keeping the efficiency of TDDFT and reproducing reliability of the BSE
framework have been of great interest for the calculation of excitations. Several
attempts have been made and we refer the reader to Refs. [234, 237–241]. In
particular, we would like to mention the nanoquanta kernel (developed by
Sottile et al. [240]), which includes the long-range contribution (LRC) to the XC
kernel and yields considerable success for optical spectra of semiconductors
and insulators with bound and strong excitons [231, 242–244]. In this work
the optical spectra of small-gap (Si, Ge, and GaAs) and wide-gap (C, MgO,
and NaCl) solids have been calculated using TDDFT with the nanoquanta
kernel implemented in the computer code Vienna ab initio simulation package
(VASP) [245, 246] (in collaboration with VASP contributor Joachim Paier [72]),
and the computational details and corresponding results will be presented in
Chapter 5.

3.6.4 TDDFT IN FINITE SYSTEMS

To obtain response properties of finite systems, the Sternheimer approach [247]
is often used. This method is based upon the solution of a set of self-consistent
equations for each frequency that only depends on occupied states, and thus
has the advantage of making calculations feasible for large systems (see, e.g.,
Ref. [248–250] for extended discussion). According to perturbation theory, for
a given perturbative potential, one can find first-order perturbations to wave
functions through solving the Sternheimer equation[

Ĥ(0) − ε(0)
]
ψ(1) = −

[
Ĥ(1) − ε(1)

]
ψ(0), (3.90)

where Ĥ(0) and ψ(0) denote the unperturbed Hamiltonian and wave function,
and Ĥ(1) and ψ(1) are corresponding first-order perturbed quantities. The
variation of the electron density can be formulated in terms of the variation
of wave functions

n(1)(r) =
occ.∑
m

[
ψ∗(0)(r)ψ(1)(r) + ψ∗(1)(r)ψ(0)(r)

]
. (3.91)

Within the TDDFT framework, the frequency-dependent response of Eq. (3.90)
is rewritten as[

Ĥ(0) − εm ± ω + iη
]
ψ(1)(r,±ω) = Ĥ(1)(±ω)ψ(0)(r), (3.92)
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where ω is the frequency of the perturbative potential, and η is a positive
infinitesimal perturbation, which is used for obtaining the correct position of
the poles of the response function and thus the polarizability.

The Sternheimer approach has been successfully applied to calculations
of static and dynamic properties, such as polarizabilities and vibrational
modes. In Section 3.5.3, the cluster extrapolation model has been illustrated
for computing the C6 dispersion coefficient between two finite systems. The
cluster calculations have been performed within the Octopus code [251, 252],
an open source package for the simulation of both ground-state and excited-
state processes. The results will be presented in Chapter 5, together with a
comparison with those obtained from the periodic TDDFT calculations using
the VASP code.

3.7 PHONONS

A phonon is a quasi-particle representing the quantization of vibrational modes
of a crystalline lattice [118]. The study of phonons (or lattice vibrations) is
of great importance in solid-state physics [253–255], as it can explain many
physical properties of materials, such as sound velocity, thermal properties,
elastic properties, etc. Phonons can be understood by perturbing atoms around
equilibrium positions {R0

i }i of the nuclei in the lattice, with the Hamiltonian
given by

Ĥ =
∑
i

p̂2

2Mi
+ E0 +

1

2

∑
i,j

V (Ri − Rj)︸ ︷︷ ︸
adiabatic approximation

, (3.93)

where the last two terms are contributions of the adiabatic potential energy
based on the Born-Oppenheimer approximation (see Section 3.1), with Ri =

R0
i + ui representing the position of the ith atom under the displacements

ui. Thus the aim of lattice dynamics is to solve equations of motion for the
displacement vectors u.

3.7.1 THE HARMONIC APPROXIMATION

In a crystalline solid, supposing that the amplitude of atomic displacements
is small compared with interatomic distances, the potential energy can be
expanded in a Taylor series

E = E0 +
∑
iα

∂E

∂uiα
+

1

2

∑
iα,jβ

Φiα,jβuiαujβ + . . . , (3.94)
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where u is the vector of atomic displacement from equilibrium geometry, i and j
label atoms, and α and β label Cartesian coordinates. At equilibrium the forces
−∂E/∂uiα are zero on all atoms so linear terms vanish; the second-order term
Φiα,jβ is the force constant matrix, given as the second derivative ∂2E/∂uiα∂ujβ .
Under the condition of small displacements, one can further omit higher terms
than second order. This leads to the harmonic approximation (HA) based on the
knowledge of just one fundamental matrix, Φiα,jβ . One can also define the force
constant matrix in reciprocal space and obtain the dynamical matrix, written as

Diα,jβ(k) =
1√
MiMj

∑
Φiα,jβe

−ikR. (3.95)

Thus properties of phonons in a periodic system can be described by finding
eigenvalues of the dynamical matrix D, where phonon frequencies are given by
the square root of the eigenvalues

ω2(k)uiα(k) =
∑

Diα,jβ(k)ujβ(k). (3.96)

After the frequencies are found, thermodynamic properties are determined
using the resulting density of states. For a N-atom harmonic system, the
dimension of the dynamical matrix is 3N × 3N at each wavevector k, and all
wavevectors are coupled, such that the calculation becomes complicated. In
practice one often treats lattice vibrations of a crystal in a supercell by making
a set of small displacements of the atoms and evaluating the forces exerted on
the other atoms.

3.7.2 PHONONS: SUPERCELL APPROACH WITH FINITE DISPLACEMENT

A frequently employed method for calculating phonons of a solid is based on
the supercell (direct) method. In this approach, finite displacement calculations
are carried out by displacing the atoms in a supercell, which directly give all
the elements of the force constant matrix, representing the interactions between
pairs of atoms. The relation between forces and force constants can be written
as

Fiα = −
∑
jβ

Φiα,jβujβ . (3.97)

As pointed by Kresse and coworkers [256], the practical evaluation of forces
within supercell method requires a summation over periodic image cells via
Eq. (3.97). Hence, the force acting on an atom i at position α arises from
displacements ujβ of all supercell atoms, together with those from periodic



3.7 Phonons 65

images. The phonon frequencies are then obtained from solutions of the
eigenvalue problem. Note that a supercell with periodic boundary conditions
should be large enough, such that calculations of a dynamical matrix for all
atom pairs is sufficient to give phonons at all wavevectors. Thus the supercell
size needs to be treated as a convergence parameter in a practical calculation.
Moreover, the use of symmetry of crystal, i.e., repeating primitive unit cells,
can reduce the number of force evaluations and save computational cost. In ab
initio calculations, the displacement ujβ is taken as an input, and then the forces
are computed explicitly.

In this thesis, phonon calculations are performed for a broad range of solids
using the methodology introduced above. A specific discussion about the
computational settings and the results will be presented in Chapter 4.

3.7.3 THE QUASI-HARMONIC APPROXIMATION

Phonon frequencies are known to be dependent on the unit-cell volume of
a crystal, which leads to anharmonicity. In other words, phonons affect the
equation of state (energy versus unit-cell volume curve) of a solid. Anharmonic
effects can play an important role in many systems [257]; thus one is
frequently interested in the influence of lattice vibrations on energy curves
E(V ). While an explicit evaluation of anharmonic contributions in actual
crystals turns out to be very hard, a more feasible way is to employ the
quasi-harmonic approximation (QHA) that can account partially for effects of
anharmonicity. Here the word “quasi-harmonic” is used for an approximation
that introduces volume dependence of phonon frequencies, in which the
harmonic approximation is assumed to hold for each volume.

3.7.4 FREE ENERGY IN THE QUASI-HARMONIC APPROXIMATION

If one aims to evaluate the phonon contribution to the energy at finite
temperature, one should employ the Helmholtz free energy. For a solid in the
harmonic approximation, the Helmholtz free energy can be expressed as the
sum of electronic and vibrational terms relevant to volume and temperature
effects

F (T, V ) = E0(V ) +
1

2

∑
i

~ωi(V ) + kBT
∑
i

ln

(
1− e

− ~ωi
kBT (T, V )

)
︸ ︷︷ ︸

harmonic approximation

, (3.98)
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where the first term is the internal energy contribution, the second term is the
zero-point vibrational energy, and the last term is the vibrational energy at finite
temperature. The phonon frequency ωi, defined in Eq. (3.96), is evaluated at a
given volume V for each harmonic vibrational mode i. Knowing the volume-
dependent frequency of vibrations, one can determine the equilibrium volume
by minimizing the energy. Moreover, many properties of solids, e.g., phonon
spectrum and thermal properties, can be obtained.



4 ASSESSING THE PERFORMANCE OF

DENSITY FUNCTIONALS APPLIED TO

SOLIDS

This chapter presents an overview of the description of cohesive properties
(including lattice constants, cohesive energies, and bulk moduli) for 64 non-
molecular solids using local and semi-local functionals (LDA, PBE GGA, and
M06-L meta-GGA), along the three lowest rungs of the “Jacob’s ladder” of
density functionals [90, 127]. The calculations are carried out using the full-
potential all-electron electronic-structure FHI-aims code [21], which employs
numeric atom-centered orbitals. We shall first illustrate the influence of the
zero-point vibrational energy on the three cohesive properties and show that
it can play an important role in certain solids. Then, a detailed discussion
of the performance of the three functionals will follow in comparison with
reliable reference data from experiment. In particular, these density functionals
are examined regarding the correlation of errors between pairs of cohesive
properties. While the three functionals yield good performance for certain
systems and properties, none of them can be considered reliable for all the
investigated solids. We discuss the possible improvements required to increase
the reliability of density functionals for solids.

4.1 MOTIVATION

Density-functional theory (DFT) in the Kohn-Sham (KS) framework [89]
has proven to be a very useful tool in condensed-matter physics and
quantum chemistry [90–93]. In particular, the favorable ratio of accuracy
to computational cost makes it a powerful method for predicting a wide

67
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range of ground-state properties of large systems. A great advantage of KS-
DFT is that the formalism is in principle exact and the complexity of the
many-body problem is replaced by the description of the density-functional
approximation (DFA) for the exchange-correlation (XC) energy term. Despite
the remarkable success of KS-DFT, approximate density functionals often yield
significant deviations from experiment for describing structural, electronic,
mechanical, and optical properties of molecules and materials in many
situations. Developing reliable and efficient XC functionals that are applicable
to a broad range of systems is a great ongoing challenge.

For constructing improved functionals, it is helpful to have a deeper
understanding of the errors arising from commonly used DFAs. Cohesive
properties (lattice constants, bulk moduli, and cohesive energies) can be used
as probes to identify and understand the performance of current functionals
applied to solid-state materials. For instance, the local-density approximation
(LDA), the generalized gradient approximation (GGA), and the meta-GGA (or
MGGA) overall predict reasonable geometries for bulk solids, with an average
error of 1–2%, while they can yield large deviations from experiment for both
cohesive energies and bulk moduli of solids. It is noteworthy to mention
that systematic trends are found behind the errors using these methods. Thus
investigating the relationships between errors in different properties can help
to improve our understanding of density functionals as well as cohesive
properties themselves.

What are some of the challenges in DFT calculations for practical applications
in solids? First, lattice constants are systematically underestimated by LDA and
overestimated by most GGAs [96–100, 119, 142]. The LDA functional [89] is
located on the first rung of “Jacob’s ladder” [90, 127]. It is a very successful
approximation for many systems, especially for those where the electron
density is slowly varying such as semiconductors and transition metals. Still,
there are many features that LDA fails to describe. For instance, LDA lattice
constants are typically too small, up to 5% when compared with experiment.
GGAs are on the next rung of “Jacob’s ladder” and are an extension of LDA
to account for the nonhomogeneity effects by introducing the gradient of the
electron density. They have been successful in improving over LDA for certain
properties, e.g., geometries. Most GGAs predict reasonable lattice constants but
still overestimate them approximately by 2%.1

1Reliable lattice constants can be determined experimentally with the relative accuracy less than
0.1%. For instance, the uncertainty for diamond crystal was 1.2 × 10−6% in a recent X-ray
measurement [80].
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Another problem of DFT applied to solids is the difficulty for approximate
functionals to predict quantitatively reliable cohesive properties uniformly [96–
99, 141, 142]. Since the most widely used Perdew-Burke-Ernzerhof (PBE) [94]
GGA overcorrects lattice constants with respect to LDA, numerous studies have
been performed in the field of functional development for solids in recent years.
A simple modification of PBE is the PBEsol functional [140], which differs from
PBE only in two parameters and is designed specifically to improve over PBE
for equilibrium properties of bulk solids and their surfaces. By restoring the
gradient expansion for exchange, PBEsol lattice constants are systematically
lower than PBE by 1–2%, however at the expense of cohesive energies being less
accurate [98, 99, 136, 141, 142]. The MGGA family [95, 101, 102], located on the
third rung of the ladder, is a natural way to improve accuracy further by making
use of the kinetic-energy densities, the electron density and its gradient in the
XC approximation. For some systems MGGAs can perform well for cohesive
properties [96–99, 136, 141]; whereas more generally it has been found that an
improvement of the lattice constant is accompanied by a worsening of the bulk
modulus, the cohesive energy, or both; overall MGGA functionals produce
little improvement over GGAs. The Tao-Perdew-Staroverov-Scuseria (TPSS)
functional [95, 135], a non-empirical MGGA method, predicts lattice constants
slightly shorter than those of PBE, and the improvement in bulk moduli
is rather limited. The revised TPSS (revTPSS) proposed recently [143, 144]
alleviates the lattice-constant error, however, both TPSS and revTPSS worsen
cohesive energies compared with PBE [119, 136]. In conclusion, no existing
LDA, GGA, or MGGA functional is sufficient to accurately describe all the
cohesive properties of a broad range of solids at the same time (see Table 4.1).

Two main effects are typically used to explain deficiencies in current
local and semi-local functionals: the presence of self-interaction errors (SIE)
and the lack of long-range van der Waals (vdW) interactions [90–93]. As
already reviewed in Section 3.3, further improvements in functional design
can be achieved by developing hybrid functionals and the random-phase
approximation (RPA) approach, the fourth and fifth rungs of “Jacob’s ladder”,
respectively. Hybrid functionals have been proposed by adding a fraction
of exact exchange to conventional GGAs or MGGAs, aiming at reducing SIE
present in semi-local functionals [103, 104]. In particular, range-separation of
the exchange interaction has allowed the hybrid scheme to become popular
in solid-state physics. HSE06 [150], among the most widely used screened
hybrid functionals, often shows superior performance over LDA, GGAs, or
MGGAs in describing some bulk properties such as lattice constants and
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Table 4.1: The mean error (ME) and mean absolute error (MAE) in theoretical lattice
constants a0 (Å), cohesive energies E0 (eV/atom), and bulk moduli B0 (GPa) of bulk
solids with respect to their experimental data reported in the literature ∗ using density
functional approximations along “Jacob’s ladder”. The mean relative error (MRE, %)
and mean absolute relative error (MARE, %) are given in parentheses, corresponding
to the percentage with respect to the experimental cohesive data.

LDA PBE PBEsol TPSS revTPSS HSE06 RPA
a0 ME −0.058 0.051 −0.005 0.035 0.014 0.031 0.016

(−1.3) (1.0) (−0.2) (0.7) (0.3) (0.6) (0.4)
MAE 0.058 0.055 0.029 0.043 0.032 0.033 0.019

(1.3) (1.0) (0.7) (0.9) (0.7) (0.7) (0.4)
B0 ME 24 −2.2 12.6 −4.9 −0.9 −3.8 −1.1

(15.4) (−3.4) (6.0) (−7.7) (−4.3) (−5.0) (0.4)
MAE 24.8 12.8 15.8 7.9 8.7 7.3 4.0

(16.3) (9.5) (9.3) (9.7) (9.0) (4.0) (3.5)
E0 ME 0.74 −0.15 0.21 −0.11 0.01 −0.23 −0.30

(18) (−4.3) (6.0) (−2.0) (1.2) (−6.1) (−7.3)
MAE 0.74 0.17 0.28 0.17 0.21 0.25 0.30

(18) (4.5) (6.5) (4.7) (5.7) (6.5) (7.3)

∗ LDA, PBE, and PBEsol lattice constant and bulk modulus data are taken
from Ref. [98, 99] (60 solids), and their cohesive energies are from Ref. [108]
(24 solids); TPSS and revTPSS data are from Ref. [136] (20 solids), HSE06 are
from Ref. [142] (30 solids), and RPA are from Ref. [108] (24 solids).

band gaps [106, 152–158]. However, it cannot treat metallic (including small-
gap) systems well and reproduce experimental cohesive energies as well as
PBE does [142]. Along “Jacob’s ladder” [90, 127], RPA is the only approach
that treats the long-range correlation seamlessly. Recent RPA calculations
performed by Kresse et al. [108] show that a proper treatment of the long-
range correlation, which is beyond the reach of LDA, GGAs, MGGAs, and
hybrid functionals, can yield rather good agreement with experiment for the
cohesive properties of solids. RPA provides a well balanced prediction of
lattice constants and bulk moduli for a diverse range of solids (including
semiconductors, ionic crystals, and metals), with relative accuracy of 0.4% and
4%, respectively [108]. However, there are also shortcomings using RPA: the
computational cost is greatly increased with respect to LDA or PBE [160, 161]
and cohesive energies are further underestimated compared with those values
obtained from PBE calculations [108].

While common DFAs often yield large deviations of theoretical cohesive
properties from experiment, the deviations are not just random and clear
systematic trends can be seen for many systems. It was found, particularly
along the same series of solids (elements in the same row or column of the
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periodic table), the overestimation (underestimation) of lattice constants is
linked to the underestimation (overestimation) of bulk moduli, as well as
cohesive energies. Grabowski and co-authors [258] have demonstrated the
correlation between the deviations from experiment of the lattice constants
and the bulk moduli of nine fcc metals (noble metals, together with Al and
Pb). Particularly for PBE, an increase of the error with the number of d
electrons among the 4d and 5d transition metals is apparent. Grabowski et al.
proposed an “ab initio” error bar, with LDA and PBE being the upper and lower
boundaries respectively, with respect to experiment. However, a systematic
study is still lacking on the relationships between the deviations for pairs of
cohesive properties. Considering the different performance of DFAs applied
to different classes of systems, a large solid-state database is required and the
analysis of the predictive capability of density functionals should be performed
according to the bonding type of solids. Such an analysis could lead to new
insights into the cohesion of solids.

Cohesive properties measured in experiment always include vibrational
contributions even at 0 K. The nuclear zero-point vibrational energy (ZPVE)
effects thus need to be considered for an unbiased comparison between theory
and experiment [253–255]. As discussed in Section 2.4, ZPVE influences
cohesive properties (lattice constants, cohesive energies, and bulk moduli)
of solids, and it is inversely proportional to nuclear mass and most of the
time increases the unit-cell volume of bulk crystals [96–98, 119]. It has been
shown that the increase of the theoretical lattice constant caused by the ZPVE
contribution can be as large as 2% for very light solids such as LiH [142], which
is comparable in magnitude to the spread in theoretical calculations and larger
than typical uncertainties (<0.1%) in experimental measurements.

In this thesis, numerical results of the cohesive properties are reported at
the LDA, GGA, and MGGA levels for 64 non-molecular solids with cubic
symmetry, covering metals, semiconductors, and ionic crystals, calculated
using the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-
aims) package [21]. It is the first systematic application showing the all-
electron accuracy of this code for a broad range of solids. We also investigate
the performance of the three functionals used here from the perspective of
examining the relationships between the errors in different properties. The
MGGA functional we choose is M06-L, which was proposed by Zhao and
Truhlar [145] and is designed to incorporate the spin kinetic-energy density in
an empirical way in the XC functional. M06-L was reported to outperform other
semi-local functionals for a combination of thermochemistry, thermochemical
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kinetics, metallochemical and non-covalent interactions, bond lengths, and
vibrational frequencies [145, 146]. However, there are very few studies applying
this functional to bulk solids; thus it would be useful to know its performance
for a wide range of materials, particularly for heavy elements from the third
and forth rows of the periodic table. This chapter is organized as follows:
Section 4.2 gives the technical details of the calculations performed for this
study, including the description of the solid database and computational
settings; while Section 4.3 presents the results and discussion.

4.2 TECHNICAL DETAILS

4.2.1 DATABASE

Our database comprises 64 non-molecular solids with cubic structures: 24
metals and 40 non-metals (semiconductors and insulators). The structures
cover: A1 (fcc, 13 solids), A2 (bcc, 11 solids), A4 (diamond, four solids), B1 (rock-
salt, 16 solids), and B3 (zincblende, 20 solids), as shown in Fig. 4.1. To show
trends clearly, we divide the 64 solids into five classes as follows (see Table 4.2):
main-group metals (MM), transition metals (TM), simple semiconductors (SC),
ionic crystals (IC), and transition metal carbides and nitrides (TMCN). MM
includes groups IA and IIA, together with aluminum and lead; TM covers
periods 4–7 of the periodic table; SC represents the solids of groups IVA, IIIA–
VA, and IIB–VIA; the six ionic crystals are LiCl, LiF, NaCl, NaF, MgO, and
MgS; and there are 10 compounds in the TMCN class (TMC and TMN, TM
= Ti, Zr, Hf, V, and Nb). The full list of the solids studied here is shown in
Tables C.2 to C.7, with the calculated and experimental cohesive data, as well
as the relevant literature cited.

Table 4.2: The definitions of five classes of solids are given as main-group metals (MM),
transition metals (TM), simple semiconductors (SC), transition metal carbides and
nitrides (TMCN), and ionic crystals (IC).

Type of solid Type of structure Number of solids
MM A1, A2 9
TM A1, A2 15
SC A4, B3 24
IC B1 6

TMCN B1 10
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Figure 4.1: The unit-cell structures of (a) A1-fcc, (b) A2-bcc, (c) A4-diamond, (d) B1-
rock-salt, and (e) B3-zincblende.

4.2.2 COMPUTATIONAL METHOD

All calculations were carried out with the FHI-aims package [21], which
implements full-potential, all-electron electronic-structure theory with numeric
atom-centered basis functions. For each solid, the equilibrium volume V0 and
bulk modulus B0 were determined by fitting cohesive energies per unit cell at
7–11 points in a range of V0 ± 20% to a third-order Birch-Murnaghan equation
of state (EOS) [88] shown in Eq. (2.9). The unit-cell volumes V are related
to the lattice constants a by the expressions V = a3/4 for the fcc, diamond,
and zincblende structures, or V = a3/2 for the bcc structure. The cohesive
energy, defined as the energy per atom required to atomize the crystal, was
evaluated using the LDA, PBE, and M06-L functionals from the energies of
the crystal and the constituent free atoms. The spin-restricted formalism was
employed for bulk crystals, with two exceptions (the ferromagnetic metals: Fe
and Ni), and the spin-unrestricted formalism for open-shell atoms (no fractional
occupancies were allowed). A 20 × 20 × 20 (16 × 16 × 16) Monkhorst-Pack
grid [259] was used in the primitive unit cell of metals (non-metals). The basis
sets and k-point meshes in reciprocal space are fully converged. Relativistic
effects are more important for heavy elements; here for consistency a scalar-
relativistic treatment using the scaled zero-order regular approximation [260]
was employed for all solids. It should be pointed out spin-orbit effects
(which can be important in open-shell systems) are not included. Philipsen
and Baerends [261] have compared the scalar-relativistic and fully relativistic
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calculations of the cohesive properties of 11 solids in four columns of the
periodic table and found out spin-orbit effects hardly alter cohesive energies,
lattice constants, and bulk moduli and the mean absolute contributions are
about 0.03 eV, 0.005 Å, and 1 GPa, respectively. They showed that the spin-
orbit contributions are non-negligible only for the cohesive energies and the
lattice constants of Au and Bi (see Table C.1 of Appendix C). Therefore the
scalar-relativistic treatment is sufficient to capture the relativistic effects in most
solids considered here.

The FHI-aims all-electron code offers accurate and efficient implementation
of DFT with (semi-)local and hybrid functionals to obtain ground-state
properties of periodic and cluster systems, up to systems with thousands of
atoms [21]. For periodic solids, the performance of FHI-aims can be seen when
comparing the present results with those reported using the WIEN2k code [262],
which is based upon the full-potential linearized augmented plane-wave and
local orbitals method to solve KS equations and is normally regarded as the
reference for solid-state studies. For the same database of 55 solids, excellent
agreement is found with the reported WIEN2k values using both the LDA and
PBE functionals [98, 99], with mean absolute deviations of 0.003 Å for the lattice
constants and 0.5 GPa for the bulk moduli. For the analysis of the calculations,
the following statistical quantities will be used throughout the work: the mean
error (ME), the mean absolute error (MAE), the mean relative error (MRE, in %),
and the mean absolute relative error (MARE, in %), all of which are determined
by comparing with reliable experimental values measured at low temperatures
and/or extrapolated to 0 K.

The phonon calculations were performed using phonopy [253] interface with
the FHI-aims package [263] and a work flow of phonon calculations is sketched
in Fig. 4.2. The supercell approach was combined with the quasi-harmonic
approximation (see Section 3.7), i.e., at a set of volumes harmonic vibrational
frequencies are determined using DFT calculations and the resulting zero-point
vibrational energies are added to ground-state energies at each volume V.
Figure 4.3 shows the effect of zero-point vibrations for the case of diamond.
A comparison between PBE and ZPVE-corrected PBE binding curves (energy
versus lattice constant) shows, besides a decrease of the cohesive energy, that
the zero-point vibrational energy yields an expansion of the lattice constant due
to the phonon anharmonicity.

In the FHI-aims package, the force-constant approach is employed to
calculate phonon spectra and the vibrational density of state (DOS), g(V, ω), and
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Figure 4.2: A schematic representation of phonon calculations in the framework of
phonopy.

ZPVE is estimated as the frequency integration over the vibrational DOS

ZPVE =
1

2

∫
~ωg(V , ω)dω. (4.1)

A systematic test on the supercell size was carried out and it is found that a
choice of a 2× 2× 2 supercell with a 8× 8× 8 Monkhorst-Pack grid is sufficient
to ensure the convergence of zero-point vibrational energies for all the solids
studied here (see an example of diamond bulk shown in Figs. A.3 and A.4).
With the finite-displacement approach, one may adjust the value of the small
finite displacement δ used to calculate the force response in the three Cartesian
directions. From the phonon calculations in this work, it can be concluded that a
reasonable variation in δ has only a small impact on the estimated ZPVE. Taking
diamond as an example, the change in ZPVE is less than 1×10−3 eV/atom when
varying δ from 1× 10−3 to 1× 10−1 Å, as tabulated in Table A.1. In addition, it
was found that the effect of the specific DFT functional on the ZPVE is negligible
for these systems; thus the ZPVE was calculated at the PBE level and added on
top of the ground-state DFT total energies for all the three functionals.
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Figure 4.3: Binding curves (cohesive energy versus lattice constant) of the diamond
crystal: neglecting zero-point vibrational effects (blue line, empty circles) and including
the zero-point vibrational energy (ZPVE, red line, solid circles). The calculations were
performed within the PBE functional. The dashed line illustrates the shift in the
equilibrium.

4.3 RESULTS AND DISCUSSION

4.3.1 ZPVE CONTRIBUTIONS TO THE COHESIVE PROPERTIES

Figures 4.4 and 4.5 show the ZPVE contributions (with respect to experimental
cohesive data) to the lattice constants a0, the cohesive energies E0, and the
bulk moduliB0 of selected metals and non-metallic solids respectively, together
with available theoretical values reported from previous work [141, 142, 264].
A statistical summary is given in Table 4.3 for the 64 solids studied. The
results show that including zero-point vibrations has an even stronger effect
on the bulk modulus than the lattice constant and the cohesive energy. For 24
metals, the average contributions are about 0.2%, 0.7%, and 1.4% for a0, E0,
and B0, respectively. In addition, the ZPVE effect is inversely proportional to
nuclear mass, e.g., along the series of Li-Na-Al-K, and is found to be negligible
for “heavy” solids. When only considering the “light” metals, located on
the second to fourth rows of the periodic table, the averaged contribution is
almost twice as large as the value calculated for the whole group of metals.
In particular, for bulk Li, the lattice constant expands by 0.7% and the bulk
modulus softens considerably by ∼ 4%.

For non-metallic solids, ZPVE contributions become more pronounced. A set
of 40 solids shows average contributions of 0.3% for the lattice constant, 1.1% for
the cohesive energy, and 2.2% for the bulk modulus. For ionic crystals, the effect
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Figure 4.4: Zero-point vibrational contributions to the lattice constants a0, cohesive
energies E0, and bulk moduli B0 of selected metals. The values are shown as a
percentage with respect to the experimental cohesive properties: solid curves are
obtained from the present ab initio phonon calculations using the PBE functional, pink
pluses are taken from Ref. [264], and green crosses are from Ref. [141]. Dashed lines
serve as a guide to the eye.

is particularly strong. The largest contribution occurs for LiF, with changes of
∼1% (0.04 Å) for a0 and ∼8% (5.6 GPa) for B0, which are typically more than
numerical errors from theoretical predictions, and even might be comparable to
the contribution due to long-range correlation interactions [72]. This suggests
that for non-metallic solids, especially ionic crystals, the inclusion of ZPVE can
become vital for an accurate treatment of systems where long-range vdW forces
are of interest.

As confirmed from the present study, ZPVE tends to increase the lattice
constant and reduce the bulk modulus and its inclusion improves the
predictions of the LDA functional and worsens those of PBE. Thus neglecting
zero-point vibrations will lead to a bias in the appraisal of different DFAs. In
this thesis, the ZPVE contribution will always be included for the discussion of
functional performance.

4.3.2 PERFORMANCE OF LDA, PBE, AND M06-L FUNCTIONALS

Having assessed the effect of ZPVE, we can now study the performance of local
and semi-local density functionals applied to the 64 solids. The calculated
a0, E0, and B0 using the LDA, PBE, and M06-L functionals, together with
their experimental values, are tabulated in Tables C.2 to C.7. The statistical
data of ME and MAE are shown in Table 4.4 for the three cohesive properties
studied here, with the relative errors marked in parentheses. To illustrate the
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Table 4.3: Zero-point vibrational contributions to the lattice constants a0 (Å),
cohesive energies E0 (eV/atom), and bulk moduli B0 (GPa) of 64 solids (24 metals,
40 non-metals with six ionic crystals included) using the PBE functional. The
values in parentheses are the corresponding percentage with respect to the reported
experimental cohesive properties. The 24 metals are divided into two groups: nine
elements from periods 2 to 4, and 15 elements from periods 5 to 7 of the periodic table.

a0 E0 B0

All metals (24) 0.007 0.023 1.53
(0.17%) (0.73%) (1.37%)

Periods 2-4 (9) 0.011 0.029 1.66
(0.29%) (1.13%) (2.07%)

Periods 5-7 (15) 0.004 0.020 1.45
(0.10%) (0.47%) (0.94%)

Non-metals (40) 0.012 0.054 3.39
(0.25%) (1.11%) (2.18%)

Ionic crystals (6) 0.026 0.044 2.86
(0.55%) (1.06%) (4.35%)

performance of the three functionals for different types of solids, we also plot
the relative errors in the bulk moduli and the cohesive energies as a function
of those in the lattice constants for a given type of solid in Figs. 4.6 and 4.7,
respectively. The corresponding MAREs are presented in Table 4.5 in terms of
classes of solids, properties, as well as functionals. The data sets shown in these
tables and figures shall be used for discussion throughout this chapter.

Let us first discuss the performance of the LDA functional. A well-known
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Table 4.4: The mean error (ME) and mean absolute error (MAE) in the calculated
lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk moduli B0 (GPa)
of the 64 solids (24 metals, 34 semiconductors, and six ionic crystals) with respect to
experimental data using the LDA, PBE, and M06-L density functionals. The mean
relative error (MRE, %) and mean absolute relative error (MARE, %) are given in
parentheses, corresponding to the percentage with respect to the reported experimental
cohesive properties. All quantities include zero-point vibrational effects.

ME MAE
a0 E0 B0 a0 E0 B0

LDA −0.064 0.854 12.66 0.064 0.854 15.85
(−1.39) (19.24) (8.25) (1.39) (19.24) (10.91)

PBE 0.056 −0.120 −10.41 0.062 0.223 14.25
(1.08) (−3.06) (−9.68) (1.22) (5.87) (11.72)

M06-L 0.031 0.174 −4.48 0.074 0.269 12.57
(0.54) (6.55) (−1.98) (1.41) (8.88) (13.43)

trend is confirmed by the current work, namely that LDA underestimates lattice
constants, overestimates bulk moduli, and considerably overestimates cohesive
energies in most cases. According to the MAREs of the three properties
summarized in Table 4.5, one can clearly observe that LDA yields different
performance for different classes of solids. For the SC class, it predicts the lattice
constants and the bulk moduli in good agreement with experiment, however at
the expense of poor prediction of the cohesive energies. In comparison, for
metals (groups MM and TM), LDA yields large deviations for all the three
properties. The performance for ionic crystals is moderate at the LDA level,
when compared with MM and TM.

Turning to the PBE functional, one can see the opposite trend to LDA: the
lattice constants are too large, the bulk moduli are too small, and the cohesive
energies are underestimated with a MARE of ∼6% (versus ∼20% by LDA) for
the 64 solids. Overall, PBE improves the agreement with experiment compared
with the LDA functional. In particular for metals, the superiority of PBE over
LDA becomes more prominent in the predictions of all three properties. This
is important, because LDA is the functional for metallic electrons. Thus real
metals are not “ideal”. For semiconductors and ionic crystals, PBE yields
large deviations from experiment for the lattice constants as well as the bulk
moduli, though the cohesive energies are still reasonably predicted at this level.
A characteristic feature of the PBE functional found in the current study is
the increase of the error with increasing lattice constant, as can be seen, e.g.,
along the series of C-SiC-Si-Ge-Sn, BN-BP-BAs, and AlP-AlAs-AlSb. For certain
systems, the bulk moduli and the cohesive energies follow the same trend, and
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further discussion will be presented in Section 4.3.3 for a deeper understanding
of errors in the cohesive properties found in (semi-)local DFAs.

Table 4.5: The mean absolute relative error (MARE, %) in the calculated lattice
constants a0, cohesive energies E0, and bulk moduli B0 of the 64 solids divided into
five classes (see main text for definitions) with respect to experimental data using the
LDA, PBE, and M06-L density functionals. All quantities include zero-point vibrations.

LDA PBE M06-L
a0 E0 B0 a0 E0 B0 a0 E0 B0

MM 3.08 20.25 13.24 0.88 9.00 5.97 3.04 36.33 31.39
TM 1.66 25.13 17.75 1.04 6.39 8.49 0.95 7.97 9.14
SC 0.63 19.34 4.71 1.61 5.68 16.13 1.74 2.77 13.24
IC 1.51 8.12 8.97 1.87 5.75 14.45 0.27 3.03 4.87

TMCN 1.20 15.95 14.59 0.50 2.84 9.59 0.55 3.76 9.50
All metals 2.19 18.61 16.06 0.98 7.37 7.54 1.73 18.61 17.48
All solids 1.39 19.24 10.91 1.22 5.87 11.72 1.41 8.88 13.43

Turning to the M06-L functional, its overall performance lies between LDA
and PBE on the predictions of the cohesive properties. However, no consistent
trend can be identified. For most semiconductors, M06-L overestimates the
lattice constants and underestimates the cohesive energies as well as the bulk
moduli. In particular for main-group metals, M06-L severely overbinds: the
lattice constants are too small, and cohesive energies as well as the bulk moduli
are too large. For transition metals, the M06-L functional performs equally well
as PBE does, as can be seen from Table 4.5. On the other hand, the current work
suggests that M06-L significantly improves the performance on the cohesive
properties of ionic crystals in comparison with LDA and PBE, and for these
systems it slightly overestimates the lattice constants, and reasonably predicts
the cohesive energies and the bulk moduli, with the corresponding MAREs of
0.3%, 3%, and 4.9%, respectively.

Figures 4.6 and 4.7 show a comparison of the LDA, PBE, and M06-L
functionals for describing the cohesive properties of the five classes of solids.
Among the three functionals, LDA predicts the best lattice constants and
bulk moduli for semiconductors, however, the cohesive energy remains a big
issue at this level, with a MARE of ∼20% for the 34 solids in this group.
While PBE outperforms LDA on the prediction of the cohesive energies for
semiconductors, it worsens both the lattice constants and the bulk moduli.
In fact, the improved performance of PBE over LDA can be mainly seen in
its better description of the cohesion in the systems having (semi-)metallic
nature. As depicted in Figs. 4.6 and 4.7, compared with LDA, all the cohesive
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Figure 4.7: Correlation between the deviations of the cohesive energies E0 (%) and
those of the lattice constants a0 (%) using the LDA, PBE, and M06-L functionals.

properties obtained from PBE are in much better agreement with experiment
for the MM, TM, and TMCN groups. On the other hand, the M06-L MGGA
functional also improves over LDA for TM and TMCN (though its performance
is slightly worse than PBE). However, M06-L yields significant deviations from
experiment for the main-group metals, in consistent with the study by Truhlar
and coworkers [146]. The MAREs are calculated to be about 3%, 36%, and
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31% for the lattice constants, cohesive energies, and bulk moduli, respectively,
as given in Table 4.5. Thus it can be concluded that the M06-L functional
outperforms LDA for the systems in which a “mixed” bonding nature (metallic,
covalent, and/or ionic) becomes prominent in their cohesion (e.g., TM and
TMCN). In comparison with PBE, an improved performance of M06-L is found
for light-mass semiconductors. For instance, for the light solids (such as C, Si,
BN, BP, and AlP), the cohesive properties obtained from M06-L are in good
agreement with experiment; in particular, the bulk moduli are as good as
the LDA values, whereas PBE yields the worst performance among the three
functionals; and the cohesive energies are greatly improved at the M06-L level,
compared with the LDA results. When going to heavier systems, one can hardly
find any improvement by using M06-L over PBE. This can be seen for the case
of GaSb, InSb, ZnTe, CdTe, etc., where M06-L yields worse predictions than
PBE. Note that similar performance can also be observed for the ionic crystals.
The M06-L MGGA functional significantly improves the description for the six
ionic compounds that have medium mass, with a MARE of only 0.3% for the
lattice constants versus those of 1.5% and 1.9% by LDA and PBE, respectively.
Our study suggests a diverse performance of (semi-)local DFAs on the cohesive
properties, strongly dependent upon the bonding nature of the solid considered.
Further discussion shall be focused on the relationship between pairs of the
cohesive properties, that is, a0/B0 and a0/E0.

4.3.3 CORRELATIONS BETWEEN THE ERRORS IN COHESIVE PROPERTIES

Much attention has been paid in the literature to the understanding of
relationships of the cohesive energy and the bulk modulus with geometrical
properties of various types of solids. It is well established that the equilibrium
cohesive energy and the bulk modulus are inversely related to the lattice
constant (or the nearest-neighbor distance), as depicted in Figs. 2.2 and 2.3.
The inverse relation can be explained by the volume dependence of the total
energy (the equation of state) causing a monotonous decrease of bulk moduli
with increasing volume. There are some analytical expressions reported in
the literature for several families of cubic solids, e.g., simple semiconductors
(groups IVA, IIIA–VA, and IIB–VIA), ionic crystals (groups IIA–VIA and IA–
VIIA), and metals (groups IA and IIA, and noble metals), based upon empirical
approaches. Despite the fact that empirical methods are often not able to yield
highly accurate results, they can still be very useful, particularly for illustrating
trends in properties of a wide variety of materials.
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According to the empirical expressions of E0d ≈ constant and B0d
x ≈

constant given by Eqs. (2.4), (2.6), and (2.7),2 it can be seen that the
overestimation (underestimation) of the lattice constant (nearest-neighbor
distance) should correspond to the underestimation (overestimation) of the
bulk modulus or the cohesive energy. As a matter of fact, overall all commonly
used DFAs can predict this trend (see Table 4.1). In contrast, whether (and how)
errors between theory and experiment in those properties can be linked to one
another or not is much less known and remains an interesting question.

Figures 4.6 and 4.7 show the relative errors in the bulk moduli and the
cohesive energies as a function of those in the lattice constants, using the
LDA, PBE, and M06-L functionals for the 64 solids divided into five classes.
It can be seen that most data points fall in the quadrants II and IV of the
Cartesian plane, showing that the shorter the lattice constants predicted, the
larger the bulk moduli and cohesive energies, and vice versa. This indicates
that LDA, PBE, and M06-L can broadly predict the observed experimental
trends (the inverse relationships of bulk moduli and cohesive energies with
lattice constants). If one further looks into the errors concerning a given
type of solids, large differences can be found for specific functionals. For SC
and IC, a nearly monotonous dependence is observed for the deviations from
experiment of the bulk moduli upon those of the lattice constants using all three
functionals tested, that is, the overestimated lattice constants is accompanied
by the underestimated bulk moduli. Also seen is a better (linear) correlation
between the errors from the PBE calculations, in comparison with, e.g., LDA,
applied to the SC compounds, where half of the values fall in the quadrant III,
in disagreement with the empirical study based on experimental observations.
To directly illustrate this issue, we performed fitting of experimental and
theoretical cohesive data against the nearest-neighbor distance d using the
expression B0 = Cdx, where C is regarded as a constant. Table 4.6 shows the
fitting results for the solids of groups IVA, IIIA–VA, IIB–VIA, and IA–VIIA; also
presented are the linear fitting results of the relative errors between predicted
(using the three functionals) and experimental values. Overall, the PBE
functional yields the most consistent results compared with experiment, and
it is the method that reproduces systematic trends in the cohesive properties of
solids better than the other two approaches.

Turning to metals, for the MM and TM groups an apparent scatter of the
errors is found from both the LDA and M06-L calculations, and the inversely

2Here d represents the nearest-neighbor distance in a crystal and x is an empirical parameter
relevant to crystal structure and bonding nature (see Section 2.3 and Ref. [81–83, 85–87]).
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Table 4.6: Fits of the experimental and calculated bulk modulus B0 against the nearest-
neighbor distance d using the expression B0 = Cdx, where C is a constant. Deviations
of the bulk modulus (∆B0) and the nearest-neighbor distance (∆d) from corresponding
experimental data (Expt.) are fitted to a linear relation, and the last column gives
standard deviations (Dev.) for the slope k from linear fitting using DFAs.

B0 = Cdx ∆B0 = k∆d
Group C x k Dev.
IVA Expt. 2176 -3.66

PBE 2391 -3.94 -12.03 2.28%
M06-L 2391 -3.89 -9.44 3.16%
LDA 2401 -3.87 -33.37 21.18%

IIIA–VA Expt. 1811 -3.48
PBE 1975 -3.72 -9.18 7.85%

M06-L 2002 -3.70 -7.05 9.23%
LDA 1994 -3.65 3.24 52.99%

IIB–VIA Expt. 984 -3.00
PBE 1364 -3.49 -9.55 8.28%

M06-L 1626 -3.61 -5.91 7.72%
LDA 1085 -3.08 -4.95 21.53%

IA–VIIA Expt. 456 -2.68
PBE 516 -2.95 -7.02 13.45%

M06-L 575 -2.99 -11.36 35.65%
LDA 530 -2.78 -6.57 12.20%

correlated behavior is only captured using the PBE functional. This also reflects
the poor performance of LDA and M06-L, particularly in the description of
main-group metals. Finally, for the TMCN group, there is no clear trend shown
by any method used here. This is not surprising, as experiment does not exhibit
clear correlations between any pair of cohesive properties (see Figs 2.2 and 2.3),
mainly due to the mixed nature of metallic, covalent, and ionic bondings in
these solids [265, 266].

The above findings suggest that the errors in cohesive properties obtained
from DFT calculations are correlated and system dependent. In general, PBE
shows superior performance to LDA, due to the inclusion of the density
gradient term for satisfying “non-locality” in realistic systems. Therefore the
improvement of PBE over LDA will become more prominent for the systems
with relatively inhomogeneous densities, e.g., main-group metals with one or
two s electrons in the outer shell,3 for which both LDA and M06-L yield large
deviations. Likewise, for the solids with relatively slowly varying densities,

3In comparison with transition metals, the valence electrons of main-group metals have more
freedom to “migrate” from the ion cores.
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such as semiconductors and some transition metals, the cohesive properties are
better predicted within LDA rather than PBE (except for the cohesive energies).
When it comes to the M06-L functional, the present study shows that it can
perform well for “light” solids. This can be ascribed to the fact that the
functional form in M06-L is obtained by fits to molecular systems, thus it can
describe the mid-range interactions to some extent, which can be seen from its
good performance for the ionic crystals considered here.

Furthermore, our work suggests that investigating the relationships between
errors in cohesive properties can help us to understand performance and
capability of DFAs. In particular, it is found that the system-dependent
behavior of the cohesive properties is best reproduced at the PBE level. Indeed,
by using the PBE functional an increase of errors in bulk moduli is accompanied
by that in lattice constants for most solids in the current database. This is
consistent with the finding by Grabowski and co-authors, who have discussed
the dependence of errors produced by the LDA and PBE functionals for fcc
metals [258]. The behavior of the increasing errors with mass can also be
observed in lattice constants. In Fig. 4.8, the deviations of the calculated lattice
constants from experiment are plotted as a function of their experimental values
for 24 metals and 40 non-metals for all the three functionals. One can see the
monotonous relationship, indicating that the systematic error increases as the
crystal unit-cell volume increases, is better reproduced by PBE rather than LDA
or M06-L. The trend is more pronounced in non-metals than metals, in good
agreement with experiment (see Figs. 2.2 and 2.3). For 40 non-metals, a nearly
linear behavior is captured using PBE, while two separate regions are found
using M06-L.

Note that for those solids with a large unit-cell volume (heavy nuclear mass)
in the current database, the M06-L method yields worse performance for the
prediction of the cohesive properties than PBE does, whereas the opposite
trend is found for light solids. This is a strong indication that long-range
vdW interactions are responsible for part of deviations caused by modern
DFAs. Indeed, all widely employed local and semi-local (and even hybrid)
functionals suffer from the presence of self-interaction errors and the lack of
the long-range vdW energy tail, often leading to noticeable deviations from
experiment in describing material properties. Using hybrid functionals and
including the long-range correlation in DFAs should improve the prediction
of density functionals for reproducing experimental data [8–11]. Given that
the use of hybrid functionals reduces the impact of SIE, the role of long-range
vdW interactions is less clear, particularly for solid-state materials [71, 79]. The
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importance of both aspects has been recently illustrated in our study of six ionic
and semiconductor solids using accurate dielectric functions of those solids.
Upon the inclusion of the long-range vdW interaction on top of PBE-GGA as
well as HSE06 hybrid functional, a significant improvement was found in the
cohesive properties over original PBE or HSE06 [72]. The present work suggests
that the M06-L functional is able to capture some intermediate interactions by
construction, as observed from its good performance in light solids, whereas it
lacks the long-range correlation. This can be seen from the poor prediction of
the cohesion using M06-L for heavy solids. Moreover, the worse-description
of the cohesive properties for heavy solids using M06-L than PBE tells us the
non-empirical PBE functional reproduces experimental trends much better and
can be used for developing more advanced approaches that correctly account
for the long-range correlation energy.

4.4 SUMMARY

In this chapter, the cohesive properties of 64 solids have been studied using
the first three rungs of “Jacob’s ladder” of density-functional approximations
(LDA, GGA, and MGGA) within the FHI-aims package. It has been shown that
the zero-point vibrational contributions can be significant for certain solids and
properties. In particular, ZPVE can influence the bulk modulus more than the
lattice constant as well as the cohesive energy, as can be seen from the relative
change in those properties. Furthermore, ZPVE plays a larger role for non-
metals and light solids.

For the cohesive properties, the present study reproduces the well-known
trends of the LDA and PBE functionals. LDA delivers the best prediction on the
lattice constants and bulk moduli of covalently-bonded systems, however, the
cohesive energies are considerably overestimated with a MARE of ∼20%. PBE
gives the best overall performance compared with LDA and M06-L, especially
for metals and transition metal carbides and nitrides. The MGGA functional
M06-L gives a better description than PBE does for certain semiconductors and
ionic crystals, but yields poor prediction on bulk moduli.

By comparing the DFT results to experimental studies and empirical
observations, we discuss the cohesive properties in terms of the relationships
of the cohesive energy and the bulk modulus with the lattice constant.
As expected, all three functionals are capable of broadly reproducing the
experimental trends. However, systemic differences are observed in the
deviations of the DFT results from the experimental data. Given the empirical
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Figure 4.8: Deviations of DFT lattice constants (Å) from experiment for 24 metals and
40 non-metals versus their experimental lattice constants (Å) using the PBE, M06-L,
and LDA functionals.
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relationships between the lattice constant and both the bulk modulus and the
cohesive energy, we expect the deviations of the bulk moduli and the cohesive
energies to be inversely related to those of the lattice constants. The PBE
functional reproduces this behavior better than LDA or M06-L.

Overall, none of the functionals tested here can be considered better than the
others when applied to a broad range of solids, but the observed trends among
different types of interactions and groups of atoms can certainly be helpful
for developing DFT functionals. We note that the lack of long-range vdW
interactions may account for some of the deviations seen in the three functionals
employed in this work. The M06-L functional already captures mid-range
correlation interactions, which can be seen from its good performance for ionic
solids, whereas it is less clear how it could be improved further, especially given
its highly empirical nature. PBE represents a natural functional for adding long-
range electron correlation because of its systematic behavior for the cohesive
properties of solids. The next chapter is focused on establishing benchmark
data of the polarizability and C6 dispersion coefficients using time-dependent
DFT calculations and assessing the importance of vdW interactions in ionic and
semiconductor solids.



5 BENCHMARK STUDY OF VDW
COEFFICIENTS IN SEMICONDUCTORS

AND IONIC SOLIDS: COMBINED

DFT/TDDFT APPROACH

The study of long-range van der Waals (vdW) interactions in solids requires
the knowledge of the dynamic polarizability of all atoms (or ions) in the
material, including local-field effects. In this chapter, the polarizability
is determined from the calculated optical spectrum of solids within the
framework of time-dependent density-functional theory (TDDFT), invoking
the Clausius-Mossotti (CM) relation between the dielectric function and the
polarizability. The CM relation was shown to be very successful for connecting
microscopic and macroscopic properties of many ionic crystals with cubic
symmetry. However, the validity of the use of this formula in covalently-
bonded solids is much less clear. To assess this, the cluster extrapolation model
is employed for obtaining the frequency-dependent polarizability and C6

dispersion coefficients. Subsequently, we use the obtained vdW parameters for
computing the vdW energy based on the summation of pair-wise interatomic
contributions, and add the resulting vdW energy to the DFT energy of the
system. The validation of this DFT/TDDFT methodology is discussed for a few
semiconductors and ionic crystals (C, Si, Ge, GaAs, NaCl, and MgO), followed
by an assessment of the role of long-range vdW interactions in the cohesive
properties of these solids.

89



90
Benchmark study of vdW coefficients in semiconductors and ionic solids:

Combined DFT/TDDFT approach

5.1 MOTIVATION

The dielectric function of solids plays an important role in many physical
processes. The fundamental electronic excitation spectrum is generally
described in terms of a complex electronic dielectric function ε(ω) = ε1(ω) +

iε2(ω), in which the real part ε1 corresponds to the refraction of the
electromagnetic radiation as it passes through the medium and the imaginary
part ε2 describes absorption. Much effort has been made to obtain accurate
dielectric functions experimentally and theoretically [220, 231, 234, 239, 243,
267–270]. The real and imaginary parts of the macroscopic dielectric function
εM(q, ω) can be derived from measurements of such as refraction, reflection,
and absorption spectra over a large enough spectral range, and they are
related to one another by a Kramers-Kronig transformation. From a theoretical
point of view, the inverse microscopic dielectric function of a crystal is
connected to the response function (linear-response regime): ε−1

G,G′(q, ω) =

1 + υG,G′(q)χG,G′(q, ω), where q is a vector in the first Brillouin zone, G and
G′ are reciprocal lattice vectors, and υ is the bare Coulomb interaction. In
a long-wavelength limit, the macroscopic dielectric function can be readily
obtained from the microscopic εG,G′(q, ω) via the relation of εM(q, ω) =

limq→0
1

ε−1
00 (q,ω)

, in which the electronic components ε1 and ε2 can be compared
with experimental measurements if they are available.

An accurate calculation of the optical-absorption spectrum of solids requires
proper treatments of both electron-electron and electron-hole effects. A well-
established method for yielding good results of dielectric functions is so-
called the two-step approach within the framework of many-body perturbation
theory, i.e., the GW approximation [235] for the self energy and the solution of
the Bethe-Salpeter equation (BSE) [236] for the electron-hole interaction. Such
a calculation is, however, computationally very demanding. Time-dependent
density-functional theory (TDDFT), as already introduced in Section 3.6,
represents an advantageous way of computing reliable excitations of solids
with less computational requirement than the above scheme. In the linear-
response TDDFT, the response function (yielding the inverse microscopic
dielectric function ε−1 = 1 + υχ) is described by Dyson-like formula

χ = [1− (υ + fxc)χKS]
−1 χKS, (5.1)

where χKS is the independent-particle Kohn-Sham (KS) response function and
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υ is the bare Coulomb interaction.1 To evaluate the response function χ of
materials, the challenge is how to find good approximations for the time-
dependent exchange-correlation (XC) potential υxc and its density derivative
(the so-called XC kernel fxc = δυxc/δn). The simplest approximation is the time-
dependent local-density approximation (TD-LDA), using LDA for υxc and the
adiabatic local-density approximation (ALDA) for fxc; thus fALDA

xc is local both
in time (frequency-independent) and in space. It has been shown that TD-LDA
often yields good results for excitation energies of finite systems. However,
this is not the case for the optical spectrum of solids — the quasiparticle
gap is too small and the bound exciton is completely missing [228, 230, 234].
Extensive discussion has been made to go beyond TD-LDA in the literature for
tackling those issues and improvements can be found through the inclusion
of long-range nonlocal terms and dynamic effects in the XC kernel (which
must be a strongly nonlocal functional of the density and also frequency-
dependent) [234, 237–241]. Recent advances in developing (static and dynamic)
nonlocal kernel allow to compute reliable optical spectra of solids within linear-
response TDDFT [231, 242–244]. The kernel employed in this thesis is the so-
called nanoquanta (NQ) [240] kernel, which has the asymptotic form of a long-
range contribution (LRC) [239, 242] kernel (decaying in the momentum space as
1/q2) and includes electron-hole interactions by utilizing a nonlocal exchange
term fx,nl into Eq. 5.1 for the full response function. The implementation
of NQ has been done in the code of Vienna ab initio simulation package
(VASP) [245, 246], in which both the response function and the dielectric
function are represented in reciprocal space and the projector augmented-wave
(PAW) method is used.

One of the main goals of studies of the dielectric response is to relate
macroscopic observables such as the dielectric function to microscopic quan-
tities such as the polarizability of the constituent particles forming a material,
provided that the “particle” is properly defined in the material. To establish
a connection between them, one has to analyze the electric polarization in a
dielectric medium. At optical frequencies, the local (or effective) field acting
on atoms or ions in a crystal can be written as Eloc = E + LP, where E is the
macroscopic electric field, P is the polarization density (dipole moment per unit
volume), and the constant L is known as Lorenz factor that is related to ionicity
and structure of the solid [26, 220–222]. Substituting the local field into Eq. (3.66)
and combining with Eq. (3.62), one can arrive at a general form for the unit-cell

1Here the position and frequency arguments are omitted for simplicity.
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polarizability in terms of the dielectric function with a constant Lorentz factor

αcell = V
ε− 1

L(ε− 1) + 4π
, (5.2)

where V is the unit-cell volume of the crystal. Two limiting cases are L = 0 and
L = 4π/3, yielding the Drude-Sellmeier (DS) formula and the Clausius-Mossotti
(CM) relation, respectively

αcell, DS = V
ε− 1

4π
; (5.3)

αcell, CM = V
3

4π

ε− 1

ε+ 2
. (5.4)

As discussed in Section 3.5.2, the DS formula is exact for the free-electron
gas, where an electron merely feels the average macroscopic field composed
of a uniformly distributed medium. In contrast, the CM relation becomes
accurate for dilute, isotropic, and homogeneous systems, in which the particles
can be regarded as non-overlapping point dipoles. In such situations, the
polarizability can be described in terms of individual components forming
the material. These systems include liquids, gases, polycrystals, amorphous
materials, and “idealized” ionic crystals. Among numerous studies of Eq. (5.4)
applied to non-metallic systems, the discussion is mainly about the deviation of
the Lorentz factor L from its usual value of 4π/3, which is exact only if induced
dipoles are treated as points, i.e., there is no overlap between any pair of atoms
or ions. It was shown that the CM relation is a very good approximation for
many ionic crystals with cubic symmetry [26, 219] (see Section 3.5.2 for more
discussion and citations therein). This can be explained by the fact that in
ionic crystals anions are much more polarizable than cations, such that the
induced dipole moment mainly depends on anions, between which there is no
significant overlap.

Unlike ionic crystals, the validity of employing the CM formula for relating
the dielectric function to the polarizability is much less clear in covalently-
bonded materials [1, 24, 211]. In particular, Mott [214] and Pantelides [271]
proposed that CM fails to describe systems where the overlap between
neighboring atoms is nonnegligible. In this thesis, to shed light on this problem,
we performed TDDFT optical-absorption spectrum calculations for ionic and
covalent solids. The dynamic polarizability and C6 dispersion coefficients
are then obtained using the CM relation and the Casimir-Polder integral,
respectively. To assess the validity of the use of the CM relation, an alternative
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cluster extrapolation (CE) model is utilized. We discuss how the overlap
between constituent atoms affects the local field in a dielectric medium.

Unlike the CM model, in which the polarizability is defined per unit cell,
the CE approach treats the total polarizability and dispersion coefficients by
summing over atomic components, as described in Section 3.5.3. Given that
both α and C6 coefficients are dependent on the lattice constant of a crystal,
particular care has been taken to study the role of variation in the interatomic
distance, and a new set of unit-cell-volume-dependent α(V) and C6(V) are
generated for the semiconductors studied here. A detailed description of the
CM and CE approaches follows in the next section.

5.2 TECHNICAL DETAILS

5.2.1 OPTICAL-ABSORPTION SPECTRA

In the CM model, the first step for obtaining the polarizability and C6

dispersion coefficients of atoms in solids is to compute the dielectric function
from the optical-absorption spectrum. In this section, the calculation of the
dielectric function ε(q,q′, ω) using the computational code VASP [245, 246]
shall be addressed for diamond-type solids.2 The optical spectra have been
computed using the linear-response theory of TDDFT (see Section 3.6) for a
series of unit-cell volumes within ±20% of the experimental volume, using
the same approach as in Ref. [231] (see the computational details reported
in Appendix B). Two XC functionals were employed: the ALDA and Heyd-
Scuseria-Ernzerhof (HSE) functional [150, 151]. For the HSE functional, the
parameter µ defines the length scale for the separation of the nonlocal and semi-
local exchange, and it is empirically set to 0.2–0.3 Å−1. In the present study, a
value of µ = 0.3 Å−1 was chosen for all solids, as it was found to best reproduce
their experimental absorption spectra. Moreover, to include the effective XC
kernel from the nonlocal exchange term, we follow the approach described
in Refs. [239, 240, 242, 244], employing the nanoquanta kernel, which enables
us to reproduce some excitonic effects in bulk materials within the TDDFT
framework.

Figure 5.1 shows the imaginary part of the dielectric function ε2(ω)

obtained from the TD-HSE and TD-LDA calculations for Si bulk (at the
experimental lattice constant), in comparison with its experimental absorption

2Th calculation of optical spectra using Vienna ab initio simulation package (VASP) was in
collaboration with VASP contributor Joachim Paier (see Ref. [72]).
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Figure 5.1: The optical-absorption spectrum of Si bulk using TD-HSE (µ = 0.3 Å−1)
with the nanoquanta (NQ) kernel (full black line) and in the independent-particle
(IP) approximation (orange small dots). The TD-LDA result is shown using the red
dashed line, TD-HSE (µ = 0.2 Å−1) is shown by the black dot-dashed line, and the
experimental spectrum is shown by blue dots, taken from Ref. [270]. All calculations
were performed at the experimental lattice constant.

spectrum [270]. It is found that neither TD-LDA nor IP-HSE (in the
independent-particle approximation) is able to reproduce the experimental
optical spectrum and that the excitonic peak is completely absent in both cases.
The inclusion of a long-range contribution to the XC kernel within the TD-
HSE scheme (µ = 0.3 Å−1) improves the agreement with experiment, yielding
a redshift of the spectrum and a pronounced increase of the intensity at low
energies with respect to IP-HSE (where many-electron effects have been entirely
neglected). Note that extending the range of the nonlocal exchange part of the
HSE functional (µ = 0.2 Å−1), the first peak becomes more apparent (showing
excitonic effects), however, at the expense of worsening the position. Thus it
can be concluded that the interaction range of the HSE functional is slightly
too short to correctly account for the electrostatic interaction in the weakly-
bound exciton such as in Si bulk. Nevertheless, our calculations reproduce
the results reported in a previous study [231] using equivalent computational
settings, and agree with the conclusion that when combined with TD-HSE, the
NQ nonlocal exchange kernel is able to partially capture excitonic effects and
yield reasonably good optical spectra of solids.

Also calculated are the optical spectra of C and Ge (see Appendix B) and
the above finding holds for both of them. Turning to the static dielectric
constant, the corresponding results for C, Si, and Ge are reported in Table 5.1,
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together with those for GaAs, NaCl, and MgO (which will be discussed in next
sections). The TD-LDA approach overestimates the dielectric constants of the
solids considered here, while the TD-HSE+NQ results agree much better with
the experimental data. The current study suggests that TD-HSE is a reliable
approximation for modeling optical properties of semiconductors and ionic
crystals studied here.

Table 5.1: Calculated static dielectric constants from TD-LDA, TD-HSE (µ =
0.3 Å−1) in the independent-particle (IP) approximation and including the electron-
hole interaction within the nanoquanta (NQ) kernel. All data are calculated at the
experimental volumes and experimental values are taken from Ref. [272].

TD-LDA TD-HSE Expt.
Solid IP NQ

C 5.8 5.2 5.6 5.7
Si 13.2 10.9 11.3 11.9
Ge 23.5 – 15.9 16.0

GaAs 14.0∗ 10.6 10.9 10.9
MgO – – 2.8 3.0
NaCl – – 2.3 2.3

∗ The value is taken from Ref. [231].

In the CM approach, the next step is to obtain the dielectric function on the
imaginary-frequency axis from the imaginary part on the real axis, ε2(ω), by
performing a Kramers-Kronig transformation via Eq. (3.64). The frequency-
dependent polarizability can then be calculated using the CM relation shown
in Eq. (5.4). The corresponding results will be presented in the next sections,
together with the validation of this method.

5.2.2 CLUSTER EXTRAPOLATION MODEL

An alternative way of calculating vdW parameters is to employ the cluster
extrapolation model. In this approach, the central approximation is the
additivity of the polarizability, i.e., the polarizability is defined in terms of
atomic fragments and the total polarizability of a cluster equals the sum
of all atomic constituents (the reader is referred to Section 3.5.3 for more
details). Here we will elucidate this method for Si, but the same procedure
and conclusions also apply to C and Ge. For the case of hydrogen-saturated
Si clusters, a set of 30 SiiHj clusters ranging from SiH4 to Si172H120,3 were cut
from Si bulk at the experimental volume (a few examples are given in Fig. 5.2).

3The geometries of those clusters were initially used in Ref. [226].
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The change in the lattice constant has been studied by varying the distance
between bonded Si atoms. The geometries were optimized (only for the
relaxation of saturating hydrogen atoms) from self-consistent DFT calculations
employing the PBE [94] functional, implemented in the Fritz Haber Institute
ab initio molecular simulations (FHI-aims) package [21]. In the case of finite
systems (atoms, molecules, or clusters), it is more convenient to use a real-space
approach. Using the optimized geometries, linear-response equations of the
electron density to a perturbative potential were solved using the self-consistent
Sternheimer approach [247], as implemented in the Octopus code [251] with
the ALDA parametrization for the XC potential. For the real-space regular
grid, a spacing of 0.275 Å was chosen to ensure convergence, and a radius of
4.5 Å was used for constructing the simulation box by adding spheres around
each atom. With the above computational setting, the polarizability and C6

dispersion coefficients of the clusters were obtained through the formulation
described in Section 3.5.3.

Figure 5.2: Four hydrogen-saturated Si-cluster geometries of a set of 30 clusters ranging
from SiH4 to Si172H120. The big (blue) spheres represent Si atoms, while the small (red)
spheres show H atoms.

THE ADDITIVITY OF THE POLARIZABILITY

The approximation used in the CE approach is that the total polarizability of a
cluster is the sum of contributions from the “averaged” constituent components
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of each species, i.e., αcluster ' i αSi + j αH. To verify this, least-squares fitting
was employed to obtain the atomic polarizabilities of the hydrogen and silicon
atoms, αH and αSi; then, the dispersion coefficients of hydrogen–hydrogen
and silicon–silicon interactions, CHH

6 and CSiSi
6 , can be further determined via

Eqs. (3.77) and (3.78). Different fitting methods have been tested by using
different sets of clusters, among which the cluster size grows from SiH4 to
Si172H120.
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Figure 5.3: Least-squares fitting results for the polarizability (left panels, bohr3) and
C6 (right panels, hartree·bohr6) per atom (Si or H) to a set of N hydrogen-saturated
Si clusters (Ref. [72]). The solid black curve shows the fitting results starting from
the smallest cluster (SiH4). The dashed red curve starts from the Si17H36 cluster. The
crossed blue curve starts from the largest Si172H120 cluster.

Figure 5.3 shows the fitting results of the Si clusters obtained in three different
ways, starting the fitting procedure from the smallest cluster (SiH4), the middle
one (Si17H36), as well as, the largest one (Si172H120). The fitting was carried
out using different sets of clusters that start from the above three clusters,
i.e., the largest (smallest or middle-sized) two, three, and so on, until all 30
clusters were included in the fitting procedure. It was found that all of the fitted
parameters (namely αH, αSi, CHH

6 , and CSiSi
6 ) show very good convergence as

long as more than 10 clusters are used in the training set. Encouragingly, the
procedure starting from the largest cluster (the crossed blue curve plotted in
Fig. 5.3) gives the most reliable results, in the sense that the four quantities
saturate quickly with the number of clusters used for fitting. In this case, the
root-mean-square deviations (RMSDs) obtained are: αH (0.23 bohr3, 5.6%), CHH

6

(0.06 hartree·bohr6, 1.4%), αSi (0.17 bohr3, 0.6%), and CSiSi
6 (0.24 hartree·bohr6,
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0.1%).4 It can be concluded that the additivity of the polarizability employed
in the CE model is a good approximation for the semiconductor clusters, and
no matter which combination of clusters is utilized for fitting (more than 10
clusters at least), a negligible variation is found for both αSi and CSiSi

6 .

THE EFFECT OF SATURATING HYDROGEN ATOMS

As the quantities we wish to obtain are αSi and CSiSi
6 , one needs to first

determine the parameters of the saturating hydrogen atoms. To estimate the
effect of hydrogen atoms on obtaining the parameters of Si atoms, the largest
cluster, Si172H120, was chosen, with different combinations of αH andCHH

6 being
fixed parameters (which were determined from the least-squares fits using
different numbers of clusters, as presented in Fig. 5.3). The polarizability and
C6 dispersion coefficients of Si atoms were further computed using Eq. (3.75)
and Eqs. (3.77) and (3.78), respectively. The corresponding results are shown
in Fig. 5.4: the fitted parameters of hydrogen and silicon atoms as a function
of the number of clusters used for fitting. It can be found that the variation
of CHH

6 is negligible, as long as more than 17 clusters are used in the fitting
procedure that starts from the largest cluster (see Fig. 5.4). In contrast, there is
a noticeable change in αH, with a variation of ±10% with respect to the average
value. However, such a variation does not lead to noticeable uncertainties
for the parameters of Si atoms (αSi and CSiSi

6 ), showing the negligible effect
of saturating hydrogen atoms on the evaluation of the quantities of interest
here. The RMSDs of αSi and CSiSi

6 are remarkably small: 0.15 bohr3 and 0.24
hartree·bohr6, respectively. Finally, the parameters of αH = 4.24 bohr3 and
CHH
6 = 4.28 hartree·bohr6, obtained from the least-squares fitting using the 17

largest clusters, were used for determining the polarizability and dispersion
coefficients of Si atoms in the CE model.

THE EFFECT OF CLUSTER SIZE

Having determined the vdW parameters of hydrogen atoms, the last aspect we
want to address is how the fitting procedure used in the CE approach depends
on the cluster size. To illustrate this, one should compare the polarizability
and dispersion coefficients of Si atoms for different sizes of clusters. In Fig. 5.5,
we show the values of αSi and CSiSi

6 as a function of the number of Si atoms
in a set of 30 SiiHj clusters, where the parameters of αH = 4.24 bohr3 and
CHH
6 = 4.28 hartree·bohr6 were taken for hydrogen atoms and fixed. It can

4The root-mean-square deviation (RMSD) is defined as
√∑n

i=1(xi−x)

n
.
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Figure 5.4: Calculated polarizabilities (left panels, bohr3) and C6 dispersion
coefficients (right panels, hartree·bohr6) per atom for the cluster of Si172H120, where
αH and CHH

6 were determined from least-squares fitting using different numbers of
hydrogen-saturated Si clusters N (Ref. [72]).

be immediately seen that there are negligible changes of αSi as well as CSiSi
6

for the clusters larger than Si22H40, indicating that the choice of the largest
cluster, Si172H120, is very accurate for the present study. On the other hand,
one can further look at the types of Si atoms surrounded by different numbers
of hydrogens in a given cluster: “bulk-like” silicon without hydrogen and
“surface” silicon bonded to one, two, or three hydrogens. As presented in
Fig. 5.5, individual clusters show noticeable deviations of the polarizability and
C6 from those of most other clusters, when they contain many “surface” silicons
connected to three hydrogens, e.g., Si106H120. This also verifies that the largest
cluster is the most reliable one, as there is no silicon bonded to three hydrogens,
but many “bulk-like” silicon atoms in this cluster.

Up to this point, it can be concluded that the additivity model of Eq. (3.75)
is a good approximation, the use of which provides a way for evaluating
polarizabilities and C6 dispersion coefficients in semiconductors. In the
following sections, the results obtained from the CE approach, together with
those from CM, will be discussed.
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Figure 5.5: The polarizability (left axis red, bohr3) and dispersion coefficients (right
axis blue, hartree·bohr6) as a function of the number of Si atoms in different sizes of
clusters. The values marked in parentheses indicate numbers of different types of Si
atoms in the tetra-coordinated cluster: “bulk-like”atoms, and “surface” atoms bonded
to one, two, or three hydrogens, respectively.

5.3 RESULTS AND DISCUSSION

5.3.1 DEPENDENCE OF VDW PARAMETERS ON THE LATTICE CONSTANT

The polarizability of atoms or ions in solids varies according to local
coordination and bonding in the solid. As it was evident that the polarizability
of ions in ionic crystals depends upon the lattice constant [26, 59, 61], Fowler,
Pyper, and co-authors investigated the volume-dependent polarizabilities for
a series of ionic solids [17–19, 64–66, 68]. In this thesis, we extend this
work to covalently-bonded solids by performing periodic and cluster TDDFT
calculations based on the CM and CE models. As described in the previous
section, in the CM approach, the frequency-dependent polarizabilities were
obtained from the periodic TDDFT calculations of the optical-absorption
spectra at a range of unit-cell volumes. Then, theC6 dispersion coefficients were
computed by performing the Casimir-Polder integral. In the CE model, the
clusters were cut from a bulk crystal with the lattice constant varied around the
equilibrium volume, and the corresponding polarizability and C6 coefficients
were determined from Eq. (3.75), and Eqs. (3.77) and (3.78), respectively.

The calculated vdW parameters of C, Si, and Ge are tabulated in Tables B.1
and B.2, as functions of the lattice constants of those solids. The results
derived from the CM relation are reported using both the TD-HSE and TD-LDA
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approaches, together with those obtained from TD-LDA based on the CE model.
We follow with the discussion for each solid below.
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Figure 5.6: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) as a function of the lattice constant for diamond bulk using the TD-HSE
and TD-LDA approaches from the Clausius-Mossotti (CM) and cluster extrapolation
(CE) models.

The in-crystal static polarizabilities and C6 dispersion coefficients are plotted
in Fig. 5.6 as a function of the lattice constant of diamond using the CM
and CE approaches. It can be seen that both αC and CCC

6 increase with the
lattice constant of the unit cell, showing a linear dependence in the studied
volume range. Periodic calculations (employing LDA and HSE functionals)
show that the vdW parameters obtained from TD-LDA are larger than those
from TD-HSE, in line with the results of the static dielectric constant (plotted
in Fig. B.2). The deviations between the TD-LDA and TD-HSE values are
found to be 3% and 1% for the polarizability and C6 dispersion coefficient,
respectively. The comparison of the calculated dielectric constant with the
corresponding experimental data tells us that TD-HSE yields better agreement
with experiment. When the CE model is used instead of CM, a nearly linear
dependence is observed as well. When comparing the two models, one finds a
difference of ∼10% (with respect to the CM values) for αC at the experimental
lattice constant (3.567 Å) using the same functional (TD-LDA). This can be
attributed to the fact that the values of the polarizability and C6 dispersion
coefficients of C and H atoms are of the same magnitude and both are quite
small. As a consequence, the effect of the saturating hydrogens will become
important and thus non-negligible, which means even a small change in the
value of αH or CHH

6 may lead to a noticeable change in αC. In contrast
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to the static polarizability, our study shows that the influence of hydrogen
on the estimated CCC

6 becomes much less important, as C6 is an integrated
quantity that relies on the dynamic polarizability. As can be seen in Fig. 5.6,
the difference between the C6 coefficients obtained using the CE and CM
approaches is reduced to less than 2% at the equilibrium lattice constant.
Considering that both CM and CE rely on a number of approximations, the
agreement between them is remarkable. Our study suggests that, in addition to
dilute systems (gases and liquids) and ionic crystals, the CM relation also holds
for covalently-bonded semiconductors, and that using this relation allows one
to calculate the polarizability and dispersion coefficients of atoms in non-
metallic solids.
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Figure 5.7: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) as a function of the lattice constant for Si bulk using the TD-HSE and
TD-LDA approaches from the CM and CE models.

The calculated αSi and CSiSi
6 dispersion coefficients are plotted in Fig. 5.7 as

a function of the lattice constant of Si bulk using the CM and CE methods. It is
apparent that the static polarizability follows the same trend as C6 dispersion
coefficients using the two models: both of them increase with the lattice
constant and a nearly linear dependence is observed. For periodic calculations,
the values computed within TD-LDA are larger than those within TD-HSE, and
the same to the static dielectric constant results shown in Fig. B.3. The same as
the case of diamond, the comparison with experiment shows TD-HSE leads to
more reliable dielectric constant than TD-LDA. When comparing the CE and
CM approaches, one finds that the cluster calculations yield larger values for
the polarizabilities and C6 dispersion coefficients at small unit-cell volumes
but smaller values at large volumes, indicating that the deviation between the
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two models decreases when approaching the equilibrium volume and then
increases again. Note that the maximum deviations between CM and CE are
found to be less than 0.5 bohr3 (2%) for αSi and 9.0 hartree·bohr6 (6%) for CSiSi

6 .
We therefore conclude that the two approaches yield good agreement for the
polarizability and C6 dispersion coefficients of Si bulk.
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Figure 5.8: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) as a function of the lattice constant for Ge bulk using the TD-HSE and
TD-LDA approaches from CM and CE models. The experimental curve was obtained
using the refractive-index data from Ref. [267].

Figure 5.8 shows the polarizability and C6 dispersion coefficients as a
function of the lattice constant of Ge using the CM and CE approaches, together
with those obtained from the experimental dielectric function applying the CM
relation (marked by purple stars). Similar to C and Si, the polarizability and
dispersion coefficient increase with the unit-cell volume when using both the
CM and CE methods. Among the three solids studied here, Ge is the only
system for which experimental data is available for the volume-dependent
dielectric function, as investigated by Cardona’s group [267]. In their work,
the authors measured the refractive index of Ge (as well as GaAs) with varying
pressure, and then extrapolated to the pressure- and volume-dependent static
dielectric constant ε(V ). We compare our TDDFT calculations with experiment
and find that the volume dependence of ε(V ) and α(V ) are remarkably well
reproduced at the TD-HSE level, as can be seen in Figs. 5.8 and B.4. This
demonstrates once again that using the CM relation upon TD-HSE calculations
yields the most reliable dielectric function, polarizablity, and C6 dispersion
coefficient among the methods used in the current study.
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THE CLAUSIUS-MOSSOTTI RELATION APPLIED TO COVALENT SOLIDS

To understand the success of the CM relation for general solids beyond rare-
gas and ideal ionic crystals, we employ the Tkatchenko/Scheffler (TS) [22]
method to compute the polarizability and C6 dispersion coefficients for atoms
in the semiconductors considered here. The TS approach computes the vdW
parameters using the ground-state electron density and accurately takes into
account the local chemical environment surrounding each atom (the reader is
referred to Section 3.4.3 for full details of TS). However, it does not include
electrodynamic screening effects [20]. For example, the TS method yields
αSi of 35 bohr3 and CSiSi

6 of 280 hartree·bohr6 for Si bulk – less than a 10%
decrease from the corresponding free-atom values. Thus it can be concluded
that the reduction in the polarizability of semiconductors arises mainly from
the electrodynamic screening. As motivated at the start of this chapter, Eq. (5.2)
connects the dielectric function to the unit-cell polarizability by including the
collective electrodynamic screening from all the dipoles in the crystal. For
crystals with cubic symmetry (which holds for all the solids studied in this
work), the Lorentz factor is L = 4π/3, which yields the CM relation given by
Eq. (5.4). The Lorentz factor is merely modified due to short-range effects that
are closely related to ionicity (or covalency) and crystal symmetry. We therein
conclude that the short-range overlap/hybridization effects play a minor role
in modifying the polarizabilities of C, Si, and Ge, and this explains the success
of the CM relation for semiconductors.

Having assessed the TD-HSE calculations, we now can utilize the resulting
vdW parameters (the polarizability and C6 coefficients) with the DFT+vdW
method for computing the vdW energy.

5.3.2 THE ROLE OF THE VDW ENERGY IN IONIC AND SEMICONDUCTOR

SOLIDS

In the DFT+vdW approach, the vdW energy is obtained by summing over all
pair-wise interactions via C6R

−6 terms, and added on top of the DFT energy,
as discussed in Section 3.4.2. Here the TS approach [22] is employed, with the
vdW parameters computed from TD-HSE.

Table 5.2 summarizes the cohesive properties (lattice constants a0, bulk
moduli B0, and cohesive energies E0) obtained from the third-order Birch-
Murnaghan equation of state (EOS) [88] curve using different DFT functionals
for C, Si, and Ge, together with the experimental values. The zero-point
vibrational energy (ZPVE) is added to the electronic energies at each volume for



5.3 Results and discussion 105

every functional, using quasi-harmonic approximation. All DFT calculations,
except HSE06, were performed within full-potential all-electron FHI-aims
package [21]. Instead, the HSE06 calculations were carried out using the VASP
code [245, 246].

For the (semi-)local and hybrid density functionals, the considered cohesive
properties follow the well-known trends: the lattice constants with LDA are too
small, the bulk moduli are large, and the cohesive energies are considerably
overestimated; while the PBE functional shows an opposite tendency: the
lattice constants are too large, the bulk moduli and cohesive energies are
underestimated. Overall, HSE06 predicts the cohesive properties in best
agreement with experiment, though a noticeable underbinding is found for Ge.
The HSE06 functional partially cures self-interaction errors in LDA and GGAs,
leading to a significant improvement on the electronic structure for a variety of
semiconducting and insulating solids over standard XC functionals [153, 154].
The present study suggests that HSE06 indeed yields improved results for the
lattice constants and bulk moduli of semiconductors and ionic solids. However,
lattice constants are still somewhat overestimated, while the bulk moduli
are underestimated in HSE06 calculations. Furthermore, the HSE06 method
leads to underestimated cohesive energies, typically very similar to the PBE
functional.

Turning to DFT+vdW approaches, the cohesive properties of C, Si, and Ge
were obtained from Birch-Murnaghan EOS fits, with vdW energies included.
The vdW contributions (in percentage) to the cohesive properties are tabulated
in Table 5.3. As expected, the vdW contribution increases from C to Ge.
When the vdW energy is added to the PBE and HSE06 functionals, the overall
performance for the cohesive properties of C, Si, and Ge are in better agreement
with experiment, with the largest effect found for Ge. For the PBE+vdW
calculations, the errors in all the cohesive properties are reduced by a factor
of two with respect to PBE . The same improvement is obtained for the
HSE06+vdW method, except for the bulk moduli, where the errors remain
roughly the same but change the sign (overestimation for HSE06+vdW versus
underestimation for HSE06).

For diamond, both PBE+vdW and HSE06+vdW yield slight overbinding (see
Table 5.2). This can be ascribed to the anharmonic zero-point energy [273],
which plays an important role in the description of the EOS curve for light
solids but is not accounted for in the current study. For Si and Ge, the PBE+vdW
cohesive properties are consistently improved with respect to the PBE results
(e.g., the binding curves of Ge plotted in Fig. 5.9). The vdW contribution is



106
Benchmark study of vdW coefficients in semiconductors and ionic solids:

Combined DFT/TDDFT approach

Table 5.2: Calculated cohesive properties of C, Si, and Ge: lattice constants a0 (Å),
cohesive energies E0 (eV/atom), and bulk moduli B0 (GPa). The quasi-harmonic zero-
point energy was calculated using the PBE phonon spectrum for every functional.

a0 E0 B0

C LDA 3.546 −8.76 457
PBEsol 3.568 −8.10 440
PBE 3.585 −7.55 423
HSE06 3.561 −7.43 456
PBE+vdW 3.576 −7.74 429
HSE06+vdW 3.554 −7.60 464
Expt. 3.567 −7.37 443

Si LDA 5.412 −5.23 96
PBEsol 5.443 −4.88 93
PBE 5.481 −4.49 88
HSE06 5.444 −4.52 97
PBE+vdW 5.459 −4.77 91
HSE06+vdW 5.425 −4.78 100
Expt. 5.430 −4.62 99

Ge LDA 5.630 −4.54 69
PBEsol 5.681 −4.11 65
PBE 5.770 −3.69 56
HSE06 5.691 −3.68 71
PBE+vdW 5.718 −3.98 73
HSE06+vdW 5.653 −3.96 84
Expt. 5.652 −3.87 76

shown to be system-dependent, increasing along the series of C, Si, and Ge
for all the properties studied here; those contributions are 0.34%, 0.4%, and
1.0% to the lattice constants; 2.7%, 5.4%, and 7.8% to the cohesive energies;
and 1.4%, 3.0%, and 22.4% to the bulk moduli, respectively. In particular, our
results suggest that the influence of vdW interactions becomes most important
for the bulk moduli. For the Ge bulk, the change of 1% in the lattice constant,
due to the inclusion of long-range vdW interactions, is accompanied by ∼22%
change in the bulk modulus. We thus conclude that vdW forces in the studied
semiconductors are responsible for part of the errors found in GGA or hybrid
functional for describing the cohesive properties, and they can be crucial for
certain solids and properties.

BINARY SOLIDS: NACL, MGO, AND GAAS

We have also examined long-range vdW interactions in three binary solids.
Here two ionic crystals (NaCl and MgO) and one semiconductor (GaAs) are
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Table 5.3: The vdW contributions obtained from PBE+vdW to the cohesive properties
with respect to their experimental values (%): lattice constants a0, cohesive energiesE0,
and bulk moduli B0.

a0 E0 B0

C 0.3 2.7 1.4
Si 0.4 5.4 3.0
Ge 1.0 7.8 22.4

MgO 0.7 3.5 8.9
GaAs 1.5 8.2 15.9
NaCl 2.9 6.0 25.0
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Figure 5.9: The calculated binding curves of Ge bulk employing DFT functionals (LDA,
PBE, and HSE06) and DFT+vdW approaches (PBE+vdW and HSE06+vdW). The
experimental equilibrium lattice constant and cohesive energy are marked by dashed
lines, while the extrapolated experimental binding curve is shown as a purple solid
line.

considered. The cohesive properties of those solids are tabulated in Table 5.4,
using PBE and HSE06 functionals, together with DFT+vdW on top of the two
functionals. For the three solids, PBE yields large deviations from experiment,
in particular for NaCl, in which the relative errors are found to be 2.3%, 6%,
and 18% in the lattice constant, the cohesive energy, and the bulk modulus,
respectively. Although HSE06 predicts better lattice constants and bulk moduli
than PBE, this is not the case for cohesive energies. When the vdW energy
is added on top of PBE and HSE06, it is found that all the properties are
significantly improved with respect to pure PBE or HSE06. The vdW energy
contributes around 0.2 eV/atom to the cohesive energy and 9–16 GPa to the
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bulk modulus for GaAs, NaCl, and MgO.

Table 5.4: Calculated cohesive properties of MgO, GaAs, and NaCl: lattice constants a0
(Å), cohesive energies E0 (eV/atom), and bulk moduli B0 (GPa). The quasi-harmonic
zero-point energy is calculated using the PBE phonon spectrum for every functional.

a0 E0 B0

MgO PBE 4.271 −4.91 145
HSE06 4.223 −4.83 161
PBE+vdW 4.241 −5.09 160
HSE06+vdW 4.203 −5.00 177
Expt. 4.207 −5.12 169

GaAs PBE 5.755 −3.12 59
HSE06 5.693 −3.12 71
PBE+vdW 5.669 −3.39 71
HSE06+vdW 5.631 −3.39 83
Expt. 5.648 −3.31 76

NaCl PBE 5.723 −3.07 23
HSE06 5.689 −3.07 23
PBE+vdW 5.562 −3.27 30
HSE06+vdW 5.543 −3.27 32
Expt. 5.595 −3.31 28

5.4 SUMMARY

In this chapter, a combined DFT/TDDFT approach was presented for
computing the polarizability and C6 dispersion coefficients for “atoms-in-
solids”. We obtained accurate vdW coefficients in ionic and semiconductor
solids using TDDFT optical-absorption spectra and the Clausius-Mossotti
relation for linking the dielectric function to the polarizability. In combination
with the cluster extrapolation model as well as available experimental data,
we showed that local-field effects are of great importance in the accurate
treatment of polarization, and that the CM relation is a good approximation
for computing the polarizability and C6 dispersion coefficients for atoms in
semiconductors.

When the long-range vdW energy is included, the DFT+vdW method
leads to an improvement of the cohesive properties of ionic (NaCl, MgO)
and semiconductor (Si, Ge, and GaAs) solids. Note that a well-known
tendency found for most GGAs and hybrid functionals is that they consistently
underestimate cohesive energies and bulk moduli, and overestimate lattice
constants for a wide variety of semiconductors, ionic solids, and metals (as
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illustrated in Chapter 4). We thus conclude that our findings about the
importance of the long-range vdW energy are very likely to be valid beyond the
benchmark semiconductors and ionic solids presented in this chapter. Given
that this combined DFT/TDDFT approach is computationally demanding (due
to the calculation of response function in the reciprocal space), our further aim
is to develop an accurate and efficient DFT-based method that can compute
reliable vdW energies for a wide variety of materials. This can be achieved
from a direct evaluation of the polarizability and C6 dispersion coefficients by
combining the TS method with classical electrodynamics, which is the subject
of the next chapter.





6 DFT+VDW APPROACH INCLUDING

ELECTRODYNAMIC RESPONSE FOR

NON-METALLIC SOLIDS

This chapter describes the methodology for computing the long-range van
der Waals (vdW) energy with the inclusion of the electrodynamic response
and coupling it with standard density-functional theory (DFT) calculations.
As introduced in Section 3.4.3, the Tkatchenko/Scheffler (TS) [22] method
computes the vdW energy from the ground-state electron density, and it is
presently among the best choices for the study of vdW interactions in molecular
systems. However, TS lacks the description of the long-range electrodynamic
response, which becomes crucial for large systems. An extension of the TS
approach to solids is proposed by including electrodynamic response effects
in the effective atomic polarizabilities obtained from TS. A brief discussion of
implementation details will be given at the end of this chapter.

6.1 THE POINT-DIPOLE MODEL

When atoms interact in a molecule or a solid, dipolar fluctuations of the system
will differ from those of free atoms, as the “embedded” atom is influenced by
interactions not only with its local environment, but also with more distant
fluctuating dipoles. Therefore an accurate calculation of the polarizability
requires consideration of both short- and long-range effects. This can be
achieved through modeling the environment as a dipole field of quantum
harmonic oscillators and solving the classical electrodynamics self-consistent
screening (SCS) equations. The point-dipole model will be introduced as a
starting point and a more general model will be presented afterwards.

111
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The point-dipole model is one of the simplest choices to treat the polarization
of extended systems [274–280]. In this model, a molecule (or a solid) is
considered as an arrangement of N atoms, each of which is described by a
polarizable dipole. According to classical electrodynamics, the polarization
density (dipole moment per unit volume) in such a system satisfies the equation

P(r) = α(r)E + α(r)
∫

T(r − r′)P(r′)dr′, (6.1)

where E is the constant applied electric field, α is the local polarizability tensor,
and T is the dipole-dipole interaction tensor (propagator). Explicitly, for a
molecule, the induced dipole moment µi at atom i is given in terms of the
applied electric field Ei by

µi = αi[Ei +

N∑
i6=j

Tijµj ], (6.2)

where αi is the atomic polarizability tensor of atom i. The dipole field tensor,
Tij , has the following expression

Tij = ∇ri ⊗∇rjV (rij), (6.3)

where V (rij) is the Coulomb potential for a system of point charges at the
distance rij between atoms i and j, with ri and rj representing the atomic
positions. To compute the polarizability, it is convenient to rearrange Eq. (6.2)
into a single matrix equation, in the abbreviated notation

Aµ = E, (6.4)

where A is a 3N × 3N matrix containing the inverse of atomic polarizability
tensors along the 3× 3 diagonals, while non-diagonal components correspond
to coupled dipole interaction tensors. The inversion of A produces the matrix
B and the induced dipole moment can be rewritten as

µ = BE, (6.5)

with
B = A−1 =

(
α−1 +

∑
T
)−1

. (6.6)

With the above formulation, solving Eq. (6.2) will give rise to the polarizability
tensor that contains all the interactions with other atoms of the system. For a
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molecule, the molecular polarizability is just the response to an uniform field,
becoming a sum over all 3× 3 submatrices Bij

µmol =

 N∑
i

N∑
j

Bij

E = αmolE, (6.7)

which after contraction yields a 3× 3 matrix corresponding to the polarizability
tensor. Finally, the averaged molecular polarizability can be determined by
diagonalizing αmol to obtain the three principal components and taking the
trace.

The point-dipole approximation in Eq. (6.2) is exact for treating the induced
dipole moment at large interacting distances. However, it is well-known that
this approach leads to infinite molecular polarizability due to the divergence of
the dipole interaction tensor Tij as the interatomic distance rij is decreased. In
reality, atoms should be characterized by dipole-density distributions that lead
to finite molecular polarizabilities. This more realistic situation can be described
by a collection of quantum harmonic oscillators (QHOs).

6.2 COUPLED QUANTUM HARMONIC OSCILLATORS

There have been a number of modified point-dipole models that aim at
simulating the damping effect mentioned above, by changing either the dipole
field tensor [278] or the polarizability tensor [281]. The idea of the method
presented here is to extend the description of point-polarizable dipoles to model
a dipole field of quantum harmonic oscillators extended in space and described
by dipole-density distributions. The difference between the current approach
and the ones proposed in the literature is that by construction our method can
naturally avoid the singularity of the polarizability at short distances, and that
all the ingredients needed in our method are determined using the electron
density from self-consistent electronic structure calculations. The formulation
presented here is mainly based on the recent study in our group [20], together
with the earlier work of Mayer [279, 280].

Rewriting Eq. (6.3), one finds

Tij = ∇ri ⊗∇rjV (rij) = (r2ijI − 3rij ⊗ rij)/r5ij , (6.8)

where rij is the distance between atoms i and j, rij ⊗ rij represents the position
tensor product with 3×3 Cartesian components connecting atom i to j, and I is
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the identify matrix. Clearly, the Coulomb potential V (rij) diverges as rij → 0,
and so does Tij .

The problem can be solved via renormalization of the tensor expression.
If one considers the dipole field modeled as a collection of QHOs, each
of which is represented as a Gaussian distribution of the form n(r) =(
π3/2R3

)−1
exp

[
−r2/(2σ)2

]
(with σ the width of the distribution), the interac-

tion between two atoms is then replaced by two Gaussian distributions rather
than two point dipoles. The Gaussian distribution is taken to renormalize
the tensors, given by erf[rij/σij ]/rij , where σij =

√
σ2i + σ2j is an effective

width related to the Gaussian widths of interacting atoms i and j. As a result,
the Coulomb potential has a renormalized form of W (rij) = erf[rij/σij ]/rij ,
damped at short distances. The dipole propagator Tij is then given by

Tij = ∇ri ⊗∇rjW (rij) =
3rij ⊗ rij − r2ijI

r5ij

erf ( rij
σij

)
− 2√

π

rij
σij

e
−
(

rij
σij

)2


− 4√
π

1

(σij)
3

rij ⊗ rij
r2ij

e
−
(

rij
σij

)2

.

(6.9)

The width σij of the Gaussian function is derived from the dipole self-energy,
i.e., the zero-distance limit of the classical dipole-dipole interaction for a given
frequency of the electric field: −1

2 limrij→0piTijpi = 1
2pi[(

√
2/π/3σij

3)I]pi.

Under the condition Tii = −α−1
i , one can further write the isotropic atomic

polarizability in terms of the Gaussian width

αiso = 3

√
π

2
(σij)

3 . (6.10)

Based on the above model, the divergence of dipole-dipole interactions
is eliminated. Note that Eq. (6.10) is important from a theoretical point of
view: it relates the Gaussian width to the atomic polarizability that is solely
influenced by local environment effects, thus providing an efficient way to
estimate other related properties of atoms. Therefore we stress that the coupled
QHOs require hybridized polarizabilities as an input, which ensures that
the short-range hybridization/overlap effects are accounted for. This can be
achieved by making use of the TS method introduced in Section 3.4.3 and the
implementation is the topic of the next section.
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6.3 IMPLEMENTATION DETAILS

As introduced in the previous section, we now have a method for computing
polarizability for a system of coupled QHOs. One can further write the
polarizability tensor based on the SCS equation (Eq. 6.2) as

αSCS
i (r, iω) = α0

i (r, iω) + α0
i (r, iω)

N∑
i6=j

Tijα
SCS
j (r′, iω). (6.11)

where αSCS
i (r, iω) is the fully screened atomic polarizability tensor (for a given

frequency of the electric field) that we wish to obtain through solving the SCS
equation, and α0

i is defined as an input tensor.

The scheme proposed here is to take α0
i from the TS method, i.e., α0

i = αTS
i ,

and proceed with the SCS step via the above equation, such that both the short-
range hybridization captured by TS and the electrodynamic screening captured
by SCS, are taken into account accurately and efficiently [20].

If one considers Eq. (6.4) for a molecule of N atoms, the matrix A reads

A =


α−1
1 T12 ... T1N

T21 α−1
2 ... T2N

... ... ... ...

TN1 TN2 ... α−1
N

 , (6.12)

where αi represents the polarizability tensor of atom i, taken as αTS
i with its

isotropic value on the diagonal, and Tij is the dipole tensor connecting atoms i
and j (i, j = 1, 2, . . . , N), as expressed in Eq. (6.9). Note that both α and Tij are
3× 3 matrices.

For a periodic system, due to periodic boundary conditions, a given atom not
only interacts with the neighboring atoms in the same unit cell, but also those
from its image cells. Thus Eq. (6.12) becomes

A =


α−1
1 +

∑
T11′ T12 +

∑
T12′ ... T1N +

∑
T1N ′

T21 +
∑

T21
′ α−1

2 +
∑

T22
′ ... T2N +

∑
T2N

′

... ... ... ...

TN1 +
∑

TN1
′ TN2 +

∑
TN2

′ ... α−1
N +

∑
TNN

′

 , (6.13)

where i
′

and j
′

denote the atoms from the image cell (i
′
, j

′
= 1

′
, 2

′
, . . . , N

′
). The

interactions of an atom with its own images are contained in the diagonals and
those with the images of other atoms are located in the non-diagonal parts. The
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B matrix is defined as the inversion of A. After diagonalization, one can obtain
the three principle components of the total polarization matrix for a molecule
or a crystal, and the average value corresponds to the average of the trace, as
given by

αSCS = (αxx + αyy + αzz)/3. (6.14)

Each atom i is characterized by its position ri = {xi, yi, zi}. In principle,
to implement the above procedure, one needs only the element name and its
coordinates as the input, such that the effective polarizability αTS

i obtained from
the TS approach can be utilized.

To obtain the C6 dispersion coefficient, frequency-dependent dipolar polar-
izability calculations must be carried out. In this thesis, the Gauss-Legendre
integral approach was taken, and a converged integral can be obtained by
using 20 frequencies. The resulting polarizability αSCS(iω) now contain both
short-range (via the TS approach) and electrodynamic (via the SCS equation)
screening.

So far, the proposed DFT+vdWTS+SCS methodology has been introduced. To
assess the accuracy and applicability of this method, calculations are performed
for a wide variety of semiconductors, as described in the next chapter.



7 THE ROLE OF VDW FORCES IN THE

COHESIVE PROPERTIES OF 23
SEMICONDUCTORS

In this chapter, the validity of the DFT+vdWTS+SCS method introduced in
Chapter 6 will be assessed in comparison with time-dependent density-
functional theory benchmark data for the vdW parameters (the polarizability
and C6 dispersion coefficients) of C, Si, and Ge. Then, the broad applicability of
this approach will be demonstrated for 20 binary semiconductors. Thereafter,
the influence of the vdW energy on the cohesive properties will be carefully
discussed for all 23 solids.

7.1 VERIFICATION OF THE DFT+VDWTS+SCS METHOD

FOR THE VDW PARAMETERS OF C, SI, AND GE

As introduced in previous chapters, the key quantities in the study of van
der Waals (vdW) interactions are the dispersion coefficients. The required
ingredient to compute the C6 dispersion coefficient is the dynamic dipolar
polarizability at imaginary frequencies α(iω), which is used in the Casimir-
Polder integral. One possibility is to directly model the polarizability from
microscopic theory of polarization (see Chapter 6). An alternative way is to first
obtain the macroscopic dielectric function εM(ω) theoretically or experimentally
and then use the connection between the polarizability and the dielectric
function based upon the Clausius-Mossotti (CM) relation for finite-gap systems.

Obtaining accurate vdW parameters, including the polarizability and C6

dispersion coefficients, is a very demanding task for atoms in solids both
experimentally and theoretically. This explains the fact that reliable data are still
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lacking for practical calculations of vdW energies in condensed-matter systems,
which motivated a part of the current thesis. Aiming at accurately yet efficiently
treating vdW interactions in solids, we proposed a DFT-based vdW approach
in the previous chapter, termed as DFT+vdWTS+SCS.1 To assess this approach,
we shall first apply it to simple semiconductors, and then extend to binary
semiconductors. We will use the available experimental data to validate the
method developed here.

7.1.1 EXPERIMENTAL POLARIZABILITIES FROM THE SINGLE OSCILLATOR

MODEL

In addition to the two approaches discussed in Chapters 5 and 6, we have
computed the polarizability and C6 dispersion coefficients using experimental
refractive-index data based on the single oscillator (SO) approximation. It is
worthy of mentioning again that there is very limited experimental knowledge
about the vdW parameters for solids; thus the comparison between theory
and experiment is important. To the best of our knowledge, the SO model,
having been applied to more than 100 different types of condensed-matter
systems, is the only available experimental source of data that can be used to
obtain the polarizabilities for a wide range of solids. In this method, a simple
connection between the refractive index n(ω) and two SO parameters (E0 and
Ed) is introduced as

n2(ω)− 1 =
EdE0

E2
0 − ω2

, (7.1)

where ω is the photon energy, E0 is the single oscillator energy, and Ed is
the dispersion energy, which is a measure of the strength of interband optical
transitions [220].2 Note that the SO parameters have fundamental physical
significance: E0 can be considered as an “effective” energy gap related to the
direct band gap, and Ed is an interband strength parameter, which is closely
related to the chemical-bonding nature of the material. It is clear that the
performance of the SO model relies greatly upon the accuracy of experimental
optical spectra. In reality, reliable optical-spectrum measurement is a difficult
task, as a large enough spectral energy range must be measured, which is rarely
done.
1Note that “DFT+vdW” is a concept that computes vdW parameters and then includes the
resulting long-range vdW energy to the standard DFT energy within LDA, GGAs, etc. (e.g.,
with the PBE functional, PBE+vdW). The superscript of “DFT+vdW” is used to specify a given
method for computing vdW parameters, unless otherwise stated.
2Experimental verification of the single oscillator approximation can be seen by plotting
1/(n2 − 1) versus ω2, with a linear relation being found for all materials studied in a reasonable
range [220].
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In the following, the vdW parameters for the three model systems (C, Si,
and Ge) will be discussed using four different methods, among which the TD-
HSE results are taken as the reference for the polarizabilities and C6 dispersion
coefficients, as explained in Chapter 5.

7.1.2 VDW PARAMETERS AT THE EQUILIBRIUM LATTICE CONSTANT

To assess the proposed DFT+vdW approach, four schemes were employed for
obtaining the vdW parameters, namely TD-HSE, SO, TS, and TS+SCS. For the
SO method, the dielectric function is obtained via Eq. (7.1) using the reported
SO parameters (see Table D.2) for each solid. The four schemes are summarized
below:

• TD-HSE: obtains the dielectric function from TDDFT calculations and
uses the CM relation (see Chapter 5)

• SO: obtains the dielectric function from experimental refractive-index
data and uses the CM relation (see Section 7.1)

• TS: directly computes the polarizability from the DFT electron density (see
Section 3.4.3)

• TS+SCS: uses the effective atomic polarizability from the TS method
and solves the classical electrodynamics self-consistent screening (SCS)
equations (see Chapter 6)

Table 7.1: Calculated static polarizabilities (bohr3/unit cell) of C, Si, and Ge.
Four approaches are employed: TD-HSE, the single oscillator (SO) model using
experimental optical spectra, the Tkatchenko/Scheffler (TS) method, and TS coupled
with self-consistent screening equations (TS+SCS). All data are calculated at the
experimental volumes.

TD-HSE SO TS TS+SCS
C 11.1 11.0 21.8 14.1
Si 50.0 50.8 69.6 47.7
Ge 60.6 60.7 77.9 53.6

The calculated static polarizabilities are tabulated in Table 7.1 for C, Si,
and Ge using the four approaches, and the corresponding curves are plotted
in Fig. 7.1, together with the C6 dispersion coefficients on the right-hand
side. The TDDFT calculations are considered as the reference. It can be seen
that there is excellent agreement between the SO and the TD-HSE results for
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the static polarizabilities of all the three solids. However, the SO approach
leads to noticeable underestimation of C6 coefficients when compared with
the TD-HSE values. This may be attributed to the integrated nature of the
dispersion coefficient, requiring a large enough spectral range in experimental
measurements, which is rarely available in practice.

Turning to the two DFT-based methods, there is a large reduction in both the
polarizability and C6 dispersion coefficients upon using the TS+SCS approach
when compared with TS. Upon the inclusion of electrodynamic screening in
TS+SCS, better agreement with the TD-HSE results is found for the diamond-
type solids, as depicted in Fig. 7.1. For C and Si, the TS+SCS and TD-HSE
values are in excellent agreement, whereas an underestimation (12% with
respect to the TD-HSE value) is observed for Ge using the TS+SCS model. As
described in Chapter 6, TS+SCS is based on mapping the system onto the atom-
centered quantum harmonic oscillator (QHO), and thus is only valid for non-
metallic systems. This may account for the deviation seen in the low band-gap
semiconductor, such as Ge.
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Figure 7.1: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) of C, Si, and Ge using the TD-HSE, SO, TS, and TS+SCS approaches. All
data are calculated at the experimental volumes.

7.1.3 DEPENDENCE OF VDW PARAMETERS ON THE LATTICE CONSTANT

The dependence of the polarizability and C6 dispersion coefficients on the unit-
cell volume has been demonstrated in Chapter 5, and capturing this behavior
is necessary for an accurate treatment of cohesive properties of solids. The
calculated polarizabilities and C6 coefficients are plotted as functions of the
lattice constants of C, Si, and Ge in Figs. 7.2 – 7.4, respectively. Five methods
are compared: TD-HSE and TD-LDA using the CM relation, TD-LDA from
the cluster extrapolation (CE) model, TS, and TS+SCS. The numerical results
of the static polarizabilities and the C6 coefficients (e.g., using the TD-HSE and
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TS+SCS methods) are presented in Tables D.3 and D.4, respectively.

It is found that both the polarizability and C6 dispersion coefficients increase
with increasing lattice constant (except when using TS), showing a linear
dependence over the studied volume range. The same conclusion holds for the
other four methods used for the three solids. Here we emphasize that the TD-
HSE values are considered as reference data. Comparing TS with TD-HSE, one
finds that TS considerably overestimates the polarizabilities and C6 coefficients.
Apart from giving too large values for the vdW parameters, the TS approach
cannot reproduce their volume dependence. A comparison of TS+SCS with
TD-HSE shows good agreement between them for the three model systems. In
contrast to the TS scheme, TS+SCS improves the agreement with TD-HSE by
more than a factor of two. Thus it can be concluded that the electrodynamic
screening, which is missing in the original TS method, has an important impact
on vdW parameters, and an accurate treatment of vdW interactions requires
the inclusion of both short- and long-range environment effects. It should
be mentioned that an increase in the lattice constant results in an increased
deviation of the vdW parameters obtained using TS+SCS from the TD-HSE
reference data, in particular for Si and Ge, as can be seen in Figs 7.3 and 7.4. This
can be ascribed to the fact that the band gap decreases with increasing lattice
constant. Accordingly, when the system becomes metallic at sufficiently large
unit-cell volume, the TS+SCS model based upon coupled QHO is no longer
valid.

3.3 3.4 3.5 3.6 3.7
Lattice constant (Å)

5

10

15

α C
 (

bo
hr

3 )

TD-LDA, CE
TD-LDA, CM
TD-HSE, CM
TS+SCS
TS

3.3 3.4 3.5 3.6 3.7
Lattice constant (Å)

10

15

20

25

30

35

40

45

50

55

C
6C

C
 (

ha
rt

re
e 

bo
hr6 )

TD-LDA, CE
TD-LDA, CM
TD-HSE, CM
TS+SCS
TS

Figure 7.2: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) per atom as a function of the lattice constant of diamond using five
methods: TD-HSE and TD-LDA using the Clausius-Mossotti (CM) relation, TD-LDA
using the cluster extrapolation (CE) model, TS, and TS+SCS.
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Figure 7.3: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) per atom as a function of the lattice constant of silicon.
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Figure 7.4: Calculated static polarizabilities (left panel) and C6 dispersion coefficients
(right panel) per atom as a function of the lattice constant of germanium. The
experimental data are taken from Ref. [267] by Cardona and co-authors.

7.1.4 SCREENED VDW ENERGY

Having assessed reliable vdW parameters, we can now compute the vdW
energy using the DFT+vdW method introduced in Section 3.4.3. In this
framework, the vdW energy is computed by summing over all the pair-wise
interactions via C6R

−6 terms, and then is added to the DFT energy. It should be
noted again that in this context “DFT” denotes the specific exchange-correlation
(XC) functional employed in a DFT calculation (e.g., the PBE functional,
corresponding to “PBE+vdW”), and the superscript of “DFT+vdW” specifies
the method for computing vdW parameters. The present DFT calculations
were performed using the PBE functional [94], implemented in the FHI-aims
all-electron package [21]. The zero-point vibrational energy (ZPVE) was added
to the ground-state energy at each volume within the harmonic approximation,
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as it can affect the cohesion of solids.3

Table C.8 summarizes the cohesive properties (lattice constants, cohe-
sive energies, and bulk moduli) of C, Si, and Ge determined from the
Birch-Murnaghan equation of state fits, employing PBE, PBE+vdWTS, and
PBE+vdWTS+SCS, together with experimental values. As already shown in
Chapter 5, the cohesive properties of the three solids are consistently better
predicted with the inclusion of the vdW energy on top of the PBE energy,
using the C6 dispersion coefficients computed from the combined DFT/TDDFT
approach. Turning to the two DFT+vdW methods, in which the vdW
parameters are determined from either the TS+SCS or the TS schemes, the
contributions of the vdW energies to the cohesive properties are tabulated in
Table 7.2 and depicted in Fig. 7.5. It can be seen that the vdW contribution

Table 7.2: The vdW contribution to the cohesive properties of C, Si, and Ge using
the two DFT+vdW methods, TS and TS+SCS coupled with the PBE functional: lattice
constants a0 (Å), cohesive energies E0 (eV/unit cell), and bulk moduli B0 (GPa). The
numbers in parentheses are the corresponding absolute relative values with respect to
experiment (%).

a0 E0 B0

TS+SCS TS TS+SCS TS TS+SCS TS
C 0.008 0.019 −0.182 −0.199 4.57 7.56

(0.24) (0.54) (2.47) (2.71) (1.03) (1.71)
Si 0.042 0.024 −0.285 −0.278 6.05 1.71

(0.77) (0.43) (6.16) (6.01) (6.10) (1.72)
Ge 0.060 0.030 −0.262 −0.287 7.02 5.63

(1.07) (0.53) (6.77) (7.42) (9.11) (7.31)

increases from C to Ge when using the PBE+vdWTS+SCS method for all the
properties studied here: 0.2%, 0.8%, and 1.1% to the lattice constants; 2.5%,
6.2%, and 6.8% to the cohesive energies; and 1.0%, 6.1%, and 9.1% to the bulk
moduli, respectively. This is consistent with the TD-HSE results shown on the
left-hand side of Fig. 7.5, though an underestimation (with respect to the TD-
HSE value) of the vdW energy is observed for Ge using TS+SCS. This is most
likely due to the semi-metallic nature of Ge, as discussed before. The increasing
contribution of vdW interactions can be explained by the fact that the solids
become more polarizable in the sequence of C-Si-Ge. In contrast, this feature
of vdW interactions cannot be correctly reproduced using the TS method.
Firstly, due to the lack of the long-range screening, the volume-dependence

3The reader is redirected to Section 4.3 for a detailed discussion of the influence of ZPVE upon
cohesive properties of solids.
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is not captured in the TS approach for the polarizability and C6 dispersion
coefficients. Secondly, the vdW radius (through the damping function that
decays exponentially with separation) affects the vdW energy even more than
the C6 dispersion coefficients. Thus care needs to be taken in obtaining both
screened C6 and vdW radius. Our study suggests the TS+SCS method can
accurately treat both short- and long-range environment effects. So far, it has
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Figure 7.5: The vdW contribution to the cohesive properties (lattice constants a0,
cohesive energies E0, and bulk moduli B0) of C, Si, and Ge using the PBE+vdWTS+SCS

and PBE+vdWTS methods. The corresponding PBE+vdWTD-HSE results are shown on
the right-hand side.

been verified that the DFT+vdWTS+SCS approach is an efficient yet accurate way
to deal with long-range vdW interactions in diamond-type solids, with low
computational cost and reasonable accuracy. Screening effects are shown to
play a very important role in studying vdW interactions in solids. The focus of
the next section is to illustrate this by applying the DFT+vdWTS+SCS method to
binary compounds.

7.2 VDW INTERACTIONS IN BINARY SEMICONDUCTORS

As presented in Chapter 4, for some of zincblende semiconductors, local
and semi-local density functionals can yield significant deviations in the
cohesive properties from experimental data. In the zincblende structure, the
arrangement of atoms is the same as the diamond structure, but with two
different elements at the lattice sites. This ensures that all the approximations
(e.g., cubic symmetry and finite gap) used for treating C, Si, and Ge remain
valid for this class of solids as well. Therefore these binary compounds
can be considered as probes for examining the applicability of the proposed
DFT+vdWTS+SCS approach for a variety of solids with increasing complexity.
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7.2.1 IIIA–VA COMPOUNDS

We have chosen 13 semiconductors from the IIIA–VA group: BN, BP, BAs, AlP,
AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, and InSb. The experimental
cohesive properties of the above solids are plotted in Fig. 7.6, showing the
inverse correlation of the lattice constants with the bulk moduli (left panel) as
well as the cohesive energies (right panel).
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Figure 7.6: The experimental lattice constant a0 as a function of the bulk
modulus B0 (left panel) and the cohesive energy E0 (right panel) of the IIIA–VA group
semiconductors. Lines are drawn to guide the eye.

As already discussed in Chapter 4, the deviation of the calculated lattice
constants from experimental values increases with increasing nuclear mass,
and this trend is consistently reproduced by the PBE functional rather than the
LDA or M06-L functional. The same conclusion can be made for bulk moduli
and cohesive energies. In the previous section, it has been shown that for
diamond-type crystals the vdW contribution to the cohesion increases in the
order of C-Si-Ge. This, together with the fact that the errors in the cohesive
properties increase with system size when using the PBE functional, suggests
that the increased deviation is due to the more important role of long-range
vdW interactions for heavier semiconductors. To elucidate this, we compare the
polarizability and C6 dispersion coefficients obtained from the TS+SCS method
for the IIIA–VA group solids ordered by increasing mass, as depicted in Fig. 7.7.
It can be seen that both the polarizability and dispersion coefficients increase
along the column of the periodic table.

Furthermore, the volume dependence has been studied, as plotted in Fig. D.1,
with vdW energies computed using the volume-dependent vdW parameters
at each value of the lattice constant. The vdW contribution to the cohesive
energies, computed as the difference between PBE and PBE+vdWTS+SCS results,
is depicted in Fig. 7.8 with respect to the experimental data. It can be clearly
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seen that the vdW contribution increases with an increase in the mass, e.g.,
along the series BN-BP-BAs, AlP-AlAs-AlSb, GaN-GaP-GaAs-GaSb, as well as,
InP-InAs-InSb; the average contribution being about 7% of the experimental
cohesive energies .
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using the DFT+vdWTS+SCS method.

7.2.2 IIB–VIA COMPOUNDS

Six solids were studied in the IIB–VIA group: ZnS, ZnSe, ZnTe, CdS, CdSe,
and CdTe. The experimental cohesive properties of the above compounds are
plotted in Fig. 7.9: the lattice constant versus the bulk modulus as well as the
cohesive energy.

To have an overview of the performance of the proposed TS+SCS model
for the polarizability, we compare it with the SO model that is based upon
experimental information. In the present database, there are 10 solids for which
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Figure 7.9: The experimental lattice constant a0 as a function of the bulk
modulus B0 (left panel) and the cohesive energy E0 (right panel) of the IIB–VIA group
semiconductors. Lines are drawn to guide the eye.

the SO parameters are available from experimental refractive-index data [220].
The static polarizabilities and dispersion coefficients have been compared using
four approaches: the SO model, the DFT-based TS+SCS and TS methods,
together with the TD-HSE benchmark, which is only available for the diamond-
type solids and GaAs, as shown in Fig. 7.10. The TD-HSE values are accurate,
but have a high computational cost. The SO model yields a good prediction for
the static polarizability, however, C6 dispersion coefficients are underestimated
due to the limited spectral range of experimental measurements. The TS
approach is found to overestimate both the polarizability and dispersion
coefficients, in line with its neglect of the electrodynamic screening. Finally, the
TS+SCS method yields good results at a rather low computational cost: the vdW
parameters are considerably reduced with respect to the TS results (due to the
inclusion of the electrodynamic response), resulting in much better agreement
with the available TDDFT benchmark data. It is also important to mention that
all the above methods show similar trends for both the polarizability and C6

dispersion coefficients.
The polarizability and C6 dispersion coefficients obtained from the TS+SCS

method are compared for the IIB–VIA group solids in Fig. 7.11. As for the
IIIA–VA solids, an increase of the polarizability and C6 dispersion coefficients
is found along the same column of the periodic table, indicating that the
vdW energy increases with the unit-cell volume. The volume dependence
of the vdW parameters of the above compounds is shown in Fig. D.1. The
vdW contribution to the cohesive energies, i.e., the change between the PBE
and PBE+vdWTS+SCS results, is depicted in Fig. 7.12. The same conclusion
can be made as for the IIIA–VA group that the vdW contribution becomes
more important for heavy semiconductors. An average contribution of 8% is
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obtained with respect to experiment for IIB–VIA semiconductors.
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7.3 COHESIVE PROPERTIES WITH THE INCLUSION OF THE

VDW ENERGY

As already mentioned at the start of this chapter, (semi-)local XC functionals
yield large deviations for the cohesive properties of the presently studied
semiconductor solids. A plot of DFT versus experimental cohesive properties
is shown in Fig. 7.13, illustrating the performance of the three functionals
employed in this thesis, while the errors are summarized in Table 7.3.

In general, LDA underestimates lattice constants and overbinds in nearly
all cases, while PBE and M06-L show the opposite trend. LDA leads to the
best predictions of the lattice constants and the bulk moduli. The M06-L and
PBE functionals have similar statistical errors in the lattice constants, though
the former performs slightly better for light-mass solids but worse for heavy
ones. This is most likely due to a better description of middle-range correlation
and the lack of long-range correlation in the M06-L functional form [145, 146].
For the bulk moduli, the mean absolute relative errors (MAREs) are about
4%, 12%, and 16% for LDA, M06-L and PBE, respectively. Turning to the
cohesive energies, those evaluated using the LDA functional are dramatically
overestimated, with the MAE being 0.7 eV/atom or 19% of the experimental
value. Both PBE and M06-L, cure a large part of this error, with the MAEs of
0.2 eV or 5.8% and 0.1 eV or 2.6%, respectively.

Interestingly, a characteristic feature of the PBE functional is an increased
error with increasing lattice constant (or mass), as can be seen, e.g., along the
series AlP-AlAs-AlSb, GaN-GaP-GaAs-GaSb, as well as, InP-InAs-InSb. This
also applies to the bulk moduli and the cohesive energies.

Turning to the PBE+vdWTS+SCS method, the cohesive properties, obtained
from the fits to the Birch-Murnaghan equation of state, are summarized in
Tables C.9 to C.12 for the IIIA–VA group semiconductors and Table C.13 for
the IIB–VIA group. The PBE and PBE+vdWTS+SCS results are compared with
respect to experiment. The errors are summarized in Table 7.3.

Figure 7.14 shows the relative errors in the bulk moduli (left panel) and
the cohesive energies (right panel) versus those in the lattice constants for 23
semiconductor solids (including C, Si, SiC, and Ge), using the LDA, PBE, and
M06-L functionals, together with the PBE+vdW method. As can be clearly
seen in the plots, the inclusion of long-range vdW interactions systematically
improves the lattice constants, the cohesive energies, and the bulk moduli, in
better agreement with experiment. The MAREs are 0.7%, 3.2%, and 8.4% for the
lattice constants, cohesive energies, and bulk moduli, and the corresponding
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Figure 7.13: Calculated and experimental lattice constants a0, bulk moduli B0, and
cohesive energiesE0 of 23 semiconductors using the PBE, LDA, and M06-L functionals.

Table 7.3: Mean error (ME) and mean absolute error (MAE), in the lattice constants (a0,
Å), cohesive energies (E0, eV/atom), and bulk moduli (B0, GPa) of 23 semiconductor
solids. The mean relative error (MRE, %) and mean absolute relative error (MARE, %)
are given in parentheses, corresponding to the percentage with respect to the reported
experimental cohesive properties. All quantities include zero-point vibrational effects.

ME MAE
a0 E0 B0 a0 E0 B0

LDA −0.035 0.72 0.72 0.035 0.72 3.98
(−0.65) (19.09) (0.09) (0.65) (19.09) (4.09)

M06-L 0.096 −0.070 −9.01 0.098 0.09 9.39
(1.61) (−2.14) (−11.96) (1.65) (2.61) (12.25)

PBE 0.087 −0.14 −13.94 0.087 0.19 13.94
(1.52) (−4.95) (−15.50) (1.52) (5.81) (15.50)

PBE+vdWTS+SCS 0.042 0.09 −8.12 0.042 0.13 8.12
(0.73) (1.81) (−8.43) (0.73) (3.22) (8.43)

vdW contributions are 0.8%, 6.8%, and 7.1%, respectively. The improvement of
PBE+vdWTS+SCS over PBE for such a wide range of solids is noteworthy, as it
accounts for half of the error obtained from the PBE functional, demonstrating
the importance of long-range vdW interactions. While the PBE functional is
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Figure 7.14: Deviations of the bulk moduli B0 (left panel) and the cohesive energies
E0 (right panel) with those of the lattice constants a0 using the LDA, PBE, and M06-
L functionals, together with the PBE+vdWTS+SCS method. All quantities contain the
influence of zero-point vibration effects.

already one of the most widely used methods for solids due to its reasonable
accuracy for diverse properties, the accuracy of PBE greatly increases when
coupling with an accurate vdW method, such as the DFT+vdWTS+SCS approach.
The remaining deviations from experiment highlight the need for better
exchange functionals, reducing self-interaction errors.

7.4 SUMMARY

In this chapter, we have shown the role of vdW interactions in the co-
hesive properties for a database of 23 semiconductors by employing the
DFT+vdWTS+SCS method proposed in this thesis. Firstly, this method was
verified for diamond-type crystals, which are the model systems where accurate
reference data of polarizabilities and dispersion coefficients were taken from the
TDDFT calculations carried out using the HSE functional in Chapter 5. Four
approaches (namely TD-HSE, TS, TS+SCS, and SO) were used for calculating
polarizabilities and C6 coefficients of C, Si, and Ge, and it was shown that
the TS+SCS method outperforms the other three concerning accuracy and
computational cost: it yields good agreement with TD-HSE reference data
and requires negligible computational time compared with conventional DFT
calculations. A comparison between TS and TS+SCS tells us that the long-range
electrodynamic screening, which is accounted for in TS+SCS, has a significant
impact on the vdW coefficients for atoms in solids.

Furthermore, we demonstrated the applicability of the DFT+vdWTS+SCS
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method by extending it to binary zincblende semiconductors. The TS+SCS
method predicts the correct dependence of vdW parameters upon the unit-
cell volume, that is, polarizabilities and C6 coefficients increase with the
lattice constant. The vdW energies were computed using the vdW parameters
(obtained from TS+SCS) via the summation of pair-wise interactions, and
added on top of the DFT total energies carried out using the PBE functional.
For the 23 semiconductors, the averaged contributions of the vdW interactions
are found to be approximately 1% to lattice constants and 7% to both bulk
moduli and cohesive energies, which accounts for half of the error found for
PBE functional. It can be concluded that vdW interactions play an important
role in semiconductors and are crucial for an accurate treatment of the cohesion
in solids. The current study shows that the DFT+vdWTS+SCS approach proposed
here provides an accurate and efficient way for coupling vdW energies with
DFT calculations. The inclusion of long-range vdW interactions improves the
applicability of currently used semi-local density functionals, and thus should
improve their performance for a wide variety of applications.



8 CONCLUSIONS AND OUTLOOK

Cohesion is an intrinsic property of matter, the study of which has remained
a theoretical challenge for a long time. The lack of detailed understanding of
the role of van der Waals (vdW) interactions prevents us from developing a
completely satisfactory picture of cohesion in solids. In this doctoral thesis
several existing challenges for the accurate treatment of vdW interactions are
addressed by employing first-principles electronic-structure methods.

The work presented here aims at a deeper understanding of the importance
of long-range vdW interactions in the description of cohesion in non-metallic
bulk solids. The first challenge we encountered was exploring computational
tools that should be affordable for the calculation of complex solid-state
materials, and presently density-functional theory (DFT) represents the best
compromise between the accuracy and computational cost towards our goal.
Despite the fact that DFT lacks the long-range correlation tail in its (semi-)local
and hybrid exchange-correlation (XC) functionals, it offers an effective route for
including the long-range vdW energy on top of these functionals (yielding the
DFT+vdW method). Therefore part of my thesis was devoted to the assessment
of the widely used density functionals applied to solids for describing their
cohesion. Care has been taken to construct a database of a broad range of solids
with reliable experimental reference data as well as the inclusion of the nuclear
zero-point vibrational energy. The limitations of using local and semi-local XC
functionals for obtaining the cohesive properties (lattice constants, cohesive
energies, and bulk moduli) of bulk materials have been demonstrated from a
study of 64 non-molecular crystals, including semiconductors, ionic crystals,
metals, and transition metal carbides and nitrides. The calculations were
carried out using the full-potential all-electron FHI-aims package [21], and its
all-electron accuracy was shown for a broad range of systems. The capabilities
of approximate XC functionals for the prediction of cohesive properties were
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discussed on the first three rungs of “Jacob’s ladder” [90, 127], i.e., the LDA,
PBE GGA, and M06-L MGGA. Overall, these three functionals lack the long-
range electron correlation and thus do not simultaneously describe all three
cohesive properties well.

The central ingredients for studying the vdW interactions are the dispersion
coefficients, which requires the knowledge of the frequency-dependent polariz-
ability for atoms in materials. In practice, it can be obtained in two ways: the
first one consists in obtaining the dielectric function through the calculation (or
the measurement) of the optical spectrum of solids and utilizing the relation
between the macroscopic dielectric function and the microscopic polarizability.
The second way involves the direct evaluation of the polarizability from the
microscopic theory of polarization.

Time-dependent density-functional theory (TDDFT) calculations were per-
formed to obtain the optical spectra of six covalent and ionic solids (C,
Si, Ge, GaAs, NaCl, and MgO). By employing the Clausius-Mossotti (CM)
relation for these finite-gap systems, the frequency-dependent polarizability
was calculated, obtaining the benchmark data of C6 dispersion coefficients
and vdW energies. Together with an independent assessment using the
cluster extrapolation model, our study demonstrates that the CM relation is
a reasonably good approximation for linking the dielectric function and the
polarizability in semiconductor solids, an issue of long debate in the literature.
The inclusion of long-range vdW energies using the DFT+vdW scheme leads to
an overall improvement of the cohesive properties of ionic and semiconductor
solids. It was shown that vdW interactions have an especially large impact
on bulk moduli. Furthermore, the importance of including long-range vdW
interactions not only to those (semi-)local density functionals but also hybrid
functionals was illustrated using HSE06 (HSE06+vdW) for computing the
cohesive properties of the solids studied.

As most GGAs and hybrid functionals consistently yield underbinding for
a wide range of semiconductors, metals, and ionic crystals (see Chapter 4),
we thus conclude that our findings about the role of the long-range vdW
energy in cohesion are very likely to be valid for a variety of solids and other
properties, such as phase transition pressures. Further research then focused on
obtaining an accurate but more efficient (compared with TDDFT) method for
computing vdW interactions for non-metallic solids. We proposed a solution
based on computing the frequency-dependent polarizability and C6 dispersion
coefficients from classical electrodynamics model with quantum-mechanical
polarizabilities obtained from the Tkatchenko/Scheffler approach, yielding the
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so-called DFT+vdWTS+SCS method.

Finally, we applied the DFT+vdWTS+SCS method to a database of 23
semiconductors. The validity of this method was demonstrated by its good
agreement with TDDFT reference polarizability and C6 dispersion coefficients
for C, Si, and Ge solids. The comparison of TS+SCS vdW parameters with
TS ones underlines the importance of the electrodynamic screening in the
treatment of vdW interactions for bulk solids, and demonstrates that the
inclusion of both local and nonlocal environment effects for “atoms-in-solids”
enables us to capture the correct dependence of the vdW parameters on the unit-
cell volume. Furthermore, the transferability of the DFT+vdWTS+SCS method
was addressed by studying zincblende-structure binary semiconductors. Over
the whole database of 23 semiconductors, the average contribution of
long-range vdW interactions was found to be 1% to the lattice constants,
accompanied by 7% to both the bulk moduli and the cohesive energies.

The work presented here demonstrates the importance of developing
accurate methods for vdW interactions for understanding cohesive properties
of solids. It was shown that the importance of vdW interactions typically
increases for heavier solids and they should be included if one aims at an
accurate treatment of materials properties. This thesis enables us to conclude
that the lack of the long-range vdW interactions in the local, semi-local, and
hybrid functionals, is responsible for an important part of deviations found in
DFT calculations when applied to solids. For example, the PBE+vdW approach
yields a factor of two improvement in the cohesive properties of ionic and
semiconductor solids when compared with the standard PBE functional. We
stress that the computational cost of the DFT+vdW approach is the same as
that of a conventional DFT calculation, therefore this method can be used in a
wide variety of applications.

The results presented in the thesis represent a step towards a better
understanding of the cohesion in bulk solids. For developing an understanding
of complex materials, further studies should be focused on fundamental
properties of various functional materials, e.g., organic molecules and their
hybrid interfaces, nanoscale molecular complexes, and organic molecular
crystals. Here, we shall discuss some further necessary developments of the
DFT+vdW approach. Of particular interest are applications and extension
of the DFT+vdWTS+SCS method to ionic and metallic solids, which remains a
difficult challenge due to the need to use gradient information in the definition
of the polarizability. Secondly, we note that while the cohesive energies of
the 23-semiconductor database calculated using PBE+vdW are indeed in better
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agreement with experiment than pure PBE results, they are “overcorrected”,
with an average overestimation of 0.13 eV/atom or 3% in relative terms. Two
reasons can account for this deviation: the short- and mid-range interactions
covered by the PBE functional and the omission of the many-body energy
in the current theory. The first aspect can be improved by coupling the
DFT+vdWTS+SCS method to hybrid functionals (e.g., HSE06), which will be an
important next step for assessing our method. Concerning the second aspect,
despite the fact that many-body effects are likely to have a small impact on vdW
forces in cubic semiconductors, the inclusion of those effects (e.g., the repulsive
three-body non-additive terms [45, 46]) will certainly reduce the overbinding,
and thus may reproduce experimental cohesive energies better. Indeed, one
must include many-body vdW interactions in order to deal with more complex
compounds, such as non-cubic and molecular solids [20, 25]. Our final remark
is that the current theory is based on a model of interacting dipoles, while
shorter-range multipole-multipole interactions are ignored. Such effects may
play a role for certain systems (e.g., high-pressure phases of ice [282]), and need
to be addressed in the future.
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A STRUCTURAL DETAILS AND

CONVERGENCE TESTS

DFT total energy calculation:
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Figure A.1: Basis sets convergence of the calculated cohesive energy (eV/atom) for
diamond bulk using the PBE functional.

139



140 Structural details and convergence tests

3.4 3.5 3.6 3.7
Lattice constant (Å)

-7.7

-7.6

-7.5

C
oh

es
iv

e 
en

er
gy

 (
eV

/a
to

m
)

6 k-point grids
8 k-point grids
18 k-point grids

Figure A.2: k-point grids convergence of the calculated cohesive energy (eV/atom) for
bulk diamond using the PBE functional.

Phonon calculations:
For the phonon calculations with the finite-displacement approach, there is
one adjustable parameter: the finite displacement δ used to gather the force
response in all the Cartesian directions. The convergence of the zero-point
vibrational energy was achieved by varying the displacement (from 0.001 to
0.1 Å) via phonopy [253, 263] interface with the FHI-aims package [21]

Table A.1: The calculated zero-point vibrational energy versus finite displacement δ
used in the phonon calculations of bulk diamond.

δ (Å) 0.001 0.005 0.01 0.02 0.1
ZPVE (eV) 0.180816 0.180817 0.180812 0.180788 0.1812
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Figure A.3: The calculated zero-point vibrational energy (eV/atom) for diamond
crystal at the experimental lattice constant (3.567 Å) versus the k-point grids used in
the phonon calculations.
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Figure A.4: The calculated zero-point vibrational energy (eV/atom) for diamond
crystal at the experimental lattice constant (3.567 Å) versus different supercell size used
in the phonon calculations.





B OPTICAL SPECTRA

Computational details:
The optical spectra of the six ionic and semiconductor solids presented
in Chapter 5 were obtained using the Vienna ab initio simulation package
(VASP) [245, 246], employing time-dependent Kohn-Sham density-functional
theory in its linear-response formulation. For the calculations of C, Si, and
Ge, only outer valence s and p electrons were used for the self-consistent
field and excited-state calculations. The respective [He], [Ne], and [Ar]3d10

electrons were treated as core electrons and kept frozen in the configuration
determined as the PAW core potential. For the low band-gap case of Ge, the
importance of 3d electrons as valence electrons was carefully checked, and no
noticeable change was found in the spectra. Concerning the kinetic energy
cutoff, the default values of 414, 245.7, and 173.8 eV have been used for C, Si,
and Ge, respectively. Calculations using a 40 % higher cutoff did not affect the
quality of the spectra over the entire volume range, and thus confirms that the
convergence was reached. Gaussian smearing using a width of 0.05 eV was
used throughout this work. For the present calculations “shifted k meshes”
(e.g., as described in Ref. [231]) was employed to achieve k-point convergence,
and 12 conduction bands were used. TD-LDA calculations for C and Si used
32× 32× 32 k points; for Ge (with a smaller band-gap), a mesh of 56× 56× 56

k points was chosen in order to obtain sufficiently converged results. TD-
HSE+NQ calculations for C and Si employed the same mesh as used for TD-
LDA, while a reduced mesh of 40 × 40 × 40 k points were chosen for the
Ge TDHSE+NQ spectrum, due to the larger computational requirement for
setting up the nonlocal nanoquanta kernel. Turning to binary solids, frozen
[He] (for O), [Ne] (for Cl, Na, Mg) and [Ar]3d10 (for Ga, and As) core states
were employed. Similar to the diamond-type solids, 12 conduction bands and
a 32× 32× 32 k-point mesh were used for the excited state calculations of NaCl,
MgO, and GaAs. The plane-wave kinetic energy cutoffs for NaCl, MgO, and
GaAs were 350, 400, and 210 eV, respectively.
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Figure B.1: Optical-absorption spectra of Ge using TD-HSE (µ=0.3 Å−1) including
electron-hole interactions (full black line). The TD-LDA result is shown using the red
dashed line, and the experiment is shown by black dots (Ref. [243]).
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Figure B.2: Calculated static dielectric constants as a function of the lattice constant (Å)
of diamond from the TD-HSE and TD-LDA periodic calculations.
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Figure B.3: Calculated static dielectric constants as a function of the lattice constant (Å)
of silicon from the TD-HSE and TD-LDA periodic calculations.
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Figure B.4: Calculated static dielectric constants as a function of the lattice constant (Å)
of germanium from the TD-HSE and TD-LDA periodic calculations. The experimental
data are taken from Ref. [267] by Cardona and co-authors.
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Table B.1: Calculated atomic static polarizabilities (bohr3) as a function of lattice
constant a0 (Å) for C, Si, and Ge using the TD-HSE and TD-LDA approaches from
periodic and cluster calculations.

a0 TD-HSEa TD-LDAa TD-LDAb

C 3.471 5.06 5.21 4.64
3.506 5.22 5.38 4.78
3.542 5.41 5.56 4.94
3.578 5.60 5.76 5.10
3.614 5.79 5.96 5.27
3.650 5.99 6.16 5.43
3.685 6.19 6.37 5.59

Si 5.295 23.12 23.93 24.38
5.350 23.85 24.70 25.02
5.404 24.61 25.50 25.67
5.459 25.41 26.34 26.34
5.514 26.25 27.23 27.04
5.568 27.11 28.13 27.80
5.623 28.03 29.10 28.61

Ge 5.247 22.97 23.66 24.93
5.349 24.56 25.37 26.30
5.450 26.27 27.24 27.82
5.551 28.16 29.36 29.40
5.652 30.28 32.09 31.13
5.741 32.45 — 32.74
5.829 35.24 — 34.49

a Periodic calculation
b Cluster calculation
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Table B.2: Calculated atomic C6 coefficients (hartree·bohr6) as a function of lattice
constant (Å) for C, Si, and Ge using the TD-HSE and TD-LDA approaches from periodic
and cluster calculations.

a0 TD-HSEa TD-LDAa TD-LDAb

C 3.471 14.68 14.80 15.54
3.506 15.39 15.51 16.11
3.542 16.17 16.29 16.75
3.578 16.99 17.10 17.45
3.614 17.84 17.95 18.17
3.650 18.72 18.84 18.89
3.685 19.66 19.74 19.59

Si 5.295 148.84 152.95 161.00
5.350 155.96 160.41 167.25
5.404 163.31 168.09 173.54
5.459 171.18 176.25 180.10
5.514 179.45 184.79 186.97
5.568 187.99 193.61 194.38
5.623 197.16 203.13 202.39

Ge 5.247 154.70 159.16 177.21
5.349 169.92 175.46 190.70
5.450 186.45 192.73 205.78
5.551 204.55 211.61 221.35
5.652 224.49 231.89 238.31
5.741 243.63 — 254.19
5.829 263.88 — 271.26

a Periodic calculation
b Cluster calculation





C COHESIVE PROPERTIES

Relativistic effects on cohesive properties of heavy nuclear-mass solids:

Table C.1: The spin-orbit contributions to the lattice constants a0 (Å), the cohesive
energies E0 (eV/atom), and the bulk moduli B0 (GPa) of 11 metals (taken from
Ref. [261]), among which As, Sb, Bi, and Ce are not studied in this thesis.

Solids a0 E0 B0

Ca 0.00 0.00 0.00
Sr 0.00 0.00 0.00
Ba 0.00 −0.01 0.00
As 0.00 0.02 0.00
Sb 0.00 0.05 −5.00
Bi −0.10 0.51 1.00
Cu 0.00 0.00 0.00
Ag 0.00 −0.01 0.00
Au 0.03 −0.15 2.00
Ce −0.02 0.05 1.00
Th −0.01 0.12 1.00
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DFT calculations:

Table C.2: Equilibrium lattice constants (Å) of 24 metals. Zero-point vibrational
energies (ZPVE) were determined by calculating the phonon dispersion relation at a
set of volumes, marked as “Corr.”, and “Uncorr.” refers to the non-ZPVE-corrected
values. Experimental values with ZPVE are summarized in the last columns (at 0 K
unless noted otherwise).

Solid LDA PBE M06-L Expt.
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

Li 3.366 3.387 3.440 3.464 3.417 3.442 3.477
Na 4.052 4.067 4.199 4.215 4.036 4.053 4.225
K 5.043 5.055 5.285 5.301 4.911 4.929 5.225
Rb 5.376 5.385 5.670 5.677 5.246 5.254 5.585
Ca 5.336 5.346 5.527 5.538 5.384 5.392 5.565
Sr 5.789 5.795 6.020 6.028 5.881 5.887 6.048
Ba 4.758 4.760 5.020 5.024 5.016 5.019 5.007
Al 3.985 3.998 4.044 4.057 3.953 3.962 4.032
Pb 4.879 4.884 5.030 5.033 5.057 5.061 4.905
Fe 2.747 2.750 2.828 2.832 2.863 2.868 2.861
V 2.924 2.929 2.997 3.001 2.998 3.002 3.028

Mo 3.111 3.114 3.160 3.163 3.162 3.165 3.144
W 3.134 3.136 3.182 3.184 3.182 3.184 3.162
Nb 3.247 3.250 3.302 3.305 3.313 3.316 3.296
Ta 3.250 3.253 3.319 3.321 3.332 3.334 3.301
Ni 3.423 3.429 3.520 3.526 3.495 3.500 3.513
Cu 3.521 3.527 3.631 3.638 3.594 3.601 3.603
Rh 3.754 3.758 3.830 3.834 3.820 3.824 3.798
Ir 3.813 3.815 3.871 3.874 3.857 3.860 3.835
Pd 3.842 3.846 3.943 3.948 3.937 3.942 3.881
Pt 3.895 3.897 3.971 3.974 3.957 3.960 3.916
Au 4.054 4.058 4.159 4.164 4.157 4.162 4.065
Ag 4.004 4.009 4.149 4.156 4.153 4.160 4.069
Th 4.885 4.887 5.029 5.032 5.111 5.114 5.074

Li(20 K) [283], Na(5 K) [284], K(5 K) [284], Rb(5 K) [284], Ca [285], Sr [285],
Ba [285], Al [96, 97], Pb(5 K) [286, 287], Fe [98, 99], V [98, 99], Mo [98, 99], W
[98, 99], Nb [98, 99], Ta [98, 99], Ni(10 K) [287, 288], Cu [96, 97], Rh [96, 97],
Ir(5 K) [286], Pd [96, 97], Pt [98, 99], Au(5 K) [286], Ag [96, 97], Th [98, 99].
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Table C.3: Equilibrium lattice constants (Å) of 40 non-metallic solids.

Solid LDA PBE M06-L Expt.
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

LiF 3.913 3.944 4.066 4.104 3.973 4.008 4.010
LiCl 4.966 4.994 5.150 5.182 5.127 5.158 5.106
NaF 4.504 4.528 4.701 4.729 4.578 4.604 4.609
NaCl 5.469 5.491 5.699 5.722 5.579 5.603 5.595
MgO 4.164 4.180 4.257 4.274 4.203 4.219 4.207
MgS 5.139 5.153 5.237 5.252 5.189 5.202 5.202
TiC 4.261 4.271 4.332 4.343 4.311 4.321 4.330
ZrC 4.642 4.651 4.709 4.718 4.705 4.714 4.696
HfC 4.573 4.582 4.650 4.659 4.643 4.652 4.638
VC 4.088 4.099 4.154 4.166 4.119 4.131 4.160

NbC 4.427 4.434 4.484 4.493 4.461 4.469 4.470
TiN 4.172 4.182 4.246 4.257 4.248 4.259 4.239
ZrN 4.525 4.535 4.595 4.605 4.613 4.624 4.585
HfN 4.469 4.477 4.547 4.557 4.565 4.574 4.519
VN 4.042 4.051 4.115 4.127 4.111 4.123 4.135

NbN 4.356 4.362 4.421 4.428 4.425 4.432 4.379
C 3.532 3.545 3.572 3.585 3.551 3.564 3.567
Si 5.405 5.414 5.470 5.479 5.427 5.436 5.430
Ge 5.625 5.630 5.761 5.769 5.787 5.796 5.652
Sn 6.474 6.480 6.655 6.663 6.720 6.728 6.482

AlP 5.434 5.444 5.508 5.518 5.460 5.469 5.458
AlAs 5.630 5.637 5.731 5.738 5.711 5.717 5.652
AlSb 6.108 6.116 6.224 6.231 6.222 6.229 6.128
BN 3.582 3.595 3.625 3.639 3.601 3.615 3.607
BP 4.492 4.504 4.549 4.562 4.519 4.531 4.538

AsB 4.733 4.744 4.811 4.823 4.793 4.805 4.777
GaN 4.460 4.469 4.549 4.560 4.541 4.552 4.520
GaP 5.398 5.406 5.509 5.518 5.505 5.513 5.442

GaAs 5.607 5.612 5.748 5.755 5.772 5.779 5.641
GaSb 6.052 6.058 6.221 6.227 6.269 6.276 6.082
InP 5.828 5.835 5.964 5.973 5.958 5.967 5.861

InAs 6.027 6.033 6.192 6.198 6.232 6.238 6.036
InSb 6.451 6.454 6.643 6.651 6.698 6.705 6.469
SiC 4.330 4.341 4.381 4.392 4.334 4.345 4.358
ZnS 5.299 5.308 5.445 5.456 5.454 5.464 5.404
ZnSe 5.569 5.575 5.738 5.745 5.765 5.773 5.667
ZnTe 5.997 6.004 6.188 6.196 6.239 6.246 6.102
CdS 5.761 5.768 5.930 5.941 5.949 5.958 5.818
CdSe 6.011 6.017 6.197 6.203 6.248 6.254 6.050
CdTe 6.412 6.418 6.620 6.627 6.698 6.706 6.480

LiF [289], LiCl [289], NaF [289], NaCl [289], MgO [289], MgS [290], TiC [291],
ZrC [291], HfC [291], VC [291, 292], NbC [291], TiN [291], ZrN [291], HfN
[291], VN [293, 294], NbN [291, 295], C [80], Si [296], Ge [296], Sn [142], SiC
[142], AlP [297], AlAs [297], AlSb [297], BN [142], BP [142], BAs [298], GaN
[142], GaP [297], GaAs [297], GaSb [297], InP [297], InAs [297], InSb [297],
ZnS(4.2 K) [299], ZnSe [300], ZnTe [301], CdS [302], CdSe [302], CdTe [302]
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Table C.4: Equilibrium bulk moduli (GPa) of 24 metals

Solid LDA PBE M06-L Expt.
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

Li 15.2 14.2 14.0 13.4 13.2 12.6 12.8
Na 9.1 8.9 7.8 7.6 8.2 8.1 7.5

K 4.5 4.7 3.6 3.6 5.9 6.1 3.7
Rb 3.6 3.6 2.8 2.8 5.1 5.1 3.1
Ca 18.8 18.5 17.4 17.1 22.0 21.7 18.4
Sr 14.3 14.3 11.7 11.6 16.8 16.7 12.4
Ba 10.3 10.2 8.9 8.8 11.7 11.6 9.3
Al 83.7 81.3 77.5 75.9 116.1 114.9 79.4
Pb 53.7 52.6 40.6 40.1 39.7 39.1 48.8
Fe 252.1 252.7 189.8 185.0 158.4 152.2 173.0
V 209.1 207.0 179.6 177.9 191.3 188.8 157.0

Mo 293.0 290.2 260.5 257.9 270.0 267.4 265.3
W 335.9 334.3 300.8 299.2 316.5 315.0 314.2

Nb 195.2 192.4 172.8 170.6 176.6 174.6 174.0
Ta 211.9 210.5 190.2 189.3 199.6 198.8 194.2
Ni 256.7 251.6 198.6 195.6 217.8 214.9 187.6
Cu 187.3 184.1 140.4 137.8 158.9 156.2 142.3
Rh 317.8 315.0 257.5 254.6 265.8 262.8 268.7

Ir 403.4 400.8 347.2 344.6 368.8 366.2 383.0
Pd 226.9 224.2 169.0 166.6 168.0 165.5 195.0
Pt 307.4 305.3 249.1 246.9 260.5 258.3 277.0

Au 194.6 192.8 143.0 141.0 140.8 138.8 180.9
Ag 138.7 135.6 90.7 89.0 89.0 87.3 110.9
Th 63.3 63.8 54.5 54.4 54.5 54.4 58.0

Li [303], Na [304], K [305], Rb [306], Ca [285], Sr [285], Ba [285], Al [307], Pb
[308], Fe [309, 310], V [311], Mo [312], W [312], Nb [313–315], Ta [312], Ni
[309, 310], Cu [316, 317], Rh(4.2 K) [318], Ir [319], Pd [320], Pt [321, 322], Au
[317], Ag [317], Th [322, 323].
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Table C.5: Equilibrium bulk moduli (GPa) of 40 non-metallic solids

Solid LDA PBE M06-L Expt.
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

LiF 85.4 79.2 67.2 61.6 76.8 70.8 69.8
LiCl 40.8 39.7 31.9 30.0 33.4 31.5 35.4
NaF 61.7 58.8 45.1 42.4 53.1 50.2 51.4

NaCl 32.2 31.3 23.9 23.2 27.1 26.2 28.5
MgO 171.7 166.9 148.3 144.1 164.0 159.2 168.8
MgS 82.8 81.0 73.9 71.9 80.2 78.3 78.9
TiC 282.6 277.1 250.8 245.2 268.6 263.1 244.0
ZrC 246.6 242.5 222.0 218.1 230.0 226.2 225.5
HfC 260.2 255.2 233.7 230.8 246.7 243.8 242.7
VC 346.8 341.3 306.1 301.4 329.6 324.1 303.0

NbC 333.4 324.5 300.3 289.9 316.8 306.7 302.0
TiN 320.7 313.9 277.7 271.2 282.7 276.3 289.0
ZrN 283.7 277.8 249.4 244.1 244.9 240.0 215.0
HfN 301.7 296.1 262.8 256.5 260.9 254.6 306.0
VN 367.2 353.3 315.4 302.2 318.2 304.9 268.0

NbN 351.0 345.4 307.7 299.2 303.6 294.7 292.0
C 467.0 456.8 433.2 423.0 452.3 441.9 443.0
Si 96.2 94.6 88.9 87.7 98.3 96.8 99.2

Ge 72.4 70.2 59.0 56.9 58.3 56.5 75.8
Sn 44.9 43.8 35.8 35.3 34.9 34.5 53.0

AlP 89.4 87.4 81.9 80.9 90.1 88.5 86.0
AlAs 75.0 74.2 66.7 65.5 70.4 69.4 78.1
AlSb 56.0 55.8 49.2 49.5 51.7 51.9 59.3

BN 402.1 392.8 371.6 361.1 390.0 379.9 378.0
BP 175.2 171.5 161.6 158.0 169.6 166.0 173.0

AsB 146.6 143.8 130.9 127.8 133.8 130.9 148.0
GaN 201.6 197.7 171.8 167.6 178.9 172.9 200.0
GaP 89.1 87.4 76.1 74.9 80.5 79.5 88.7

GaAs 74.2 74.0 61.0 59.9 61.5 60.3 76.9
GaSb 55.5 55.1 43.5 44.0 44.5 42.9 56.3

InP 70.8 68.6 59.1 58.2 63.6 62.6 72.5
InAs 59.9 59.1 48.2 47.7 48.3 48.0 58.0
InSb 46.5 44.0 36.4 35.7 36.3 35.8 46.5
SiC 228.7 225.2 211.7 208.1 225.1 221.6 225.0
ZnS 86.4 84.6 69.6 68.5 74.0 73.1 77.2

ZnSe 71.5 71.4 56.8 55.6 58.2 57.3 64.7
ZnTe 55.4 54.9 43.4 43.2 43.1 42.8 52.8
CdS 68.0 64.3 53.6 52.9 57.7 56.7 64.3

CdSe 58.0 57.9 45.0 44.5 46.1 45.6 55.0
CdTe 46.2 48.2 35.3 34.6 35.2 34.8 44.5

LiF [324], LiCl [325], NaF [325], NaCl [326], MgO [327], MgS [290], TiC [328],
ZrC [328], HfC (296 K)[329, 330], VC [331], NbC [266], TiN [332], ZrN(300 K)
[295], HfN(300 K) [295], VN(300 K) [333], NbN(300 K) [295], C [96, 97], Si(77
K) [334], Ge(4.2 K) [335], Sn(90 K) [336, 337], SiC [338], AlP [289, 339], AlAs
[339, 340], AlSb [339, 340], BN [341], BP [342], BAs [298], GaN [289], GaP
[339, 340], GaAs [343], GaSb [339, 340], InP [339, 340], InAs [339, 340], InSb
[339, 340], ZnS [344], ZnSe [344], ZnTe [344], CdS [302], CdSe [302], CdTe
[344].
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Table C.6: Equilibrium cohesive energies (eV/atom) of 24 metals. The experimental
values are taken from Ref. [24] at 0 K.

Solid LDA PBE M06-L Expt.
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

Li −1.80 −1.76 −1.61 −1.57 −1.88 −1.85 −1.63
Na −1.25 −1.23 −1.09 −1.07 −1.45 −1.43 −1.11
K −1.03 −1.02 −0.88 −0.87 −1.34 −1.33 −0.93
Rb −0.94 −0.93 −0.79 −0.79 −1.31 −1.30 −0.85
Ca −2.20 −2.18 −1.91 −1.89 −2.50 −2.48 −1.84
Sr −1.89 −1.88 −1.62 −1.60 −2.24 −2.23 −1.72
Ba −2.20 −2.19 −1.83 −1.82 −2.40 −2.39 −1.90
Al −4.00 −3.96 −3.43 −3.39 −4.24 −4.20 −3.39
Pb −3.78 −3.77 −2.96 −2.95 −3.60 −3.59 −2.03
Fe −6.40 −6.35 −4.89 −4.82 −4.96 −4.92 −4.28
V −6.74 −6.71 −5.36 −5.32 −6.18 −6.15 −5.31

Mo −8.09 −8.05 −6.28 −6.25 −6.95 −6.92 −6.82
W −10.23 −10.19 −8.44 −8.41 −9.88 −9.85 −8.90
Nb −8.50 −8.47 −6.99 −6.97 −7.91 −7.88 −7.57
Ta −9.59 −9.56 −8.13 −8.11 −8.73 −8.71 −8.09
Ni −6.09 −6.05 −4.74 −4.70 −4.95 −4.91 −4.44
Cu −4.54 −4.51 −3.50 −3.47 −4.28 −4.24 −3.49
Rh −7.58 −7.55 −5.72 −5.68 −5.58 −5.55 −5.75
Ir −9.32 −9.29 −7.36 −7.33 −7.11 −7.08 −6.94
Pd −5.06 −5.02 −3.71 −3.68 −4.08 −4.05 −3.89
Pt −7.15 −7.12 −5.55 −5.53 −5.80 −5.78 −5.84
Au −4.38 −4.36 −3.10 −3.08 −3.61 −3.60 −3.81
Ag −3.63 −3.60 −2.51 −2.49 −3.17 −3.15 −2.95
Th −7.54 −7.53 −6.36 −6.35 −6.81 −6.80 −6.20
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Table C.7: Equilibrium cohesive energies (eV/atom) of 40 non-metallic solids

Solid LDA PBE M06-L Expt.
Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

LiF −4.92 −4.86 −4.32 −4.27 −4.53 −4.47 −4.40
LiCl −3.82 −3.78 −3.37 −3.33 −3.79 −3.75 −3.55
NaF −4.36 −4.31 −3.82 −3.78 −4.08 −4.04 −3.93
NaCl −3.48 −3.45 −3.10 −3.07 −3.59 −3.56 −3.33
MgO −5.80 −5.72 −4.95 −4.88 −5.23 −5.16 −5.12
MgS −4.31 −4.27 −3.68 −3.64 −4.06 −4.02 −4.00
TiC −8.63 −8.55 −7.40 −7.31 −7.79 −7.71 −7.16
ZrC −9.10 −9.03 −7.88 −7.81 −8.24 −8.17 −7.93
HfC −9.26 −9.19 −8.07 −8.00 −8.31 −8.25 −8.11
VC −8.34 −8.27 −7.04 −6.98 −7.32 −7.25 −6.94

NbC −9.34 −9.27 −7.95 −7.89 −8.26 −8.19 −8.26
TiN −8.29 −8.21 −6.99 −6.92 −7.26 −7.19 −6.69
ZrN −8.76 −8.70 −7.46 −7.40 −7.72 −7.66 −7.52
HfN −8.80 −8.74 −7.51 −7.46 −7.64 −7.58 −7.62
VN −7.63 −7.57 −6.28 −6.23 −6.38 −6.33 −6.25

NbN −8.52 −8.49 −7.07 −7.04 −7.24 −7.21 −7.50
C −8.94 −8.76 −7.72 −7.55 −7.48 −7.30 −7.37

SiC −7.40 −7.28 −6.40 −6.30 −6.44 −6.32 −6.36
Si −5.30 −5.23 −4.56 −4.50 −4.69 −4.63 −4.63
Ge −4.59 −4.55 −3.73 −3.69 −3.82 −3.79 −3.87
Sn −3.95 −3.93 −3.17 −3.14 −3.36 −3.34 −3.14

AlP −4.81 −4.75 −4.08 −4.03 −4.22 −4.16 −4.26
AlAs −4.46 −4.42 −3.67 −3.63 −3.81 −3.77 −3.78
AlSb −3.97 −3.94 −3.24 −3.20 −3.41 −3.38 −3.30
BN −8.05 −7.89 −6.94 −6.78 −6.76 −6.60 −6.60
BP −6.23 −6.13 −5.29 −5.19 −5.20 −5.09 −5.04

AsB −5.61 −5.53 −4.63 −4.55 −4.62 −4.54 −4.70
GaN −5.38 −5.30 −4.37 −4.30 −4.34 −4.26 −4.48
GaP −4.32 −4.27 −3.47 −3.42 −3.54 −3.50 −3.56

GaAs −4.04 −4.00 −3.15 −3.12 −3.26 −3.23 −3.31
GaSb −3.66 −3.64 −2.81 −2.78 −2.97 −2.94 −3.00
InP −3.96 −3.92 −3.13 −3.09 −3.27 −3.23 −3.43

InAs −3.74 −3.71 −2.86 −2.84 −3.04 −3.02 −3.05
InSb −3.45 −3.43 −2.61 −2.59 −2.86 −2.84 −2.79
ZnS −3.71 −3.67 −2.89 −2.85 −3.05 −3.02 −3.17
ZnSe −3.37 −3.34 −2.56 −2.53 −2.63 −2.60 −2.63
ZnTe −2.95 −2.93 −2.08 −2.06 −2.19 −2.17 −2.41
CdS −3.32 −3.28 −2.55 −2.52 −2.76 −2.73 −2.78
CdSe −3.07 −3.04 −2.31 −2.29 −2.42 −2.40 −2.46
CdTe −2.74 −2.72 −1.91 −1.89 −2.07 −2.05 −2.23

LiF [345], LiCl [345], NaF [345], NaCl [345], MgO [327], MgS [346, 347], TiC
[345, 348], ZrC [345, 348, 349], HfC [345, 348], VC [345, 348], NbC [345, 348,
349], TiN [350], ZrN [349], HfN [351], VN [350], NbN [349], C [24], Si [24], Ge
[24], Sn [24], SiC [157, 345], AlP [352], AlAs [352], AlSb [353], BN [157, 345],
BP [353], BAs(300 K) [354], GaN [157, 345], GaP [157, 345], GaAs [340], GaSb
[355], InP [355], InAs [355], InSb [355], ZnS [353, 356], ZnSe [353, 356], ZnTe
[353, 356], CdS [353], CdSe [353], CdTe [353].
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Comparison between DFT and DFT+vdW approaches:

Table C.8: Calculated cohesive properties of C, Si, and Ge using PBE and
PBE+vdWTS+SCS: lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk
moduli B0 (GPa). The quasi-harmonic zero-point energy obtained from the PBE
phonon spectrum is included for each method. The experimental data are shown for
comparison.

a0 E0 B0

C PBE 3.585 −7.55 423
PBE+vdWTS+SCS 3.577 −7.73 428
Expt. 3.567 −7.37 443

Si PBE 5.480 −4.50 88
PBE+vdWTS+SCS 5.439 −4.78 94
Expt. 5.430 −4.62 99

Ge PBE 5.769 −3.69 57
PBE+vdWTS+SCS 5.709 −3.95 64
Expt. 5.652 −3.87 76

Table C.9: Calculated cohesive properties of the IIIA–VA compounds using PBE and
PBE+vdWTS+SCS: lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk
moduli B0 (GPa).

a0 E0 B0

BN PBE 3.639 −6.79 361
PBE+vdWTS+SCS 3.632 −6.97 368
Expt. 3.607 −6.60 378

BP PBE 4.562 −5.19 158
PBE+vdWTS+SCS 4.545 −5.43 162
Expt. 4.538 −5.04 173

BAs PBE 4.823 −4.55 128
PBE+vdWTS+SCS 4.801 −4.80 133
Expt. 4.777 −4.70 148
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Table C.10: Calculated cohesive properties of the IIIA–VA compounds using PBE and
PBE+vdWTS+SCS: lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk
moduli B0 (GPa).

a0 E0 B0

AlP PBE 5.518 −4.03 81
PBE+vdWTS+SCS 5.488 −4.27 86
Expt. 5.458 −4.26 86

AlAs PBE 5.738 −3.64 66
PBE+vdWTS+SCS 5.695 −3.89 71
Expt. 5.652 −3.78 78

AlSb PBE 6.231 −3.20 50
PBE+vdWTS+SCS 6.176 −3.44 53
Expt. 6.128 −3.30 59

Table C.11: Calculated cohesive properties of the IIIA–VA compounds using PBE and
PBE+vdWTS+SCS: lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk
moduli B0 (GPa).

a0 E0 B0

GaN PBE 4.559 −4.30 168
PBE+vdWTS+SCS 4.564 −4.42 169
Expt. 4.520 −4.48 200

GaP PBE 5.518 −3.43 75
PBE+vdWTS+SCS 5.485 −3.67 81
Expt. 5.442 −3.56 89

GaAs PBE 5.755 −3.12 60
PBE+vdWTS+SCS 5.710 −3.35 65
Expt. 5.641 −3.31 77

GaSb PBE 6.227 −2.78 44
PBE+vdWTS+SCS 6.159 −3.03 49
Expt. 6.082 −3.00 56
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Table C.12: Calculated cohesive properties of the IIIA–VA compounds using PBE and
PBE+vdWTS+SCS: lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk
moduli B0 (GPa).

a0 E0 B0

InP PBE 5.973 −3.11 58
PBE+vdWTS+SCS 5.929 −3.32 63
Expt. 5.861 −3.43 73

InAs PBE 6.192 −2.86 48
PBE+vdWTS+SCS 6.142 −3.08 53
Expt. 6.036 −3.05 58

InSb PBE 6.651 −2.60 36
PBE+vdWTS+SCS 6.576 −2.83 39
Expt. 6.469 −2.79 47

Table C.13: Calculated cohesive properties of the IIB–VIA compounds using PBE and
PBE+vdWTS+SCS: lattice constants a0 (Å), cohesive energies E0 (eV/atom), and bulk
moduli B0 (GPa).

a0 E0 B0

ZnS PBE 5.456 −2.86 69
PBE+vdWTS+SCS 5.413 −3.07 74
Expt. 5.404 −3.17 77

ZnSe PBE 5.745 −2.54 56
PBE+vdWTS+SCS 5.688 −2.76 62
Expt. 5.667 −2.62 65

ZnTe PBE 6.196 −2.07 43
PBE+vdWTS+SCS 6.120 −2.29 48
Expt. 6.102 −2.41 53

CdS PBE 5.941 −2.52 53
PBE+vdWTS+SCS 5.877 −2.74 57
Expt. 5.818 −2.78 64

CdSe PBE 6.207 −2.28 45
PBE+vdWTS+SCS 6.134 −2.50 49
Expt. 6.050 −2.46 55

CdTe PBE 6.627 −1.88 35
PBE+vdWTS+SCS 6.552 −2.09 39
Expt. 6.480 −2.23 45





D EXTRA DETAILS OF THE DFT+VDW
APPROACH

Damping function forms:

(1) WY1 and WY2 [195]:

fWY1
damp(R) =

(
1− exp

[
−cdamp

(
R
Rm

)3])2

;

fWY2
damp(R) =

1

1+exp
[
−β
(

R
Rm

−1
)] ,

cdamp = 3.54 and Rm is the sum of the atomic vdW radii, and β = 23.

(2) DFT-D1/2 [70]:

fdamp(R) =
s6

1+exp

[
−d

(
rij

sRR0
ij

−1

)] ,

d = 23, sR = 1, s6 is a global scaling parameter, and R0
ij is the sum of the

atomic vdW radii.

(3) DFT-D3 [189, 206]:

fdamp(R) =
1

1+6

(
rij

sr,nR0
ij

)−αn ,

sr,n is the order-dependent scaling factor of the cutoff radii R0
ij , αn is the

steepness parameter.

(4) EHFSK [204]:

fdamp(rij) =

(
1− exp

[
−d
(

rij
R0

ij

)N
])M

;

d = 3, N = 7, M = 4, R0
ij = 3.8 Å for the first row elements, and

R0
ij = 4.8 Å for the second row elements.
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(5) OBS [38]:

fdamp(rij) = 1− exp

[
−λ
(

rij
R0

ij

)n]
;

λ = 7.5× 10−4 and n = 8.

Table D.1: The sR scaling factor used in the TS method for different density functionals.

Functional PBE HSE B3LYP TPSS M06-L
sR 0.94 0.96 0.84 0.86 1.27

Table D.2: The single oscillator parameters for diamond- and zincblende-structure
crystals [220].

Crystal E0 (eV) Ed (eV)
C 10.9 49.7

β-SiC 7.6 42.0
Si 4.0 44.4
Ge 2.7 41.0

GaP 4.5 36.0
GaAs 3.6 33.5
ZnS 6.4 26.1
ZnSe 5.5 27.0
ZnTe 4.3 27.0
CdTe 4.1 25.7

Table D.3: Calculated static polarizabilities (bohr3) as a function of lattice constant (Å)
for C, Si, and Ge using the TD-HSE and TS+SCS approaches.

C Si Ge
a0 TS+SCS TD-HSE a0 TS+SCS TD-HSE a0 TS+SCS TD-HSE

3.424 6.55 4.84 5.041 20.92 20.06 5.247 23.55 22.97
3.460 6.68 5.00 5.144 21.71 21.23 5.349 24.39 24.56
3.496 6.81 5.17 5.243 22.46 22.44 5.450 25.20 26.27
3.531 6.94 5.35 5.338 23.16 23.69 5.551 26.00 28.16
3.567 7.06 5.54 5.430 23.83 24.98 5.652 26.78 30.28
3.603 7.19 5.73 5.519 24.47 26.33 5.741 27.45 32.45
3.638 7.31 5.93 5.606 25.07 27.73 5.829 28.10 35.24
3.674 7.43 6.13 5.689 25.64 29.20 5.918 28.74 38.31
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Table D.4: Calculated dispersion coefficients (hartree·bohr6) as a function of lattice
constant (Å) for C, Si, and Ge using the TD-HSE and TS+SCS approaches.

C Si Ge
a0 TS+SCS TD-HSE a0 TS+SCS TD-HSE a0 TS+SCS TD-HSE

3.424 20.15 13.76 5.041 141.46 120.17 5.247 169.06 154.70
3.460 20.70 14.45 5.144 148.78 130.98 5.349 177.22 169.92
3.496 21.24 15.17 5.243 155.79 142.38 5.450 185.26 186.45
3.531 21.79 15.93 5.338 162.47 154.37 5.551 193.21 204.55
3.567 22.33 16.73 5.430 168.91 166.98 5.652 201.07 224.49
3.603 22.87 17.56 5.519 175.08 180.23 5.741 207.91 243.63
3.638 23.42 18.42 5.605 180.97 194.15 5.829 214.57 263.88
3.674 23.96 19.36 5.689 186.65 208.82 5.918 221.23 285.23
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Figure D.1: Calculated static polarizabilities as a function of lattice constant for the
IIIA–VA and IIB–VIA groups crystals using the TS+SCS model.





E ABBREVIATIONS

ACFDT Adiabatic-connection fluctuation-dissipation theorem
BOA Born-Oppenheimer approximation
B3LYP Becke-3-Lee-Yang-Parr
BZ Brillouin zone
BSE Bethe-Salpeter equation
CC Coupled cluster
CCSD(T) Coupled cluster singles, doubles and perturbative triples
CE Cluster extrapolation
CM Clausius-Mossotti relation
DFA Density-functional approximation
DFT Density-functional theory
DOSD Dipole oscillator strength distribution
EOS Equation of state
EXX Exact exchange
GGA Generalized gradient approximation
HF Hartree-Fock
HK Hohenberg-Kohn
HA Harmonic approximation
HSE Heyd-Scuseria-Ernzerhof
KS Kohn-Sham
KS-DFT Kohn-Sham density-functional theory
LDA Local-density approximation
LFE Local field effect
MAE Mean absolute error
MARE Mean absolute relative error
MBPT Many-body perturbation theory
ME Mean error
MGGA meta-generalized gradient approximation
MRE Mean relative error
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166 Abbreviations

NQ Nanoquanta kernel
PBC Periodic boundary condition
PBE Perdew-Burke-Enzerhof
QMC Quantum Monte Carlo
QHO Quantum harmonic oscillator
RMSD Root-mean-square deviation
RPA Random-phase approximation
RPBE Revised PBE
SIE Self-interaction error
SO Single oscillator
TDDFT Time-dependent density-functional theory
TF Thomas-Fermi
TPSS Tao-Perdew-Staroverov-Scuseria
TS Tkatchenko/Scheffler
UEG Uniform electron gas
vdW van der Waals
XC Exchange-correlation
XDM Exchange-dipole moment
ZPVE Zero-point vibrational energy



F SYMBOLS

Ĥ Hamilton operator
∇2 Laplacian operator
n0 Ground-state electron density
ψ Wave function
D Electric displacement
E Electric field
χe Electric susceptibility
L Lorentz factor
ε Fermi energy
P Polarization
f0n Oscillator strength of transition from ground state 0 to excited state n
α Polarizability
ε Relative permittivity or dielectric constant
ω Frequency
V Volume
fdamp Damping function
sR Scaling parameter in the TS method
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[112] J. Č ÍŽEK and J. PALDUS, Int. J. Quant. Chem. 5, 359 (1971).

[113] G. D. PURVIS and R. J. BARTLETT, J. Chem. Phys. 76, 1910 (1982).

[114] J. NOGA and R. J. BARTLETT, J. Chem. Phys. 86, 7041 (1987).

[115] D. BOHM and D. PINES, Phys. Rev. 82, 625 (1951).

[116] D. PINES and D. BOHM, Phys. Rev. 85, 338 (1952).

[117] D. BOHM and D. PINES, Phys. Rev. 92, 609 (1953).

[118] F. SCHWABEL, Advanced Quantum Mechanics, Springer, 4th edition, 2008.

[119] P. HAO, Y. FANG, J. SUN, G. I. CSONKA, P. H. T. PHILIPSEN, and J. P.
PERDEW, Phys. Rev. B 85, 014111 (2012).



BIBLIOGRAPHY 185

[120] M. BORN and R. OPPENHEIMER, Ann. der Physik 84, 457 (1927).

[121] L. H. THOMAS, Math. Proc. Cambridge 23, 542 (1927).

[122] E. FERMI, Rend. Accard. Naz. Lincei 6, 602 (1927).

[123] P. HOHENBERG and W. KOHN, Phys. Rev. 136, B864 (1964).

[124] I. N. LEVINE, Quantum Chemistry, Prentice-Hall of India Private Limited,
2006.

[125] http://en.wikipedia.org/wiki/Kohn Sham equations, 2013.

[126] O. A. VYDROV, Correcting the Self-Interaction Error of Approximate Density
Functionals, PhD thesis, Rice University, Houston, Texas, 2007.

[127] J. P. PERDEW and K. SCHMID, in Density Functional Theory and Its
Application to Materials, AIP, Melville, New York, 2001.

[128] P. A. M. DIRAC, Math. Proc. Cambridge 26, 376 (1930).

[129] D. M. CEPERLEY and B. J. ALDER, Phys. Rev. Lett. 45, 566 (1980).

[130] S. H. VOSKO, L. WILK, and M. NUSAIR, Can. J. Phys. 58, 1200 (1980).

[131] J. P. PERDEW and A. ZUNGER, Phys. Rev. B 23, 5048 (1981).

[132] J. P. PERDEW and Y. WANG, Phys. Rev. B 45, 13244 (1992).

[133] K. BURKE, J. P. PERDEW, and M. ERNZERHOF, J. Chem. Phys. 109, 3760
(1998).

[134] R. O. JONES and O. GUNNARSSON, Rev. Mod. Phys. 61, 689 (1989).

[135] V. N. STAROVEROV, G. E. SCUSERIA, J. TAO, and J. P. PERDEW, J. Chem.
Phys. 119, 12129 (2003).

[136] J. SUN, M. MARSMAN, G. I. CSONKA, A. RUZSINSZKY, P. HAO, Y.-S.
KIM, G. KRESSE, and J. P. PERDEW, Phys. Rev. B 84, 035117 (2011).

[137] J. P. PERDEW, J. A. CHEVARY, S. H. VOSKO, K. A. JACKSON, M. R.
PEDERSON, D. J. SINGH, and C. FIOLHAIS, Phys. Rev. B 46, 6671 (1992).

[138] Y. ZHANG and W. YANG, Phys. Rev. Lett. 80, 890 (1998).

[139] B. HAMMER, L. B. HANSEN, and J. K. NØRSKOV, Phys. Rev. B 59, 7413
(1999).



186 Bibliography

[140] J. P. PERDEW, A. RUZSINSZKY, G. I. CSONKA, O. A. VYDROV, G. E.
SCUSERIA, L. A. CONSTANTIN, X. ZHOU, and K. BURKE, Phys. Rev. Lett.
100, 136406 (2008).

[141] G. I. CSONKA, J. P. PERDEW, A. RUZSINSZKY, P. H. T. PHILIPSEN,
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A. GRÜNEIS, and G. KRESSE, J. Chem. Phys. 132, 094103 (2010).

[178] X. REN, P. RINKE, V. BLUM, J. WIEFERINK, A. TKATCHENKO,
A. SANFILIPPO, K. REUTER, and M. SCHEFFLER, New J. Phys. 14, 053020
(2012).

[179] M. DION, H. RYDBERG, E. SCHRÖDER, D. C. LANGRETH, and B. I.
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[257] K. ROŚCISZEWSKI and B. PAULUS, Mol. Phys. 108, 2147 (2010).

[258] B. GRABOWSKI, T. HICKEL, and J. NEUGEBAUER, Phys. Rev. B 76, 024309
(2007).

[259] H. J. MONKHORST and J. D. PACK, Phys. Rev. B 13, 5188 (1976).

[260] E. VAN LENTHE, E. J. BAERENDS, and J. G. SNIJDERS, J. Chem. Phys. 101,
9783 (1994).

[261] P. H. T. PHILIPSEN and E. J. BAERENDS, Phys. Rev. B 61, 1773 (2000).

[262] P. BLAHA, K. SCHWARZ, G. K. H. MADSEN, D. KVASNICKA, and
J. LUITZ, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program
for Calculating Crystal Properties, Vienna University of Technology,
Austria, 2001.

[263] http://phonopy.sourceforge.net/FHI-aims.html.

[264] A. B. ALCHAGIROV, J. P. PERDEW, J. C. BOETTGER, R. C. ALBERS, and
C. FIOLHAIS, Phys. Rev. B 63, 224115 (2001).

[265] D. DZIVENKO, A. ZERR, N. GUIGNOT, M. MEZOUAR, and R. RIEDEL,
Euro. Phys. Lett. 92, 66001 (2010).



BIBLIOGRAPHY 193

[266] K. K. KORIR, G. O. AMOLO, N. W. MAKAU, and D. P. JOUBERT, Diam.
Relat. Mater. 20, 157 (2011).
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