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We propose a theoretical/computational protocol based on

the use of the Ground State Path Integral Quantum Monte

Carlo for the calculation of the kinetic and Coulomb energy

density for a system of N interacting electrons in an external

potential. The idea is based on the derivation of the energy

densities via the (N� 1)-conditional probability density within

the framework of the Levy–Lieb constrained search principle.

The consequences for the development of energy functionals

within the context of density functional theory are discussed.

We propose also the possibility of going beyond the energy

densities and extend this idea to a computational procedure

where the (N� 1)-conditional probability is an implicit

functional of the electron density, independently from the

external potential. In principle, such a procedure paves the

way for an on-the-fly determination of the energy functional

for any system. VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24321

Introduction

Levy–Lieb constrained principle

Levy and Lieb[1,2] have, independently from each other, pro-

vided a general minimization principle which leads to the rig-

orous definition of the universal functional of Hohenberg and

Kohn in density functional theory (DFT).[3,4] The equation for

the ground state energy in the Levy–Lieb (LL) formulation is:

EGS ¼ min
q

min
w!q

wjK þ Veejwh i þ
Z

qðrÞvðrÞdr
� �

: (1)

EGS is the ground state energy, K is the kinetic, and Vee is the elec-

tron-electron Coulomb operator, q(r) the one-particle electron

density, and m(r) the external potential (e.g., electron–nucleus

Coulomb interaction). The meaning of Eq. (1) is that the minimiza-

tion over w is restricted to all antisymmetric wavefunctions such

that q(r) ¼ N$w*(r,r2,…rN) w(r,r2,…rN)dr2…drN, while the outer

minimization searches over all the q’s which integrate to N, num-

ber of particles. The rigorous definition of the universal functional

of Hohenberg and Kohn follows as:

F½q� ¼ min
w!q

wjK þ Veejwh i: (2)

Obviously, searching on the whole space of antisymmetric

wavefunctions is possible only in abstract terms and becomes

impossible when one tries to actually apply the LL principle

and derive an explicit expression of the universal functional as

a functional of q(r). To circumvent this difficulty and make it

possible the derivation of a functional, one would need a for-

malism which expresses Eq. (2) in terms of q, removing the

explicit dependence on w; such a formalism is reported below.

The Levy–Lieb principle in terms of the (N 2 1)-conditional

probability density

Let us consider the properly normalized 3N-dimensional proba-

bility density of an N-electron system:

Nw�ðr; r2…rNÞwðr; r2…rNÞ ¼ Hðr; r2…rNÞ (3)

this can be equivalently written as:

Hðr; r2…rNÞ ¼ qðrÞf ðr2;…rNjrÞ (4)

where q (r) is the one particle electron density (normalized to N)

and f(r2,…rN | r) is the (N� 1) electron conditional (w.r.t. r) probabil-

ity density. This latter in nothing else than the probability density of

finding a configuration of (N� 1) particles after the position of one

specific particle has been fixed.[5] A similar approach based on the

factorization of the N-particle wavefunction wN, in terms of
ffiffiffiffiffiffiffiffiffi
qðrÞ

p
and a the (N� 1)-particle wavefunction wN� 1, has been used by

Levy et al.[6] within the framework of the Kohn–Sham approxima-

tion. They use it to derive exact differential equations for the den-

sity, and differently from us who aim at calculating the universal

This article was published online on 30 August 2012. An error was

subsequently identified. This notice is included in the online and print

version to indicate that both have been corrected on 7 September 2012.

[a] L. Delle Site
Institute for Mathematics, Freie Universit€at Berlin, Arnimallee 6, D-14195
Berlin, Germany
E-mail: luigi.dellesite@fu-berlin.de

[b] L. M. Ghiringhelli

Fritz-Haber-Institut, Faradayweg 4–6, D-14195 Berlin-Dahlem, Germany

E-mail: ghiringhelli@fhi-berlin.mpg.de

[c] D. M. Ceperley

Department of Physics and NCSA, University of Illinois at Urbana-

Champaign, Urbana, Illinois 61801

E-mail: ceperley@ncsa.uiuc.edu

Contract grant sponsor: Heisenberg Stipendium of the Deutsche

Forschungsgemeinschaft (DFG); contract grant number: DE 1140/5-1 (L.D.S).

VC 2012 Wiley Periodicals, Inc.

International Journal of Quantum Chemistry 2013, 113, 155–160 155

FULL PAPERWWW.Q-CHEM.ORG

http://onlinelibrary.wiley.com/


functional F[q], they instead use a predefined expression of the

exchange and correlation functional. Note that at this stage, for

simplicity, we do not consider the spin variables explicitly, that is,

they are suppressed. To write the density functional in the stand-

ard notation used in literature, here we have identified r1 with r.

The LL principle of Eq. (1) can then be rewritten as:[5,7,8]

EGS ¼ min
q

min
f
C½q; f �

� �
þ 1

8

Z jrqðrÞj2

qðrÞ drþ
Z

qðrÞvðrÞdr
" #

(5)

with

F½q� ¼ min
f
C½q; f �

� �
þ 1

8

Z jrqðrÞj2

qðrÞ dr (6)

and

C½q; f � ¼ 1

8

Z
qðrÞ

Z
RN�1

jrrf ðr2;…rNjrÞj2

f ðr2;…rNjrÞ
dr2…drN

" #
drþ (7)

þ ðN� 1Þ
Z

qðrÞ
Z
RN�1

f ðr2;…rNjrÞ
jr� r2j

dr2…drN

� �
dr: (8)

Where RN� 1 denotes the space of configuration (r2,…rN). The

inner minimization searches for the f which minimizes C [q ,f ]; V
q. Here, we underline the fact that the above formalism does

not contain approximations, that is, the ground state identified

in Eq. (5) is the same which solves the time-independent

Schr€odinger equation with the same Hamiltonian. The central

question, is how to determine f in an efficient way and once

there is a procedure for doing so, how this can be used in con-

crete terms within the DFT framework. In our previous work,[9,10]

we adopted a physically motivated explicit guess functional

form for f, dependent on one free parameter, and we numeri-

cally optimized the resulting C [q ,f ] w.r.t. the single parameter.

Here, we propose a radical step further, by leaving the func-

tional form of f completely undetermined and (numerically)

derive it within an exact quantum Monte Carlo (QMC) frame-

work. In the following part of this work, we suggest two differ-

ent but related methodologies, (a) one related to the calculation

of the energy density of the ground state which can then be

used as a reference for developing analytic functionals and (b)

another where f can be determined as a numerical functional of

q, independently of the external potential v, and thus provide a

numerically exact route to the calculation of the universal

Hohenberg–Kohn functional. It must be taken into account that

the intention of this article is to provide a theoretical/methodo-

logical guideline and its practical warnings; at this stage, we do

not provide numerical experiments. In fact, we hope that the

optimal computational implementation of the approach will

come from a constructive discussion of the ideas reported here.

Energy Density of the Ground State

If we restrict ourselves to the ground state of a specific system of

N electrons with a well defined external potential, then the proce-

dure of inner minimization of Eq. (5) (i.e., the search for f which

minimizes C [q ,f ], V q) leads to fmin ¼ fGS. Let us define:

IðrÞ ¼
Z
RN�1

jrrf ðr2;…rNjrÞj2

f ðr2;…rNjrÞ
dr2…drN (9)

and

CðrÞ ¼
Z
RN�1

f ðr2;…rNjrÞ
jr� r2j

dr2…drN (10)

since fmin ¼ fGS, the explicit expression of the functional F[q]
in the ground state is:

F½qGS� ¼
Z

qGSðrÞ
1

8

jrqGSðrÞj2

qGSðrÞ2
þ 1

8
IfGSðrÞ þ ðN� 1ÞCfGSðrÞ

" #
dr:

(11)

The term:

�ðrÞ ¼ 1

8

jrqGSðrÞj2

qGSðrÞ2
þ 1

8
IfGSðrÞ þ ðN� 1ÞCfGSðrÞ (12)

is an energy density per particle expressed in terms of its

kinetic 1
8
jrqGSðrÞj2

qGSðrÞ2
þ 1

8
IfGSðrÞ

8: 9; and Coulomb ((N� 1) CfGS (r))

parts. Here, IfGS(r) and CfGS(r) indicate that the quantities of Eqs.

(9) and (10) are those calculated for the f of the ground state.

If one knew IfGS(r) and CfGS(r) as a functional of q, this would

correspond to have the universal functional of Hohenberg and

Kohn. However, even if IfGS(r) and CfGS(r) are known only in a

case-by-case situation, that is, as functions of the position (and

not functional of the density), the expression of Eq. (12) would

represent the energy density of the universal functional, in the

ground state of a chosen specific system. This means that the

energy density of a proposed functional would be a good one

if its e(r) were to correspond to the one in Eq. (12) when cal-

culated in the ground state. At this point, the key question is

whether there is any rigorous technique which can, in practical

terms (i.e., not only formally), calculate the fGS and thus deter-

mine IfGS(r) and CfGS(r).
[8] If this is the case, then for any given

system—once the number of particles is fixed—one would

have an explicit algorithm to compute the numerically exact

functional of q in the ground state. In the next section, we

propose that the determination of the minimizing fGS and of

the corresponding IfGS(r) and CfGS(r) can be achieved by the

Ground State (GS) Path Integral (PI) QMC technique.

Ground State Path Integral Quantum
Monte Carlo

The Path Integral[11,12] ground state[13] approach (GSPI) allows

one to write the quantum partition function of a system of

N-particles as:

Z ¼
Z

dR0…dRMwðR0Þ exp½�SðR0;R1…RMÞ�wðRMÞ (13)

here, R0 ¼ (r0,r02,…r0N) is a configuration of the N particles in

space, equivalently R1 is another configuration and so on. In

this way, the sequence R0… RM represents an open path of

length M in the spaces of the N-particle configurations. w (R0)
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and w (RM) is a trial wavefunction calculated at the initial and

final configuration. Technically, the choice of a good trial w
enhance the convergence of the method. S(R0,R1…RM) is the

action defined such that:

exp½�SðR0;R1…RMÞ�
¼ R0je�sHjR1

� �
R1je�sHjR2

� �
… RM�1je�sHjRM

� �
(14)

where s, which is formally an imaginary time, is: s ¼ b
M, with b

formally the Boltzmann factor (the temperature has no physi-

cal meaning, but rather a parameter that influences the con-

vergence efficiency of the method) and H the Hamiltonian. In

this way, the quantum mechanical partition function is written

as an integral involving a sequence of transitional probabilities

in imaginary time s. Each of these transition probabilities can

be decomposed into a kinetic part:

Rije�sK jRiþ1

� �
¼ 1

ð2psÞ3N=2
e�

s
2

Ri�Riþ1
s

� 	2

(15)

with K being the kinetic operator, and a potential part:

Rije�sV jRiþ1

� �
¼ 1

ð2psÞ3N=2
e�

s
2½VðRiÞþVðRiþ1Þ� (16)

with V being the potential operator of the system considered.

GSPI for Electrons and Calculation of f and C

In case of atoms and molecules, containing electrons (i.e., fer-

mions) V(R) ¼ Vee þ Vne, namely the electron–electron and the

nucleus–electron interaction. For fermions, in the case of a real

w (R), one uses the fixed node condition:

VfermionsðRÞ ¼ VðRÞ for wðRÞ > 0 (17)

VfermionsðRÞ ¼ 1 for wðRÞ � 0: (18)

In case w (R) is complex, a term is added to the free-particle

part of the action. As the wavefunction is defined as: w (R) ¼
e�s H W (R), where W (R) is the ground state wavefunction, for

s that goes to infinity, w goes to the exact ground state wave-

function W. Technically,[11] the wavefunction is evaluated at

the midpoint of the path, that is, at RM/2. To proceed in the

derivation of f and C in terms of the GSPI approach, we adopt

the following convention: we will indicate the configuration at

the midpoint of the path, RM/2 as R*. This means that

(rM/2,r
M=2
2 ,…r

M=2
N ) becomes (r*,r*2,…r*N). According to Eq. (13), the

(N � 1)-conditional probability density f can now be written as:

f ðr�2;…r�Njr�Þ ¼
1

Zr�

Z
dR0dR1…dRM

2�1dRM
2þ1…dRM

wðR0Þ exp½�SðR�;R0;R1;…RM
2�1;RM

2þ1…RMÞ�wðRMÞ
(19)

where:

Zr� ¼
Z

dRN�1
� dR0dR1…dRM

2�1dRM
2þ1…dRMwðR0Þ

� exp½�SðR�;R0;R1;…RM
2�1;RM

2þ1;…RMÞ�wðRMÞ (20)

dRN�1
* means that the integration is done on the whole space

of configurations r*2,…r*N of R* except that corresponding to

variable r*. With this set up, f can be calculated by propagat-

ing stochastically, according to a Monte Carlo procedure, the

path R in imaginary time s. Since the GSPI procedure, when

evaluating in R*, delivers the ground state wavefunction of the

system, the expression of f in Eq. (19) corresponds to the

ground state (N� 1)-conditional probability density, that is, it

corresponds to fmin of Eq. (11). The expression of Eq. (19) can

be introduced into Eqs. (9) and (10); this leads to:

Iðr�Þ ¼
Z
RN�1

jrr� f ðr�2;…r�Njr�Þj
2

f ðr�2;…r�Njr�Þ
dr�2…dr�N (21)

and

Cðr�Þ ¼
Z
RN�1

f ðr�2;…r�Njr�Þ
jr� � r�2j

dr�2…dr�N: (22)

Where now Ifmin
(r) ¼ I(r*) and Cfmin

(r) ¼ C(r*). Moreover, in I(r*),

the gradient, !r*f(r
*
2,…r*N | r*) can be calculated analytically

and thus sampled without additional computational costs in

the Monte Carlo (MC) sampling in configuration space; the

explicit calculation is reported in the Appendix. The Hohen-

berg–Kohn functional in local form becomes:

F½q� ¼ 1

8

Z jrqðr�Þj2

qðr�Þ dr� þ 1

8

Z
qðr�ÞIðr�Þdr�

þ ðN� 1Þ
Z

qðr�ÞCðr�Þdr�: (23)

As a simple consistency check of our proposed approach, we

consider the example of the homogeneous interacting elec-

tron gas. In this case, the total Hamiltonian is K þ Vee, that is,

there is no external potential v(r), thus, applying the procedure

yields to the Local Density Approximation (LDA) to the

functional.[4]

Practical Utility

In previous work, it has already appeared the idea of using the

PI approach within the framework of DFT,[14,15] but the main

aim there was avoiding the use of orbitals within the Kohn–

Sham approach where an exchange and correlation functional,

Exc[q], was predefined. The intention of this work, instead, is

that of describing a procedure, rigorous from the conceptual

and numerical point of view, to make it possible the numerical

calculation of the exact energy density for a given system

(external potential), and thus use this information for develop-

ing analytic functionals. The advantage of the approach used

here is that the energy density we derive is rigorously divided

in its kinetic I(r) and potential C(r) components and thus the

physical interpretation emerges in a natural way. In practical

terms, a possible way to use this procedure is to treat basic

reference systems (e.g., single atoms, small molecules) for

which the application of the GSPI approach is computationally

feasible. This would allow for the determination of a database
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of energy densities that can be used for the development of

energy functionals, and to have a novel insight into the basic

physics of the functional in terms of each of its specific com-

ponents. For instance, an accurate DFT-level description of the

van der Waals interactions, with current functionals, for a sys-

tem as simple as the helium dimer, is still an open problem.[16]

Indeed, QMC calculations for the helium dimer are carried on

to have some understanding of such interactions with

the intention of using the results to build better functionals

on a sound physical basis (see e.g., Refs. [16,17] and

references therein). The approach suggested here would not be

computationally more demanding than that of the QMC calcula-

tions of Refs. [16,17]; however, it would automatically provide

the detailed (i.e., of each of the energy components) physics of

the energy density of the ground state and thus a numerical

reference in the development of energy functionals. In particu-

lar, for a given system, one may treat the problem for the case

of interacting and for the case of not interacting electrons and

calculate Iint(r) and C(r) for the interacting case, and Inint(r) for

the noninteracting case. In this way, one can determine exc(r)
¼ IintðrÞ þ ðN� 1ÞCðrÞ � InintðrÞ �

R qðr0Þ
jr�r0 jdr

0, (where
R qðr0Þ

jr�r0 jdr
0 is

the Hartree term), that is the exchange and correlation energy

density per particle. This quantity can be used as a basis for

developing more general expressions of exc(r). In this context,

relevant, long standing questions as that of the kinetic

contribution to the Exc
[18] or the problem of how to extend the

LL formulation to the kinetic energy density[19] could be now

addressed in a more robust way. From the numerical point of

view, the major advantage is that every time a GSPI QMC calcu-

lation is done for a given system, the quantities I(r) and C(r) can

be automatically determined at no additional cost. This means

that one would automatically produce an increasingly larger

database to be used for the development of functionals, and

thus no more restricted to the uniform gas only. Furthermore, in

this context, recently developed approaches within the

framework of the so-called kernel-based machine learning (ML),

propose a training strategy for systematically determine a nu-

merical functional[20] (though for the moment only for a simple

proof-of-concept test case). ML is a powerful tool for finding

patterns in high-dimensional data and, applied to our strategy,

would mean using GSPI exact results for non trivial cases to

refine (train) a numerical expression of the functional. It is re-

markable that the flexibility of ML allows for the insertion in the

functional form of as much physical intuition as felt necessary

(e.g., by imposing known exact analytic constraints), to reduce

the dimensionality parameter space in which the numerical

optimization is performed.

Warnings

It must be noticed that the use of f in the QMC procedure

could lead to results characterized by a large variance. In prin-

ciple, one may derive e(r) of Eq. (12) in more efficient manners

without passing through the calculation of f; however, the sep-

aration of the kinetic functional in the two terms: jrqðrj2
qðrÞ ; I(r);

would be no more straightforward and thus the detailed

understanding of the physics related to the interplay between

these two terms may be lost. Although this is not relevant for

practical applications, it may be relevant for the understanding

of the basic physics and thus for the construction of analytic

functionals. In general, without invoking f, in the standard

GSPI procedure, C(r) can be efficiently calculated in the follow-

ing way: the density is determined as the number of electrons

visiting some volume element from the middle time slice, it

follows that C(r) is the average electron-electron potential in

that volume element. However, it is not clear how one must

then deal with the kinetic part (which is of major concern in

this article) although, as underlined above, it cannot be

excluded that it may exists a more efficient way that does not

directly involve f. In case such a procedure is possible, our ba-

sic idea of determining each term of the energy density via

GSPI QMC remains valid and we would gain in computational

efficiency. At the current stage, this aspect goes beyond the

aim of this article.

Universal Functional

In the procedure discussed in the previous sections, we must

restrict the calculations to cases where v(r) ¼ Vne(r) is specified

and then explicitly used in the QMC calculation of the transi-

tional probabilities:

Rije�sV jRiþ1

� �
¼ 1

ð2psÞ3N=2
e�

s
2½VeeðRiÞþVneðRiÞþVeeðRiþ1ÞþVneðRiþ1Þ�: (24)

For this reason, one cannot determine F[q] as a universal func-

tional of q independently from v(r). Here, we propose to mod-

ify the GSPI approach so that the resulting f is a functional of

q only, independently from v(r). To this aim, we rewrite the

transitional probability for the potential part as:

Rije�sV jRiþ1

� �
¼ 1

ð2psÞ3N=2
e�

s
2½VeeðRiÞþVeeðRiþ1Þ� (25)

that is, considering only the electron–electron interaction. The

transitional probability for the kinetic part remains the same

as above [Eq. (15)]. Next, we can calculate f, and thus I(r) and

C(r) as in Eqs. (19), (21), and (22), but with a sampling re-

stricted to a trial qtrial. This means sampling the R
0
i s in the con-

figuration space with the constraint that the one particle den-

sity is qtrial.
The unusual procedure of constraining the one particle trial

density deserves some clarification. In practice, the average one

particle density q (r) is evaluated during the GSPI sampling, for

example, by binning the positions of the bids in a suitable

three-dimensional grid. Each MC move is accepted provided

that, besides passing the usual test of the GSPI algorithm, the

new density is closer to the target density in a MC sense. This

means that the move is always accepted if the new density qn is
closer to the target (trial) density than the old density qo, it is
accepted with a certain probability if the new density departs

from the target density. This is done by using the (square of

the) Euclidean distance between the two densities,

D2ðq; qtrialÞ ¼
R
drðqðrÞ � qtrialðrÞÞ2 �

P
i

ðqðriÞ � qtrialðriÞÞ2, where
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the summation goes over the grid points. If

D2ðqn; qtrialÞ\D2ðqo;qtrialÞ the move is always accepted,

otherwise it is accepted if a random number taken from a

uniform distribution between 0 and 1 is smaller than

exp½kðD2ðqo;qtrialÞ � D2ðqn;qtrialÞ� where k is a suitable weight

chosen such that the acceptance is neither too high nor too

low). This strategy is similar to the parallel tempering umbrella

sampling used in Ref. [21]; in that case the tethered quantity was

the crystal size, here is the one particle density. In the same spirit

of that reference, one can more efficiently sample the new qn by
accumulating over few MC regular moves, then a complete set

of moves is accepted or rejected on the basis of the test on q.
The length of the trajectory over which each new evaluation of

qn is performed has to be tuned for an efficient sampling.

In this case, the QMC procedure assures that the principle:

minf C [q ,f ], is achieved in the sense that the resulting C is

that of ‘‘ground state’’ at the fixed qtrial, which is a ground state

one for some attractive potential that may or may not be the

actual potential under consideration. Note that at this stage

the external potential is not invoked and it is actually absent;

in practice what we have done is to find the f of ground state

of a gas of electron with some artificially forced electron den-

sity. From the obtained f, we can now calculate the corre-

sponding I(r) ¼ Iqtrial
(r) and C(r) ¼ Cqtrial

(r). These quantities are

taken as a first guess to write an energy functional for a

generic q (r):

E½q�

¼
Z

qðrÞ 1

8

jrqðrÞj2

qðrÞ2
drþ 1

8
IqtrialðrÞ þ ðN� 1ÞCqtrialðrÞ þ vðrÞ

" #
dr:

(26)

Next, we use Eq. (26) for a minimization w.r.t. q and obtain

a new q ¼ q1out, different from qtrial because in Eq. (26) the

effect of v(r) is explicitly included during the energy minimi-

zation. At this point, one can use q1out as a new trial den-

sity, repeat the QMC procedure, that is we search the

ground state of a gas of electrons with artificially forced

electron density q1out, this will lead to a new f and in turn

to a new I(r) and C(r) and thus we can have a new guess

for

E½q� :
R
qðrÞ 1

8
jrqðrÞj2

qðrÞ2 drþ 1
8 Iq1out ðrÞ þ ðN� 1ÞCq1out ðrÞ þ vðrÞ

h i
dr: As

above we can then use the expression E[q] (again for a

generic q (r)) for a minimization w.r.t. q (r) and obtain as a result

a new q2out and repeat the procedure until qiout ¼ qiþ1
out with

some accuracy. Of course, convergence must be proven and

intuition suggests to start from some ‘‘reasonable’’ qtrial. How-
ever, beyond the several problems that a ‘‘realistic implementa-

tion’’ would imply, this procedure would have at least some con-

ceptual benefits; this is a real space procedure which does not

require neither orbitals nor a predefinition of the functional as

it is instead the case for the Kohn–Sham approach (as in Refs.

[14,15]), but above all, the procedure has the potential to

deliver the energy functional on-the-fly during the calculation.

Because this procedure can be applied to any system, inde-

pendently from its v(r), this is an implicit way (though still for a

case by case situation) to effectively define in iterative manner

the universal functional of Hohenberg and Kohn. Despite the

involved computational costs are not clear yet, this idea may in

principle offer a complementary way for using QMC in the per-

spective of DFT and perhaps a path to find a compromise

between the high accuracy and computational costs of QMC

and the low accuracy and computational costs of DFT. In any

case, the optimization of the computational aspects of this idea

represents an interesting challenge for future research.

Conclusions

We have proposed a theoretical/conceptual protocol based

on using the GSPI QMC technique in the context of DFT for

the determination of the energy functional. We have shown

that the method can be certainly used to calculate auto-

matically the energy density of the ground state in terms

similar to those of the energy functional in DFT. This allows

for using the results for building a database for the devel-

opment and control of energy functionals beyond the

standard case of the uniform electron gas as a reference. A

second possibility to use GSPI QMC is that of using the pro-

cedure as an intermediate step in an iterative loop to deter-

mine the density of ground state within the LL energy func-

tional minimization procedure: In simple terms, the

functional is determined on-the-fly during the minimization

procedure. Being valid for any external potential, this proce-

dure implicitly defines, in numerical terms, the universal

functional of Hohenberg and Kohn. Despite the fact that

the computational costs may turn out to be rather high,

the procedure may open a way to find a compromise

between the accuracy of QMC and the feasibility of DFT. As

underlined above, next challenge would be that of search-

ing for the most efficient computational implementation of

the idea and compare its performance with that of standard

methods. However, even if it will turn out to be computa-

tionally less convenient, this protocol would always assure

the access to basic physical information that can be then

used as a complementary knowledge in the development of

new, physically sound, energy functional; this in summary is

the message of this article.

Appendix

Here, we report the analytic calculations of !r*[f(r
*
2,…r*N|r

*)].

Let us define
f ðr�2;…r�Njr�Þ ¼

1

Zr�
�Wðr�; r�2;…r�NÞ (A1)

with

Wðr�; r�2;…r�NÞ ¼
Z

dR0dR1…dRM
2�1dRM

2þ1…dRM

wðR0Þ exp½�SðR�;R0;R1;…RM
2�1;RM

2þ1…RMÞ�wðRMÞ
(A2)

It follows that:

rr� ½f ðr�2;…r�Njr�Þ� ¼ � 1

ðZr� Þ2
Wðr�; r�2;…r�NÞ

� rr�Zr� þ
1

Zr�
� rr�Wðr�; r�2;…r�NÞ (A3)
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with

rr�Zr� ¼
R
dRN�1

� dR0dR1…dRM
2�1dRM

2þ1…dRM

wðR0Þrr� exp½�SðR�;R0;R1;…RM
2�1;RM

2þ1…RMÞ�

 �

wðRMÞ:
(A4)

In, rr� exp½�SðR�;R0;R1;RM
2�1;RM

2þ1RMÞ�
8: 9;, the terms which

are involved into the derivation are only those with R*. This

means that the interesting quantity to calculate is:

rr� RM
2�1je�sHjR�

D E
R�je�sHjRM

2þ1

D Ej k
, the other terms of exp

[�S] factorize. This gives:

rr� RM
2�1je�sHjR�

D E
R�je�sHjRM

2þ1

D Eh i

¼ rr�

"
1

ð2psÞ3N=2
e
�s

2

RM
2
�1

�R�

s


 �2

e
�s

2

R��RM
2
þ1

s


 �2

e
�s

2½VðRM
2
�1
ÞþVðR�Þ�

e
�s

2½VðR�ÞþVðRM
2
þ1
Þ�
#
: (A5)

For the kinetic part one has:

rr�
1

ð2psÞ3N=2
e
�s

2

RM
2
�1

�R�

s


 �2

e
�s

2

R��RM
2
þ1

s


 �22
4

3
5

¼ � 1

ð2psÞ3N=2
e
�s

2

RM
2
�1

�R�

s


 �2

e
�s

2

R��RM
2
þ1

s


 �22
4

3
5

� s½ðrM2�1 � r�Þ � ðr� � r
M
2þ1Þ� (A6)

that is:

rr�
1

ð2psÞ3N=2
e
�s

2

RM
2
�1

�R�

s


 �2

e
�s

2

R��RM
2
þ1

s


 �22
4

3
5

¼ sðrM2þ1 � r
M
2�1Þ � 1

ð2psÞ3N=2
e
�s

2

RM
2
�1

�R�

s


 �2

e
�s

2

R��RM
2
þ1

s


 �22
4

3
5: (A7)

For the potential part:

rr�
1

ð2psÞ3N=2
e
�s

2 VðR�ÞþVðRM
2
�1
Þ


 �
e
�s

2 VðR�ÞþVðRM
2
þ1
Þ


 �" #

¼�srr�VðR�Þ�
1

ð2psÞ3N=2
e
�s

2 VðR�ÞþVðRM
2
þ1
Þ


 �
e
�s

2 VðR�ÞþVðRM
2
�1
Þ


 �" #
: (A8)

It follows:

rr�Zr� ¼
Z

dRN�1
� dR0dR1…dRM

2�1dRM
2þ1…dRM

� ðrM2þ1 � r
M
2�1Þ � srr�VðR�Þ

h i
� wðR0Þ

� exp½�SðR�;R0;R1;…RM
2�1;RM

2þ1…RMÞ�wðRMÞ (A9)

It follows also that:

rr�Wðr�; r�2;…r�NÞ ¼
Z

dR0dR1…dRM
2�1dRM

2þ1…dRM

� ðrM2þ1 � r
M
2�1Þ � srr�VðR�Þ

h i
� wðR0Þ

� exp½�SðR�;R0;R1;…RM
2�1;RM

2þ1RMÞ�wðRMÞ (A10)

The term ðrM2þ1 � r
M
2�1Þ can be calculated without any additional

computational cost during the sampling; however, this is true

also for the term !r*V(R*). In fact the explicit form of V(R*) is

known and thus its gradient can be calculated analytically and

sampled without additional computational costs. If one uses the

expression of Eqs. (A9) and (A10) into I(r*) (C(r*) is straightfor-

ward) obtains the exact form of the Hohenberg-Kohn functional.
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