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We show that the often unsatisfactory performance of Møller–Plesset second-order perturbation
theory �MP2� for the dispersion interaction between closed-shell molecules can be rectified by
adding a correction �Cn /Rn, to its long-range behavior. The dispersion-corrected MP2 �MP2
+�vdW� results are in excellent agreement with the quantum chemistry “gold standard” �coupled
cluster theory with single, double and perturbative triple excitations, CCSD�T�� for a range of
systems bounded by hydrogen bonding, electrostatics and dispersion forces. The MP2+�vdW
method is only mildly dependent on the short-range damping function and consistently outperforms
state-of-the-art dispersion-corrected density-functional theory. © 2009 American Institute of
Physics. �doi:10.1063/1.3213194�

I. INTRODUCTION

Electronic-structure theory plays a key role for predict-
ing the structure and function of molecules and materials.
The success of an approximate electronic structure method
relies upon its ability to yield a consistent description of
different interaction energy components. In particular, an ac-
curate description of noncovalent van der Waals �vdW�
forces, which play a key role in fields as diverse as supramo-
lecular chemistry, biology, polymer science, condensed mat-
ter physics, surface science, and nanotechnology remains a
grand challenge for current electronic structure methods.1,2

At present, only high-level quantum-chemical methods �e.g.,
coupled cluster with single, double and perturbative triple
excitations, CCSD�T�� can attain a consistently accurate de-
scription of vdW interactions. Unfortunately, CCSD�T� is
limited to rather small systems due to its high computational
cost and steep O�N7� scaling with system size.

Second-order Møller–Plesset perturbation theory �MP2�
is the most economical wave function-based electronic struc-
ture method beyond the Hartree–Fock �HF� approximation
that provides an approximate description of all relevant vdW
interactions—electrostatics, induction, and dispersion. Fur-
thermore, MP2 is free from spurious electron self-
interaction, representing a substantial improvement over
state-of-the-art density-functional theory �DFT� approxima-
tions for molecular geometries, reaction barriers, and hydro-
gen bonding.3 Recent theoretical and algorithmic
developments4–6 have extended the regime of applicability of
the MP2 methodology, thereby allowing treatment of rel-
evant biomolecular and nanotechnological systems contain-
ing hundreds of atoms. However, one of the serious short-
comings of MP2 theory is a noticeable overestimation of the
dispersion interaction energy,7,8 which plays a major role for
stability and formation of, e.g., protein secondary structure,

the DNA double helix and nanoassemblies. Current attempts
to correct the limitations of MP2 include the spin-component
scaled models;9,10 however, the optimal scaling coefficients
change significantly depending on the desired property of
interest, as recently demonstrated for noncovalent
interactions.11

In this work, we show that the main source of error in
the MP2 interaction energy for many relevant systems stems
from overestimated dispersion coefficients, Cn

MP2. We then
propose a computationally inexpensive MP2-specific disper-
sion correction scheme, based on a pairwise interatomic
CnR−n summation, which brings MP2 binding energies into
remarkable agreement with CCSD�T� reference data, as illus-
trated for a range of systems bounded by hydrogen bonding,
electrostatics, and dispersion forces. For all of the above sys-
tems, we show that the MP2+�vdW method is only weakly
dependent on the short-range damping function. Moreover,
MP2 theory represents a superior starting point for the dis-
persion correction compared to �semi�-local DFT.

II. ASYMPTOTIC BEHAVIOR OF THE MP2 DISPERSION
ENERGY

The purpose of this section is to briefly show the rela-
tionship between C6

MP2 dispersion coefficients and
frequency-dependent polarizabilities obtained at the un-
coupled HF �UCHF� level of theory. For further details, we
refer the reader to Refs. 12–14. The general ideas of the
dispersion correction and the derivation of interatomic C6

coefficients from first-principles was presented in a previous
paper by two of us.15

For large distance R between molecules A and B, the
MP2 dispersion energy is given by EAB,disp

MP2 =−�n�6Cn
MP2 /Rn,

in which the leading-order isotropic dispersion coefficient,
C6

MP2, is obtained via the Casimir–Polder integral �atomic
units are used throughout�a�Electronic mail: atkatchenko@gmail.com.
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In this expression, �A
UCHF is the UCHF frequency-dependent

dipole polarizability �FDP� of molecule A

�UCHF��� = 4�
Q

�
i,a

��a − �i��i�Q̂�a	�a�Q̂�i	
��a − �i�2 − �2 , �2�

where Q̂ is the dipole operator, i and a are occupied and
virtual HF orbitals, respectively, and �i,a are the HF orbital
eigenvalues. Similar expressions can be derived for the
higher-order dispersion terms �C8

MP2, etc.�.
All FDP calculations in this work have been performed

with a modified version of Q-CHEM.16 Unless otherwise stated
in the text, all FDP calculations use the aug-cc-pVQZ or
SPQZ �Ref. 17� basis sets, where the latter is a modified
quadruple-zeta basis set designed for convergence of disper-
sion energy coefficients.

III. MP2+�vdW METHOD

In order to illustrate the unsatisfactory performance of
MP2 for the dispersion energy, we have calculated C6

MP2 co-
efficients for all interaction pairs in a database of 39 closed-
shell atoms and molecules �the database of C6

MP2 and C6
REF

coefficients is available in Ref. 18�. We compared the result-
ing 780 C6

MP2 coefficients to the reference pseudodipole os-
cillator strength distribution �DOSD� C6

REF values of Meath
and co-workers.19–36 The latter values are accurate within
1%–2% as shown by comparison between different sets of
experimental input data.19,20 We obtain a mean absolute error
of 18.1% for C6

MP2 with the largest deviation of 76% for the
interaction between two CS2 molecules.

To correct for this shortcoming we propose the following
expression for the dispersion-corrected potential V�R�:

V�R� = VMP2�R� + F�R��
j=0

�C2j+6

R2j+6 , �3�

where �C2j+6=C2j+6
MP2 −C2j+6

REF . The function F�R� damps the
dispersion multipolar expansion to avoid divergence at short
distances. Here we shall concentrate on the leading-order C6

and C8 coefficients, since higher-order Cn coefficients play a
role only at relatively small interatomic distances. We show
that the correction of the leading C6 dispersion term is suf-
ficient to obtain excellent agreement with CCSD�T� binding
energies for intermolecular interactions. Despite the apparent
simplicity of Eq. �3�, its accuracy is far from guaranteed
since the intermolecular binding results from a subtle inter-
play of electrostatic, induction, and dispersion energies. Fur-
thermore, it is not obvious that the same damping function
F�R� is applicable to different systems. We will show below
that dispersion-corrected MP2 is only mildly dependent on a
particular functional form of F�R�, provided the latter �i� is
sufficiently smooth to capture the correlation energy differ-
ence between CCSD�T� and MP2 methods, and �ii� goes as-
ymptotically to zero at short distances.

In practice, interatomic CnAB coefficients are required for
all atomic pairs AB in a molecule to reduce the radius of

divergence of the multipolar expansion in Eq. �3�.1 In this
work we choose a simple strategy to obtain interatomic C6AB

coefficients from molecular C6 coefficients. The cross terms
�A�B� are given by a combination formula

C6AB =
2�A

0�B
0C6AAC6BB

���B
0�2C6AA + ��A

0�2C6BB�
, �4�

where �A
0 and �B

0 are the static polarizabilities of atoms A and
B in a given molecule. This formula is accurate within 2.7%
for a large variety of heteroatomic pairs.15 The atomic polar-
izabilities and homoatomic C6AA

MP2 and C6AA
REF terms are ob-

tained by solving a system of coupled equations for two
molecules, composed of two atomic species exclusively �i.e.,
C and H� in similar hybridization states. This procedure re-
stricts our current benchmarks to small molecules with a
maximum of two atomic species �rare-gas atoms and dimers,
N2, H2O, NH3, CH4, C2H4, and C6H6�. Nevertheless, the
intermolecular potential for different combinations of these
molecules covers a wide range of interaction types �hydro-
gen bonding, electrostatics and dispersion� and magnitudes
�from 4 to 218 meV�. The extension of the MP2+�vdW
scheme to general closed-shell systems including intramo-
lecular interactions will require a way to rigorously partition
molecular C6

MP2 into atomic contributions. We are currently
investigating the possibility of using orbital localization pro-
cedures in MP2 for such a purpose.

IV. DAMPING FUNCTION

The main purpose of the damping function F�R� in Eq.
�3� is to eliminate the divergence of the multipolar dispersion
energy expansion at short distances between two atoms. At
sufficiently large distances �certainly larger than the sum of
atomic vdW radii�, F�R� must converge to unity. However, it
should also be able to describe accurately the crucial inter-
mediate range, including the interaction potential well. For
the dispersion interaction between two hydrogen atoms in
the H2 molecule, F�R� was derived analytically as a function
of R �Refs. 37 and 38� and has the form of an incomplete
gamma function. Tang and Toennies �TT� have used the in-
complete gamma function to construct potential energy mod-
els for rare-gas39 and mercury40 homonuclear and hetero-
nuclear dimers. The TT damping function has the following
form for the Cn dispersion energy term

F�R� = 1 − exp�− bR��
k=0

n
�bR�k

k!
, �5�

where b is a distance scaling parameter inversely propor-
tional to the vdW equilibrium distance. Since all normalized
homonuclear and heteronuclear binding curves fall onto the
same universal form,39,40 the law of corresponding states can
be applied to derive b from the vdW radius by linear inter-
polation. We exploit the latter fact throughout this work �b
=−0.334DvdW+4.386 bohr−1, where DvdW is the sum of
atomic vdW radii�. Aziz and co-workers41,42 proposed a sim-
pler empirical form for the damping function, which, when
combined with an exponential repulsion model, yields very
accurate binding curves for the rare-gas dimers. The Aziz
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damping function employs the following form for every or-
der of the dispersion energy multipolar expansion

F�R� = exp�− �SDvdW/R − 1�2� ,

�6�
R � SDvdW = 1, R � SDvdW,

where S is a distance scaling parameter. The Aziz damping
function converges to unity at SDvdW. The value of S de-
creases for larger rare-gas atoms �1.47 for He, 1.36 for Ne
and Ar, and 1.21 for Kr�. In this work we assume the corre-
sponding rare-gas value to be transferable for all atoms in the
same row of the Periodic Table, so that we use SHe for H and
SNe for C, N, and O atoms. However, the MP2+�vdW bind-
ing energies are affected negligibly �less than 2 meV� if we
use a fixed value of S �S=1.4� for all elements. For both the
Aziz and TT damping functions, we use our recently pre-
sented definition of atomic vdW radii from Hirshfeld parti-
tioning of the electron density in a molecule.15 The vdW
distance DvdW is given by the sum of corresponding atomic
vdW radii, DvdW

AB =RvdW
A +RvdW

B .
Note that Aziz and TT potentials are not fitted to ab

initio calculations. The only necessary information for these
potentials are the asymptotic dispersion energy coefficients
and the position �distance and depth� of the potential energy
well. Thus, it is encouraging that CCSD�T� calculations at
the complete basis set limit essentially reproduce Aziz and
TT binding curves for the rare-gas and mercury dimers, ex-
cept at very short distances.43,44 The differences between the
two damping functions can be appreciated in Fig. 1 and com-
pared to the correlation energy difference between CCSD�T�
and MP2 ��MP2

CCSD�T�� for Ne2 and Kr2. While the Aziz damp-
ing function �multiplied by the �C6R6+�C8R8 term� coin-
cides with the TT one at larger distances, it reaches an in-
flection point and asymptotically goes to zero at 
0.7DvdW.
Similar results are found for the binding curves of �N2�2 and

N2–C6H6 systems. For dispersion bonded systems, the TT
function is clearly more accurate than the Aziz one, repro-
ducing �MP2

CCSD�T� even at quite short distances. However, the
correction of higher-order dispersion terms, not taken into
account here, must play an increasingly important role at the
short range. Furthermore, the correction of the leading-order
C6 term in the dispersion energy makes only a relatively
small contribution to the total CCSD�T� binding energy at
distances smaller than 0.7DvdW �3% for Kr2 at 0.7DvdW and
decreasing to less than 1% at 0.3DvdW�. Thus, the leading-
order dispersion energy correction at distances smaller than
0.7DvdW plays a minor role and will be circumvented here by
employing the Aziz damping function. We also compare re-
sults with the TT damping function and show that it affects
covalent and hydrogen-bonded systems, in which the inter-
atomic distances are shorter than 0.7DvdW.

It is appropriate to compare the above damping functions
to the ones used for correcting �semi�-local DFT calcula-
tions. In contrast to MP2+�vdW, we find that DFT+vdW
requires significantly steeper functions, so that the interme-
diate and short ranges remain unaffected. Using Aziz or TT
damping functions directly for correcting DFT calculations
leads to gross overbinding, unless a large value is used for
the distance scaling parameter. Furthermore, fitting to
CCSD�T� or experimental data leads to significantly different
parameterization of the damping function for different DFT
functionals.45–48 In contrast, MP2+�vdW method does not
require any adjustable parameters in the damping function,
since its performance is already remarkable without fitting to
CCSD�T� data �see below�.

V. APPLICATIONS

In this section we present the application of the MP2
+�vdW method to a range of systems, starting with rare-gas
dimers—prototypical vdW systems. We follow with binding
curves for three different conformations of the benzene
dimer—a classic benchmark system for noncovalent interac-
tions. Finally, we show MP2+�vdW results for a database of
hydrogen bonding, electrostatics and dispersion bounded
systems.

A. Rare-gas dimers

In a rare-gas �RG� dimer the bonding is largely deter-
mined by the interplay between Pauli repulsion and London
dispersion attraction. We use the RG dimer dispersion coef-
ficients from the recent work of Mitroy and Zhang49 ��C6

=−1.09 for Ne2 and 42.1 for Kr2, atomic units used through-
out� in Eq. �3�. These coefficients are obtained from a com-
bination of experimental data and theoretical many-body cal-
culations and are in excellent agreement with DOSD data of
Kumar and Meath.20 Figure 2 shows MP2 and CCSD�T�
binding curves for the Ne and Kr dimers calculated at the
basis set superposition error-corrected aug-cc-pVQZ level
�with the corresponding effective core potential for Kr�. It
can be seen that the underestimation �overestimation� in the
C6 coefficients is directly mirrored in the performance of the
MP2 method for the Ne �Kr� dimer. Indeed, the binding en-
ergy at the respective equilibrium distance is underestimated

FIG. 1. Comparison of the F�R���C6 /R6+�C8 /R8� term with different
damping functions �Aziz, TT, and no damping� with �MP2

CCSD�T� electron cor-
relation energy for Ne2 and Kr2. The employed values are �C6=−1.09,
�C8=−28.5, DvdW=5.84, S=1.47, b=2.458 for Ne2 and �C6=42.1,
�C8=−148, DvdW=7.63, S=1.21, b=1.865 for Kr2. All above values are in
atomic units.
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�overestimated� by �27% for Ne �Kr� dimer. Correcting the
MP2 binding energy curves for the leading C6 coefficient
using Eq. �3� brings them into a significantly better agree-
ment with CCSD�T�. Not only is the long-range behavior
now correct but also most of the underbinding �overbinding�
for Ne �Kr� is eliminated by the correction. For Ne, correct-
ing the higher-order C8 term ��C8=−28.5�, brings the MP2
curve into even better agreement with CCSD�T�. For Kr, the
curve becomes slightly more attractive than the CCSD�T�
reference ��C8=−148�. The difference in the binding energy
at the equilibrium distance between dispersion-corrected
MP2 and CCSD�T� is just 0.1 meV for Ne �2.7% error� and
0.5 meV �3.3% error� for Kr.

We have also tested the TT damping function39 for the
rare-gas binding curves and found them be modified by less
than 3% near the equilibrium distance compared with the
Aziz damping function. The PBE+C6 method performs sig-
nificantly worse compared to MP2+�vdW for RG dimers
�see Fig. 2�.

B. Benzene dimer

Benzene dimer has become a classic benchmark system
for noncovalent interactions. Different conformations on its
complex potential energy surface are stabilized by a subtle
interplay between electrostatics, induction and dispersion
forces.50,51 High-level correlated calculations, e.g.,
CCSD�T�, along with large basis sets are needed to un-
equivocally distinguish between the stability of different
conformations of the benzene dimer.52 The MP2 method
yields unsatisfactory results with a binding energy of 217
meV �118 meV for CCSD�T�� for the parallel-displaced
configuration.7 The spin-component scaled MP2 models im-

prove the agreement with CCSD�T�,53 however the reasons
behind such an improvement are not well understood at
present.

Using MP2 we get a value of 2356 hartree bohr6 for the
isotropic C6 coefficient for the benzene-benzene interaction,
an overestimation of 37% compared to the accurate value of
1723 from the DOSD method of Kumar and Meath.36 We use
the C6 coefficients for benzene and ethylene molecules to
solve a system of two quadratic equations and obtain the
interatomic C6CC, C6HH, and C6CH coefficients. Using DOSD
reference values yields C6CC=27.2 and C6HH=3.26, while
MP2 yields C6CC=52.8 and C6HH=1.69. A large underesti-
mation of the C6 coefficient for hydrogen and an overestima-
tion for carbon is indeed found for all hydrocarbon mol-
ecules �alkanes, alkenes, and alkynes� and is not a feature of
our choice in the benzene and ethylene molecules.

The benzene dimer has been the focus of intense theo-
retical and computational investigation.50–54 In this work, we
took the MP2 and CCSD�T� binding curves for the parallel
displaced, sandwich, and T-shaped configurations of the ben-
zene dimer from the work of Sinnokrot and Sherrill.55 The
reference CCSD�T� data along with MP2 and dispersion-
corrected MP2 binding curves are shown in Fig. 3. For the
parallel-displaced configuration we get a positive correction
of 80 meV for the binding energy at a distance of 3.55 Å
between the monomers, while for the T-shaped one we get a
correction of 24 meV at 5.0 Å. This yields corrected MP2
binding energies of 	109 and 	123 meV, respectively. This
should be compared to CCSD�T� estimates of 	118 meV for
the parallel displaced and 	119 meV for the T-shaped
structure.52 Using the TT damping function instead of the
Aziz one changes the binding energies by less than 5 meV

FIG. 2. Comparison of MP2 and MP2+�vdW with
CCSD�t� binding energy curves for Ne and Kr dimers.
Dispersion-corrected DFT-PBE curves �Ref. 15� are
also shown for comparison. The parameters for the Aziz
damping function are S=1.36 and Req=3.09 Å for Ne
�Ref. 42� and S=1.21 and Req=4.04 Å for Kr �Ref. 41�.

FIG. 3. Comparison of CCSD�T�,
MP2, and MP2+�vdW binding en-
ergy curves for parallel-displaced,
sandwich, and T-shaped conformers of
benzene dimer. The MP2 and
CCSD�T� binding curves are from the
work of Sinnokrot and Sherrill �Ref.
55�.
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near the equilibrium distance for all conformations, once
again confirming the low sensitivity of the MP2+�vdW
method to the damping function.

To assess whether higher-order dispersion coefficients
could alter the above results, we have calculated the MP2 C8

coefficient for benzene �C8
MP2=230,511 hartree bohr8�, an

overestimation of 16% compared to the accurate value of
198 508 from time-dependent many-body perturbation
theory calculations.50 Since the summation of atomic C8 co-
efficients contributes only 25% of the dispersion energy for
the T-shaped and parallel-displaced benzene
conformations,56 the correction of the C8 term amounts to
4% of the binding energy. We conclude that a major part of
the overestimation in the MP2 method for the benzene dimer
stems from the rather large MP2 C6 coefficient. Similar to
RG dimers, the PBE+C6 method is not nearly as accurate as
dispersion-corrected MP2 for the benzene dimer �see Fig. 3�.

C. Database of hydrogen-bonded, electrostatic, and
dispersion systems

In order to further assess the accuracy and transferability
of the MP2+�vdW scheme, we assembled a database of
hydrogen bonded, electrostatics and dispersion bounded sys-
tems shown in Table I. Most of the CCSD�T� binding ener-
gies are taken from the work of Hobza et al.7 and supple-
mented by our own calculations for several interesting
systems, such as Ar-benzene and N2-benzene. All our
CCSD�T� binding energies are generated following the pro-
cedure of Jurecka et al.7 First, a complete basis set limit MP2

binding energy is obtained with the FHI-AIMS code57 and then
a �MP2

CCSD�T� correction is added, calculated with the aug-cc-
pVTZ basis set using the tensor contraction engine module58

in the NWCHEM 5.1 code.59 In all cases, the energies are re-
ported for the minimum of the binding energy curve gener-
ated with the above procedure.

As can be seen from Table I, MP2 has a large mean
absolute relative error �MARE� of 31% from the CCSD�T�
reference data and a mean absolute error �MAE� of 18 meV.
For the MP2+�vdW method with the Aziz damping func-
tion the MARE is reduced to 4.8% and the MAE is only 3
meV. Similar results hold for the TT damping function, how-
ever, it shows a slight overestimation of the hydrogen-
bonded systems due to its influence even for quite short in-
teratomic distances. One of the largest differences between
Aziz and TT damping functions �14 meV� in Table I is for
the parallel-displaced benzene dimer. This, however, is due
to the fact that the CCSD�T� calculation in Ref. 7 was carried
out at the MP2 geometry, which underestimates the equilib-
rium distance. At CCSD�T� equilibrium distance, the differ-
ence between Aziz and TT damping functions decreases to 5
meV.

It is encouraging that the Aziz damping function does
not significantly worsen the already good agreement of MP2
with CCSD�T� for hydrogen-bonded systems. The effect of
the �C6 dispersion correction for both NH3 and H2O dimers
is less than 4 meV. This finding is in marked contrast to the
SCS-MP2 methods,9,10 which improve results for dispersion

TABLE I. Comparison of MP2, MP2+�vdW using Aziz and TT damping functions and PBE+vdW methods
with CCSD�T� reference intermolecular binding energies �in meV�. Different intermolecular orientations are
marked with “T” for T-shaped, “P” for parallel and “PD” for parallel-displaced configuration.

MP2 Aziz TT PBE+vdW CCSD�T�

Hydrogen-bonded
�NH3�2 	139 	142 	146 	141 	137a

�H2O�2 	218 	222 	226 	228 	218a

Electrostatics and dispersion
H2O–C6H6 	157 	139 	137 	153 	142a

NH3–C6H6 	118 	99 	99 	107 	102a

N2–C6H6-T 	52 	22 	28 	42 	26b

�C6H6�2-T 	157 	129 	134 	115 	119a

�N2�2-T 	15 	12 	11 	11 	12b

Dispersion
Ne2 	3 	4 	4 	8 	4b

Kr2 	19 	16 	16 	17 	15b

Ar–C6H6 	69 	49 	47 	54 	50b

N2–C6H6-P 	97 	60 	61 	83 	60b

�N2�2-P 	13 	8 	7 	18 	9b

�C6H6�2-PD 	215 	116 	102 	144 	118a

�CH4�2 	22 	24 	25 	34 	23a

�C2H4�2 	70 	73 	74 	82 	65a

CH4–C6H6 	81 	62 	64 	71 	65a

MAE 18 3 5 10 ¯

MARE �%� 31.0 4.8 7.5 28.6 ¯

aJurecka et al. �Ref. 7�.
bOur CCSD�T� calculations.
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bonded systems but significantly worsen the description of
hydrogen bonding.11,60

The MP2+�vdW method is also significantly more ac-
curate than state-of-the-art dispersion-corrected DFT ap-
proaches. Using the PBE xc functional along with our re-
cently presented DFT+vdW method,15 we obtain a MARE
of 28.6% and MAE of 10 meV on the database in Table I.

VI. DISCUSSION

Several schemes have been recently presented to correct
the dispersion energy in supermolecular MP2
calculations.8,61 Cybulski and Lytle8 proposed to use scaled
time-dependent HF C6 coefficients to improve on UCHF val-
ues and thus correct the long-range dispersion in MP2 calcu-
lations. Hesselmann61 proposed to improve MP2 with the
dispersion energy treated at the time-dependent DFT level.
Thus, these approaches are similar in scope to the MP2
+�vdW method. The main difference in our method consists
in obtaining the reference C6 coefficients from accurate
DOSD data or TS-vdW method,15 the fact that we require
interatomic rather than intermolecular coefficients, and the
use of a damping function. A clear advantage of the MP2
+�vdW procedure is that it is applicable even to large mol-
ecules since the interatomic C6 coefficients allow to extend
the validity of the dispersion energy multipolar expansion to
shorter distances. We showed that MP2+�vdW is indeed
valid at quite short distances by presenting a comparison
with CCSD�T� binding energies for hydrogen-bonded sys-
tems. Hesselmann noticed that hydrogen-bonded systems
were problematic to handle in the MP2+TDDFT approach
since MP2 was already sufficiently accurate before the dis-
persion energy correction.61 In our method, the short-range
damping function is able to rectify this problem, yielding
accurate results for a wide range of noncovalent interactions.
Nevertheless, it is fair to say that additional work is required
to obtain the damping function from first-principles, since it
is highly dependent on the electronic structure method used
for the shorter range. This is also clearly illustrated by dif-
ferent dispersion correction methods for DFT.15,45,46,62,63

However, it is encouraging that the MP2+�vdW method
shows a weak sensitivity to different damping function pa-
rametrizations. Future work will include extending the
MP2+�vdW method to general intermolecular and intramo-
lecular interactions by projecting the molecular MP2 C6 co-
efficients on atoms and benchmarking the method for larger
systems, where the difference between MP2 and CCSD�T�
binding energies may become even more pronounced than
shown in Table I.64

VII. SUMMARY

We have developed a dispersion correction method for
MP2 calculations, which yields results close to CCSD�T� for
a wide range of intermolecular interactions. We found rela-
tively weak sensitivity of the results to the damping function
parameters and functional form, in contrast to DFT+vdW
methods. Extending this scheme to intramolecular interac-
tions requires partitioning the molecular Cn

MP2 coefficients
into atomic contributions, a work currently in progress. The

MP2+�vdW method represents an improvement over dis-
persion correction schemes for approximate DFT
functionals45,46 since MP2 is free from spurious electron self-
interaction.
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