
Nonadiabatic and Time-Resolved Photoelectron Spectroscopy for
Molecular Systems
Johannes Flick,*,† Heiko Appel,† and Angel Rubio†,‡

†Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany
‡Nano-Bio Spectroscopy group, Dpto. Física de Materiales, Universidad del País Vasco, Centro de Física de Materiales
CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebastiań, Spain

ABSTRACT: We quantify the nonadiabatic contributions to
the vibronic sidebands of equilibrium and explicitly time-
resolved nonequilibrium photoelectron spectra for a vibronic
model system of trans-polyacetylene. Using exact diagonaliza-
tion, we directly evaluate the sum-over-states expressions for
the linear-response photocurrent. We show that spurious peaks
appear in the Born−Oppenheimer approximation for the
vibronic spectral function, which are not present in the exact
spectral function of the system. The effect can be traced back
to the factorized nature of the Born−Oppenheimer initial and
final photoemission states and also persists when either only
initial or final states are replaced by correlated vibronic states. Only when correlated initial and final vibronic states are taken into
account are the spurious spectral weights of the Born−Oppenheimer approximation suppressed. In the nonequilibrium case, we
illustrate for an initial Franck−Condon excitation and an explicit pump−pulse excitation how the vibronic wavepacket motion of
the system can be traced in the time-resolved photoelectron spectra as a function of the pump−probe delay.

1. INTRODUCTION

Photoelectron spectroscopy is a well-established experimental
method to probe the structure of atoms, molecules, and
solids.1,2 In comparison to other spectroscopic methods such as
optical absorption spectroscopy, photoelectron spectroscopy is
based on non-neutral transitions between many-body states,
such as initial and final states, which have vanishing matrix
elements for charge-neutral transitions and might have
nonvanishing matrix elements for non-neutral transitions.
Hence, photoelectron spectroscopy allows us to observe dipole
or quadrupole forbidden transitions, which would otherwise
not be accessible in optical absorption spectroscopy.
With the appearance of femtosecond laser pulses,3 which lead

to the Nobel prize in chemistry awarded to A. H. Zewail, the
field of time-resolved photoelectron spectroscopy has seen
tremendous developments in recent years. Femtosecond laser
pulses are routinely used to probe a large variety of
intramolecular effects. By combining short pulses with the
new possibilities of time-resolved photoelectron spectroscopy,
experimentalists are now able to realize femtosecond pump−
probe photoelectron spectroscopy. Here, two independent laser
pulses are employed to eject photoelectrons. The first pulse is
used to excite the sample, followed by a second laser pulse after
a finite delay time. The second laser pulse photoexcites the
system to emit a photoelectron. The energy and angle-resolved
distribution of photoelectrons can then be detected by the
measurement apparatus. Tuning the delay time allows us to
monitor dynamical processes in the system.

These novel techniques for time-resolved pump−probe
photoelectron spectroscopy have already been used to
experimentally study and characterize ultrafast photochemical
dynamic processes in liquid jets,4 to follow ultrafast electronic
relaxation, hydrogen-bond-formation, and dissociation dynam-
ics,5 to probe unimolecular and bimolecular reactions in real-
time,6 and to investigate multidimensional time-resolved
dynamics near conical intersections,7to mention a few, all on
a femtosecond time scale.
Driven by such novel experimental possibilities, there is an

ongoing demand to extend and refine the existing theory to
allow for a first-principles description of time-dependent
pump−probe photoelectron experiments and to treat the
electronic and ionic responses on an equal footing. Along these
lines, first steps have already been taken, which focus on
photoelectron spectroscopy in real-time. On the level of time-
dependent density functional theory (TDDFT), the first
pioneering work to describe photoelectron spectra was based
on the momentum distribution of the Kohn−Sham orbitals
recorded at a reference point far from the system.8 More
recently, a mask technique has been developed9 and extended
to attosecond pump−probe spectroscopy.10 This approach
captures the time-dependent case intrinsically and allows, for
example, to directly simulate the photoemission process for
given delay times and shapes of pump and probe pulses.
However, in this approach, the description is so far limited to
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classical nuclei. As a result, the vibrational sidebands in time-
resolved photoelectron spectra and photoabsorption are not
fully captured. Other approaches in a similar direction have
been realized combining TDDFT and ab initio molecular
dynamics11 or by using a reduced density matrix description,
which also relies on the Born−Oppenheimer approximation.12

On the other hand, approaches based on the Born−
Oppenheimer approximation allow for a detailed analysis of
angular resolved photoelectron spectra and for a reconstruction
of molecular orbital densities directly from the spectra.13,14

Standard quantum chemical approaches for photoelectron
spectroscopy as, for example, the double-harmonic approx-
imation (DHA)15 allow us to capture vibrational sidebands
through Franck−Condon factors.16 Here, the vibronic nature of
the involved initial and final states is taken into account within a
harmonic approximation of the corresponding Born−Oppen-
heimer surfaces. Although the vibrational sidebands of
photoelectron spectra can be approximately captured in the
DHA, such an approach lacks the possibility to describe time-
resolved pump−probe experiments explicitly.
In this work, we attempt to compare and validate existing

computational tools for photoelectron spectroscopy of vibroni-
cally coupled systems. We present an approach for time-
resolved photoelectron spectra, which explicitly includes the
vibronic nature of the involved states and allows us to follow
the photoemission process in real-time. For a realistic model
system of small trans-polyacetylene oligomer chains, we
investigate time-resolved photoelectron spectra and compare
it to approaches such as the double-harmonic approximation.
Our study is based on exact diagonalization of vibronic
Hamiltonians and real-time propagations of the time-depend-
ent Schrödinger equation in the combined electronic and
vibrational Fock space of the system. This procedure gives us
access to the exact correlated electron−nuclear eigenstates and
time-evolved states of the system and enables us to test
different levels of approximations against our correlated
reference calculations. In particular, we focus on nonadiabatic
effects beyond the Born−Oppenheimer approximation.
The paper is organized as follows: In Section 2, we introduce

our employed model for trans-polyacetylene oligomers and
provide a comparison of the Born−Oppenheimer states of the
model to the exact correlated energy eigenstates of the
Hamiltonian. Different levels of approximations for the
photocurrent are introduced in Section 3, and the relation of
photoelectron spectra to the one-body spectral function is
discussed. In addition, we focus on time-resolved pump−probe
photoemission spectroscopy. In Section 4, we apply the
theoretical tools of Section 3 to our model system for trans-
polyacetylene and discuss spurious peaks, which appear in the
Born−Oppenheimer approximation for the spectra. To
illustrate our approach for explicitly time-resolved spectroscopy,
we numerically simulate two pump−probe photoelectron
experiments. In the first example, we consider a Franck−
Condon transition as the excitation mechanism, and in the
second example, we explicitly propagate the system in the
presence of a pump pulse. In both cases, photoelectron spectra
are recorded, and we highlight the underlying nuclear
wavepacket motion and the differences to the equilibrium
spectra. Finally, in Section 5, we summarize our findings and
give an outlook for future work.

2. MODEL SYSTEM
2.1. Su−Schrieffer−Heeger Hamiltonian and Exact

Eigenvalues and Eigenfunctions. In this section, we briefly
review the Su−Schrieffer−Heeger (SSH) model17,18 for trans-
polyacetylene (PA) and the exact diagonalization approach.
To model PA oligomer chains (Figure 1(a)), we employ the

SSH Hamiltonian to describe π-electrons in a polymer chain
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With cn̂,σ
† , and cn̂,σ, we denote the usual fermionic creation and

annihilation operators, which create or destroy π-electrons with
spin σ on site n of the chain. The nuclear subsystem in the
Hamiltonian is described by the nuclear displacement operators
un̂ and the nuclear momentum operators pn̂. Expectation values
of the operator un̂ measure the displacement of the nuclear
positions of site n with respect to an equidistant arrangement of
the oligomers in the chain. The displacement and momentum
operators obey the usual bosonic commutation relations, [pî,p̂j]
= 0,[u ̂i,ûj] = 0,[u ̂j,p ̂j] = iℏ For clarification, we always use the hat
symbol [ ̂ ] to distinguish between quantum mechanical
operators and classical variables. Throughout the paper, we use
the standard set of parameters for the SSH Hamiltonian:18 α =
4.1 eV/Å, T = 2.5 eV, K = 21 eV/Å2, and M = 1349.14 eVfs2/
Å2, which leads to a lattice spacing of a = 1.22 Å in the chain.
For this set of parameters, the chain energetically favors a
dimerized arrangement of the oligomers in the ground-state,
leading to a nonvanishing displacement coordinate u ≠ 0. The
dimerization is illustrated in Figure 1.
The SSH Hamiltonian has been used in the literature to

describe soliton propagation in conjugated polymers18 or to
study coupled electron−nuclear dynamics.19−21 The Hamil-
tonian in eq 1 can be divided into three parts: (1) the electronic

Figure 1. (a) Chemical structure of trans-polyacetylene. (b) Model
system for SSH-chain: four trans-polyacetylene oligomers with
clamped ends. The coordinates uj describe the shift of the oligomers
with respect to a perfectly periodic arrangement of lattice spacing a.
Both in the exact Born−Oppenheimer and in the exact correlated
ground state, the chain favors a dimerized arrangement. Also shown
are the optical and acoustical phonon modes of the chain.
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Hamiltonian Ĥπ, which models electron hopping of π-electrons
within a tight binding scheme, (2) the nuclear Hamiltonian
Ĥph, which describes all nuclei as a chain of coupled quantum
harmonic oscillators, and (3) the interaction part in the
Hamiltonian Ĥπ−ph, which takes the coupling of electrons and
nuclei up to first-order in the nuclear displacement into
account. The electron−phonon coupling Ĥπ−ph may be
combined with the kinetic term Ĥπ of the π electrons. The
hopping parameter −T is then replaced by −T + α (u ̂n+1 − u ̂n).
Physically speaking, it is more likely for electrons to hop when
two nuclear positions approach each other or conversely the
effective hopping parameter is decreased when the nuclei are
moving apart.
To gain access to all eigenvalues and eigenstates of the

system, we employ an exact diagonalization technique.22,23 In
the combined electron−nuclear Fock space, we explicitly
construct matrix representations for all operators present in
eq 1. For the photoelectron spectra, we choose to work in Fock
space because here we have direct access to states with a
different electron number N. The matrix representations for the
electronic creation and annihilation operators are constructed
in terms of a Jordan−Wigner transformation,24 and the nuclear
position and momentum operators are represented on a
uniform real-space grid applying an eighth-order finite-differ-
ence scheme. In the present work, we use a two-dimensional
phonon grid with 35 × 35 grid points. Hence, the total Fock
space containing up to eight electrons has the size Mtot = 44 ×
35 × 35 = 313,600. The four (three) electron Hilbert space has
a size of Mmax

[4]([3]) = 70(56) × 35 × 35 = 85,750(68,600) basis
functions.
The Hamiltonian in eq 1 commutes with the spin operators

S ̂z, S ̂2, particle number N̂, and parity P̂. By exploiting all these
symmetries, we first block-diagonalize the Hamiltonian by
ordering basis states according to tuples of eigenvalues of all
symmetry operators that commute with the Hamiltonian. All
remaining blocks in the Hamiltonian are then diagonalized with
a dense eigenvalue solver. In contrast to standard sparse
diagonalization approaches for exact diagonalization, this
procedure gives us access to the full spectrum of all Mtot
eigenvalues and eigenvectors of the static Schrödinger equation

̂ |Ψ ⟩ = |Ψ ⟩H Ej
N

j
N

j
N

ssh
( ) ( ) ( )

(2)

Here, the eigenstates |Ψj
(N)⟩ and eigenvalues Ej

N of the SSH
polyacetylene chain refer to the exact correlated stationary
states of the combined system of electrons and nuclei in Fock
space. To simplify the following discussion of electron removal,
we always indicate the number of electrons explicitly with
superscript N.
To solve for the time evolution of arbitrary initial states

|Φ(N)(0)⟩ in the presence of pump and probe pulses, we
explicitly propagate the time-dependent Schrödinger equation

ℏ ∂
∂

|Φ ⟩ = ̂ |Φ ⟩i
t

t H t( ) ( )N N( )
ssh

( )
(3)

with a Lanczos propagation scheme.25,26 In the following, the
exact diagonalization of the static Schrödinger equation and the
time-evolved states of the correlated system serve as exact
references to test the quality and validity of approximate
schemes for photoelectron spectra. Due to the exponential
scaling of the Fock space size, the calculation of exact
eigenstates and time-evolved wave functions is limited to
small SSH chains (maximum of four oligomers in the present

case). Although the exact numerical solutions are only available
for small SSH chains, they serve as valuable references to test
approximate schemes, which then can be employed for larger
systems.

2.2. Born−Oppenheimer Approximation for the Su−
Schrieffer−Heeger Hamiltonian. To introduce the required
notation for the following sections and to illustrate the exact
potential energy surfaces, we briefly discuss the Born−
Oppenheimer approximation for the SSH model. By setting
the nuclear kinetic energy in eq 1 to zero, the nuclear
displacements become classical parameters and we arrive at the
electronic Born−Oppenheimer Hamiltonian for the SSH chain
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with the corresponding eigenvalue problem

ϕ ε ϕ̂ | ⟩ = | ⟩H u u u u({ }) ({ }) ({ }) ({ })n j
N

n j n j
N

nssh,el
( )
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( )
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The eigenvalues εel,j({un}) as functions of the classical
coordinates {un} denote the Born−Oppenheimer surfaces of
the system. Similar to the case of the exact correlated
eigenstates |Ψj

(N)⟩, we here use for electronic Born−
Oppenheimer states |ϕj

(N)⟩ a superscript (N) to distinguish
between the Hilbert spaces of different electron numbers. In
analogy to the exact diagonalization approach for the full
Hamiltonian, as discussed in the previous section, we employ
here a dense exact diagonalization scheme for the electronic
Born−Oppenheimer Hamiltonian. This procedure gives us
access to all exact Born−Oppenheimer surfaces and corre-
sponding Born−Oppenheimer states of the SSH chain. In
addition to the exact surfaces, we compute the Hessian of the
electronic energies with respect to the displacements. By
diagonalizing the Hessian, we arrive at the harmonic
approximation for the Born−Oppenheimer surfaces. In Figure
2, we illustrate the exact potential energy surfaces (dashed
lines) along the axis of the optical normal mode of the chain
and compare to the harmonic approximation of the surfaces
(solid lines). As shown from the figure, for the Hamiltonian in
eq 1, the harmonic approximation is very close to the exact
surfaces. Overall, the model behaves rather harmonic, and only
small anharmonicities are present. We emphasize, that the
almost harmonic nature of the exact potential energy surfaces
originates from the quadratic interaction term in the phonon
Hamiltonian Ĥph because already in the exact model
Hamiltonian only quadratic nuclear interaction terms are
included. The only source of anharmonicity and nonadiabaticity
is the electron−phonon coupling term Ĥπ−ph in eq 1, which
introduces only small anharmonicities and nonadiabatic
couplings between different electronic surfaces.
For each fixed set of nuclear coordinates {un}, the electronic

eigenstates |ϕj
(N) ({un})⟩ form a complete set in the many-

particle Hilbert space of the electrons. For a given set of nuclear
displacement coordinates {un}, we can expand the exact many-
body wave function in terms of the electronic eigenstates |ϕj

(N)⟩
and the nuclear eigenstates |χij⟩ in terms of the Born−Huang
expansion27
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Here, the electronic eigenstates |ϕj
(N)⟩ depend parametrically on

the oligomer displacements {un}, and the nuclear eigenstates
|χij⟩ are functions of {un}. We solve for the states |χij({un})⟩ by
diagonalizing the corresponding nuclear Born−Oppenheimer
Hamiltonian

ε̂ = ̂ +H H u({ })j j j nssh,ph, ph, el, (7)

directly in the real-space representation. In Table 1, we
compare the lowest five states and two higher-lying states of the
exact BO energies EBO

exact and the BO energies in harmonic
approximation EBO

harmonic to the exact many-body energies of the
correlated system Eexact. In addition, we give the overlaps of
Born−Oppenheimer and exact states. For the present model,
low-lying Born−Oppenheimer states in harmonic approxima-
tion and exact Born−Oppenheimer states are both very good
approximations to the exact correlated states. In particular, the
exact BO ground state has an overlap of 99.86% with the exact
correlated ground state. For higher-lying states, the harmonic
approximation of the potential energy surfaces yields states with
less accurate energies and overlaps compared to the exact BO
states. Despite the good agreement for the low lying states, we
demonstrate in Section 4 that the differences between exact and
harmonic BO and exact correlated states for higher-lying levels
cause sizable deviations between the exact and the correspond-
ing exact or harmonic BO photoelectron spectra. In particular,

the BO photoelectron spectra acquire spurious peak amplitudes
that are not present in the exact correlated spectrum.

3. THEORY OF STATIC AND TIME-DEPENDENT
PHOTOELECTRON SPECTROSCOPY

In this section, we briefly review the connection between
photoelectron spectra and the one-body spectral function
known from literature28−31 and extend the discussion to
vibronic states. For later purposes, we discuss the equilibrium
and nonequilibrium spectral functions. Because our emphasis in
the present work is on pump−probe photoelectron experi-
ments for vibronic systems, we keep an explicit focus on the
reference-state dependence of the vibronic one-body spectral
function, and we discuss how the photocurrent can be
expressed in a real-time evolution.
In terms of Fermi’s Golden Rule, we can formulate the exact

expression for the photocurrent Jk(ω) in first-order perturba-
tion theory2,28,32 as

∑ω π ψ ψ δ ω=
ℏ

|⟨ |Δ̂| ⟩| − − ℏj E E( )
2

( )
j

j
N

i
N

jk k k,
( ) ( ) 2
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Here, |Ψj,k
(N)⟩ denotes the final state, where the emitted

photoelectron with momentum k and energy Ek is typically
assumed to be in a scattering state (distorted plane wave or
time-inverted scattering/LEED state, see ref 1 and references
therein). The remaining part of the system is left in the excited
state j with energy Ej carrying N − 1 electrons. In both
subsystems, the emitted electron and remaining photofragment
are in general still correlated in the combined state |Ψj,k

(N)⟩. The
wave function |Ψi

(N)⟩ represents an initial state of the many-
body system from where the photoelectron will be emitted.
The above form of Fermi’s Golden Rule is strictly valid only for
pure states as initial and final states. In these cases, usually the
N-electron ground state is considered, but also excited
eigenstates or superposition states are allowed. For many
experimental setups, it is not justified to consider the ground
state as initial state for the photoemission process. In particular,
in pump−probe photoelectron spectroscopy, the system is

Figure 2. Exact Born−Oppenheimer surfaces and harmonic
approximation for a trans-polyacetylene oligomer. In the panel on
the left-hand side, a one-dimensional cut along the optical axis of the
exact potential energy surfaces is shown in dashed lines. The harmonic
approximations to the exact BO surfaces are shown in solid lines,
where black lines refer to N − 1 electron states and the red line
corresponds to the N-electron ground state. In the panel on the right-
hand side, the corresponding photoelectron spectrum in double-
harmonic approximation is shown.

Table 1. Exact Correlated Energies Eexact, BO energies EBO
exact

and EBO
harmonic, and Overlap between Exact and BO Statesa

state no. Eexact EBO
exact (e,o,a) overlap

1 −11.3414 −11.3419 1,0,0 0.9986
2 −11.2166 −11.2171 1,0,1 0.9986
3 −11.1583 −11.1588 1,1,0 0.9955
4 −11.0918 −11.0924 1,0,2 0.9986
5 −11.0336 −11.0341 1,1,1 0.9955
86 −9.5155 −9.5157 1,10,0 0.9676
87 −9.5076 −9.5078 1,8,3 0.9740

state no. Eexact EBO
harmonic (e,o,a) overlap

1 −11.3414 −11.3419 1,0,0 0.9986
2 −11.2166 −11.2171 1,0,1 0.9986
3 −11.1583 −11.1587 1,1,0 0.9953
4 −11.0918 −11.0923 1,0,2 0.9986
5 −11.0336 −11.0339 1,1,1 0.9953
86 −9.5155 −9.5102 1,10,0 0.8964
87 −9.5076 −9.5023 1,8,3 0.9361

aAll energies are given in eV. The label (e,o,a) refers to the BO
quantum number of the state (electronic state, optical phonon mode,
acoustical phonon mode). Note, that the exact BO energies EBO

exact

provide a lower bound to the exact correlated energies Eexact.
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typically not in the ground state when the photoelectron is
removed from the system. We illustrate the effect of different
initial states for the photoemission process in detail in Section 4
and later in this section.
Generally, the coupling element Δ̂ between initial and final

states can be written in second quantization as

∑Δ̂ = Δ ̂ ̂
σ

σ σ σ
†c c

lm
lm l m

,
, , ,

(9)

where Δlm,σ = ⟨φl,σ
(1)|Ô|φm,σ

(1)⟩. The coupling to the pump and
probe laser pulses is usually considered in the dipole
approximation with length gauge Ô ∝ r ̂ × E(r,t) or velocity
gauge Ô ∝ p ̂ × A(r,t) (without treating multiphoton processes).
E and A refer to the electric field and electromagnetic vector
potential, respectively. In the framework of second quantiza-
tion, the wave functions |φl,σ

(1)⟩ form a complete set of one-body
states. With no external magnetic field applied to the system,
the matrix element is diagonal in spin because the operator
does not act on the spin part of the wave function. The sudden
approximation29,30 allows the final state to decouple.

|Ψ ⟩ ≈ ̂ |Ψ ⟩† −cj
N

j
N

k k,
( ) ( 1)

(10)

This approximation implies that the final state is a product state
between a plane wave-like state for the emitted electron and the
remaining N − 1 electron many-body state |Ψj

(N−1)⟩. At this
point, we emphasize that the original matrix elements, which
contribute to the photocurrent in eq 8, only contain states with
fixed electron number N. Therefore, photoemission has to be
regarded as a charge neutral excitation process induced by the
presence of a laser field. Only when the excited photoelectron is
starting to spatially separate from the remaining photofragment,
the system is left in a charged N − 1 electron state. This spatial
separation is also the basis of the mask approach of ref 9. In
general, the emitted photoelectron can still be entangled with
the remaining photofragment, for instance, in strong-coupling
situations. However, for a weak-coupling situation encountered
in the range of the validity of the Fermi’s Golden Rule
expression for the photocurrent in eq 8, this entanglement is
often neglected. If no entanglement of the emitted photo-
electron and the remaining photofragment remains when the
charges separate, then the state |Ψj,k

(N)⟩ can be factorized. This is
the basic assumption of the sudden approximation in eq 10. As
a result, in the matrix elements of the photocurrent in eq 8, the
neutral N electron state can be replaced by an ionic N − 1
electron state. Only in this sense, we can talk about non-neutral
excitations in a photoemission experiment, albeit initially a
neutral excitation has taken place.
In terms of the usual fermionic anticommutation relation, we

can write

δ δ̂ ̂ = ̂ ̂ ̂ = ̂ − ̂ ̂ ̂† † †c c c c c c c c c{ , }l l l m m l l mk k k k k (11)

and because the state |k⟩ of the ejected photoelectron is an
energetically high-lying state, virtual fluctuations in the
reference state can be neglected. Following this argument, the
last term in eq 11 can be set to zero,28 and this allows us to
write approximately

δ̂ ̂ ̂ ≈ ̂†c c c cl m m lk k (12)

Using eqs 9 and 10 and the approximation in eq 12 to evaluate
the matrix elements in eq 8, we arrive at
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In practical applications, the matrix element Δlm,σ in eq 9 is
often regarded to be constant over the investigated energy
range.1,2 This assumption is only perfectly justified in the high-
energy limit (X-ray spectroscopy). In this limit, the photo-
electron spectrum is directly proportional to the spectral
function. The sum-over-states expression for the photocurrent
in the sudden approximation (SA) is then found to take the
form

∑ω π σ ω≈
ℏ

Δ − ℏ Δ
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where we have introduced the one-body spectral function
Alm,σ
SA (Ek − ℏω). In the following, we discuss this quantity for

equilibrium and nonequilibrium situations.
3.1. Spectral Function: Sum-Over-States and Time-

Domain Formulation. In this section, we state and define the
equilibrium and nonequilibrium spectral function. The
derivation of these quantities is given in more detail in the
Appendix.

3.1.1. Equilibrium Spectral Function. For the present study,
it is important to distinguish between equilibrium and
nonequilibrium situations. In equilibrium, |Ψi

(N)⟩ is a eigenstate
of the full vibronic Hamiltonian. The time evolution according
to the time-dependent Schrödinger equation in eq 3 is in these
cases trivial because eigenstates are time-invariant up to a phase.
In ground-state photoemission spectroscopy, one encounters
this situation if the sample is in its ground-state before it is hit
by the photoemission pulse. The equilibrium spectral function
is defined as
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Further, in equilibrium situations only diagonal terms of the
spectral function (l = m) need to be considered.33

Equation 15 can also be formulated in terms of overlaps of
time-evolved states. Using this approach, the calculation of the
spectral function does not rely on a sum-over-states expression.
Rather, it can be computed from an explicit time propagation

= ⟨Ψ̃ | ̂ |Ψ ⟩σ σ−
− †A t t c t( ) ( ) ( )lm

SA
l

N
m

N
, ,

( 1)
, 0

( )
(16)

with the kicked initial state |Ψ̃−,l
(N−1)(t0)⟩ = cl̂|Ψ0

(N)(t0)⟩.
Depending on the size of the Hilbert space, either eq 15 or
eq 16 are more efficient to evaluate. In our case, we choose to
directly evaluate eq 15 using all eigenstates from our exact
diagonalization procedure. However, for larger systems, where a
direct diagonalization of the system Hamiltonian is computa-
tionally not feasible anymore, eq 16 provides an alternative
scheme to obtain the spectral function.
A useful relation is the sum rule34 that is obeyed by the

equilibrium spectral function

∫∑ ∑ω ω= = ⟨Ψ | ̂ ̂ |Ψ ⟩σ σ σ
†S A c cd ( )

l
ll

l

N
l l

N
, 0 , , 0
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(17)
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where the value S gives the total number of electrons N in the
state |Ψ0

(N)⟩. When computing an explicit sum-over-states
summation, the limit S = N is only reached if a complete set of
states with a full resolution of the identity ∑m|Ψm

(N−1)⟩⟨Ψm
(N−1)|

= 1 is inserted in eq 17. For an incomplete basis of states, the
sum rule deviates from N. Depending on the orthogonality and
completeness of the employed states, S can then be lower or
higher than the total number of electrons in the state |Ψ0

(N)⟩.
Therefore, in practical calculations, this sum rule can be
exploited to test convergence and the completeness of the
employed basis set.
3.1.2. Nonequilibrium Spectral Function. From the

expression for the photocurrent in sudden approximation, eq
14, the dependence of the photoelectron spectrum on the
reference state |Ψ0

(N)⟩ becomes apparent. As mentioned before,
in most cases, the system is assumed to be in the ground state.
However, in a pump−probe experiment, this assumption is not
justified anymore. As we demonstrate in Section 4, quite sizable
changes arise in the photoelectron spectrum when the
photoelectron is ejected from a time-evolving state |Ψ0

(N)(t)⟩
(see discussion in next section). Ultimately peaks, which were
dark for the ground state as a reference state, might become
bright transitions during time evolution of a vibronic wave
packet and can eventually contribute to the photoelectron
spectrum.
In nonequilibrium situations, Fermi’s Golden Rule has to be

extended to also allow for arbitrary states as reference states in
eq 8. This can be done straightforwardly in terms of the spectral
function and is explicitly calculated in the Appendix. Here, we
only state the result for the nonequilibrium spectral function
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δ ω
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In nonequilibrium situations, the time-evolution of the initial
state is nontrivial. Hence, the spectral function expression is not
time-invariant and explicitly depends on both the time t and the
frequency ω. Physically, we interpret time t as the delay time
between the pump and the probe pulse. As compared to eq 15,

we now additionally allow for time-propagated reference states
|Ψ0

(N)(t)⟩.
The nonequilibrium spectral function can also be formulated

in the time-domain

τ τ τ= ⟨Ψ̃ + | ̂ |Ψ + ⟩σ σ−
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with the kicked initial state |Ψ̃−,l
(N−1)(t)⟩ = cl̂|Ψ0

(N)(t0)⟩, where the
kick with the operator cl̂ acts at time t on the state |Ψ0(t)⟩.
The sum rule of eq 17 also applies in nonequilibrium

situations.
One point we have to mention is the neglect of the n-

dependence in the delta function of eq 32 in the Appendix.
This approximation allows us to fix peak positions to N − 1
electron states. Further, the approximation gives the delta peak
position a clear interpretation, rather than the usage of absolute
relative energies. Considering the full n-dependence in the delta
function shifts high energy peaks to lower energy.

3.2. Approximations for Vibronic Systems. The
expression for the one-body spectral function in eq 15 is still
formulated in terms of correlated energy eigenstates of the full
vibronic Hamiltonian. Therefore, the direct evaluation of this
expression is usually a formidable task. For vibronic systems,
the most straightforward approximation is to replace the
correlated vibronic initial and final states by factorized Born−
Oppenheimer states.
For the following discussion in Section 4, we define as a

single-harmonic approximation (SHA) the case where only the
initial state is replaced by the corresponding factorized Born−
Oppenheimer state in harmonic approximation |χ00ϕ0

(N)⟩, and
all final states are retained as correlated vibronic N − 1 electron
states. In this case, the spectral function takes the form
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Interestingly, because the Born−Oppenheimer ground state
is by construction not an eigenstate of the full many-body

Figure 3. Calculated photoelectron spectra for trans-polyacetylene. (a) Ground-state spectrum in double-harmonic approximation (DHA). (b)
Ground-state spectrum in single-harmonic approximation (SHA). (c) Exact ground-state spectrum from the full-quantum calculation. With S, we
refer to the value of the sum rule for the spectral function as defined in eq 17. For a complete set of states, this corresponds to the total number of
electrons. Restricted summations of the sum rule in the energy range above −5 eV and below −5 eV are given by S>−5 eV and S<−5 eV, respectively.
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Hamiltonian, already at the level of the SHA, the expression in
eq 18 has to be applied.
As further simplification, we can consider a harmonic

approximation for both the involved initial and final potential
energy surfaces and replace the remaining N − 1 electron states
by Born−Oppenheimer states in harmonic approximation. This
leads to the double-harmonic approximation (DHA) for the
spectral function

∑ω χ χ ϕ ϕ

ϕ ϕ δ ω ε
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In particular, the expression for the DHA shows that the peak
heights in the photoelectron spectrum are modulated by
Franck−Condon factors. Although this simplifies practical
computations considerably, we show in Section 4 that spurious
peaks appear in the DHA of the spectral function, which are not
present in the exact spectral function, eq 15.

4. RESULTS
4.1. Comparison of BO and Exact Ground-State

Photoelectron Spectra. In this section, we illustrate the
different theory levels that we introduced in the previous
section for the calculation of vibronic photoelectron spectra.
Due to the dense diagonalization that we can perform for our
model system of trans-polyacetylene, we have all correlated
states and all required Born−Oppenheimer states available to
perform the explicit sum-over-states that arise in the definition
of the different spectral functions in eqs 15, 20, and 21. In the
following, we restrict ourselves only to the ground state as the
initial state for the photoemission process. We term these
spectra ground-state photoelectron spectra. Later, we lift this
restriction to also consider pump pulses and time-evolving
reference states explicitly.
In Figure 3, we illustrate spectral functions of the SSH chain

for three different cases. In case (a), the spectral function has
been calculated in the double-harmonic approximation using eq
21. In case (b), the spectrum shows the spectrum calculated in
the single-harmonic approximation, where eq 20 has been
employed, and in case (c), the spectrum shows the exact
correlated ground-state spectrum computed from eq 15. In the
figure, the different peaks are labeled according to their
corresponding quantum numbers (quantum numbers of
electronic state, optical mode, and acoustical mode are
shown). In the experiment, spectra are typically plotted as
functions of the positive binding energy (see for example,
Figure 4 in ref 2). To connect the plots of the present work to
this convention, the absolute value of the x-axis has to be
considered to arrive at positive values for the binding energy.
Furthermore, for all spectra, a Lorentzian broadening of the
form

γ
π

γ
γ

=
− +

f E E
E E

( ; , )
1

( )0
0

2 2
(22)

with γ = 0.002 eV has been used. Note, that a conventional
broadening of 0.1 eV that is employed frequently for purely
electronic Green’s functions would completely wash out the
vibrational sidebands. To resolve here the vibrational sidebands
of the photoelectron spectrum, a much smaller broadening of
0.002 eV has to be employed. Note that this broadening is also
about an order of magnitude smaller than 1/40 eV, which gives

a typical energy scale for vibronic motion at room temperature.
In the experiment, the vibrational sidebands are hence only
clearly visible in a low temperature limit.
In comparison to the exact spectrum in case (c), we conclude

from Figure 3 that DHA and SHA both accurately predict the
peak positions corresponding to the optical phonon mode in
the energy range of the spectrum from −10 to −5 eV, but the
spectra reveal clear differences in the energy range from −5 up
to 0 eV. The accurate location of the peaks is in accord with the
quality of the approximate energy values shown in Table 1. On
the other hand, peak heights in the DHA are not accurate.
Peaks that correspond to the optical phonon mode are most
dominant in the spectrum, and their broadening overlaps and
even hides peaks, which correspond to mixed or acoustical
phonon modes.
As additional information, we also show in Figure 3 the sum

rule calculated with eq 17 for each spectrum. The DHA
spectrum violates the sum rule due to the noncompleteness of
the approximation, as discussed in Section 3. In all three
spectra, most of the spectral amplitude is located in energy
areas below −5 eV, while only less than two percent of the
spectral weight is located in the energy range above −5 eV in
the DHA and SHA spectra. The most prominent feature
between the different spectra is that in the DHA and SHA
spectra spurious peaks appear above −5 eV that are not present
in the exact correlated ground-state spectrum. We discuss the
origin of this artifact of the DHA and SHA in detail in the next
section.

4.2. Nonadiabaticity in Ground-State Photoelectron
Spectroscopy. The prominent differences in the energy range
from −5 to 0 eV between the DHA spectrum and the exact
correlated spectrum shown in Figure 3 have two equally
important contributions. As indicated by the name double-
harmonic approximation, one performs two harmonic approx-
imations in the DHA. It turns out that both harmonic
approximations contribute independently to the spurious
peaks in the spectrum. We can isolate the effect of each of
the two harmonic approximations by comparing to the single-
harmonic approximation. Because of our definition in eq 20,
where we use correlated final states in the SHA, the only
remaining approximation in the SHA is the factorized and
harmonic Born−Oppenheimer initial state. Comparing the sum
rules for the spectral function of the DHA with the spectral
function of the SHA in Figure 3, the upper part of the spectrum
(−5 to 0 eV) shows that the spectral weight of the spurious
peaks is reduced from 1.6% in DHA to 0.2% in SHA. The
remaining spurious amplitude, and hence the differences
between the SHA spectrum in Figure 3(b) and the exact
spectrum in Figure 3(c), is caused by the factorized Born−
Oppenheimer initial state in the SHA.
To illustrate this further, we expand the Born−Oppenheimer

ground state in the complete set of correlated eigenstates of the
full many-body Hamiltonian from eq 2
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The magnitude for the different expansion coefficients an is
shown in Figure 4(a) in logarithmic scale. As expected, the
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highest overlap is found between the Born−Oppenheimer
ground state and the exact correlated ground state. For the
present system, this overlap is equal to 0.9986 (see Table 1)
and is marked as a black dot in the graph. The following
corrections are orders of magnitudes smaller. In Figure 4(a), we
illustrate with different colors the overlaps an for nmax ≥ 1 with
magnitude larger than 10−13. The overlaps can be grouped in
different sets, which allow us to identify different potential
energy surfaces in terms of Figure 2. In Figure 4(b), we show
the SHA spectral function for different upper limits of
summation nmax in the expansion of the Born−Oppenheimer
initial state. If only the coefficient a1 = 0.9986 with the highest
overlap is included, we recover the exact correlated ground-
state spectrum. This is shown in the upper spectrum in Figure
4(b). Note that we are not renormalizing the state in eq 23
after truncation, so that the sum rule corresponds for nmax = 1
to S = 4 × a1

2 = 3.9888. When more and more expansion
coefficients an with n > 1 are included in the expansion, the
artificial peaks shown in Figure 3 in the range from −5 to 0 eV
start to emerge. This is illustrated in the sequence of spectra in
Figure 4(b). When the expansion of eq 23 is inserted in eq 20,
the spurious peaks arise due to additional cross and diagonal
terms in the spectral function, which involve excited correlated
eigenstates. Hence, we conclude that the artificial peaks are due
to the factorized nature of the Born−Oppenheimer ground
state. We emphasize, that the spurious spectral weight appears
both for the Born−Oppenheimer ground state in harmonic
approximation as well as for the exact Born−Oppenheimer
ground state without the harmonic approximation. In both
cases, the expansion in eq 23 in terms of correlated vibronic
eigenstates has in general more than one term (nmax > 1), and
hence, additional cross and diagonal terms in the spectral
function necessarily appear. As we have demonstrated in Table
1, for the present model of trans-polyacetylene, the overlap
between the exact Born−Oppenheimer, harmonic Born−
Oppenheimer, and exact correlated ground state is very high
due to the rather harmonic nature of the Su−Schrieffer−
Heeger model. Nevertheless, the spurious spectral weights
already have a magnitude of about 1.6% in DHA. For any
molecular system, which is less harmonic than our model, a

larger contribution to the spurious spectral peaks is expected
because in the expansion more terms with a larger weight of
expansion coefficients an contribute. In this sense, the present
system can be regarded as best-case scenario, and in general,
the spurious spectral peaks are more pronounced. However, in
the limit of large nuclear masses, the Born−Oppenheimer
approximation becomes more accurate. In this limit, the Born−
Oppenheimer ground state of the system becomes identical to
the correlated ground state, hence leading to identical spectra.
One way to correctly incorporate nonadiabatic effects could

be the inclusion of nonadiabatic couplings in the Born−Huang
expansion (eq 6). Other alternatives could rely on an explicitely
correlated ansatz for the combined electron-nuclear wave
function, as for example, in an electron−nuclear coupled cluster
approach35 or in a multicomponent density functional theory
approach for electrons and nuclei.36

4.3. Time-Resolved Pump−Probe Photoelectron
Spectra. So far, we have considered the ground state as the
reference state for the calculation of the spectral function. In
this section, we turn our attention to explicitly time-resolved
vibronic photoelectron spectra. All calculations for the
remaining part of the paper are done with the exact
Hamiltonian and are based on the exact time-evolution of the
correlated time-dependent Schrödinger equation. To illustrate
pump−probe photoelectron spectra for vibronic systems, we
consider two different examples: In example 1, we initially
excite our system with a Franck−Condon transition, while in
example 2, we explicitly include a short femtosecond laser pulse
with Gaussian envelope in our real-time propagations to
simulate the pump pulse. We start in the present section with
example 1.

4.3.1. Time-Resolved Photoelectron Spectra with Initial
Franck−Condon Excitation. In our first example, we excite the
SSH chain from the Born−Oppenheimer ground state to the
first excited charge neutral N electron state ϕ1

(N), while the
vibrational state remains in the ground state configuration χ00.
After excitation, the initial state for the time propagation is still
a factorized Born−Oppenheimer state of the form

χ ϕ|Ψ = ⟩ = | ⟩t t( )N N( )
0 00 1

( )
(24)

Figure 4. Nonadiabatic contribution to the BO ground state of the trans-polyacetylene chain. (a) Projection of the BO ground state onto correlated
eigenstates. (b) SHA spectra depending on expansion coefficients. Here, S = (S,S<−5 eV, S>−5 eV), as in Figure 3.
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This type of Franck−Condon transition takes here the role
of the pump pulse and is illustrated in Figure 5(a) in the left
panel. The initial state in eq 24 is then propagated in real-time
with the full correlated Hamiltonian in the combined electronic
and vibrational Fock space of the model. Because the factorized
excited Franck−Condon state is not an eigenstate of the
correlated many-body Hamiltonian, a wave packet propagation
is launched with this initial state, which resembles predom-
inantly the motion of a Born−Oppenheimer state in the first
excited potential energy surface. We propagate from t0 = 0 fs to
a final time of tf = 110 fs, which corresponds to about 9/4 of the
oscillation period of the nuclear wavepacket in the excited state.
The oscillation spread of the center of the nuclear wavepacket
is indicated by a yellow background in Figure 5(a).
After a certain delay time τ, we simulate a probe pulse by

recording the photoelectron spectrum in terms of the spectral
function. This amounts to replacing the reference state |Ψ1

(N)⟩
in eq 15 with the time-evolved state |Ψ(N)(τ)⟩ at the pump−
probe delay time τ
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In Figure 5(b), the corresponding photoelectron spectra for
two different delay times of τ = t1 = 0 fs and τ = tf = 110 fs are
shown in green. The spectra after different pump−probe delays
show that several peaks gain spectral amplitude, which were
dark in the ground-state spectrum, and conversely, other peaks
lose amplitude, which were bright before. A more complete
picture of the underlying wavepacket dynamics can be obtained
by plotting the spectral function Alm,σ

SA (τ,ω) as a continuous
function of the delay time τ. This is shown in Figure 5(c). Here,
every slice of the 2D plot at fixed τ corresponds to one
recorded spectrum. The color code indicates the intensity of
the peaks, with high photoelectron amplitude in red and lower
amplitude in blue. The spacing between neighboring peaks

corresponds to different vibronic states in the same potential
energy surface. Besides the spectral function, we also plot with a
dashed line in Figure 5(c) the center of the nuclear wavepacket
(first moment) as function of the delay time τ. The oscillation
time T0 is in this case T0 = 48.94 fs. The 2D plot of the spectral
function nicely illustrates that the gain and loss of the spectral
amplitude as functions of the pump−probe delay time τ is
directly linked to the underlying nuclear wavepacket motion.
This is similar to optical pump−probe spectroscopy, which
provides a stroboscopic picture of the nuclear dynamics of the
system. The notable difference here is that outgoing photo-
electrons and therefore states, which have vanishing optical
matrix elements with the initial state, can also be monitored.
Typically, in nontime-resolved pump−probe photoelectron

experiments, time-averages of spectra are recorded. We
therefore include in Figure 5(b) a time-averaged spectrum in
blue that is computed according to

∫ω τ ω τ=
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and that can be viewed as an average of the 2D contour data of
Figure 5(c) along the axis of the delay time τ. The average
spectrum is useful in determining in which spectral regions the
emitted photoelectrons can be found over certain oscillation
periods.

4.3.2. Time-Resolved Photoelectron Spectra with Explicit
Pump Pulse. In example 2, we investigate an explicit simulation
of a pump−probe experiment in real-time. Compared to the
Franck−Condon excitation, which was based only on the
selection of a specific excited initial state, a more appropriate
description of the excitation of the system can be realized by
explicitly including the pump pulse into the time propagation.
For the following discussion, we therefore add a dipole-
coupling term to the Hamiltonian in eq 1

Figure 5. (a) Illustration of Franck−Condon transition. The excited N-electron initial state propagates on the Born−Oppenheimer surface of the
first excited electronic state. N-electron potential energy surfaces are shown in red, and N − 1-electron potential energy surfaces are shown in blue.
The oscillation spread of the center of the wavepacket is indicated by a yellow background. The different wavepacket shapes indicate the squeezing of
the vibronic state. (b) Spectra at different time-steps (the first spectrum at t0 corresponds to spectrum (b) in Figure 3). (c) All obtained spectra
plotted time-resolved; the color code refers to high intensity in red and low intensity in blue. The dashed black line shows the motion of the center
of the nuclear wavepacket as a function of pump−probe delay.
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Here, xn refers to the real-space position of site n, e to the
elementary electric charge, and qn to the charge of the nuclei n
(in the present case, we choose qn = e). Note, that the laser
pulse couples to both, to the dipole moment of the electrons,
and to the nuclear dipole. For the electric field of the pump
pulse E(t), we use a Gaussian envelope with midpoint t0 = −6
fs, maximum envelope E0 = 0.85 V/Å, and variance σ = 1.5 fs.
As carrier wave, we choose a sine function with frequency ωl =
ΔE/ℏ = 6.20 fs−1. The frequency of the laser pulse is chosen to
be resonant for a Franck−Condon like transition with ΔE that
corresponds to the example in Section 4.3.1. For the time-
propagation with the time-dependent Hamiltonian Ĥssh(t), we
use as before a Lanczos propagator, but in addition, we employ
an exponential midpoint scheme37 to account for the time-
dependence of the Hamiltonian. For the propagation, we
choose the exact correlated vibronic ground state as initial state.
This state is then propagated with the fully correlated many-
body Hamiltonian including the dipole coupling to the pump
laser as given in eq 9.
In Figure 6(a), we show the amplitude of the external laser

pulse. The pulse starts at t0 = −10 fs and is switched off at t1 = 0
fs. As the state evolves, we compute the overlaps with the
Born−Oppenheimer states as function of time. In Figure 6(b)
we show which states are populated during the propagation.
While at the initial time, almost the full population is in the BO
ground state (|χ00ϕ0

(N)⟩), the population moves within the first
10 fs to the state |χ00ϕ1

(N)⟩, i.e., the state that corresponds to a
Franck−Condon transition out of state |χ00ϕ0

(N)⟩. After the first

initial population of |χ00ϕ1
(N)⟩, the populations indicate two

competing processes. First, the pump laser pulse transfers
population from |χ00ϕ0

(N)⟩ to |χ00ϕ1
(N)⟩ because this transition is

resonant. Second, once population occurs in |χ00ϕ1
(N)⟩, this

population induces a wavepacket motion on the first excited
potential energy surface, as shown in Section 4.3.1. Therefore,
the system never reaches a situation where only two states are
present in the system, |χ00ϕ0

(N)⟩ and |χ00ϕ1
(N)⟩, as it would be in

a Franck−Condon picture of the excitation process. After the
end of the pump pulse at t = 0 fs, the projection of the time-
evolving state on the correlated vibronic ground state is
constant in time, and the ground state maintains a population
of about 50%. In contrast, the projection of the correlated time-
evolving state on the BO ground state exhibits small
oscillations, which is shown in the inset of Figure 6(b) and
which arise due to the small deviations between the BO ground
state and the exact correlated ground state. As in the example
before, we record photoelectron spectra as functions of pump
and probe delay. The photoelectron spectrum at time t = t0 =
−10 fs is given in red in Figure 6(c). This spectrum is identical
to the spectrum also shown in Figure 3(c). The spectra after
the pulse has been switched off are shown in green and
correspond to delay times of t = 0 fs and t = 110 fs. As before,
we also show the time-averaged spectrum in blue. In contrast to
the Franck−Condon excitation in example 1, the photoelectron
spectra in this case show a pronounced large peak at about −7.5
eV. This peak arises due to the remaining population of the
Born−Oppenheimer ground state |χ00ϕ0

(N)⟩. In Figure 6(d), we
show similar to Figure 5(c) the spectral function Alm,σ

SA (τ, ω) as a
function of the pump−probe delay τ. As before in the Franck−
Condon case, also with an explicit pump pulse, we can trace the
nuclear wavepacket dynamics in the photoelectron spectrum.
Overall, the time-evolution of the Franck−Condon excitation
captures large parts of the exact vibronic spectrum of example
2. The notable differences in the explicitly time-dependent and
fully correlated vibronic case in Figure 5(c) are the additional
population of the Born−Oppenheimer ground state that
maintains a large spectral weight at about −7.5 eV also for

Figure 6. Time-dependent pump−probe photoelectron spectroscopy. (a) Amplitude of laser pulse as given in eq 9. (b) Overlaps of time-evolved
state with electronic ground and first excited Born−Oppenheimer states and the exact correlated ground state. (c) Spectra at different time-steps
(the first spectrum at t0 corresponds to spectrum (c) in Figure 3). (d) All obtained spectra plotted time-resolved; the color code refers to high
intensity in red and low intensity in blue.
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different delay times and some small nonadiabatic contributions
to the spectrum in the energy range from −4 to −2 eV.

5. CONCLUSION

In summary, we have analyzed and quantified nonadiabatic
contributions to the equilibrium and nonequilibrium photo-
electron spectra in a model system for trans-polyacetylene. We
find that for low-lying states the harmonic Born−Oppenheimer
photoelectron spectrum acquires, in comparison to the exact
photoelectron spectrum, spurious spectral weight, which also
persists when either the initial state of the photoemission
process or the final state is replaced by correlated vibronic
states. The origin of this behavior can be traced back to the
factorized nature of the involved initial or final Born−
Oppenheimer states. Only when both initial and final
photoemission states are taken as correlated vibronic states
are the spurious spectral peaks suppressed. We analyze this in
detail by expanding the Born−Oppenheimer ground state in
the complete set of correlated vibronic eigenstates of the full
Hamiltonian. Inserting this expansion into the equilibrium form
of the spectral function shows that additional cross and
diagonal terms, which involve excited correlated eigenstates, are
responsible for the spurious spectral weight.
For the example of an initial Franck−Condon transition and

for an explicit pump−pulse excitation, we have demonstrated
with explicit real-time propagations of the coupled poly-
acetylene chain how the vibronic wavepacket evolution can be
traced in the photoelectron spectrum as function of pump−
probe delay.
Prospects for future work include the study of temperature

and pressure dependence of the photoelectron spectra as well
as an extension of the present femtosecond laser excitation to
ultrafast photoelectron spectroscopy with attosecond laser
pulses in real nanostructured and extended systems. Another
line of research is linked to the development of xc functionals
for TDDFT capturing the effects discussed in this work, for
example, based on electron−nuclear multicomponent density
functional theory.36

■ APPENDIX

A.1. Spectral Function
The one-body spectral function is defined as follows33

′ = ⟨Ψ | ̂ ̂ ′ |Ψ ⟩
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with t′ > t. The operators c ̂ and c†̂ are here written in the
Heisenberg picture. The index refers to a combined index i =
(n,σ) and j = (m,σ′), where n and m refer to the site number,
and σ and σ′ refer to spin up or spin down.
In this work, we only consider the first part of the

commutator Aij
<(t,t′) because we are only interested in

photoemission spectra. The second term Aij
>(t,t′) leads to

inverse photoemission spectra.33 In the following discussion, we
distinguish two cases: (1) If |Ψ0⟩ is an eigenstate of the system
Hamiltonian, we work in an equilibrium framework. (2) If |Ψ0⟩
is not an eigenstate of the system Hamiltonian, we have to work
in a nonequilibrium framework.

A.2. Equilibrium Spectral Function

The equilibrium spectral function applies for situations where

|Ψ0⟩ is an eigenstate of the corresponding many-body

Hamiltonian H of the system. Hence, we can write eq 28 in

terms of an time-correlation function
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with τ = t′ − t and the initial condition |Ψ̃(τ = τ0)⟩ = cî|Ψ0⟩.
Equation 28 can be reformulated to get a sum-over-states

expression. This is accomplished by the insertion of an

complete set of states ∑m|Ψm⟩⟨Ψm| = 1 and a Fourier

transform with respect to the time difference τ = t′ − t
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A.3. Nonequilibrium Spectral Function

In nonequilibrium situations, |Ψ0⟩ is not an eigenstate of the

many-body Hamiltonian H. Nevertheless, it is also possible to

formulate the spectral function in eq 28 as time-correlation

function involving propagated states

τ τ τ
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We introduce the relative time τ = t′ − t, as in Appendix A.2,

while t keeps its initial denotation. The state |Ψ̃(τ + t,t)⟩ is

defined as |Ψ̃(τ + t,t)⟩ = e−iHτ/ℏcî|Ψ0(t)⟩, meaning the kick cî on

the wavefunction acts at time t during the time propagation. A

Fourier transform with respect to the relative time τ yields the

general expression for the sum-over-states expression
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In our simulations, we neglect the energy dependence of the
delta function in the last equation. Hence, we replace the term
En′ by the energy E0 of the state Ψ0. This leads to
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