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Abstract. Based on quantum reactive-scattering theory, we propose a method for studying the electronic
nonadiabaticity in collision processes involving electron-ion rearrangements. We investigate the state-to-
state transition probability for electron-ion rearrangements with two comparable approaches. In the first
approach the information of the electron is only contained in the ground-state Born-Oppenheimer potential-
energy surface, which is the starting point of common reactive-scattering calculations. In the second ap-
proach, the electron is explicitly taken into account and included in the calculations at the same level as
the ions. Hence, the deviation in the results between the two approaches directly reflects the electronic
nonadiabaticity during the collision process. To illustrate the method, we apply it to the well-known proton-
transfer model of Shin and Metiu, generalized in order to allow for reactive scattering channels. We show
that our explicit electron approach is able to capture electronic nonadiabaticity and the renormalization
of the reaction barrier near the classical turning points of the potential in nuclear configuration space.
In contrast, system properties near the equilibrium geometry of the asymptotic scattering channels are
hardly affected by electronic nonadiabatic effects. We also present an analytical expression for the transi-
tion amplitude of the asymmetric proton-transfer model based on the direct evaluation of integrals over
the involved Airy functions.

1 Introduction

The fundamental understanding of elementary chemical
reactions is an important subject in chemical physics. The
development of molecular-beam scattering techniques has
made it possible to experimentally study detailed state-to-
state dynamics of gas phase reactions [1–3]. On the other
hand, the interest for developing reactive-scattering the-
ories to describe chemical reactions arose much earlier,
shortly after the discovery of quantum mechanics [4,5],
when it was realized that the Born-Oppenheimer (BO)
approximation leads naturally to the concept of potential-
energy surfaces (PES), that govern the motion of atoms
during a chemical reaction. The PES play such a crucial
role as the potential governing the dynamics of the nu-
clei, that almost all reactive-scattering approaches, either
classical [6] or quantum [7], are using PES data as initial
input. For many cases, the ground-state BO PES is suffi-
cient for the description of scattering events [8], since the
motion of the nuclei is typically much slower than that of
the electrons so that electrons can be assumed to be ef-
fectively in the ground state. In this respect, the notion of
electronic nonadiabaticity is identified with the set of all
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those ingredients that are missed when assuming that the
motion of atoms is governed by the lowest (ground-state)
PES.

It is not uncommon to find situations where nonadi-
abaticity plays an important role [9–13]. Such examples
encompass reactions involving light ions, charge trans-
fer and photochemical processes [14–16]. To capture this
type of nonadiabaticity, reactive-scattering treatments in-
volving excited PESs were developed [17], which allow to
take into account the electronic excitations during scat-
tering. In general, these approaches use as a priori in-
puts, besides several ground- and excited-states PESs,
the nonadiabatic coupling terms [18] between different
surfaces. Such coupling terms can nowadays be directly
calculated through e.g. the linear-response formalism of
time-dependent density-functional theory [19–22]. How-
ever, the multi-PES scattering approach typically only
involves a small number of surfaces (in most cases only
the ground and first-excited PES are considered) and may
not always contain all essential ingredients of electronic
nonadiabaticity.

In the work presented here, instead of directly utilizing
several electronic surfaces and non-adiabatic couplings as
input, we choose a specific coordinate system convenient
for scattering calculations which allows us to quantify elec-
tronic nonadiabaticity from a perspective that differs from
the normal treatment in the literature. As an illustration
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of our idea, and in order to make it as clear as possible,
we restrict ourselves to a simple 1D collinear model, which
was originally designed to study the nonadiabatic effects in
a proton-transfer reaction by Shin and Metiu [23]. We em-
phasize, that our approach also remains valid for ab-initio
Hamiltonians in full dimensionality. As many other recent
studies on electronic nonadiabaticity in references [24–30],
we solely restrict our discussion to a 1D model in order
to simplify the mathematical expressions and to highlight
the essence of the underlying physics.

Our paper is organized as follows. In Section 2, we in-
troduce the model used for the illustration of our scat-
tering treatments on electronic nonadiabaticity. These
treatments are discussed in detail in Section 3, where we
consider two approaches which can be compared in paral-
lel. In the first approach, which we term implicit electron
approach (cf. Sect. 3.1), we consider the electron implic-
itly, i.e. we assume that the three ions move on the ground-
state BO PES. In the second approach, which we call ex-
plicit electron approach (cf. Sect. 3.2), we describe the
motion of all particles (three ions and one electron) simul-
taneously, so that the electron is taken into account explic-
itly. In both sections introducing the two approaches we
tutorially derive the methods and then we summarize the
algorithm. In both IE and EE approaches state-selective
transition probabilities are calculated, and the results and
further analyses are shown in Section 4. Finally, the con-
clusions are given in Section 5.

2 Model

Before demonstrating our two approaches, which will be
disscussed in the next section, we first present the model
which we use for the illustration of our implicit and ex-
plicit electron schemes. In order to keep a clear focus on
our approaches to describe electronic nonadiabaticity, we
restrict ourselves here to a simple but physically moti-
vated collinear reactive scattering model. We emphasize
that it is straightforward to apply our implicit and ex-
plicit electron approaches also to ab-initio Hamiltonians
in full dimensionality.

Our model is quite similar to the original Shin-Metiu
model, containing three ions and one electron confined to
a one-dimensional collinear motion. In order to investi-
gate reactive scattering with such a model, we need to in-
clude the scattering states describing asymptotic channels
in which one ion is far away from the other part of the sys-
tem. In other words, we need to remove the constraint of
fixed terminal ions, to allow all ions to move along the 1D
line. This generalization of the original Shin-Metiu model
is sketched in Figure 1. Allowing all ions to move enables
us to describe the transition from the in-channel configu-
ration to the out-channel configuration through a collinear
collision. This process involves transfers of both an ion and
an electron.

The Hamiltonian of our extended Shin-Metiu model
can be written as:

Ĥ = T̂N + T̂e + VNN + VeN , (1)

e
XA B C

e
XA B C

r′o

s′o

R′
i

R′
o

r′i

s′i

MB MC = 1000MBMA = 1000MB

In-Channel

Out-Channel

Fig. 1. Schematic representation of our generalization of
the Shin-Metiu model. In contrast to the original Shin-Metiu
model, we allow all ions to move in the present study. Two
asymptotic channels (in and out) are considered. The in-
channel describes a bound system of ions A, B, and the elec-
tron. Ion C is initially located far from this bound system. The
out-channel describes a bound system of ions B, C, and the
electron. Here, ion C is located far from the bound complex.
Transitions from the in-channel to the out-channel involve a
simultaneous electron-ion rearrangement.

where T̂N is the kinetic energy of the three ions

T̂N = − ∂2
A

2MA
− ∂2

B

2MB
− ∂2

C

2MC
, (2)

and the kinetic energy of the electron is T̂e = −∂2
e/2me

(atomic units are used throughout). Since we allow the
ions A and C to move, the masses MA and MC are in gen-
eral finite (the infinite mass limit corresponds to the origi-
nal model of fixed ions). Here we focus on a case where MA

and MC are large compared to the mass MB in the cen-
ter. This allows us to model a light-atom transfer process.
We emphasize that the positions of A and C could also
be viewed as center-of-mass cordinates of small clusters
or nano-particles motivating further a small mass ratio
MB/MA,C. The most important parameter for electronic
nonadiabaticity in the present model is therefore the mass
ratio between the middle ion and the electron. The masses
of the ions at the terminal positions do not play an essen-
tial role in our discussion as long as they are much larger
than the mass MB of the ion in the center.

In atomic units, we take MA = 1000MB, MC =
1000MB, me = 1. For the center ion we consider two
cases (i) MB = 1836me ∼ mH and (ii) MB = 3 ×
1836me ∼ 3mH, i.e. the mass of the ion B is taken to
be the proton mass or 3 times the proton mass. It is ex-
pected that the electronic nonadiabaticity differs in the
two cases. The interaction between the ions is given by
VNN = VAB + VBC + VCA, where we choose short range
interactions with the following form

VAB =
hABα2

AB

sinh2 (αAB(XA − XB))
. (3)

Here, hAB and αAB are parameters that tune the strength
and the range of the interaction. We employ similar ex-
pressions for VBC and VCA. With VeN = VeA+VeB+VeC we
denote the electron-ion interaction which we also choose
to be short ranged and given by the following form

VeA = − gAβ2
A

cosh2 (βA(xe − XA))
. (4)
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With X{A,B,C} and xe, we denote the ionic and electronic
coordinates, respectively. Again, gA and βA are parame-
ters characterizing the strength and the range of the po-
tential. Similar expressions are employed for VeB and VeC.
Such a choice of interaction potentials qualitatively cap-
tures a realistic situation in which ions are repulsive to
each other and are attractive to the electron. The short
range potentials chosen here are for the convenience of the
scattering calculations.

One feature of the chosen potentials that should be
highlighted is that the ion-ion repulsion is singular at zero
separation. This imposes the constraint that the ions can-
not bypass each other, or in other words, the ions preserve
the order during the scattering process. Hence, we only
need to consider two asymptotic channels (cf. Fig. 1). On
the other hand, the electron-ion attraction is soft at zero
separation, which allows the electron to pass the ions. In
order to illustrate our approach, we choose in the present
work for the range parameters αAB = αBC = αCA = 0.70,
and βA = βB = βC = 1.70. The interaction strengths are
given by hBC = 1.00, hAB = hCA = 1.002, and gA = 1.002,
gB = gC = 1.00. The parameters are chosen to produce a
physical potential-energy surface for rearrangement scat-
tering. Note, that it is predominantly the masses and not
the interaction parameters that determine the magnitude
of electronic nonadiabaticity.

We emphasize that in general the choice of interac-
tion potentials is not imposing any restrictions on our ap-
proach. The selected potentials and parameters are phys-
ically motivated, keep the present discussion simple, and
allow us to focus on the central topic of this work, the de-
scription of nonadiabatic electronic motion in electron-ion
rearrangement collisions.

3 Quantum reactive scattering treatment

In this section, we introduce two quantum reactive scatter-
ing approaches to calculate the transition probabilities of
the rearrangement collision. The electronic nonadiabatic-
ity will be visualized through the comparison of the two
approaches. In the first approach, the information of the
electron is only contained in the ground-state BO PES.
We therefore call it implicit electron (IE) approach. In
the second approach, the electron and the three ions are
considered all at the same level, i.e. we solve a four-body
quantum reactive scattering problem. In the following we
refer to this as explicit electron (EE) approach. In the two
approaches, we calculate the transition (reaction) proba-
bility and thus obtain the reaction rate by taking an av-
erage over Boltzmann factors. The differences in the two
approaches indicate the electronic nonadiabaticity.

The model described in the last section is used to
demonstrate the two approaches. In the following discus-
sion, we only focus on the figures for the case MB = mH

for illustrations. The plots are qualitatively very similar
for the case of MB = 3mH.

3.1 Implicit electron approach

3.1.1 Coordinate system

In the IE approach for the collinear model, the three ions
are moving on the ground-state PES determined by the
electronic Hamiltonian, so three degrees of freedom are
needed to describe the system. Since there is no exter-
nal field, the system is translationally invariant. Hence,
if we choose Jacobi coordinates, and separate off the de-
gree of freedom describing the center-of-mass motion, then
only two internal degrees of freedom are left, which can
be chosen as r′i = XB − XA and R′

i = XC − (MAXA +
MBXB)/(XA +XB) for the in-channel configuration or as
r′o = XC − XB and R′

o = (MBXB + MCXC)/(MB + MC)
for the out-channel configuration. Each set of coordinates
has its merits in describing a particular configuration of
the system. However, in order to describe the whole scat-
tering process using one set of coordinates, we employ in
the following a mass-weighted hyperspherical coordinate
system [31]. To this end, we first define mass-weighted co-
ordinates as

ri =
√

μAB

m
r′i, Ri =

√
μC,AB

m
R′

i, (5a)

ro =
√

μBC

m
r′o, Ro =

√
μA,BC

m
R′

o, (5b)

in which the μ’s denote different reduced masses. For ex-
ample, μAB is the reduced mass of A and B, μC,AB is the
reduced mass of C and the center-of-mass of AB. m is an
arbitrary mass, we choose it to be equal to MB in this pa-
per. The two new sets of coordinates have the noteworthy
property

r2
i + R2

i = r2
o + R2

o, (6)

which allows us to introduce a polar coordinate system by
defining

ρ =
√

r2
i + R2

i =
√

r2
o + R2

o (7a)

θ = arctan(ri/Ri) = θm − arctan(ro/Ro). (7b)

In terms of these new coordinates, the in-channel and out-
channel configurations can be described on equal footing.
It can be shown that the angle θ ∈ [0, θm] is bounded,
with

θm = arctan

√
MB(MA + MB + MC)

MAMC
. (8)

3.1.2 Hamiltonian

The Hamiltonian in the above introduced mass-weighted
hyperspherical coordinate system can be written as

Ĥ = − 1
2m

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2

]
+ V (ρ, θ), (9)
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Fig. 2. Ground-state BO surface V (ρ, θ) for the model (MB =
mH) in the mass-weighted hyperspherical coordinate system,
with the corresponding Cartesian coordinates (ri, Ri). Note the
two very different scales of the axes. The green cross indicates
the position of the classical transition state. It is the energy
minimum along the red dashed line, and the maximum along
the black solid cut for a constant ρ. The shape of V (ρ, θ) along
the black solid cut is schematically sketched in the inset in the
top-left corner. The two valleys in the plot can be identified to
either describe in-channel or out-channel configurations.

where V (ρ, θ) is the ground-state BO surface shown in
Figure 2 for the case MB = mH. For every given nuclear
configuration, we solve for the ground-state BO surface
by exact diagonalization of the electronic Hamiltonian
in a finite-difference representation in hyperspherical
coordinates.

In Figure 2, it can be seen that for a given radius ρ,
the cut along θ has a double-well shape, and the minimum
corresponds to either the in-channel or the out-channel
configuration. From the scale of the coordinate axes it
is obvious that the radius ρ is a slow variable compared
to the angle θ, which implies that the two variables are
approximately decoupled.

We therefore perform the hyperspherical expansion for
the eigenstates of the Hamiltonian by regarding the radius
as a parameter [32–34]

Ψ(ρ, θ) = ρ−
1
2

∑
n

ϕn(ρ)χn(θ; ρ), (10)

where {χn(θ; ρ)} is a set of complete orthonormal func-
tions of θ for a given ρ. This expansion can be truncated
by choosing a proper set of functions {χn(θ; ρ)}.

In order to compute the χn, we first solve the angular
part of the Hamiltonian for a given ρ[

− 1
2mρ2

∂2

∂θ2
+ V (ρ, θ)

]
ηi(θ; ρ) = εi(ρ)ηi(θ; ρ), (11)

where ηi(θ; ρ) is the eigenfunction with eigenvalue εi(ρ)
for a given ρ. The eigenvalues εi(ρ) of the angular
Hamiltonian are shown in Figure 3. The curves are plotted
in two different colors depending on whether they are in-
channel states or out-channel states, according to where
the wave function is localized. The relative position be-
tween the two sets of curves is very sensitive to the input

ρ B hr

ε
r

r

ρin ρout

I h
Ou h
V11

V22
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1.4

1.5

1.

Fig. 3. The lowest ten eigenvalues εi(ρ) of the angular
Hamiltonian (for the case MB = mH) as a function of the
radius are shown with solid lines. The two colors denote ei-
ther eigenstates with in-channel (localized in the in-channel
valley) or out-channel-like (localized in the out-channel valley)
character. The dashed-dotted lines V11 and V22 are the ener-
gies corresponding to maximally localized states obtained after
mixing the original in-channel and out-channel-like states (see
text).

parameters (masses and interaction strength), and in our
case we choose the interaction parameters to be asym-
metric to avoid degeneracies in these curves. This allows
to unambiguously identify the nondegenerate asymptotic
states as vibrational states of in- or out-channel configura-
tions. For our setup, it can be seen that these eigenvalues
appear in pairs. The wave functions in a given pair also
specify the internal vibrational states of the initial and fi-
nal scattering wave functions. The scattering from a given
in-channel configuration to a given out-channel configura-
tion can be related to a transtion within a pair. Since the
two wave functions in a pair span a 2-dimensional space
that is approximately decoupled from the space spanned
by the wave functions belonging to other pairs (inter-pair
distances are large), by considering each pair separately,
we can have a state-to-state description of the reaction,
which is the advantage of reactive-scattering theory. To
make the illustration as simple as possible, in the following
we only take the lowest pair, within which the transition
gives the main contribution to the transition probability
since this pair is energetically more favourable.

The angular potential V (θ; ρ) along a fixed ρ cut is
shown in Figure 4. The wave functions belonging to the
lowest pair are also given in this figure. The one localized
in the left valley (η1) is an in-channel state, and corre-
sponds to the ground-vibrational state of the AB molecule
(zero nodes). The other one (η2), localized in the right val-
ley, is an out-channel state, and can be interpreted as the
ground-vibrational state of the BC molecule (zero nodes).
If we choose χ1 and χ2 that span the same space spanned
by η1 and η2, then the expansion in equation (10) can be
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Fig. 4. Angular potential V (ρ, θ) for the case MB = mH (black
solid line) along the cut across the saddle point on the PES.
The angular wave functions of the lowest pair η1 and η2, both
in black dashed lines, are localized in one of the two minima
of the double well, corresponding to an in-channel (left) or an
out-channel (right) state. The maximally localized states χin

and χout obtained by mixing η1 and η2 are plotted in dashed
lines in different colors. The Vin and Vout for the localization
scheme are plotted with dashed-dotted lines in the same color
setting for χin and χout.

approximately written as a linear combination of χ1 and
χ2. Moreover, if χ1 and χ2 are chosen to be maximally lo-
calized wave functions in one of the valleys, then the full
asymptotic wave function for in-channel and out-channel
configurations can be written as:

Ψ in
ν=0(ρ, θ) = ρ−1/2ϕ1(ρ)χ1(θ; ρ), (12)

Ψout
ν=0(ρ, θ) = ρ−1/2ϕ2(ρ)χ2(θ; ρ). (13)

To get the maximally localized wave functions, which best
represent the two asymptotic channels, we first define two
auxilliary potentials Vin and Vout

Vin(ρ, θ) = V (ρ, θ) − VeC(ρ, θ) (14a)
Vout(ρ, θ) = V (ρ, θ) − VeA(ρ, θ). (14b)

The potentials VeC and VeA describe the attraction from
ion C and A, respectively. The two auxiliary potentials,
that have only one valley, are also shown in Figure 4. We
mix the wave functions η1 and η2 by defining an orthogo-
nal transformation(

χ1

χ2

)
= T

(
η1

η2

)
=

(
cos ζ − sin ζ

sin ζ cos ζ

)(
η1

η2

)
, (15)

where ζ ∈ [0, π
2 ]. The parameter ζ is chosen such that the

quantity

I =
∣∣〈χin |χ1

〉∣∣2 +
∣∣〈χout |χ2

〉∣∣2 (16)

is maximized. The χin and χout are eigenfunctions of the
auxiliary potentials, with the same number of nodes as
the original wave functions η1 and η2. The physical mean-
ing is that we want to mix η1 and η2 such that the new
wave functions maximally overlap with the exact localized
functions.

To obtain the transformation matrix T, we regard ζ
as a variational parameter. Optimizing the localization as
function of ζ yields

I(ζ)′ = B sin 2ζ + 2A cos 2ζ, (17)

where

A =
〈
χout | η1

〉 〈
χout | η2

〉
− 〈χin | η1

〉 〈
χin | η2

〉
, (18a)

B =
〈
χin | η2

〉2
+
〈
χout | η1

〉2 〈
χin | η1

〉2
− 〈χout | η2

〉2
. (18b)

By setting I(ζ0)′ = 0, we get tan 2ζ0 = −2A/B. To max-
imize this quantity, we have I(ζ0)′′ ≤ 0, which yields
A sin 2ζ ≥ 0. Since there is arbitrariness in choosing the
relative phase of the state | η1 〉, | η2 〉,

∣∣χin
〉

and |χout 〉,
we fix it by choosing the phase such that

〈
χin |χout

〉 ≤ 0
and A ≤ 0. Hence, we arrive at

sin 2ζ =
2A√

4A2 + B2
, (19a)

cos 2ζ =
B√

4A2 + B2
, (19b)

for the optimal parameter ζ.

3.1.3 Distorted wave born approximation (DWBA)

We follow the approach described in references [32–34]
for calculating the transiton probability. The transition
within the lowest pair, i.e. νAB = 0 → νBC = 0, is deter-
mined by the coupled equations[
− 1

2m

∂

∂ρ2
− 1

8mρ2
+ V11(ρ)−E

]
ϕ1(ρ) =−V12(ρ)ϕ2(ρ),

(20a)[
− 1

2m

∂

∂ρ2
− 1

8mρ2
+ V22(ρ)−E

]
ϕ2(ρ) =−V21(ρ)ϕ1(ρ),

(20b)

where

Vij(ρ) =
∫

dθχi(θ, ρ)
[
− 1

2mρ2

∂2

∂θ2
+ V (ρ, θ)

]
χj(ρ, θ).

(21)
By using equation (19), it can be shown that

V12(ρ) = V21(ρ) =
A√

4A2 + B2
(ε1 − ε2) > 0, (22a)

V11(ρ) =
ε1 + ε2

2
+

B(ε1 − ε2)
2
√

4A2 + B2
, (22b)

V22(ρ) =
ε1 + ε2

2
− B(ε1 − ε2)

2
√

4A2 + B2
, (22c)

where ε1 and ε2 are the angular eigenvalues in the low-
est pair (ε1 < ε2) parametrically depending on the ra-
dius ρ. The two diagonal terms V11 and V22 are plotted in
Figure 3.
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To arrive at the transition probability, the coupled dif-
ferential equations could be solved e.g. numerically. How-
ever, as we will demonstrate in the following, using the
DWBA allows us to arrive at an analytical expression
for the transition amplitude. Low-energy scattering events
which are the prototypical case for many chemical appli-
cations are covered well in this approximation as known
from previous studies [32–34]. Our analytical result for the
amplitude provides therefore a useful and efficient tool for
the analysis of nonadiabatic effects and the comparison of
our IE and EE approaches.

The transition amplitude in DWBA can be written as:

t21 = m

∫ ∞

0

dρϕ0
2(ρ)V12(ρ)ϕ0

1(ρ) (23)

in which the wave functions ϕ0
1 and ϕ0

2 are solutions of
equation (20) by setting the right-hand sides to zero. The
transition probability can be written as:

P21 = sin2(2πt21), (24)

known as the exponential DWBA [35].
To allow for an analytical evaluation of t12, some ap-

proximations have to be taken. First, we linearize the po-
tential near the classical turning points ρin and ρout (see
Fig. 3), since the major part of the contribution to the
integral comes from a narrow range near that point(

E − V11(ρ) +
1

8mρ2

)
= (ρ − ρin) Fin, (25a)(

E − V22(ρ) +
1

8mρ2

)
= (ρ − ρout)Fout. (25b)

The term 1/8mρ2 is much smaller than V11, so the turning
points ρin and ρout are almost the values of ρ at the cross
point between the horizontal red line of a given energy
and the Vii(ρ) of the maximally localized states, as shown
in Figure 3. Fin and Fout are the corresponding first-order
derivatives with respect to ρ at the turning point. We can
directly write down the unperturbed wave function, which
are given in terms of Airy functions, Ai(·):

ϕ0
1(ρ) = (2/Bin)1/2Ai(−Bin(ρ − ρin)), (26a)

ϕ0
2(ρ) = (2/Bout)1/2Ai(−Bout(ρ − ρout)), (26b)

with Bj = (2mFj)1/3. We define the averaged turning
point

ρ0 =
ρin + ρout

2
(27)

and approximate the coupling V12 near this point, as in
references [32–34], by:

V12(ρ) = V 0
12e

−c(ρ−ρ0) (28)

as shown in Figure 5.
Hence, the transition amplitude can be written as:

t21 
 2mV 0
12√

BinBout

∫ ∞

−∞
dxAi(−Bin(x − s))Ai(−Boutx)e−cx

(29)

ρ B hr

V
1
2

r
r

E
E r

55 0 5 70 75 80 85 0
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8
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Fig. 5. The blue-solid line illustrates the coupling term (for the
case MB = mH) obtained by equation (22a). The red-dashed
line shows the exponential approximation for the coupling near
the averaged turning point ρ0.

where s = ρin − ρout. We can approximately extend the
lower limit of the integral to −∞ due to the exponen-
tial decay of the two Airy functions. The integral can be
evaluated analytically, obtaining

t21 =
2mV 0

12√
BinBout

eσAi(ξ)

|B3
in − B3

out|1/3
, (30a)

where σ and ξ are given by:

σ =
c3(B3

in + B3
out)

3(B3
in − B3

out)2
− csB3

in

B3
in − B3

out

, (30b)

ξ =
c2BinBout

(B3
in − B3

out)4/3
− sBinBout

(B3
in − B3

out)1/3
. (30c)

The derivation of this expression is shown in detail in
the Appendix. Equation (30a) is one of the central re-
sults in the present work. It allows us to express state-to-
state resolved transition probabilities directly in terms of
a linearized solution around the averaged classical turning
point ρ0. In the Appendix we also demonstrate that in the
limit of a symmetric model our result in equation (30a) re-
duces to the well known expression of Marcus and cowork-
ers for proton transfer [32].

In summary, in practical calculations the IE scheme
amounts to the following steps.

– Calculate the ground-state PES V (ρ, θ) and the auxil-
liary potentials Vin(ρ, θ) and Vout(ρ, θ) in hyperspher-
ical coordinates, which can be obtained from any ab-
initio method. This is the most time consuming step.

– For each radius ρ, solve the angular eigenvalue equa-
tion (11) with V (ρ, θ), and choose the pairs that are
of interest for state-selective rates.

– Solve the auxilliary angular eigenvalue equation with
Vin(ρ, θ) and Vout(ρ, θ), and use the corresponding
states to compute V11, V22 and V12 according to
equation (22).

– Use equations (24) and (30) to calculate the transition
amplitude and probability.
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3.2 Explicit electron approach

So far we have discussed an implicit electron approach,
where the contribution of the electron is only taken into
account through the BO potential energy surface. In this
section we consider an explicit electron (EE) approach
which does not rely on ground-state BO surfaces and
treats the electron on equal footing with the nuclei during
the scattering process.

3.2.1 Coordinate system

In the EE approach, after separating off the center-of-
mass motion, we have three degrees of freedom describing
the relative motion of the system containing three ions
and one electron. Similar to the IE approach, the mass-
weighted hyperspherical coordinate system is chosen. In
particular, we first define the mass-weighted Jacobi coor-
dinates for the in-channel

ri =
√

μAB

m
(XB − XA) , (31a)

si =
√

μe,AB

m

(
xe − MAXA + MBXB

MA + MB

)
, (31b)

Ri =
√

μC,ABe

m

(
XC − MAXA + MBXB + mexe

MA + MB + me

)
,

(31c)

and for the out-channel

ro =
√

μBC

m
(XC − XB) , (32a)

so =
√

μe,BC

m

(
MBXB + MCXC

MB + MC
− xe

)
, (32b)

Ro =
√

μA,BCe

m

(
MBXB + MCXC + mexe

MB + MC + me
− XA

)
.

(32c)

Since the electron is much lighter than the three ions,
both, the r and R defined here are almost equal to the
ones defined in the IE approach.

Similar to the IE approach, the two sets of coordinates
are related through

r2
i + R2

i + s2
i = r2

o + R2
o + s2

o. (33)

Hence, we define the radius as

ρ =
√

r2
i + R2

i + s2
i . (34)

In addition we define two angular arguments. One is sim-
ilar to the previous approach,

θ = arctan(ri/Ri) = θm − arctan(ro/Ro) (35a)

θm = arctan

√
m2(M1 + m2 + M3 + 1)(m2 + M3 + 1)

M1M3(m2 + M3)
.

(35b)

The upper bound θm is almost the same as the one de-
fined in the context of the IE approach. The other angular
argument

φ = arccos(si/ρ), φ ∈ [0, π] (36)

is new here, and to a large extent behaving like the coor-
dinate of the electron. In the following, we will see that
the many-particle wave function along the φ direction is
localized near φ = π/2, which corresponds physically to
the situation that the electron is always localized between
AB or BC. We emphasize at this point that the choice
of the hyperspherical coordinate system is not restricted
to the 1D case. Similar to other studies in reference [36]
it is straightforward to extend the present discussion to
the 3D case. However, the expressions become then much
more involved and the presentation is less transparent. To
demonstrate our approach in a clear way we therefore stay
in a 1D setting.

3.2.2 Hamiltonian

The Hamiltonian in the hyperspherical coordinate system
is written as:

Ĥ = − 1
2m

∂

∂ρ2
+

L̂2

2mρ2
+ V (ρ, θ, φ), (37)

where L̂ is the 3D angular momentum operator, and V in-
cludes the potential energy of electron-ion attraction and
ion-ion repulsion. If we extend the concept of the PES,
then V is just a surface in ρ, θ and φ, in which ρ and θ
are almost the same as the ones in the IE approach and
can be regarded as the ion-like coordinates, while φ is the
electron-like coordinate. It is this “PES” that determines
the internal motion of the four-particle system and leads
to the reactive scattering event.

Like in the IE approach, in this case the radius ρ can be
regarded as a slow variable compared to the two angular
arguments. Hence we can use the same ansatz as we did
in the IE approach, i.e. we solve the angular Schrödinger
equation for every given ρ[

L̂2

2mρ2
+ V (ρ, θ, φ)

]
ηi(θ, φ; ρ) = εi(ρ)ηi(θ, φ; ρ). (38)

Also in this case the eigenvalues appear in pairs. Similar
as in the IE approach, we take only the lowest pair.

In Figure 6, we show the generalized PES V (ρ, θ, φ)
as a function of the two angular arguments at the same
radius as in Figure 4. In addition we show the wave func-
tions from the lowest pair. Instead of the double-well po-
tential appearing in Figure 4, here V (ρ, θ, φ) contains a
long narrow valley with zigzag structure. However, the
2D angular wave functions from the lowest pair share the
same properties as the 1D wave functions in the IE ap-
proach. In particular, along θ direction, the in-channel
state is localized at a smaller θ region with zero nodes,
while the out-channel state is localized with zero nodes
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Fig. 6. Contour plot of the generalized four-body PES
V (ρ, θ, φ) (for the case MB = mH) as a function of θ and φ
at the same ρ as in Figure 4. The dark region corresponds to
the valley in the surface. The lines in magenta and red are
contours of the wave functions η1, η2 respectively, which corre-
spond to the lowest pair in angular eigenvalues.

in the region with a larger θ. Along the other coordinate,
the wave functions are sharply localized near the region
φ = π/2. From a geometric perspective, the wave func-
tions are strongly confined to the equatorial plane of the
sphere described by (ρ, θ, φ). The IE approach is obtained
effectively by neglecting the smearing of the wave function
out of the equatorial plane. Since φ to a large extent is like
an electronic coordinate, we can regard this spread of the
wave function as the origin of electronic nonadiabaticity.
In Figure 6, it can be seen that along φ, both wave func-
tions have zero nodes. This is just because the electron is
in the ground state in both channels.

In the following, we can apply the same localization
scheme to the wave functions η1, η2 as we did in the IE
approach in order to obtain the maximally localized states
χ1, χ2 and the coupling term V12. Then, as before, the
transition probability can be calculated using the DWBA.

3.2.3 Distorted wave born approximation (DWBA)

In this section, we calculate the transition probability
within the lowest pair, which is determined by the cou-
pled equations[

− 1
2m

∂

∂ρ2
+ V11(ρ) − E

]
ϕ1(ρ) = −V12(ρ)ϕ2(ρ), (39a)[

− 1
2m

∂

∂ρ2
+ V22(ρ) − E

]
ϕ2(ρ) = −V21(ρ)ϕ1(ρ), (39b)

where Vij(ρ) is given by equation (22), since we have taken
exactly the same localization scheme as we did in the IE
approach.

To calculate the transition amplitude t21 analytically,
the same approximations for Vij are taken. Thus, without
any difficulties, we obtain the transition probability P21

by using equation (24).
Compared to the IE approach, for the EE approach we

need to perform the following steps in practice:

– Calculate the generalized PES V (ρ, θ, φ), the auxilliary
potentials Vin(ρ, θ, φ) and Vout(ρ, θ, φ) for all particles
(ions and the electron) at different configurations in
hyperspherical coordinates. This is the most time con-
suming step.

– For different radii ρ, solve the angular eigenvalue equa-
tion with the generalized PES V . Then choose the pairs
that are of physical interest.

– Solve the auxilliary angular eigenvalue equation with
Vin and Vout, and use the corresponding states to com-
pute V11, V22 and V12 according to equation (22). This
is the same as in the IE approach.

– Use the same formulae, i.e. equations (30) and (24) to
calculate the transition amplitude and probability.

4 Results

To visualize the electronic nonadiabaticity in the reactive
scattering context, we compare the different probabilities
obtained from the IE and EE approaches described above,
for the two cases MB = mH and MB = 3mH, which are
shown in Figure 7. The horizontal axis is the total energy
of the system, which can be tuned by changing the inci-
dent kinetic energy of ion C. Since we treat the IE and
EE approaches completely in parallel, the main difference
between the schemes arises from whether the electron is
treated explicitly or not. There are small deviations from
the exact case due to the truncation in the hyperspheri-
cal expansion and the two-state approximation. However,
these approximations become exact as the mass ratio be-
tween the ions in the middle and at the ends approaches
zero. For the mass ratios MB/MA,C considered here, which
are at the order of 10−3, the approximations are very ac-
curate. Thus the deviation in the transition probability
between the two approaches can almost exclusively be at-
tributed to the difference between IE and EE, which is the
main contribution of the electronic nonadiabaticity.

In Figure 7, the probability is plotted in a relatively
low-energy regime, because the linear and exponential ap-
proximation for Vij(ρ) is only valid for low-energy scat-
tering calculations [32–34]. From the figure, it is obvious
that the rearrangement happens when the energy is above
some threshold. In other words, only when the ion C has
enough kinetic energy, the collision leads to a reactive
rearrangement.

In low energy scattering regime, which is of chemical
interests, it is shown that as the energy increases, the dif-
ference between the results from the two approaches be-
comes larger and larger. This directly shows the electronic
nonadiabaticity is pronounced when the kinetic energy of
the ions is relatively large. By comparing the results for
MB = mH and MB = 3mH, we see that the electronic
nonadiabaticity is more pronounced when the mass of the
central ion, or the mass ratio between the central ion and
the electron, is smaller. This directly reflects the fact that
the nonadiabaticity comes from the coupled motion of
the electron and central ion during the rearrangement.
The larger the mass ratio is, the better the traditional
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Fig. 7. Transition probability νAB = 0 → νBC = 0 as a func-
tion of the energy of the incident ion C as obtained from the
approaches of IE (blue) and EE (red). The inset in each panel
is the ratio of the probabilities, obtained from the approaches
of EE and IE. The upper panel shows the case MB = mH, and
the lower panel displays MB = 3mH.

BO description, or similarly, the IE approach will be, as
expected.

We also notice that the probability obtained in the IE
approach increases faster from zero than the one in the EE
approach. This implies that the rate of the rearrangement
is slower in the EE approach. To see this, we calculate the
ratio of the reaction rates from the two approaches for a
certain range of temperatures, which is shown in Figure 8.
We have taken the standard expression [37] that assumes
the rate is the canonical average of many collisions where
the kinetic energy of the incident particle C is taken from
a canonical distribution at temperature T :

k(T ) 
 1
2πZin

∫ +∞

0

P21(E + E0) exp (−βE)dE, (40)

where Zin is the vibrational partition function of the in-
channel configuration and E0 denotes the ground-state en-
ergy of the in-channel wavefunction. Here we approximate
the contribution from transitions between all pairs by only

 0.82

 0.84

 0.86

 0.88
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 400  600  800  1000

k E
E
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T/K

MB =mH
MB =3mH

Fig. 8. The ratio kEE/kIE of the reaction rates for MB = mH

and MB = 3mH from the EE and IE approaches as a function
of temperature T .

the lowest pair. This is valid because from Figure 3, the
gap between the lowest pair and the pair from the 1st
excited states in the asymptotic region is approximately
0.3 Hartree, which means in thermodynamic equilibrium,
the population ratio between the second lowest pair and
the lowest pair is about exp(−100), which is negligible. An
alternative assumption is that the kinetic energy of the in-
cident particle C is sharply peaked at a particular value
of energy. The ratio of the reaction rates corresponds to
the ratio of the two P21(E) curves. This ratio is shown in
the insets of both panels of Figure 7 for values of E where
P21(E) is non negligible.

The behaviour of the ratio of the reaction rates can
be understood by thinking that the EE approach goes
beyond the usual ground-state BO approximation and ef-
fectively considers the electronic excited states. Since the
first excited-state surface often has a positive curvature
near the maximum of the ground-state surface, as in this
model [23], this implies that the excited state is energet-
ically repulsive along the direction leading to the rear-
rangement. This means that any wavepacket with popu-
lation restricted to the first excited state will always be
bounced back, leading to nonreactive scattering. The re-
sult in the IE approach, or ground-state BO approxima-
tion, overestimates the rate which coincides with the re-
sults in the original paper of the Shin-Metiu model, which
relies on a quite different approach [23]. Further, from
comparing the results for the two cases with different MB,
again we see that the difference in the rate becomes larger
when the central ion is lighter.

In both the IE and EE approaches, the potentials
V11(ρ), V22(ρ), and V12(ρ) are used as input for the DWBA
calculation, which are crucial in determining the transition
probability. Hence, in order explore the region at which
the electronic nonadiabaticity is important, we compare
the potentials obtained from the two approaches in Fig-
ure 9 for the two cases with different MB. From these
figures, we notice that at large ρ, which is the situation
when one ion is far apart from the other two ions and the

http://www.epj.org


Page 10 of 13 Eur. Phys. J. B (2014) 87: 155

0.000

0.005

0.010

0.015

0.020

V 1
2

/H
ar

tre
e

IE
EE

-1.60

-1.50

-1.40

-1.30

 55  60  65  70  75  80

V i
i/

H
ar

tre
e

ρ /Bohr

0.000

0.005

0.010

0.015

0.020

V 1
2

/H
ar

tre
e

IE
EE

-1.60

-1.50

-1.40

-1.30

 55  60  65  70  75  80

V i
i/

H
ar

tre
e

ρ /Bohr

Fig. 9. The potentials V12(ρ), V11(ρ), and V22(ρ) as a function
of radius ρ obtained from the approaches of IE (blue solid)
and EE (red dashed). The upper panel displays the case for
MB = mH, and the lower one for MB = 3mH.

electron, the curves from the two approaches are on top of
each other. Whereas in the region of smaller ρ, the three
ions get together relatively closely, or in other words near
the classical transition state, there are differences between
the two. For the MB = mH case, the difference is more
pronounced. This shows the electronic nonadiabaticity is
most important near the barrier region or the transition
state of a chemical reaction, while it hardly contributes
to the property of the system in the equilibrium geome-
try, i.e. in the two asymptotic channels. It also shows that
the nonadiabaticity depends on the mass ratio of the cen-
tral ion and the electron significantly. Hence, this confirms
that our EE approach allows to capture electronic nona-
diabaticity and the resulting renormalization of reaction
barriers.

5 Concluding remarks

In this work we proposed a scheme to capture electronic
nonadiabaticity from a reactive scattering perspective. For
reactive rearrangement collisions, we introduced two ap-
proaches, one which treats the electron implicitly, and a
nonadiabatic approach where the electron is treated ex-
plicitly and on a similar footing as the involved ions. Both

approaches rely on a mass-weighted hyperspherical coor-
dinate system which allows for an efficient and unified rep-
resentation of in- and out-channels. In particular, for the
explicit electron approach the transformation to the hy-
perspherical coordinate system introduces a mixing of the
original Cartesian coordinates of the ions and the electron,
which allows to introduce approximations with smaller er-
ror compared to the original Cartesian coordinate system.
Both approaches differ only in the way the electron is
treated. We can therefore conclude that the differences in
reaction rates obtained from both methods directly reflect
the electronic nonadiabaticity.

To exemplify our approach, the original Shin-Metiu
model was generalized by removing the constraint of fixed
terminal ions. Within this model, we have investigated two
cases, in which the mass of the central ion were set to the
proton mass and three times the proton mass, while all
the other system parameters were kept identical. It was
shown that the electronic nonadiabaticity is larger when
the mass ratio between the central ion and the electron be-
comes smaller. In the frame of the hyperspherical coordi-
nate system, we found that nonadiabatic effects are much
more pronounced at a small radius ρ. Physically this cor-
responds to regions near the reaction barrier or transition
state. In contrast, nonadiabatic effects play no essential
role near the equilibrium configuration in the asymptotic
channels. This illustrates that our proposed approaches
provide an accurate description for low-energy scattering
events, which is the typical case for chemical applications.
In our investigation, we showed that the electronic nona-
diabaticity leads to a larger deviation in transition proba-
bilities as the energy of the system is increasing. We also
showed that the implicit electron approach overestimates
the reaction rate at room temperature, since the transi-
tion probability increases faster from zero compared to
the transition probabilities from the explicit electron ap-
proach. This observation is in accord with the results in
earlier work [23].

The case of extremely high kinetic impact energies,
which is of less interest for common chemical reactions,
has not been discussed in the present work. However, we
note that the nonadiabaticity in this case can be expected
to play a minor role, since the scattering is fully kinetic.
Collisions in this limit are fully elastic and thus do not
depend at all on the intrinsic electronic structure.

The present study differs from other studies on nonadi-
abaticity in that the electronic nonadiabaticity was stud-
ied from a reactive-scattering perspective, and the way
we treat the ions and the electron at the same footing
is conceptually different from other nonadiabatic treat-
ments based on multi-PESs. Since the quantum reactive-
scattering approach describes reactions at a state-to-state
resolution (in this paper we consider νAB = 0 → νBC = 0),
our approach allows to gain some insights and understand-
ing of electronic nonadiabatic effects at a more microscopic
state-to-state level.

Our way of studying the electronic nonadiabaticity can
be utilized to investigate real chemical systems involving
a light ion which transfers in concert with one electron
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in a collinear arrangement, since the approach does not
depend on the mathematical form of the interactions. Fu-
ture prospects include the generalization to multi-electron
transfers which appear in negative-U systems, where elec-
tron transfers occur pairwise, or an extension of the
present work to more sophisticated proton-coupled elec-
tron transfer reactions as studied in references [38–40].
Also an embedding of the present scheme into density-
functional approaches is desirable. Here further studies are
required to analyze how such effective (multi-component)
density-functional potentials have to be constructed.

All these aspects will be in the focus of future studies.

This research was supported by the international Max Planck
research school for complex surfaces in material science
(IMPRS-CS). The authors thank Professor Matthias Scheffler
for his support and useful discussions and Professor John Tully
for useful discussions during the preparation of the manuscript.

Appendix: Derivation of equation (30)

To calculate the transition amplitude, we need to evaluate
an integral of the following form:

I =
∫ +∞

−∞
dxAi(−b1(x − c1))Ai(−b2(x − c2))e−ax

=
(

1
2π

)2 ∫ +∞

−∞
dxdydz exp [if(x, y, z)] (A.1)

in which

f(x, y, z) =
1
3
(
y3 + z3

)
+b1c1y+b2c2z−(b1y+b2z)x+iax.

(A.2)
By introducing new variables

u = y + z (A.3a)
v = b1y + b2z, (A.3b)

the original variables y and z can be written in terms of
the new variables

y =
v − b2u

b1 − b2
(A.4a)

z =
b1u − v

b1 − b2
. (A.4b)

Thus, we have

1
3
(y3 + z3) =

u3

3
− u

(b1 + b2)uv − v2 − b1b2u
2

(b1 − b2)2

=
b2
1 + b2

2 + b1b2

3(b1 − b2)2
u3 +

u

(b1 − b2)2

× [v2 − (b1 + b2)uv
]

(A.5)

b1c1y + b2c2z =
(b1c1 − b2c2)

b1 − b2
v − b1b2(c1 − c2)

b1 − b2
u (A.6)

and the Jacobian takes the form∣∣∣∣∂(u, v)
∂(y, z)

∣∣∣∣ =
∣∣∣∣det

(
1 1
b1 b2

)∣∣∣∣ = |b2 − b1| . (A.7)

Hence, The original integral can be expressed as:

I =
(

1
2π

)2 ∫ +∞

−∞

dxdudv

|b1 − b2| exp(ig(x, u, v)) (A.8)

with

g(x, u, v) =
b2
1 + b2

2 + b1b2

3(b1 − b2)2
u3 − b1b2(c1 − c2)

b1 − b2
u + iax

+ cu(b1 − b2)2
[
v2 −

(
(b1 + b2)u

+
((b1 − b2)x − (b1c1 − b2c2))(b1 − b2)

u

)
v

]
.

(A.9)

Let

t = ((b1 − b2)x − (b1c1 − b2c2))(b1 − b2), (A.10)

then

x =
t

(b1 − b2)2
+

b1c1 − b2c2

b1 − b2
(A.11a)

dx =
dt

(b1 − b2)2
. (A.11b)

By applying the Gaussian integration formula∫ +∞

−∞
dv exp(iα(v2 − βv)) =

√
iπ

α
exp

(
− iαβ2

4

)
(A.12)

to equation (A.8), we first integrate over v and find

I =
(

1
2π

)2 ∫ +∞

−∞

dtdu

|b1 − b2|3
√

iπ

α
exp(ih(t, u)) (A.13)

with
α =

u

(b1 − b2)2
, (A.14)

and the function h(t, u) is

h(t, u) =
[
b2
1 + b2

2 + b1b2

3(b1 − b2)2
− (b1 + b2)2

4(b1 − b2)2

]
u3

− 1
4u(b1 − b2)2

[
t2 +

(
2u2(b1 + b2) − 4iau

)
t
]

− b1b2(c1 − c2)
b1 − b2

u +
ia(b1c1 − b2c2)

b1 − b2
. (A.15)

Next, we integrate over t, and obtain

I =
(

1
2π

)2

exp
[
−a(b1c1 − b2c2)

b1 − b2

]

×
∫ +∞

−∞

du

|b1 − b2|3
√

iπ

α

√
π

iγ
exp(iq(u)) (A.16)
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with

γ =
1

4u(b1 − b2)2
(A.17)

and the function q(u)

q(u) =
[
b2
1 + b2

2 + b1b2

3(b1 − b2)2

]
u3 − ia(b1 + b2)

(b1 − b2)2
u2

−
[
b1b2(c1 − c2)

b1 − b2
+

a2

(b1 − b2)2

]
u. (A.18)

By inserting the expressions for α and γ, the integral I
can be simplified to

I =
(

1
2π

)
exp

[
−a(b1c1 − b2c2)

b1 − b2

]
1

|b1 − b2|

×
∫ +∞

−∞
du exp(iq(u)). (A.19)

At this point we still need to perform the integral over u.
To this end, let us first consider another integral of the
following form:

Ĩ =
1
2π

∫ +∞

−∞
dx exp

[
i(Ax3 − Bx2 − Cx)

]
(A.20)

with A > 0. We introduce the variable x = w + s in order
to change the integration variable, then

Ĩ =
1
2π

exp[is(As2 − Bs − C)]

×
∫ +∞

−∞
dw exp

[
i(Aw3 + (3As − B)w2

+(3As2 − 2Bs − C)w)
]
. (A.21)

To eliminate the quadratic term, we set s = B/3A. Thus,
this integral can be rewritten as an Airy function

Ĩ =
1

(3A)1/3
exp

[
− iB

3A

(
2B2

9A
+ C

)]

× Ai
(
− 1

(3A)1/3

(
B2

3A
+ C

))
. (A.22)

Now if we look at the expression of the function q(u) in
equation (A.18), we find that to evaluate the original in-
tegral I, we just need to calculate the integral Ĩ in (A.20)
by taking the parameters

3A =
b2
1 + b2

2 + b1b2

(b1 − b2)2
=

b3
1 − b3

2

(b1 − b2)3
(A.23a)

B =
ia(b1 + b2)
(b1 − b2)2

(A.23b)

C =
b1b2(c1 − c2)

b1 − b2
+

a2

(b1 − b2)2
. (A.23c)

Using the result from equation (A.22), we have

Ĩ =
b1 − b2

(b3
1 − b3

2)1/3

× exp

{
a3
(
b3
1 + b3

2

)
3 (b3

1 − b3
2)

2 +
ab1b2 (b1 + b2) (c1 − c2)

b3
1 − b3

2

}

× Ai
(

a2b1b2

(b3
1 − b3

2)4/3
− b1b2(c1 − c2)

(b3
1 − b3

2)1/3

)
. (A.24)

Finally, we arrive at the result for the original integral

I =
eσAi(ξ)

(b3
1 − b3

2)1/3
(b1 > b2) (A.25a)

σ =
a3(b3

1 + b3
2)

3(b3
1 − b3

2)2
− a(b3

1c1 − b3
2c2)

b3
1 − b3

2

(A.25b)

ξ =
a2b1b2

(b3
1 − b3

2)4/3
− b1b2(c1 − c2)

(b3
1 − b3

2)1/3
. (A.25c)

Although we arrived at an analytical expression for this
integral, there is still one problem in getting numerical val-
ues from this expression when b1 
 b2, since the denom-
inator goes to zero and the exponential diverges. Hence,
we need to get an asymptotic expression for b1 → b2. Let

b3
1 = b3 + ε (A.26a)

b3
2 = b3 − ε (A.26b)

where ε → 0+. Then we have

σ =
a3(b3

1 + b3
2)

12ε2
− a(b3

1c1 − b3
2c2)

2ε
(A.27)

ξ =
a2b1b2

(2ε)4/3

(
1 − 2(c1 − c2)ε

a2

)
. (A.28)

Since as ε → 0, ξ → +∞. We can take the asymptotic
expression for the Airy function

Ai(ξ) ∼
exp

[
− 2

3ξ
3
2

]
2
√

πξ1/4
(A.29)

for ξ → +∞. We obtain

lim
ε→0+

I(ε) =
1

2
√

πξ1/4(2ε)1/3
exp

[
σ − 2

3
ξ

3
2

]
. (A.30)

Let us first calculate the term appearing in the exponent.
Since

b3
1 + b3

2 = 2b3 (A.31)

(b1b2)3/2 = b3
√

1 − ε2/b6 (A.32)

b3
1c1 − b3

2c2 = b3(c1 − c2) + (c1 + c2)ε, (A.33)

we have

σ =
a3b3

6ε2
− ab3(c1 − c2)

2ε
− a(c1 + c2)

2
(A.34)
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and

ξ
3
2 =

a3(b1b2)3/2

4ε2

(
1 − 2(c1 − c2)ε

a2

)3/2

=
a3b3

4ε2

[(
1 − ε2

b6

)(
1 − 2(c1 − c2)ε

a2

)3
]1/2

=
a3b3

4ε2

[
1 − 3(c1 − c2)ε

a2
+
(

3(c1 − c2)2

2a4
− 1

2b6

)
ε2
]

+ O(ε). (A.35)

We get

σ − 2
3
ξ

3
2 = −a(c1 + c2)

2
− b3(c1 − c2)2

4a
+

a3

12b3
+ O(ε).

(A.36)
Next, we calculate the factor in front of the exponent.
Since

ξ1/4 =
√

a(b1b2)1/4

(2ε)1/3

(
1 − 2(c1 − c2)ε

a2

)1/4

, (A.37)

we have

1
2
√

πξ1/4(2ε)1/3
=

1
2
√

aπb

×
[(

1 − ε2

b6

)(
1 − 2(c1 − c2)ε

a2

)3
]− 1

12

=
1

2
√

abπ

[
1 +

(c1 − c2) ε

2a2

−
(

7(c1 − c2)2

8a4
− 1

12b6

)
ε2
]

+ O
(
ε3
)
.

(A.38)

At last, we have

I(ε) =
1

2
√

abπ

[
1 +

(c1 − c2) ε

2a2

−
(

7 (c1 − c2)
2

8a4
− 1

12b6

)
ε2 + O

(
ε3
)]

× exp

[
a3

12b3
− a (c1 + c2)

2
− b3 (c1 − c2)

2

4a
+ O(ε)

]

(A.39)

and the leading term in the asymptotic limit is:

lim
ε→0+

I(ε)=
1

2
√

abπ
exp

[
a3b3

72
− a(c1+c2)

2
− b3(c1−c2)2

4a

]
.

(A.40)
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