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Density-functional theory is used to study the geometric and electronic structure of cationic Si+16
clusters with a Ti, V, or Cr dopant atom. Through unbiased global geometry optimization based on
the basin-hopping approach, we confirm that a Frank-Kasper polyhedron, with the metal atom at
the center, represents the ground-state isomer for all three systems. The endohedral cage geometry is
thus stabilized even though only VSi+16 achieves electronic shell closure within the prevalent spherical
potential model. Our analysis of the electronic structure traces this diminished role of shell closure
for the stabilization back to the adaptive capability of the metal-Si bonding, which is more the result
of a complex hybridization than the originally proposed mere formal charge transfer. The resulting
flexibility of the metal-Si bond can also help to stabilize “non-magic” cage-dopant combinations,
which suggests that a wider range of materials may eventually be cast into this useful geometry for
cluster-assembled materials. © 2011 American Institute of Physics. [doi:10.1063/1.3604565]

I. INTRODUCTION

Doping with endohedral metal atoms appears as a re-
markable avenue to tailor the intrinsic properties of silicon
clusters.1–5 In contrast to the compact geometries caused by
the preferable sp3 bonding in pure Si clusters,6–9 the incor-
poration of even a single impurity atom can lead to the sta-
bilization of otherwise unfavorable cage-like structures.10–13

As in clathrates14 or carbon nanostructures, these cages then
represent appealing symmetric and unreactive building blocks
for novel cluster-assembled materials with engineered proper-
ties. A prerequisite to a systematic synthesis of such materials
is simple rules that rationalize which metal dopants stabilize
cages and of which size. While this has been controversially
discussed, one commonly agreed criterion for highly stable
so-called “magic” clusters is geometric and electronic shell
closure.1, 11, 12 Here, the electronic manifold of a highly sym-
metric cage is viewed as states in a spherical potential, and
particular stability is expected, if the electrons fill any one
of the angular momentum shells, i.e., 1s (2e−), 1p (6e−), 1d
(10e−), 1 f (14e−), 2s (2e−), 1g (18e−), 2p (6e−), 2d (10e−)
etc.15

For a 16 Si atom endohedral Frank-Kasper (FK)
polyhedron16, 17 “magicity” would hence be predicted for a
dopant atom donating four valence electrons, as the result-
ing 16 × 4 + 4 = 68 electrons achieve closure of the 2d shell.
Within this model the known high stability of VSi+16 is thus
naturally explained, if the nature of the bonding in the clus-
ter is viewed in terms of a full formal charge transfer, i.e.,
“VSi+16 = V5+ + Si4−

16 .”13, 18, 19 Recently, however, Lau et al.
deduced from their x-ray absorption spectroscopy data that
TiSi+16 and CrSi+16 with one valence electron less and more,
respectively, also stabilize in a cage geometry, with further-
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more a highly similar local electronic structure around the
dopant atom compared to the classic VSi+16 system.20 These
findings motivate the present theoretical study, which follows
a twofold approach. First, we perform a first-principles global
geometry optimization of the three cluster systems MSi+16
(M = Ti,V,Cr) to firmly establish that the endohedral FK
cage indeed represents the ground state geometry for all the
three dopant atoms. Second, we analyze the obtained elec-
tronic structure to obtain a more qualified view on the na-
ture of the chemical bonding and elucidate the mechanism
that still stabilizes the cage despite the differing number of
valence electrons in the three systems.

II. THEORY

All calculations have been performed with the all-
electron full-potential density-functional theory (DFT) code
FHI-aims.21 Electronic exchange and correlation was treated
within the generalized-gradient approximation functional due
to Perdew, Burke, and Ernzerhof (PBE).22 For comparison,
single-point calculations at the optimized PBE geometries
were also performed on the hybrid functional level using the
B3LYP (Ref. 23) and PBE0 (Ref. 24) functionals, without
obtaining results that would lead to any conclusions different
to the ones derived and presented below on the basis of
the PBE data. This concerns, in particular, the energetic
ordering of the low-lying isomers. Considering the frequent
observation that hybrid functional DFT yields results for 3d
transition metal containing systems that are at least en par, if
not superior to correlated wave function approaches,25–27 this
supports the reliability of the herein reported isomer ordering.

FHI-aims employs basis sets consisting of atom-centered
numerical orbitals. All sampling calculations are done with
the “tier2” basis set, which contains 43 basis functions for
Si, 67 basis functions for Ti, 88 basis functions for V, and 88
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basis functions for Cr, respectively. The numerical integra-
tions have been performed with the “tight” settings, which
correspond to integration grids with 85, 97, 99, and 101 ra-
dial shells for Si, Ti, V, and Cr, respectively, in which the
number of integration points is successively decreased from
434 for the outermost shell to 50 for the innermost one.21

For the ensuing electronic structure analysis of the optimized
geometries, the electron density was recomputed with an en-
larged “tier3” basis set which contains 64 basis functions for
Si, 103 basis functions for Ti, 115 basis functions for V, and
124 basis functions for Cr. Systematic convergence tests in-
dicate that these settings are fully converged with respect to
the target quantities (energetic difference of different isomers
in the sampling runs; electron density distribution in the elec-
tronic structure analysis). This holds, in particular, for a cen-
tral quantity of our analysis, the radial electron density distri-
bution of the different doped cages. This quantity is defined
as

n(r ) =
∫ 2π

0

∫ π

0
r2n(r, θ, φ) sinθ dθdφ , (1)

where n(r, θ, φ) is the electron density at a given point at
spherical coordinates (r, θ, φ) away from the central dopant
atom at r = 0. To build a radial distribution of the electron
density we calculate the surface integral, Eq. (1), for a set of
spheres of increasing radii and then plot the obtained values
as a function of the sphere radius. The numerical integration
is hereby performed using a cubic (400 × 400 × 400) volu-
metric data grid with 0.02 Å voxel width. The chosen finite
integration radius and angle steps equal 0.02 Bohr and π /360,
respectively.

Local structure optimization is done using the Broyden-
Fletcher-Goldfarb-Shanno method28 relaxing all force com-
ponents to smaller than 10−2 eV/Å. To make sure that the
cage-like geometry indeed represents the ground-state struc-
ture for all the three dopant atoms we relied on basin-hopping
(BH) based global geometry optimization.29–31 Within the BH
idea the configuration space is explored by performing con-
secutive jumps from one local minimum of the potential en-
ergy surface (PES) to another. To achieve this, positions of
atoms in the cluster are randomly perturbed in a so-called trial
move followed by a local geometry optimization which brings
the system again into a local PES minimum. A Metropolis-
type acceptance rule is used to either accept or reject the jump
into the PES minimum reached by the trial move. As specific
BH implementation we chose collective as well as single-
particle trial moves, in which all atoms (collective move) or a
randomly picked atom (single-particle move) is displaced in a
random direction. Two different starting points were used for
all optimization runs: (1) All atoms are randomly positioned
inside a box of dimension (9 × 9 × 9) Å3, or (2) the solution
for the Thomson-problem32 (how to put point charges on a
sphere with minimal energy) is employed to position the Si
atoms, and then the doping metal atom is added at the center.
Typical BH runs comprise of the order of 100 accepted trial
moves and unanimously identified the cage geometry as the
lowest energy structure regardless of the specific settings em-
ployed for the Metropolis rule or the single-particle/collective
moves.

FIG. 1. Ball-and-stick views of the identified ground-state FK cage geome-
tries.

III. RESULTS

A. Cage-like ground state geometry

In contrast to our preceding work on Si20 fullerenes,34

our extended unbiased configuration searches confirm that the
endohedral FK cage indeed represents the ground-state iso-
mer for MSi+16 with all the three dopant atoms, cf. Fig. 1. The
“non-magicity” in the case of Ti and Cr doping only expresses
itself in form of a much reduced energetic gap to the second
lowest energy isomer identified in the BH runs: For VSi+16,
this gap amounts to 1.00 eV, whereas for TiSi+16 and CrSi+16
it is only 0.01 eV and 0.08 eV, respectively. Within a 1.00
eV range above the identified ground state we, correspond-
ingly, found about 15 inequivalent isomers for the latter two
systems. In the Cr-doped case all of them are capped CrSi+15
cages, for Ti more compact TiSi+16 cages are found within
0.1 eV above the ground state. Above this mostly capped
TiSi+15 structures are identified. For none of the three systems
do we thus find exohedral structures among the energetically
low-lying isomers. Detailed information about the structures
of these lowest lying isomers are provided as supplementary
material.33

The incomplete shell-closure of TiSi+16 and CrSi+16 also
shows up in the symmetry of the FK cage. Whereas the
“ideal” VSi+16 cluster exhibits perfect Td symmetry, the cages
with Ti and Cr dopants only exhibit C1 symmetry. The distor-
tions away from perfect Td symmetry are, however, only mi-
nor, as can best be seen from the M-Si bond distances within
the cage. In a perfect FK polyhedron these distances fall into
two closely spaced shells: One with four Si atoms that form
a perfect tetrahedron and slightly beyond that another one
with 12 Si atoms that are all equidistant from the encapsu-
lated metal atom. In the VSi+16 cluster, these two shells are
located at distances of 2.54 Å and 2.81 Å, respectively. In the
less symmetric TiSi+16 and CrSi+16 geometries, the distortions
lift the degeneracies of the two shells and we instead find M-
Si distances spread over a range of 2.64 Å–2.86 Å for Ti and
over a range of 2.50Å–3.35 Å for Cr, respectively. Overall this
leads in the case of Ti doping to a slightly increased average
cage radius of 2.78 Å, compared to the average M-Si distance
of 2.74 Å in both VSi+16 and CrSi+16.

Overall, the geometric differences between the three
cages are thus rather small. We furthermore verified that these
differences have only insignificant effects with respect to the
discussion of the electronic structure of the cage presented in
the following. In fact, the other low-lying endohedral isomers
identified for the “non-magic” clusters also exhibit (despite
their somewhat larger geometric distortions) an electronic
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FIG. 2. Total density of states (DOS) and DOS projected on the metal dopant for (a) TiSi+16, (b) VSi+16, and (c) CrSi+16. Panel (d) directly compares the metal-
projected DOS for the three cases to illustrate the varying degree of metal-Si hybridization. The zero-reference for the energy scale is the vacuum level, and the
labels given to the different groups of states follow the notation of the spherical potential model (see text).

structure that differs only insignificantly with respect to the
following analysis from the one obtained for the ground-state
isomer. We keep this in mind and, correspondingly, base our
analysis for all the three doped and the empty cages on the
symmetric ground-state geometry obtained for VSi+16, i.e., in
all the cases the geometry was kept as in VSi+16 and only the
electron density was each time self-consistently computed.
This procedure facilitates the qualitative discussion of the
nature of the bonding and of the concomitant charge redis-
tribution as it allows to directly subtract the electron densities
obtained for the different dopants and, because of the
higher symmetry, makes the presentation of radial electron
distributions averaged over the solid angle more meaningful.

B. Spherical potential model

The prevalent model to rationalize the stability of doped
Si cage geometries is the spherical potential model,1, 10–13, 15

which has been discussed in detail for the “magic” VSi+16
cluster by Torres, Fernandez, and Balbas.13 As a first step
in our attempt to qualify the chemical bonding and stability
in the “non-magic” FK clusters doped with Ti and Cr we
first briefly recapitulate the essentials of this discussion.
The spherical potential model exploits the near sphericity
of the ideal FK polyhedron, which suggests to classify the
electronic states in shells of determined radial and angular
momentum quantum number. The computed density of states
(DOS) of VSi+16 as shown in Fig. 2(b) demonstrates that the
Kohn-Sham states indeed group into the expected sequence
(1s, 1p, 1d, 1 f, 2s, 1g, 2p, 2d, 1h, . . .) with the 68 valence
electrons exactly achieving closure of the 2d shell. Also more

subtle features like the splitting into the different tetrahedral
(Td ) sub-groups are perfectly obeyed, i.e., the different
shells are sub-divided as s(a1), p(t2), d(e + t2), f (a2 + t1 +
t2), g(a1 + e + t1 + t2), h(e + t1 + 2t2). Bonding to the tran-
sition metal dopant is predominantly expected via the π -type
orbitals with one radial node (2s, 2p, 2d), with hybridization
following an approximate l-selection rule, i.e., the dopant 3d
and 4s valence orbitals mix with Si cage d and s π -orbitals,
respectively. The metal-projected DOS contained in Fig. 2(b)
proves that this feature of the spherical potential model is
also fully reproduced by the actual computation.

However, these features are not a specificity of the
“magic” VSi+16 cluster, but instead simply inherent proper-
ties of the near-spherical polyhedral cage shape. As appar-
ent from Figs. 2(a) and 2(c) essentially the same group-
ings of the Kohn-Sham states are equally obtained for the
other two dopants, i.e., here also the electronic manifold is
well described within the spherical potential model. Exactly
as expected from the differing number of valence electrons,
the only difference is that the electronic shell closure is not
achieved. In TiSi+16 (with 67 valence electrons) the highest en-
ergy state of the 2d shell is unoccupied, and in CrSi+16 (with
69 valence electrons) the lowest energy state of the 1h shell is
occupied. This lifts many of the degeneracies within the dif-
ferent electronic shells and leads to small inter-spin HOMO-
LUMO gaps, but the overall structure in terms of angular mo-
mentum shells is still preserved. Furthermore, as confirmed
by our first-principles sampling calculations the endohedral
FK polyhedron still represents the lowest-energy isomer for
the “non-magic” TiSi+16 and CrSi+16. Electronic shell closure
might, thus, be a criterion for enhanced stability with respect
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FIG. 3. Radial distribution, cf. Eq. (1), of the electron density difference,
�n(r ) = nVSi+16

(r ) − nSi4−
16

(r ) − nV5+ (r ) (solid line), where nVSi+16
(r ) is the

electron density of the doped cage, nSi4−
16

(r ) is the density of the empty Si

cage, and nV5+ (r ) is the density of the V cation. If the formal charge transfer
picture was correct, �n(r ) should be essentially zero throughout. Note the
average cage radius, i.e., the position of the Si atoms, is at 2.74 Å. Addition-
ally shown are other charge combinations of the two fragments (Si16 + V+is
represented by dashed line; Si+16 + V is represented by dotted line).

to other potential isomers. However, it is not a necessary con-
dition to stabilize the endohedral cage geometry per se.

C. Charge transfer versus hybridization

Insight into the weakened role of electronic shell closure
can come from a more qualified discussion of the nature of
the chemical bond within the doped clusters. The simplified
picture connected with the “magicity” of VSi+16 assumes a for-
mal charge transfer of all V valence electrons to the Si cage
manifold. This “formal” view is readily checked by evaluat-
ing the difference of the actually computed electron density
of VSi+16 with respect to a mere superposition of the elec-
tron densities of an empty Si4−

16 cage and a V5+ cation. If the
formal charge transfer picture was correct, then this electron
density difference should be zero throughout. Figure 3 shows
this difference in the form of the radial electron density dis-
tribution, i.e., averaged over the solid angle, cf. Eq. (1). The
largely negative values exhibited at radii larger than the aver-
age cage radius of 2.74 Å indicate that a formally four neg-
atively charged Si cage would contain much more electron
density at the outside as compared to the real VSi+16 system,
while simultaneously there would be much less charge in the

inside (positive regions in Fig. 3). However, this does not sim-
ply indicate that a smaller formal charge transfer from metal
to cage takes place. As illustrated in Fig. 3 also other superpo-
sitions of differently charged empty cages and cations do not
represent the real electron density well. This holds, in partic-
ular, for the radial region between ∼1 and 2 Å, i.e., exactly
the bonding region between central metal atom and cage. The
metal-Si bonding is, thus, rather the result of a more complex
hybridization than mere formal charge transfer.

Equivalent results shown in Fig. 4 are also obtained for
the “non-magic” TiSi+16 and CrSi+16 clusters, which means that
there also the real electron density of the endohedral cage can-
not be fully rationalized in terms of a formal charge trans-
fer. However, in all the three dopant cases the true electron
density outside the cage is best represented, i.e., the radial
electron density difference distribution is closest to zero, for
a charge combination of a positively charged Si cage and a
neutral metal atom. This suggests that the different number of
valence electrons in the three systems resides predominantly
around the dopant. Figure 5 demonstrates that this is indeed
the case. Depicted is the electron density difference between
VSi+16 and TiSi+16, as well as between VSi+16 and CrSi+16, which
allows to locate the missing electron in TiSi+16 and the excess
electron of CrSi+16 as compared to the “magic” VSi+16 cluster,
respectively. In both cases this is close to the central metal
atom.

A complementary view comes from the analysis of the
projected DOS. For this, Fig. 3(a) specifically compares the
metal-projected DOS for the three doped cages. Interestingly,
the metal contribution to the lower lying electronic shells up
to the 2p shell is essentially the same in all cases, i.e., the
intra-shell bonding is little affected. This is much different for
the frontier shells 2d and 1h, which are mostly responsible
for the bonding between cage and dopant. Here, there is a
clear trend of increasing metal weight to the states when
going from TiSi+16 over VSi+16 to CrSi+16. If we add up these
metal contributions over the occupied set of 2d and 1h states,
we arrive at a total of 2.1 (Ti), 3.1 (V), and 3.7 (Cr) electrons
in the three cases. Between Ti and V, as well as between V
and Cr the metal dopant provides, thus, each time around one
more electron to the hybridized states. The adapting degree
of the metal-Si hybridization hence compensates largely for
the different total electron numbers. In other words, while
from TiSi+16 over VSi+16 to CrSi+16 there is each time one more

FIG. 4. Same as Fig. 3, but for TiSi+16 (left panel) and for CrSi+16 (right panel).
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FIG. 5. Electron density difference VSi+16 − TiSi+16 (left panel) and VSi+16 − CrSi+16 (right panel). The radial electron density distribution, cf. Eq. (1), as well as
the 3D isosurface at 0.02 e/ Å3 in the inset demonstrate that the missing electron in the former and excess electron in the latter case are predominantly located
around the central metal atom.

valence electron in the topmost 2d and 1h shells, the number
of electrons that is actually assigned to the Si cage remains
essentially the same. The cage, therefore, effectively “sees”
similar charge numbers, as the adaptive ability of the orbitals
that are predominantly responsible for the metal-silicon
bonding can compensate for the excess or deficit charge.
However, intriguingly it is not just one state that is responsible
for this, e.g., intuitively the one with the changed occupation.
Instead it is the rehybridization of the entire set of 2d and 1h
states, which effectively compensates for the “non-magicity.”
This adaptive capability diminishes the role of electronic
shell closure and is in our view the main reason that helps
to stabilize the endohedral cage geometry also for TiSi+16 and
CrSi+16 despite their differing number of valence electrons.

IV. CONCLUSIONS

In summary, our DFT-based unbiased configuration
searches confirm the preceding interpretation of Lau et al.20

that the Frank-Kasper polyhedron indeed represents the
ground-state geometry for the series of doped TiSi+16, VSi+16,
and CrSi+16 clusters. Endohedral doping can thus be used as
avenue to stabilize cage-like Si16 geometries. The electronic
structure analysis demonstrates that all the three systems are
well described within the spherical potential model, i.e., the
electronic manifold groups into states of defined radial and
angular momentum number. Only the classic VSi+16 cluster
achieves closure of the electronic 2d shell, while the varying
number of valence electrons leads to an unoccupied 2d state
in the case of TiSi+16 and an occupied 1h state in the case of
CrSi+16. Shell closure is, thus, not a necessary condition for
the stabilization of the cage-like geometry as ground-state
structure.

We attribute this diminished role of shell closure for the
stabilization to the adaptive capability of the metal-Si bond-
ing, which is more the result of a complex hybridization than
the mere formal charge transfer picture originally proposed
in connection with the spherical potential model. This adap-
tive capability allows to locate the deficient electron in the
case of TiSi+16, as well as the excess electron in the case of
CrSi+16 predominantly around the metal dopant. The effective
charge assigned to the Si cage is then essentially the same in
the three systems, i.e., the rehybridization of the 2d and 1h
shells compensates for the “non-magicity.” While electronic

shell closure is still, certainly, a criterion for particularly en-
hanced stability, the flexibility of the metal-Si bond can thus
also help to stabilize other cage-dopant combinations than
predicted by this simple rule. Enhanced stability here does
not refer to other cluster sizes or dopants, but as confirmed by
our global geometry optimizations to alternative, potentially
exohedral isomers of the given doped cluster. If such an en-
hancement is a necessary criterion to maintain the structural
integrity of the endohedral cage upon ligand bonding remains
to be confirmed by future studies explicitly addressing the ad-
sorption of such groups. Only if it is the case, it would make
sense to transfer the concept of “magicity” – relating geo-
metric stability to electronic shell closure – to the design of
cluster-assembled materials.
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