
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Searching for Si-based spintronics by first
principles calculations

Mahboubeh Hortamani1,2, Leonid Sandratskii1, Peter Kratzer2,3

and Ingrid Mertig1,4

1 Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle, Germany
2 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195
Berlin, Germany
3 Fachbereich Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany
4 Fachbereich Physik, Martin-Luther-Universität Halle-Wittenberg,
D-06099 Halle, Germany
E-mail: hortamani@mpi-halle.mpg.de

New Journal of Physics 11 (2009) 125009 (23pp)
Received 7 July 2009
Published 11 December 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/12/125009

Abstract. Density functional theory (DFT) calculations are used to study the
epitaxial growth and the magnetic properties of thin films of MnSi on the
Si(001) surface. For adsorption of a single Mn atom, we find that binding at
the subsurface site below the Si surface dimers is the most stable adsorption site.
There is an energy barrier of only 0.3 eV for adsorbed Mn to go subsurface, and
an energy barrier of 1.3 eV for penetration to deeper layers. From the calculated
potential-energy surface for the Mn adatom we conclude that the most stable site
on the surface corresponds to the hollow site where Mn is placed between two Si
surface dimers. Despite Si(001) geometrically being an anisotropic surface, the
on-surface diffusion for both directions along and perpendicular to the Si dimer
rows has almost the same diffusion barrier of 0.65 eV. For coverage above 1 ML,
the lowest energy structure is a pure Mn subsurface layer, capped by a layer of Si
adatoms. We conclude that the Mn-silicide films stabilize in an epitaxially CsCl-
like (B2) crystal structure. Such MnSi films are found to have sizable magnetic
moments at the Mn atoms near the surface and interface, and ferromagnetic
coupling of the Mn clarify within the layers. Layer-resolved electronic densities-
of-states are presented that show a high degree of spin polarization at the Fermi
level, up to 30 and 50% for films with one or two MnSi films, respectively.

In order to clarify the stability of ferromagnetism at finite temperatures
we estimate the Curie temperature (Tc) of MnSi films using a multiple-
sublattice Heisenberg model with first- and second-nearest neighbor interactions
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determined from DFT calculations for various collinear spin configurations. The
Curie temperature is calculated both in the mean-field approximation (MFA)
and in the random-phase approximation (RPA). In the latter case, we find a
weak logarithmic dependence of Tc on the magnetic anisotropy parameter, which
was calculated to be 0.4 meV. Large Curie temperatures of above 200 K for a
monolayer MnSi film, and above 300 K for a 2 ML MnSi film are obtained within
the RPA, and even higher values in MFA.

Complementary calculations are performed for non-collinear spin structures
to study the limitations of the mapping of the system onto a Heisenberg
model. We demonstrate that biquadratic interatomic exchange interactions and
longitudinal fluctuations of atomic moments give important contributions to the
energetics of the system.
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1. Introduction

One of the main goals of spintronics is to combine semiconductor technology with magnetic
materials, aiming at the injection of a spin-polarized current from a ferromagnet into a
semiconductor. From a general point of view, this ferromagnetic electrode could consist of
a magnetic transition metal, or of a magnetic silicide (either metallic or semiconducting), or
of a dilute magnetic semiconductor. To identify candidates that are suitable to be employed
for spin injection, the material should fulfil the following criteria: (i) structural stability as
an epitaxial film on the substrate, (ii) sharp and structurally well-defined interface with the
substrate, (iii) high temperature of the magnetic ordering and high degree of spin polarization
at the interface.

Heterostructures made from a ferromagnetic material and silicon can be achieved
essentially in two ways, either by depositing a structurally well-defined thin film of a
ferromagnetic metal on silicon, or by turning silicon into a dilute magnetic semiconductor.
It has been shown theoretically that ultrathin films of manganese-silicides on silicon are of
relevance as a possible material system for building spintronics devices with silicon technology.
These films are predicted to display ferromagnetic (FM) behavior, a considerable degree
of spin polarization of carriers at the MnSi/Si(001) interface and high magnetic transition
temperature [1]–[4]. These properties make heterostructures of these types of materials on
silicon promising for efficient spin injection. The possibility to grow strongly doped Mn:Si,
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which could possibly be ferromagnetic has also been explored theoretically [5]–[8]. Despite
some progress with dilute magnetic semiconductors, experimentally a ferromagnetic diluted
magnetic semiconductor with a Curie temperature above room temperature has not been
achieved up to now.

Recently, some experimental progress has been made in growing well-defined MnSi
nanostructures, both as small two-dimensional (2D) islands [9] and in the form of atomic
nanowires [10]. For fabricating the above-mentioned structures, it is desirable to have a good
theoretical understanding of the adsorption, diffusion and nucleation of Mn on the silicon
surface as well as of the thermodynamic stability of the FM phase of MnSi.

This paper is organized as follows: firstly, we investigate the behavior of single Mn adatoms
on Si(001). To identify the elementary growth processes that determine the interface quality,
we need information about the diffusion pathways of Mn on Si and their energy barriers.
Subsequently, we discuss the formation of ordered films, their stability, and the magnetic and
electronic properties of multilayer MnSi films. To study magnetic properties of the film at
finite temperature, we map this system onto a Heisenberg Hamiltonian. After obtaining the
size of exchange interactions from density functional theory (DFT) calculations, we estimate
the Curie temperature of the MnSi films on the Si(001) surface using either the mean-field
(MFA) or the random-phase approximation (RPA). In this context, it is advisable also to
discuss the limitations of the mapping of the magnetic MnSi interactions onto a Heisenberg
model. Two types of such limitations are considered: fluctuations of the direction of magnetic
moment (transversal fluctuations) and fluctuations of the magnitude of the magnetic moment
(longitudinal fluctuations). Finally, we discuss the validity of the Heisenberg model for this
system.

2. Methods and calculational details

We employ DFT to determine the atomic structure, the relative stability, and the magnetic
properties at zero temperature of numerous structures that occur during adsorption, bulk
incorporation and thin film growth of Mn on Si(001). We use the full-potential augmented
plane-wave plus local-orbital method [11], which is implemented in WIEN2k computer
package [12]. The generalized gradient approximation (GGA-PBE96) [13] for the exchange-
correlation potential is employed, since it has been demonstrated [14] and confirmed by our
own calculations that it gives a much better description for bulk Mn than the local-spin-density
approximation (LSDA) [15].

A slab geometry is used to model the Si(001) surface consisting of eight (or, in some
cases, ten) layers of Si atoms. Mn adatoms are placed on top and bottom surfaces of the slab
to preserve the inversion symmetry of the supercell. We define a monolayer (ML) coverage
of Mn by having a space-filling arrangement of two Mn adatoms per (1 × 1) unit cell of the
Si(001) surface. For a single Mn coverages, the calculations were performed in a p(2 × 2) unit
cell using a surface reconstruction with alternatingly buckled Si dimers. The slabs are separated
by a vacuum region of 16.4 Å. The Brillouin zone sampling in this case is done by a set of 10
k-points in the irreducible part of the Brillouin zone, derived from a 10 × 10 × 1 k-point mesh.
The muffin-tin sphere radius is set to 1.11 Å for both Mn and Si, and the cut-off energy for
the plane-wave expansion in the interstitial region is 13.8 Ry. Such rather low cut-off energy
is appropriate because of using additional local orbitals as basis functions [11]. All Mn and Si
atoms except for the two central-layer Si atoms were relaxed until all atomic forces are smaller
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than 0.03 eV Å
−1

. The numerical accuracy of the present calculations has been checked for
the clean Si(001) surface using a higher cut-off energy and number of k-points. It was found
that the surface energy is converged within 0.01 eV per (1 × 1) cell. Moreover, calculations for
MnSi with different choice of the muffin-tin radii showed that changes are less than 0.02 eV per
(1 × 1) cell [16].

Although DFT is the best approach to describe the ground-state properties of systems,
the description of finite temperature properties, such as the Curie temperature, is not
straightforward. A standard and convenient way to estimate the Curie temperature of an
itinerant-electron system is to map the system onto an effective Heisenberg Hamiltonian of
interacting atomic magnetic moments [17]5.

For a multisublattice crystalline system the Heisenberg Hamiltonian can be written in the
form

H = −

∑
R,R′,µ,ν

J µν

RR′e
µ

R · eν
R′ (1)

where the parameters J µν

RR′ describe the exchange interaction between two atoms; R, R′ are
unit cell indices; µ ν are sublattice (basis site) indices; and eµ

R is the unit vector pointing
in the direction of the magnetic moment at site (µ, R). Because of the crystal periodicity
J µν

RR′ = J µν

R–R′,0. The on-site exchange parameters in equation (1) are equal to zero: J µµ

RR = 0.
The vector e is assumed to take arbitrary directions that corresponds to the classical treatment
of an atomic magnetic moments. This is a plausible description of a weak itinerant-electron
magnet.

The procedure of the mapping of an itinerant electron system on the Heisenberg
Hamiltonian consists in the determination of the interatomic exchange parameters J µν

RR′ on the
basis of the first-principles calculations. We begin with a simpler scheme and determine the
Heisenberg exchange parameters on the basis of the calculated total energies of a number of
collinear magnetic configurations obtained by the reversal of the directions of some of the
atomic moments. This calculations require, however, the use of large magnetic supercells. Since
the change of the interspin angles obtained by reversal of the atomic moments is as large as 180◦,
the corresponding states of the system have low statistical weight in the statistical mechanics of
the thermal magnetic disordering.

It is worth noting that the Fermi level determined with the use of the slab geometry will
deviate slightly from the Fermi level determined within the treatment of the substrate as a
half-infinite crystal. This difference does not, however, influence noticeably physical properties
discussed in the paper. In particular, the values of the exchange parameters are very robust
in this respect since they are determined by the difference of the total energies of various spin
configurations of the magnetic film that leads to the cancelation of the small inaccuracies related
to the determination of the Fermi level.

The obtained exchange parameters are used to estimate the Curie temperature employing
two approaches: the MFA and the RPA. For 3D solids the MFA is expected to overestimate
the value of the Curie temperature, whereas the RPA is expected to underestimate Tc [19].
The RPA accounts for spin-wave excitations and is supposed to give a better estimate of the
Curie temperature than the MFA. For the two-dimensional systems treated in RPA there is

5 The concept of using a model Hamiltonian in which parameters are determined by DFT calculations is a standard
approach which has been used before; for example, in the lattice-gas Hamiltonian approach see [18].
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an additional complication related to the Mermin–Wagner theorem [20]. This issue has been
discussed in detail in our previous paper [3].

The main physical quantity in the MFA is the effective exchange field experienced by a
given magnetic moment from all other magnetic atoms. The statistical mechanics in the MFA
is the statistical mechanics of individual atomic spins in an effective exchange field originating
from the interaction with the environment. The long wavelength fluctuations are neglected in
the MFA and the conditions of the Mermin–Wagner theorem are violated. On the other hand,
the RPA deals with the wavevector-dependent spin-wave excitations and, in agreement with
the Mermin–Wagner theorem, gives for a 2D isotropic ferromagnet a zero value of the Curie
temperature. Thus, for the 2D systems the use of the RPA is preferable. The MFA value of the
Curie temperature can still be considered as a useful characteristic of the exchange interactions
in the system. Therefore we present both MFA and RPA estimations of the Curie temperature.

The MFA estimation of the Curie temperature of a multi-sublattice system can be obtained
by solving the system of coupled equations [21]–[23]

〈ez
µ〉 =

2

3kBTc

∑
ν

J µν

0 〈ez
ν〉, (2)

where J µν

0 ≡
∑

R J µν

0R . Equation (2) can be rewritten in the form of an eigenvalue problem

(2 − TcI)S = 0, (3)

where 2µν = (2/3kB)J µν

0 , I is a unit matrix and S is the vector set of 〈ez
ν〉. The largest eigenvalue

of the matrix gives the value of T MFA
c [21]–[23].

The RPA approach to the calculation of the Curie temperature of multiple-sublattice
systems has been discussed in [24]. The derivation of the RPA method starts with the
consideration of the Heisenberg Hamiltonian of quantum spins. Rusz et al [24] arrive at the
following formula

kBTc =
2

3〈s̃z
µ〉

Sµ + 1

Sµ

{
1

�

∫
dq
[
N−1(q)µµ

]}−1

, (4)

where kB is the Boltzmann constant and s̃z
iµ = Sz

iµ/Sµ. Here, Sz
iµ is the z-component of the spin

of the site (µ, i), Sµ is the value of the spin of the atoms of type µ. The average value of s̃z
iµ

does not depend on i . [N−1(q)µµ] in equation (4) is the diagonal element of the matrix inverse
to matrix N defined by

Nµν = δµν

(
1 +

∑
η

Jµη(0)〈sz
η〉

)
− 〈sz

µ〉Jµν(q). (5)

Here, 1 gives the magnetic anisotropy energy (MAE). The value of 1 can be estimated on
the basis of the first-principles calculations with the spin–orbit coupling taken into account.
It is given by the energy difference of the FM states with different directions of the magnetic
moments.

At the next stage, to get deeper insight into the magnetic interactions we extend the
calculations to non-collinear magnetic structures. The energies of spiral magnetic configurations
with different wave vectors and different amplitudes of deviations from the ground-state
structure allow us to account for long-range exchange interactions and to discuss the limitations
of the Heisenberg model. The DFT calculations for the non-collinear magnetic configurations
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are performed using the augmented spherical wave (ASW) method [25, 26]. We use the frozen-
magnon approach to determine the exchange parameters on the basis of DFT calculations
for spin spiral structures. This method allows the use of the magnetic configurations with
arbitrary angles between atomic magnetic moments. Therefore, the dependence of the exchange
parameters on the choice of the magnetic configurations can be studied.

The technique for the determination of the Heisenberg exchange parameters for a complex
lattice was recently discussed in detail in [27]. Here, we give a brief outline of the method. The
frozen magnon of the νth sublattice characterized by wave vector q is defined by the expression

eν
R = [sin θ ν cos(φν(q) + qR), sin θ ν sin(φν(q) + qR), cos θ ν], (6)

where θ ν is the polar angle of the frozen magnon and φν is the initial phase angle of the sublattice
that can be different for different q.

The evaluation of the exchange parameters involves several steps. To find the interaction
parameters between the spins of the same sublattice ν, we substitute equation (6) into equation
(1), taking a nonzero value of θ ν

= θ . The polar angles of other sublattices are set to zero. The
Heisenberg energy of such structures takes the form

Eνν(θ, q) = Eνν
0 (θ) − sin2(θ)J νν(q) (7)

where Eνν
0 (θ) does not depend on q. Performing ab initio calculation of Eνν(θ, q) for a regular

q mesh and making back Fourier transformation

J νν
0R =

1

N

∑
q

J νν(q) exp(−iqR), (8)

we obtain the intrasublattice exchange parameters. Here, N is the number of the points in the q
mesh.

To find the exchange parameters for atoms belonging to two different sublattices ν and µ,
we take the nonzero value of the polar angle for these two sublattices: θ ν

= θµ
= θ 6= 0. The

Heisenberg energy of such magnetic structure after some algebra can be represented in the form

Eµν(θ, q, 1µν(q)) = Eµν

0 (θ) − sin2(θ)[J νν(q) + Jµµ(q)] + exp(−i1φµν(q))Jµν(q)

+ exp(−i1φµν(q))Jµν(−q), (9)

where Eνµ

0 (θ) is a q-independent contribution to the energy. The single sublattice terms J νν and
J µµ are known from the first step. Again, to find the inter sublattice exchange parameters, one
needs to perform a back Fourier transformation of J µν(q).

Strictly speaking, the system understudy is not a system of localized magnetic moments,
as there is strong hybridization between Mn atoms as well as between Mn and Si atoms.
Therefore limitations of the standard Heisenberg picture (dealing with well-defined atomic
magnetic moments) are to be expected in the case of MnSi films [28]. To study the validity
of the Heisenberg model we consider two types of limitations of the model. Firstly, keeping
the assumption of the Heisenberg model that only the directions of the atomic moments are
relevant degrees of freedom, we investigate the role of a higher order bi-quadratic exchange
interaction between atomic spins. Secondly, by restricting the consideration to the orientational
degrees of freedom, the Heisenberg model takes into account the transversal fluctuations of
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the atomic moments and neglects the longitudinal fluctuations of the moments. However, in
itinerant electron systems the atomic moments can fluctuate not only in direction but also in
magnitude. To study these longitudinal fluctuations we use the so-called fixed-spin-moment
method consisting in the constrained minimization of the total energy functional [29]. The
desired value of the atomic moment m is stabilized by an effective constraining magnetic field
that depends on m and is determined self-consistently.

3. Results and discussion

3.1. Initial adsorption and surface diffusion pathway

The first step to understand the growth process is having information about the binding sites,
diffusion pathways and energy barriers for the migration of an adsorbed atom on the surface.
This can be done by mapping the energy of the system while the adsorbate is sitting in different
positions inside the surface unit cell. This map is called the potential energy surface (PES). In
order to characterize the binding sites and study the preferential migration paths of a Mn atom
on silicon substrates, we present a comprehensive study of the adsorption and diffusion of a Mn
adatom on the (2 × 2) reconstruction of Si(001), via DFT calculations. The PES is defined by
relaxing both the height (ZMn) of the Mn adatom from far above the surface (for a set of fixed
lateral coordinates, XMn, YMn, of the Mn atom), as well as all coordinates of the substrate atoms.
In order to quantitatively discuss the PES of a Mn adatom, we carried out calculations of the
adsorption energy using

Ead(XMn, YMn) = min
R

min
ZMn

E tot
system(R, RMn) − E slab

− EMn.

Here R denotes the position of the substrate atoms, and EMn is the energy of a free Mn atom in
its ground state. The total energy of the clean slab, E slab, is obtained by a separate calculation
for the clean Si(001) surface. With this definition, Ead reflects the adsorption energy of a Mn
adatom on Si(001). Local minima in the PES constitute (meta-)stable binding positions of the
adatom, and saddle points correspond to transition states for adatom diffusion. Energy barriers
for diffusion are calculated as the energy differences between the transition state energy and the
energy at the minimum of the PES. This describes the initial state of the growth process.

For a single Mn atom adsorption, we find that binding at the subsurface site (below the
Si surface dimers) is about 0.9 eV stronger than on-surface adsorption. This has been observed
experimentally [9]. The adsorption energy at the high-symmetry site between two dimers in the
same row on the surface (hollow site) is about 2.9 eV.

In the context of the epitaxial growth of Mn-doped Si, incorporation of Mn at substitutional
positions at the surface is particularly important. On the one hand, this process is likely to
trigger silicide formation. On the other hand, it has long been known that substitutional Mn
atoms in bulk Si act as acceptors [30] with a large local magnetic moment, and hence one
could speculate that Si could be turned into a magnetic semiconductor if substitutional Mn
incorporation with a high concentration could be achieved. We therefore studied the energetics
of Mn replacing a Si atom of the Si surface dimer. If we take the chemical potential of bulk Si as
energy reference, substitutional adsorption is energetically less favorable than adsorption into
the subsurface interstitial site, by 0.94 eV.

To obtain a clearer picture of the diffusion pathways on the Si(001) surface, the 2D PES is
drawn in figure 1. There are two types of local minima in the PES: one in the hollow site (marked
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]011[

]110[

HM T1 T2 T3

Figure 1. The PES of a Mn atom on Si(001). The diffusion barriers for hopping
between on-surface minima H are 0.65 eV. Diffusion along [1̄10] (between Si
dimer rows) occurs via transition state T3. Diffusion along [1 1 0] proceeds either
through transition state T2 or through transition state T1 and intermediate M. The
darker areas show low-potential sites (binding sites) and the brighter parts belong
to the high-energy positions.

H in figure 1). The other is between two dimers in adjacent rows (marked M in figure 1). The
Mn atom binds most strongly at the hollow site.

For on-surface diffusion between two hollow sites, there exist three low-energy pathways,
two of them along the Si dimer rows: one where the adatom passes the (still intact) Si dimer
through saddle point T2, and another pathway via the minimum M, passing twice through
symmetry-equivalent saddle points T1. For the first diffusion pathway, the energy barrier is
about 0.65 eV (see figure 1), while it is slightly lower (0.55 eV) for the second pathway (see
figure 1, lower right panel). The third diffusion pathway is from one hollow site to the next one,
perpendicular to the dimer row. In the latter pathway the Mn adatom needs to overcome a barrier
of 0.65 eV at T3 (see figure 1, lower left panel).

Although the surface of Si(001) is structurally anisotropic, surprisingly we find out that the
Mn atom diffuses almost isotropically along and perpendicular to the dimer rows (see curves in
figure 2).

We consider how the Mn adatom diffuses into the second layer site, i.e. how it reaches the
interstitial site from the hollow site (which is the energetically the most stable binding site on
the surface). We plot the PES for a Mn atom in a (11̄0) plane perpendicular to the surface, which
intersects both the hollow and the interstitial sites. We fix the Mn atom at a set of positions in this
plane, and relax the substrate Si atoms in each case. It is seen that for the most favorable pathway
the Mn adatom first moves slightly upward away from the hollow site. Thereby, the surface Si
dimer is elongated, thus giving room for the Mn atom to find its way to the subsurface interstitial
site. The energy barrier of only 0.3 eV must be overcome for adsorbed Mn to go subsurface, and
an energy barrier of 1.2 eV for the reverse process. The energy barrier between hollow and
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Figure 2. The Mn diffusion is almost isotropic as long as only on-surface
hopping processes are considered.

interstitial site is shown in figure 3. For more information about the subsurface pathway and the
PES we refer to our previous paper [2].

Now to address the question of whether or not the Mn atom diffuses to deeper layers
and even into Si bulk, we performed calculations for the incorporation a Mn atom on third-
layer interstitial sites. Our results indicate that the third-layer interstitial site is energetically less
favorable than the second-layer interstitial site. There are high-energy barriers for diffusion of
Mn into deeper layers. To reach the third-layer site, Mn must overcome an energy barrier of
1.3 eV, measured from the second-layer interstitial site (figure 3). As a result, due to this energy
barrier, Mn atoms, even after penetrating to the subsurface site, prefer to diffuse mainly through
the on-surface (H) site, rather than through a bulk diffusion mechanism.

We conclude that the Si(001) surface is well suited for growing Mn since Mn incorporation
is most favorable in the subsurface position, but becomes less favorable with increasing depth
below the surface. Together with the low solubility of Mn in Si bulk [31], this leads to the
tendency of Mn atoms to stay near the surface even if deposited at finite substrate temperatures.

3.2. Epitaxial growth of MnSi on Si(001)

There are a few experimental results on the growth of Mn on Si(001) [32]. They are all agreed
on the point that a pure Mn film cannot be grown on this surface, but hetero-structures consisting
of Mn–Si compounds are observed. Lippitz et al [32] observed a flat island of manganese
monosilicide alloy. The natural crystal structure of bulk MnSi is the B20 structure. Since,
however, the B20 lattice has strong lattice mismatch with the Si(001) substrate, a CsCl crystal
structure (B2) has been suggested which could be grown epitaxially on Si(001) [1]. The epitaxial
thin films of materials sometimes grow in a crystal structure, which is different from their bulk
structure (pseudomorphical growth). This is explained by the presence of strain and/or interface
and surface energy contributions. For example, the epitaxial growth of FeSi and CoSi has been
observed in B2 structure on Si(111) under non-equilibrium conditions with molecular beam
epitaxy [33].
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Figure 3. A Mn atom in the hollow site (left structure) has to overcome an energy
barrier of only 0.3 eV for to go subsurface (lower structure), and an energy barrier
of 1.2 eV for the reverse process. To reach the third-layer site (right structure),
Mn must overcome an energy barrier of 1.3 eV, measured from the subsurface
site. All structures in this figure are drawn in the yz-plane, i.e. the Si surface
dimers of Si(001) are perpendicular to the paper sheet.

We define the film of one or more layers of MnSi alloy by having a space-filling
arrangement of alternating layers of two Mn and two Si per layer per (1 × 1) surface unit cell
of the Si(001) surface. It is appropriate to use a (1 × 1) unit cell to reduce calculational cost.
The use of such a small unit cell has no influence on analyzing the properties of multilayer
films since the Si dimer reconstruction is lifted already after deposition of 1/2 ML of Mn [2]. It
is convenient for the quantitative discussion to consider the stability of the film in terms of its
formation energy. This is defined as

Eform = (Etotal − NSiµSi − NMnµMn)/2 − E surf
Si(001),

where Etotal, N and µk refer to the total energy per (1 × 1) supercell, the number of atoms in
the (1 × 1) cell, and the chemical potential of the atomic species k. We assume formation of
the films from the chemical elements Mn and Si, i.e. the chemical potentials are determined by
the cohesive energies of bulk Mn and bulk Si. For bulk Mn, we use the cohesive energy of the
ground state α-Mn, by applying a correction of −0.07 eV Mn−1 [34] to our calculated cohesive
energy of γ -Mn (fcc structure). E surf

Si(001) represents the surface energy of the clean, reconstructed
Si(001) surface, being 1.25 eV per (1 × 1) surface unit cell in our calculations.

In figure 4, we plot the formation energy of a film of MnSi alloy versus the film thickness
and compare it with pure a Mn film terminated by a Si layer. The formation energy for Mn
overlayers increases monotonously with the Mn coverage and is higher than that of the Si(001)
surface (reference energy). We therefore conclude that the growth of pure Mn on the Si(001)
surface is energetically rather unfavorable and we turn to Mn–Si compound structures. In
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Figure 4. (a) Formation energy of MnSi films with B2 crystal structure on
Si(001) (red line) and of pure Mn films capped Si (blue line). As a reference the
surface energy of the clean Si(001) p(2 × 2) reconstructed surface is shown as
dotted line. (b) and (c) are ball-stick model for pure Mn film and MnSi sandwich
layer, respectively. Black (white) circles are Mn (Si) atoms.

contrast to the pure Mn, the formation energy of the MnSi alloy film decreases with increasing
film thickness. For a film thickness of two ML or greater the MnSi alloy is more stable than the
clean Si surface. These findings can be rationalized by the fact that Mn–Si bonds are stronger
than the average of Mn–Mn and Si–Si bonds; hence the system tends to maximize the number
of Mn–Si bonds. In the alternating Mn–Si layers (sandwich of Mn and Si layers), the local
coordination of a Mn atom is similar to the bonding in the cesium chloride (B2) crystal structure,
i.e. each Mn atom has eight Si neighbors. However, due to epitaxial strain, the local environment
of a Mn atom does not have cubic symmetry, but is slightly distorted, and the Mn–Si bond
lengths vary by several per cent within the film, being shortest in its interior and longer near the
surface and interface.

As a result, the theoretical investigation shows that formation of a well-ordered film of
MnSi alloy in B2 crystal structure on Si(001) is possible.

3.3. Magnetic properties at zero and finite temperature

In the previous section, we showed that the films with B2 crystal lattice have layered magnetic
structures. The properties of ultrathin films are sensitive to the film thickness. The interlayer
magnetic coupling changes from FM to antiferromagnetic (AFM) with increasing film thickness
from 2 to 3 ML. A similar effect has been found at the coverage of 1 ML: the transition of the
intralayer magnetic structure from AFM to FM when the Mn layer is capped by a Si layer. This
effect is caused by Mn–Si hybridization.

The role of Mn–Si hybridization in the formation of the magnetic ground state can be
understood on the basis of the nonmagnetic local density of states (LDOS). According to the
Stoner criterion [35], the large peak of the density of states (DOS) at the Fermi energy indicates
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Figure 5. (a) LDOS of a (hypothetical) non-magnetic configuration, projected
onto the Mn atom for the structure with one uncapped Mn layer (upper panel),
and the Mn layer capped with one Si layer (lower panel). The energy zero is at
the Fermi level. The high values of the LDOS at the Fermi level demonstrate that
the non-magnetic structures are unstable according to the Stoner criterion. (b)
and (c) are ball-and-stick models for the Mn overlayer and the Si capping layer,
respectively. Black (white) circles are Mn (Si) atoms.

that the system is unstable and tends to develop magnetic moments. Figure 5 shows that the
LDOS at the Fermi level is substantially higher for the Si capped layer. Therefore, the instability
of the capped film with respect to the formation of the FM structure is larger than for the
uncapped film. Indeed the direct calculations of the FM and AFM structures for both films
give a lower energy for the AFM configuration in the case of the uncapped film and for the FM
configuration in the case of the capped film.

The layer-resolved spin-polarized DOS shows an interesting thickness dependence of the
spinpolarization at the Fermi level. The spin polarization increases from 30% in 1 ML to
50% in 2 ML and decreases to 30% at 3 ML coverage [1, 2]. At all thicknesses, there is a
relatively large atomic magnetic moment at the sixfold-coordinated interface and the eightfold-
coordinated subsurface Mn layer. For the 3 ML coverage we obtained for the lowest-energy
magnetic structure the antiparallel directions of the moments of the first and third layers. The
magnetic moment of the middle layer is close to zero. The FM structure of the films with
1 ML and 2 ML coverages make them interesting candidates for applications in spintronic
devices.

An important requirement on the spintronic materials is a high Curie temperature. It is
necessary to make the spintronic devices operative at room temperature. Below we report on the
evaluation of the inter-atomic exchange parameters and the estimation of the Curie temperature.
As a first step, we evaluate the Heisenberg exchange parameters by fitting the DFT energies of
a number of collinear magnetic configurations with a Heisenberg Hamiltonian.
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Experimentally, bulk MnSi has a low Curie temperature of Tc = 30 K [37]. The dependence
of the magnetic transition temperature on the dimensionality of the system is a nontrivial
issue since the change of the dimensionality affects the system in several ways that have an
opposite effect on the magnetic transition temperature. The reduced coordination number of the
magnetic atoms leads to a decreasing number of exchange interactions with neighboring atoms.
This factor is expected to lead to a decreased transition temperature. On the other hand, the
decreased coordination leads to less intense hybridization of the states of the magnetic atom with
the environment. Narrower energy bands are the consequence of the decreased hybridization
which can cause a strong increase of the atomic magnetic moments and interatomic exchange
interactions. Which of these two trends prevails can be different for different systems.

According to the Mermin–Wagner theorem the presence of the magnetic anisotropy is
crucial for the 2D systems to overcome the destructive consequences of the long wavelength
fluctuations. The Curie temperature of the isotropic 2D ferromagnet is zero. Our estimation
of MAE in the MnSi film gave the value of 0.4 meV atom−1. This is comparable with the
calculated anisotropy value of Fe and Co film [36]. The value of the MAE was used in the RPA
calculations of the Curie temperature [3]. These calculations gave a large Curie temperatures of
241 K for a 1 ML MnSi film, and 328 K for a 2 ML MnSi film. The MFA estimations gave an
even larger Curie temperature. The calculation for an unsupported 2 ML MnSi film resulted in
reduced magnetic moment and the Curie temperature decreased to Tc = 135 K. Therefore, the
interface film-substrate plays a crucial role in the formation of the magnetic properties of
the film. In particular, the enhancement of the Curie temperature of the thin MnSi film due to
the hybridization with Si substrate. This feature increases the potential of the films for practical
applications.

Although the presence of the magnetic anisotropy is necessary to get a nonzero value of
the Curie temperature the scale of the Curie temperature is much higher than the scale of MAE.
The role of the magnetic anisotropy is in creating the gap in the spectrum of the long wavelength
magnetic excitations. In isotropic magnets according to the Goldstone theorem this part of the
excitation spectrum starts at zero energy. In a 2D system, already a small number of these
excitations is sufficient to prevent a long-range magnetic ordering. The magnetic anisotropy
diminishes the role of the long wavelength excitations, making strong interatomic exchange
interactions, efficient in establishing the long-range ordering. We performed the calculation of
the RPA Curie temperature for various values of MAE. The dependence of the Curie temperature
on MAE is very strong in the region of very small MAE. In the region of realistic MAE values
of the order of 0.4 meV atom−1 the dependence has weak logarithmic character and the value of
the Curie temperature is mainly determined by the strength of the exchange interactions. The
logarithmic dependence of Tc on MEA is in agreement with the rule suggested by Bruno [38].

The use of the collinear magnetic configurations for the calculation of the exchange
parameters employed in our previous work [3] has a strong restriction in the evaluation of
exchange interactions between distant atoms since such a calculation is connected with the use
of large supercells and is very time consuming. Below we discuss a more advanced approach
based on the DFT calculations for noncollinear magnetic configurations. This approach allows
us to reveal interesting features of the exchange interactions not accessible with the calculations
for collinear magnetic structures. We also address the important question of the limitations of
the Heisenberg model in the description of the complex itinerant electron system MnSi.

The generalized translational symmetry of spiral magnetic configurations [22] allows
the study of the exchange interactions between arbitrary distant atoms without performing
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Figure 7. Two examples of the spin-spirals with the spin-rotation axis
perpendicular to the spin-spiral vector q. The polar (cone) angles of the spirals
are θ = π/2 and π/4.

calculations for increased unit cells. The corresponding calculational scheme is usually referred
to as the ‘frozen magnon approach’ [22]. In this method, the total energy of the spiral structures
with various wave vectors (q) and various cone angles θ (cf figure 7) calculated within DFT are
mapped on a model spin Hamiltonian.

Below we present the frozen-magnon calculations for the 1 ML MnSi film. The surface unit
cell of a 1 ML film contains two inequivalent Mn atoms, which are ordered ferromagnetically.
These two sublattices carry magnetic moments of Mn1 = 1.6 and Mn2 = 2.1 µB. The difference
in the values of the moments is due to the different influence of the Si environment on the two
Mn sublattices. The Mn1 sublattice has a sixfold Si-coordination whereas the Mn2 sublattice has
a fivefold coordination.

To obtain intra-sublattice exchange parameters, we assume that the moments of each
sublattice are independent adiabatic degrees of freedom. In the calculations the directions of the
magnetic moments are constrained, whereas the values of the magnetic moments are relaxed
within a self-consistent iterative procedure. Since we will compare the results of calculations
for different magnetic configurations, it is convenient to introduce abbreviations simplifying
the reference. The configuration in which the moments of the first sublattice (Mn1) deviate
from the ground-state directions whereas the moments of the second sublattice, (Mn2) keep the
ground-state directions is referred to as SP1. The configuration where the Mn1 moments are
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SP2 SP3SP1

Figure 8. Schematic presentation of the SP1, SP2 and SP3 types of the frozen
magnons (see text for the description).

kept parallel to the z axis and the Mn2 moments form a spiral is called SP2. To calculate inter-
sublattice exchange parameters we consider a third type of frozen magnon states. In this state,
which is referred to as SP3, the moments of both sublattices deviate by the same cone angle (θ ),
thus forming a more complex spiral configuration. The azimuthal angles (φ) of the moments
are determined by spiral wave vector q. The SP1, SP2 and SP3 configurations are illustrated
schematically in figure 8.

The situation is further complicated by the reduced crystallographic symmetry of the 1 ML
film compared with the bulk structure. The film (shown in figure 5(c) has C2v symmetry. The
Mn2 atoms continue the Si bulk lattice. They form bonds with the first layer Si substrate
atoms along the x-direction. The Mn1 atoms occupy interstitial sites of the Si-substrate lattice,
and their bonds to the first layer of the substrate point along the y-direction. Hence the
exchange interactions, and consequently the magnon disperison, will be different in either
direction. The energy dispersion for the frozen magnons with θ = π/2 along the high-symmetry
directions in the first 2D Brillouin zone is drawn in figure 9. Unexpectedly, we obtained
a very strong difference in the dispersions of SP1 and SP2 frozen magnons that reveals a
strong difference in the exchange interactions within the two Mn sublattices. The form of the
dispersion of the frozen magnons of the first sublattice (SP1) demonstrates the presence of
strong AFM intra-sublattice interactions: the energy of the q = 0 state (0 point in figure 9)
is higher than the energies of the states with nonzero wave vector. On the other hand, for the
frozen magnon of the second sublattice the minimal energy corresponds to q = 0, revealing
the dominance of FM intra-sublattice interactions. A further increase of the frozen-magnon
energies for the third type of frozen magnons shows that the leading interactions between
atoms of different sublattices is also FM. This strong intersublattice FM exchange interaction
stabilizes the FM structure of the film as a whole despite AFM interactions within the first
sublattice.

The intra-atomic exchange parameters are obtained by means of back Fourier
transformation of the frozen-magnon dispersions. Figure 10 presents the first five intra-
sublattice inter-atomic exchange parameters for atoms along the x- and y-directions in the
crystal lattice. We emphasize that the strong difference between the exchange interactions within
the two sublattices results from the difference in the hybridization with the (nonmagnetic) Si
atoms. The Mn–Si hybridization not only makes the two Mn sublattices different to each other,
but also leads to the anisotropy of the exchange interactions within the sublattices. Indeed,
although the Mn atoms form a square lattice, the strengths of the exchange coupling between
atoms lying on the x- and y-axes are different. The anisotropy is more pronounced for the
exchange interactions within the first sublattice (cf figure 10). The first nearest-neighbor intra-
sublattice exchange parameter of the Mn1 sublattice in the x-direction is positive, revealing
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FM coupling, whereas the corresponding exchange parameter in the y-direction is negative,
revealing AFM coupling.

The procedure to obtain the inter-sublattice exchange parameters is more complicated. The
intra-sublattice contributions must be subtracted from the total dispersion before performing
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interaction between sublattices as a function of angle θ .

the back Fourier transformation. The frozen-magnon technique for the determination of the
exchange interactions for complex crystal structures has been recently discussed in detail by
Sandratskii et al [27]. Here, we do not perform a full analysis of the inter-sublattice exchange
parameters. By means of the analysis of the q dependence of the SP3 frozen-magnon dispersion
for the 0 → M interval we came to the conclusion that the nearest-neighbor intersublattice
exchange interaction is much stronger than the inter-sublattice exchange interactions between
more distant atoms. The estimated value of the nearest-neighbor interaction is 11 meV.

Next, we describe several calculations aiming to verify the validity of the Heisenberg
model (equation (10)) in the description of the MnSi films. We first calculate the energy of
the relative deviation of the moments of two Mn sublattices by an angle 2θ . According to
the Heisenberg Hamiltonian the θ -dependence of this energy must be exactly proportional to
1 − cos 2θ . Therefore, the deviation from this functional form reveals the restriction of the
Heisenberg model. In these calculations, we use the magnetic force theorem [17, 39]. According
to this theorem, the difference of the total energies of two magnetic states can be approximated
by the difference of the corresponding band energies. The self-consistent calculation is carried
out for only one of the two states. The potentials thus obtained are used to evaluate the
band energy of the second magnetic state. The use of the force theorem greatly reduces the
calculational demands.

In figure 11(a), we compare the energy as a function of θ with the corresponding
Heisenberg-type function. The comparison shows the deviation of the calculated energies from
a simple cosine-like function. These deviations are symmetric with respect to the angle θ = π/4
(cf dotted curve in figure 11(a)).

The ratio of the Heisenberg energy to 1 − cos 2θ should be independent of θ . However, a
similar ratio for the calculated curve shows strong θ -dependence (figure 11(b)) varying from
6.8 meV at small θ to 11.0 meV for θ = π/2. The strong θ -dependence of the ratio indicates
the limited validity of the Heisenberg model in the account of transversal magnetic fluctuations.
The deviation from the Heisenberg model can be treated as a θ -dependence of the exchange
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parameters. A rigorous statistical-mechanics model must take into account the full complex
character of the energetics of the system. Such statistical-mechanics calculations are a nontrivial
problem that needs separate consideration and will not be addressed in this paper.

We will simplify the problem and put the question in the form: which value of θ should
be chosen that the exchange parameters give the best estimation of the Curie temperature of
the system within the Heisenberg model? The answer to this question depends on the typical
angles between atomic moments when the system is close to the Curie point, and is directly
related to the strength of the short-range magnetic order (SRMO) at this temperature. Note that
both experimental and theoretical studies do not provide unique answer on the temperature
dependence of the SRMO. Opinions deviate cardinally even in the case of elementary
3d-ferromagnets [41, 42].

The assumption of strong SRMO corresponds to low-θ values of the exchange interaction.
On the other hand, if the SRMO is negligible, the average angle between different moments is
θ = π/2, and values of the exchange interaction should be taken from the large-θ calculations.
The consequences of this choice for the predicted Curie temperature are obvious already on the
level of a mean-field estimation: assuming nearest-neighbor exchange interactions and using
low-θ values of the parameters gives 230 K, whereas the large-θ parameters yield 380 K. As the
strength of the SRMO in MnSi is yet unknown, an optimal choice of the exchange parameters
needs further studies.

Moreover, the calculation of the frozen-magnon energies as a function of the wave
vector can be used to study the restrictions of the Heisenberg model. We performed the
calculation of the frozen-magnon dispersions for three values of the θ angle: π/4, π/3 and
π/2. The calculations for each of these angles is sufficient to evaluate the Heisenberg exchange
parameters. The difference between exchange parameters obtained for different θ reveals the
restrictions of the Heisenberg model in the description of the given system. We visualize
these restrictions by using the exchange parameters obtained for θ = π/2 to describe the
frozen-magnon dispersion for θ = π/3 and θ = π/4. In figure 12, we draw the frozen-magnon
energies as a function of the wave vector q for the [110]-direction of the 2D reciprocal space.
We find a strong deviation of the results obtained with the use of the exchange parameters
from θ = π/2 calculations from the values obtained in direct calculations for different θ .
This difference visualizes again the limitations of the Heisenberg model where the exchange
parameters obtained for one θ must reproduce exactly the energies obtained for another θ .

To overcome the limitations of the Heisenberg model in the description of the energetics of
the system we have to include into the model Hamiltonian higher order terms such as biquadratic
and three-spin interactions.

H = −

∑
i, j,µ,ν

J µν

i j eiµ · e jν +
∑

i, j,µ,ν

kµν

i j (eiµ · e jν)
2 (10)

In figure 13, we compare the fitting obtained with the standard Heisenberg Hamiltonian and
the fitting with Heisenberg plus biquadratic terms. The calculations show that the inclusion of
the biquadratic term is sufficient to reach very good descriptions of the frozen magnon energies
obtained for different θ values (figure 13).

A characteristic feature of the itinerant-electron systems is the possibility of longitudinal
fluctuations of the atomic moments. The variation of the magnitude of the atomic moments for
a given magnetic configuration is neglected in the Heisenberg model. To study the energetics of
longitudinal fluctuations we use the fixed-spin-moment method.
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We consider the FM ground state and impose a constraint on the value of the spin moment
of the atoms of the first sublattice. This constraint corresponds to an effective magnetic field
acting on the atoms of the first sublattice only. The value of the effective field for a given value of
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the moment is obtained within a self-consistent procedure. Although the field acts on the atoms
of one sublattice only the calculations show that the value of the moment of the second sublattice
also vary. This variation is the result of the inter-atomic hybridization. Rather unexpectedly, the
increase of the constrained moment leads to the decrease of the moment of the other sublattice.
The induced variation is very strong, about 50% of the variation of the constrained moment (see
figure 14). Therefore, the changes of the moments of two sublattices partly compensate each
other. A similar type of relation between induced and inducing magnetic moments was recently
obtained in calculations of the half-metallic compound NiMnSb [43].

The effective magnetic field versus the constrained value of the magnetic moment is shown
in figure 15(a). The ground-state value of the moment corresponds to vanishing constraining
field. The total energy as a function of magnetic moment can be obtained by integration of
the constraining field as a function of the moment. Figure 15(b) presents the total energy as a
function of constrained moment of the Mn1 or Mn2 atom. These curves give the characteristic
energies of the excitations of the system connected with the variation of the values of the atomic
moments. The energy as a function of the moment has the shape of an asymmetric parabola
with a minimum at the ground-state value of the moment (m0). A fit of the energy curve around
the minimum with the function y = a(x − m0)

2 gives the coefficient a = 0.09 (0.10) eV µ−2
B

for the case of the 1st (2nd) constrained sublattice. The contribution of the longitudinal
fluctuations to thermodynamic quantities at a given temperature can be estimated from the
interval of the values of the magnetic moment corresponding to an energy variation of the
order of kBT . For a flatter curve (smaller a), the contribution of the longitudinal fluctuations
increases.
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The contribution of the longitudinal fluctuations to thermal averages is negligibly small
if the characteristic energies of the transversal fluctuations described by the Heisenberg
Hamiltonian are much smaller than the characteristic energies of the variation of the value of the
atomic moments. To estimate the importance of the longitudinal fluctuations, we consider the
energy corresponding to the estimated Curie temperature of the 1 ML-film (241 K). In energy
units, this temperature gives EM = 20.6 meV. Taking this value as a maximal excitation energy
for the variation of the value of the moment, we obtain the following intervals of the variation
of the moments: 0.80µB < M1 < 1.75µB and 1.30µB < M2 < 2.25µB for the Mn1 and Mn2

moments, respectively (see figure 15(b), blue lines). Therefore, the contribution of longitudinal
spin fluctuations to the thermodynamics of the MnSi films is expected to be considerable and
should be taken into the account.

On the basis of the above considerations the energy of an arbitrary magnetic configuration
contains contributions coming from the change of the relative directions of the atomic moments
as well as from the change of the values of the atomic moments. The first contribution
is determined by the interatomic exchange parameters and the second contribution by the
longitudinal stiffness of the moments. In general, these contributions are not independent of
each other.

4. Conclusion

Our calculations show that for a adsorption of single Mn in the Si(001), the incorporation of
Mn into the subsurface interstitial sites is energetically favored and associated with a small
activation barrier. This barrier is lower than on-surface diffusion barriers. Once Mn atoms have
reached the subsurface site, their mobility is drastically reduced since further diffusion into the
bulk as well as reverse diffusion to the surface is energetically rather costly. Despite Si(001) is
structurally an anisotropic surface, diffusion of Mn is almost isotropic on the surface in both the
direction parallel and perpendicular to the dimer rows.
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Our calculations indicate the possibility of formation of multilayered MnSi films that have
a B2 crystal structure (sandwiches of Mn and Si layers). In these sandwiches, the Mn atoms near
the surface and interface have larger magnetic moments, which are coupled ferromagnetically
within the layers. The layer-resolved electronic DOS indicates a considerable degree of spin
polarization at the Fermi level, up to 30 and 50% for one and two MnSi layers, respectively.

We study exchange interactions between Mn atoms and show that the decreasing number
of coordination of the Mn atoms in the MnSi film leads to an increase of both the magnetic
moments and Heisenberg exchange parameters. In the evaluation of the Curie temperature, we
take into account the magnetic anisotropy. For the calculated MAE of 0.4 meV per Mn atom,
the Curie temperature assumes the values of 241 and 328 K for one and two monolayer MnSi
films, respectively. Since the Curie temperatures are rather high, MnSi layers grown on Si(001)
are promising components for applications in spintronics devices.

Finally, we demonstrate that dispersion of magnetic excitations in MnSi films deviate
strongly from standard Heisenberg behavior. The study of the temperature dependence of the
magnetic properties of the films that goes beyond the Heisenberg model could be a topic of
future work.

Acknowledgments

We thank Matthias Scheffler for initiating the project and valuable discussions. In the initial
stages, this work benefited from discussions with Hua Wu on FM MnSi films.

References

[1] Wu H, Hortamani M, Kratzer P and Scheffler M 2004 Phys. Rev. Lett. 92 237202
[2] Hortamani M, Wu H, Kratzer P and Scheffler M 2006 Phys. Rev. B 74 205305
[3] Hortamani M, Sandratskii M L, Kratzer P, Mertig I and Scheffler M 2008 Phys. Rev. B 78 104402
[4] Kratzer P, Hashemifar J, Wu H, Hortamani M and Scheffler M 2007 J. Appl. Phys. 101 081725
[5] Dalpian G M, da Silva A J R and Fazzio A 2003 Phys. Rev. B 68 113310
[6] Dalpian G M, da Silva A J R and Fazzio A 2004 Surf. Sci. 688 566
[7] da Silva A J R, Fazzio A and Antonelli A 2004 Phys. Rev. B 70 193205
[8] Liu Q H et al 2008 Phys. Rev. B 77 245211
[9] Krause M, Stollenwerk A, Reed J, LaBella V, Hortamani M, Kratzer P and Scheffler M 2007 Phys. Rev. B 75

205326
[10] Liu H and Reinke P 2008 Surf. Sci. 602 986
[11] Sjöstedt E, Nordström L and Singh D J 2000 Solid Stat. Commun. 114 15
[12] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, an Augmented Plane Wave +

Local Orbitals Program for Calculating Crystal Properties ed K Schwarz (Austria: Technische Universität
Wien)

[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Eder M, Hafner J and Moroni E G 2000 Phys. Rev. B 61 11492
[15] Hortamani M 2006 Theory of adsorption, diffusion and spin polarization of Mn on Si(001) and Si(111)

substrates PhD Thesis Freie Universität, Berlin
[16] Wu H, Kratzer P and Scheffler M 2005 Phys. Rev. B 72 144425
[17] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[18] Stampfl C et al 1999 Phys. Rev. Lett. 83 2996
[19] Sinai Y G 1982 Theory of Phase Transitions: Rigorous Results (Oxford: Pergamon)

New Journal of Physics 11 (2009) 125009 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.92.237202
http://dx.doi.org/10.1103/PhysRevB.74.205305
http://dx.doi.org/10.1103/PhysRevB.78.104402
http://dx.doi.org/10.1063/1.2723182
http://dx.doi.org/10.1103/PhysRevB.68.113310
http://dx.doi.org/10.1103/PhysRevB.70.193205
http://dx.doi.org/10.1103/PhysRevB.77.245211
http://dx.doi.org/10.1103/PhysRevB.75.205326
http://dx.doi.org/10.1103/PhysRevB.75.205326
http://dx.doi.org/10.1016/j.susc.2007.12.043
http://dx.doi.org/10.1016/S0038-1098(99)00577-3
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.61.11492
http://dx.doi.org/10.1103/PhysRevB.72.144425
http://dx.doi.org/10.1016/0304-8853(87)90721-9
http://dx.doi.org/10.1103/PhysRevLett.83.2993
http://www.njp.org/


23

[20] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[21] Anderson P W 1963 Solid State Physics vol 14 ed F Seitz and D Turnbull pp 99–214
[22] Sasioglu E, Sandratskii L and Bruno P 2004 Phys. Rev. B 70 024427

Sasioglu E, Sandratskii L and Bruno P 2005 Phys. Rev. B 71 214412
[23] Sasioglu E, Sandratskii L, Bruno P and Galanakis I 2005 Phys. Rev. B 72 184415
[24] Rusz J, Turek I and Divis M 2005 Phys. Rev. B 71 174408
[25] Williams A R, Kübler J and Gelatt C D 1979 Phys. Rev. B 19 6094
[26] Sandratskii L M 1998 Adv. Phys. 47 91
[27] Sandratskii L, Singer R and Sasioglu E 2007 Phys. Rev. B 76 184406
[28] Hortamani M, Sandratskii L M and Mertig I 2009 J. Magn. Magn. Mater. in press
[29] Dederichs P H, Blügel S, Zeller R and Akai H 1984 Phy. Rev. Lett. 53 2512
[30] Beeler F, Andersen O K and Scheffler M 1990 Phys. Rev. B 41 1603
[31] Gilles D, Bergholz W and Schröter W 1986 J. Appl. Phys. 59 3590
[32] Lippitz H, Paggel J J and Fumagalli P 2005 Surf. Sci. 575 307
[33] von Känel H, Schwarz C, Goncalves-Conto S and Müller E 1995 Phys. Rev. Lett. 74 1163
[34] Hobbs D and Hafner J 2001 J. Phys.: Condens. Matter 13 L681
[35] Stoner E 1936 Proc. R Soc. A 154 656
[36] Pajda M, Kudrnovsky J, Turek I, Drchal V and Bruno P 2000 Phys. Rev. Lett. 85 5424
[37] Pfleiderer C 2001 J. Magn. Magn. Mater. 226–230 23
[38] Bruno P 1992 Mater. Res. Soc. Symp. Proc. 321 299
[39] Mackintosh A K and Andersen O K 1980 Solid State Physics vol 35 ed H Ehrenreich, F Seitz and D Turnbull

(New York: Academic)
[40] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[41] Antropov V 2005 Phys. Rev. B 72 140406
[42] Ruban A V, Khmelevskyi S, Mohn P and Johansson B 2007 Phys. Rev. B 75 054402
[43] Sandratskii L M 2008 Phys. Rev. B 78 094425

New Journal of Physics 11 (2009) 125009 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevB.70.024427
http://dx.doi.org/10.1103/PhysRevB.71.214412
http://dx.doi.org/10.1103/PhysRevB.72.184415
http://dx.doi.org/10.1103/PhysRevB.71.174408
http://dx.doi.org/10.1103/PhysRevB.19.6094
http://dx.doi.org/10.1080/000187398243573
http://dx.doi.org/10.1103/PhysRevB.76.184406
http://dx.doi.org/10.1016/j.jmmm.2009.03.007
http://dx.doi.org/10.1103/PhysRevLett.53.2512
http://dx.doi.org/10.1103/PhysRevB.41.1603
http://dx.doi.org/10.1063/1.337042
http://dx.doi.org/10.1016/j.susc.2004.11.029
http://dx.doi.org/10.1103/PhysRevLett.74.1163
http://dx.doi.org/10.1088/0953-8984/13/28/104
http://dx.doi.org/10.1098/rspa.1936.0075
http://dx.doi.org/10.1103/PhysRevLett.85.5424
http://dx.doi.org/10.1016/S0304-8853(00)01321-4
http://dx.doi.org/10.1016/0304-8853(87)90721-9
http://dx.doi.org/10.1103/PhysRevB.72.140406
http://dx.doi.org/10.1103/PhysRevB.75.054402
http://dx.doi.org/10.1103/PhysRevB.78.094425
http://www.njp.org/

	1. Introduction
	2. Methods and calculational details
	3. Results and discussion
	3.1. Initial adsorption and surface diffusion pathway
	3.2. Epitaxial growth of MnSi on Si(001)
	3.3. Magnetic properties at zero and finite temperature

	4. Conclusion
	Acknowledgments
	References

