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ABSTRACT: Quantitative evaluation of the thermodynamic proper-
ties of materialsmost notably their stability, as measured by the free
energymust take into account the role of thermal and zero-point
energy fluctuations. While these effects can easily be estimated within a
harmonic approximation, corrections arising from the anharmonic
nature of the interatomic potential are often crucial and require
computationally costly path integral simulations to obtain results that
are essentially exact for a given potential. Consequently, different
approximate frameworks for computing affordable estimates of the
anharmonic free energies have been developed over the years.
Understanding which of the approximations involved are justified for
a given system, and therefore choosing the most suitable method, is
complicated by the lack of comparative benchmarks. To facilitate this
choice we assess the accuracy and efficiency of some of the most commonly used approximate methods: the independent mode
framework, the vibrational self-consistent field, and self-consistent phonons. We compare the anharmonic correction to the
Helmholtz free energy against reference path integral calculations. These benchmarks are performed for a diverse set of systems,
ranging from simple weakly anharmonic solids to flexible molecular crystals with freely rotating units. The results suggest that,
for simple solids such as allotropes of carbon, these methods yield results that are in excellent agreement with the reference
calculations, at a considerably lower computational cost. For more complex molecular systems such as polymorphs of ice and
paracetamol the methods do not consistently provide a reliable approximation of the anharmonic correction. Despite substantial
cancellation of errors when comparing the stability of different phases, we do not observe a systematic improvement over the
harmonic approximation even for relative free energies. We conclude that, at least for the classes of materials considered here,
efforts toward obtaining computationally feasible anharmonic free energies should therefore be directed toward reducing the
expense of path integral methods.

1. INTRODUCTION
The free energy is a key thermodynamic quantity which provides
ameasure of phase stability. Knowledge of the free energy and its
derivatives with respect to temperature and applied fields can, in
principle, be used to calculate every other thermodynamic
observable. Reliable predictions of free energies from atomistic
simulations remain a challenge because they require an accurate
description of interatomic interactions, as well as proper
treatment of the statistical mechanics of the nuclear degrees of
freedom. The availability of computational resources combined
with developments in electronic structure theory1−10 have made
it possible to calculate the Born−Oppenheimer (BO) surfaces
that govern nuclear motion routinely and accurately. Con-
sequently, the accuracy of free energy calculations is often
limited by the statistical sampling of the nuclear degrees of
freedom.11 For molecules and for crystalline phases, this is most
commonly performed within a harmonic approximation, which
is reasonable for weakly anharmonic systems, such as metals at
low temperatures,12 but fails close to the melting temper-
ature12,13 and in the presence of defects.14 The problem is
exacerbated for the case of organic solids, which require a proper

description of anharmonicity arising from quantum nuclear
motion even at room temperature.15−18 Anharmonic and
quantum effects are also often important for systems containing
light elements, such as hydrogen,19−21 helium,22 water,23

ice,24−26 the record high-Tc conventional superconductor
SH3,

27 and metal−organic frameworks,28,29 as well as most
molecular materials.18,30 Systems of reduced effective dimen-
sionality such as graphene31,32 often exhibit stronger anharmo-
nicity than their three-dimensional analogues.
Within the BO approximation33 and given the BO potential,

exact anharmonic free energies can be calculated using
approaches based on imaginary time path integral (PI)
simulations.34,35 However, the required number of force
evaluations, when combined with accurate electronic structure
calculations, renders these approaches impractical for any but
the smallest systems. Consequently, a small zoo of frameworks
has been developed which approximately accounts for quantum
anharmonic motion at a much lower computational cost. These
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invoke different approximations and exhibit different scaling
behavior with system size.
In this work, we present an extensive benchmark of the

accuracy of some of the most common approximate techniques,
namely, the harmonic approximation (HAR),36 self-consistent
phonons (SCP),37,38 the independent mode framework
(IMF),39 and the vibrational self-consistent field (VSCF),39

against reference results obtained using PI thermodynamic
integration (QTI).18,40 Computationally efficient algorithms for
these methods have been developed and implemented in the
universal force engine i-PI.41 The accuracy and the computa-
tional efficiency of the methods is tested on a set of solids
ranging from simple allotropes of carbon, anharmonic but
relatively rigid polymorphs of ice, to polymorphs of paracetamol
that contain (nearly) freely rotating internal degrees of freedom.

2. THEORY
To briefly outline the different free energy methods we discuss,
we consider a three-dimensional periodic system, whose
minimum potential energy, “equilibrium” atomic positions
form a Bravais lattice, noting that finite and aperiodic systems
simply represent the limit of infinite period. The full ionic
Hamiltonian of such a system is

∑̂ = − ℏ ∇ + { }H
m

V r
2

( )
p i i

pir
,

2
2

pi
(1)

wheremi is the mass of nucleus i,V is the BO potential governing
nuclear motion, and p and i run over the Bravais points and the
nuclei within a unit cell, respectively. In practice we perform
supercell simulations using a periodic Born−von Karman
simulation cell h consisting of Na × Nb × Nc replicas of the
unit cell and with cell vectors NaRa, NbRb, and NcRc.
In the following we only consider Γ-point vibrational motion

within the simulation cell. We thereby sample those K-points
within the first vibrational Brillouin zone (BZ) of the underlying
unit cell, for which exp(−iK·R) = 1 ∀ R = naRa + nbRb + ncRc,
with 0≤ nx <Nx. TheHamiltonian of the system is then uniquely
defined given the positions of the N particles within the
simulation cell h:

̂ = − ℏ ∇ ∇ +−H VM r h
2

( , )r r

2
1 T

(2)

where (∇r, r) ≡ ({∇r1, ..., ∇r3N}, {r1, ..., r3N}) denotes the
momenta and positions of the 3N degrees of freedom associated
with the N particles and M = Diag[m1, ..., m3N]. The canonical
partition function of the system at inverse temperature β =
(kBT)

−1 and volume = [ ]hDet is defined as

β β= [ − ̂ ]Z N H( , , ) Tr exp( ) (3)

where the trace can be performed over any complete basis set. In
the thermodynamic limit, the Helmholtz free energy of the
system is

β β β= − −A N Z N( , , ) ln ( , , )1 (4)

Direct computation of A is hindered by the computational
complexity of solving the Schrödinger equation associated with
the Hamiltonian Ĥ, motivating approximate but computation-
ally more affordable approaches.
2.1. Harmonic Approximation. For small displacements, r

− r0, of the particles from their equilibrium positions, r0 ≡
argminr V(r, h), the potential can be Taylor expanded.

Truncation after the quadratic term amounts to the harmonic
approximation

= + − −V Vr h r r K r r( , )
1
2

( ) ( )har (0) 0 0 T
(5)

with V(0) ≡ V(r0) and K = ∇2V(r, h)|r=r0. The spectral
decomposition of the Hessian

Ω Ω= = ̃ ̃K M U U M U U1/2 2 T 1/2 2 T (6)

provides the unitary matrix U, the mass-scaled transformation
matrix Ũ, and the diagonal matrix containing the normal-mode
frequencies Ω = Diag[ω1, ..., ω3N]. After transformation to the
normal mode coordinates ∇q ≡ ŨT∇r and q ≡ Ũ(r − r0), the
Hamiltonian

∑ ω

Ω̂ = − ℏ ∇ + +

= + ̂ + − ℏ ∇ +
=

H V

V H q

q q r
2

1
2

( )
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2
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separates into V(0), the center of mass term Ĥcm, and a term
describing a system of d = 3N− 3 independent simple harmonic
oscillators (SHO)whose energies and wave functions for a given
excitation state si, Ei,(si)

har = (si + 1/2)ℏωi and |ϕi
(si)⟩, are known

analytically. In finite systems, global rotations decouple
analogously. The center of mass contribution to the free energy
Acm is that of a free particle in a three-dimensional box with a
volume and shape equal to that of the Wigner−Seitz cell of the
system, while the contribution from the free rotations of finite
systems can be computed within the rigid rotor approxima-
tion.42

For the remaining system of harmonic oscillators, the d-body
wave function of the global state described by the d-tuple s = (s1,
..., sd) is a Hartree product of the independent normal mode
wave functions:

∏ ϕΨ ⟩ = ⊗ | ⟩
=i

d

i ss( )
har

1
,( )i (8)

and the free energy is

∑

β

ω
β

= +

+
ℏ

+ − β ω

=

− − ℏ

A N V A

e

( , , )

2
ln(1 )
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2.2. Independent Mode Framework. A first approxima-
tion to anharmonic quantum nuclear motion is detailed in the
work of Monserrat et al.39 The potential is expanded in terms of
the normal mode coordinates

∑ ∑ ∑= + + + ···
≠

V V V q V q qq( ) ( )
1
2

( , )
i

d

i
i

d

j i

d

i j
(0) (1) (2)

(10)

where

= −V q V q V( ) (0, , ..., 0)i i
(1) (0)

(11)

is the (anharmonic) independent mode term and

= −

− −

V q q V q q V q

V q V

( , ) (0, ..., , ..., , ..., 0) ( )

( )

i j i j i

j

(2) (1)

(1) (0)
(12)
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describes pairwise coupling between normal modes. This
expansion can be continued for more general n-body terms
V(n). Since one starts with the harmonic approximation, in which
the normal modes are noninteracting, the hope is that higher-
order terms decrease in size with increasing n. The validity of this
assumption is discussed in section 4. Truncation after V(1)

amounts to the independent mode approximation with the
Hamiltonian

∑̂ = + − ℏ ∇ +H V V q
2

( )
i

d

q i
imf (0)

2
2 (1)

i
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Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (13)

Despite the presence of anharmonicity the normal modes
remain independent. A Hartree product analogous to eq 8 of
anharmonic normal mode wave functions solves the Schrö-
dinger equation yielding the eigenvalues Ei,(si)

imf . The Helmholtz
free energy is

∑ ∑

β

β β

= +

− −
=
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2.3. Vibrational Self-Consistent Field. Retaining terms
involving V(2) (and/or higher order terms) leads to coupling of
the previously independent normal modes and complicates the
solution of the Schrödinger equation. Monserrat et al.39 solve
the equation

− ℏ ∇ + |Ψ ⟩ = |Ψ ⟩V Eq
2

( )q s s s
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within the iterative vibrational self-consistent field (VSCF)
approach, where V(q) represents the truncated form of eq 10.
Using a Hartree product trial wave function amounts to a mean-
field (MF) treatment and leads to the VSCF equations

ψ ψ− ℏ ∇ + ̅ | ⟩ = | ⟩V q E
2

( )q i i i s i i s

2
2
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where V̅i(qi) is the MF potential experienced by normal mode i

∑ ρ̅ =
≠

V q q V q( ) ( ) ( )i i
j i

j
(17)
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To lowest order the VSCF free energy becomes

∑ ∑

β β
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A perturbation theory can be constructed in terms of the
(assumed to be small) difference between the mapped out and
the MF potential, V(q) − ∑iV̅i(qi), leading to a second-order
MP2 correction to the energy of state s given by

∑=
⟨Ψ | − ∑ ̅ |Ψ ⟩

−′≠

′

′

E
V V q

E E

q( ) ( )i i i
s

s s

s s

s s
( )
vscf,(2) ( )
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( )
vscf 2

vscf,(1) vscf,(1)
(20)

and to the approximate free energy

∑
β β β

β

= −

−

−A N A N

E

( , , ) ( , , ) ln

exp( )
s

s

mp2 vscf 1

vscf,(2)

(21)

In all the examples we discuss below, we never consider terms
beyond V(2) in eq 10, similarly to what was done byMonserrat et
al. In all cases considered, the MP2 correction is very small and
therefore we decided not to include it. Thus, every time we refer
to IMF in the following, we imply that we only considered V(1),
and whenever we refer to VSCF, we imply the Hartree energy
computed on the potential of eq 10 including terms up to V(2).

2.4. Self-Consistent Phonons. Another way of calculating
an anharmonic correction to the harmonic approximation
exploits the Gibbs−Bogoliubov inequality,43 which states that
the true free energy of a system is always bounded from above by
the free energy Ascp computed using a trial density matrix, ρ̂scp:

β ρ

ρ
β
β

< = ⟨ ̂ + ̂ ⟩

̂ =
− ̂

[ − ̂ ]

−
̂A A H

H
H

ln ;

exp( )
Tr exp( )

H
scp 1 scp

scp
scp

scp

scp

(22)

where ⟨□⟩Ĥscp = Tr[ρscp□] is an ensemble average defined by
the trial density matrix ρ̂scp. Within the self-consistent phonons
method,44,45 ρ̂scp is the density matrix of a harmonic
Hamiltonian with Hessian Kscp and equilibrium positions rscp

ρ π̂ = − − −− −r D r r D r r( ) (2 ) exp( 1/2( ) ( ) )scp 1/2 scp 1 scp T

(23)

where D = M−1/2UQ2UTM−1/2 and Q is a diagonal matrix
containing the root-mean-square (RMS) displacements37

ω
ω

= ℏ ℏ
q T

k T
( )

2
coth

2i
i

iscp
scp

scp

B

Ù
(24)

of the normal modes. The lowest upper bound to the true free
energy is obtained by minimizing the free energy with respect to
rscp and Kscp. This leads to the steady state conditions37

⟨ ⟩ =

⟨ ⟩ =

f r

K r K

( ) 0

( )
H

H

r

scp

scp

scp (25)

where fr(r) corresponds to the forces of the potential V(r). The
solution is obtained in a self-consistent manner by starting with
educated guesses of (rscp, Kscp) = (r0

scp, K0
scp), which are in

practice chosen to be those obtained within the harmonic
approximation and updating

= ⟨ ⟩

= + ⟨ ⟩

̂ ̂

̂ ̂ ̂
−

̂

+

+ +
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( )H H
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l l

l l l l

1
scp scp

1
scp scp

1
scp scp

(26)

until convergence is achieved. Here Ĥl
scp denotes the trial

Hamiltonian of the lth SCP iteration. The resultant free energy
at the lth iteration is calculated as

ω
β= +

ℏ
+ −

+ ⟨ − − − ⟩

β ω− − ℏ
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A A e
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2.5. Thermodynamic Integration. Within the thermody-
namic integration scheme the exact [The free energy obtained
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from path-integral based thermodynamic integration will be
exact for a given interatomic potential and within the statistical
accuracy afforded by the length of the simulations.] free energy
difference between two states is calculated as the work to
reversibly transform one state into the other.46−48 For solids this
method can be used to calculate the classical anharmonic
correction to the harmonic Helmholtz free energy as the
reversible work done while “switching on” the anharmonic part
of the potential.49,50 In the HamiltonianHλ = (1 − λ)Hhar + λH
the Kirkwood coupling parameter λ smoothly switches the
potential from harmonic (λ = 0) to fully anharmonic (λ = 1).
The free energy difference at a given temperature is obtained by
computing the integral of the thermodynamic force along the
switching path:

∫ ∫λ
λ

λΔ = − = ∂
∂

= ⟨ − ⟩ λA A A
A

V Vd d Hcl cl cl
har

0

1

0

1
hari

k
jjj

y
{
zzz

(28)

where, ⟨□⟩Hλ represents an average over the classical canonical
ensemble sampled by the intermediate Hamiltonian and Acl

har is
the classical harmonic free energy. Setting aside statistical errors,
ΔAcl can be computed exactly by sampling the thermodynamic
forces at multiple values of λ ∈ [0, 1] using molecular dynamics
simulations in the canonical ensemble. Depending on computa-
tional convenience,ΔAcl can also be calculated by alternative TI
paths, that involve computing the anharmonic free energy at a
low temperature T0 and then the change in free energy between
T0 and the desired temperature48,51

∫= −
⟨ ⟩ + ̃

̃
̃

−

− ̃

A N k T
k T

A N k T
k T

V k T

k T
T

( , , ( ) )

( , , ( ) )
d

T

T T
N

B
1

B

B 0
1

B 0

3
2 B

B
2

0

(29)

where ⟨□⟩T̃ is an average over the classical ̃N T ensemble. A
similar expression can be used to compute the full value ofΔAcl,
by taking the T0 → 0 limit of eq 2952

∫Δ = − ̃
⟨ − − ̃⟩

̃
̃

A T T
V V k T

T
d

T
N

T
cl

0

(0) 3
2 B

2 (30)

To include quantum anharmonic corrections due to zero-
point energy, tunnelling, etc., a second thermodynamic
integration must be performed to calculate the work required
to reversibly transform the particles from classical to
quantum.53,54 This can be achieved by defining the Hamiltonian

̂ = − ∇ ∇ +ℏ −H g VM r h( , )g
r r2

1 T2

, where g scales the mass of the

particles.16,40,55 As g is varied from 1 to 0 (i.e., the limit of infinite
mass), the de Broglie wavelength of the particles smoothly drops
from its physical value to zero, yielding the desired trans-
formation from quantum to classical particles. The correspond-
ing free energy difference is

∫Δ = − = ⟨ ̂ − ⟩−
̂A A A g g T Td Hqn qn cl

0

1
1

cl g

(31)

where ⟨T̂⟩Ĥg represents the average quantum kinetic energy for
the intermediate Hamiltonian and Tcl is the classical kinetic
energy which is independent of the mass of the system. Equation
31 can be computed exactly (modulo statistical error) by
sampling the quantum canonical ensembles for g ∈ [0, 1] using
PI molecular dynamics (PIMD). The difference between the

classical and quantum kinetic energy can be computed directly
using a centroid-virial kinetic energy estimator.22,56 The total
anharmonic free energy is computed as

= + + Δ + ΔA A A A Acm
cl
har

cl qn (32)

For a given PES, eq 32 gives the exact anharmonic free energy
(aside from statistical error) provided that a sufficient number of
intermediate states are used to perform the classical and
quantum thermodynamic integrations.

3. IMPLEMENTATION
In order to perform a direct comparison of the different
approximate methods, IMF, VSCF, and SCP were implemented
within i-PI.41 i-PI is an open-source python package for
atomistic simulations which collects energies and forces
computed from one of the many of density-functional-theory
(DFT), empirical, and machine-learning potential codes it is
interfaced to. The IMF, VSCF, and SCP implementations are
schematically shown in Figures 1−3. The reference free energies

can be evaluated by postprocessing (PI)MD simulations and
required no new dedicated implementation, since i-PI is able to
collect energy and forces from different codes, and to combine
them to realize simulations with mixed and weighted potentials.

3.1. Independent Mode Framework. Given the trans-
formation matrix, Ũ, and normal-mode frequencies from the
harmonic approximation, we perform single-point energy and
force evaluations for equally spaced configurations qi

j = ±jfq̃i(T)
along each normal mode i where q̃i is the RMS displacement of
the normal mode at a target temperature T. We increase or
decrease j by one at a time until the sampled energy V(1)(qi

j)
exceeds a user-defined multiple nE of the thermal harmonic
energy V(1)(qi

j) > nEEi
har(T). This ensures that the potential is

always mapped out far enough into the classically forbidden

Figure 1. Schematic representation of the independent mode
approximation module. See the main text for a detailed discussion of
the implementation.
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region (but only as far as necessary) to localize the nuclear
density, at temperatures lower or equal than the chosen target.
The independent mode potential ∑iV

(1)(qi) is then recon-
structed by fitting cubic splines to {(qi

j, V(1)(qi
j))}. The

corresponding independent mode Hamiltonian is expanded in
a basis of SHO eigenstates and diagonalized to evaluate the
independent mode anharmonic Helmholtz free energy. The
Helmholtz free energy is converged with respect to the density
of the frozen-phonon samples qi

j by repeatedly halving f and
supplementing the already collected {(qi

j, V(1)(qi
j))} with

corresponding samples, until the required convergence thresh-
old is met. For each f the Helmholtz free energy is converged
with respect to the size of the SHO basis.

3.2. Vibrational Self-Consistent Field. The implementa-
tion of the VSCF framework is split into two modules: one for
mapping the potential energy surface (PES) and one for solving
the VSCF problem. The mapping strategy mirrors that
employed in the IMF module. In a first loop over normal

modes, we collect { }jfq T V jfq T( ( ), ( ( ))i i
(1)Ù Ù until the sampled

potential exceeds a user-definedmultiple of the harmonic energy

>V jfq T n E T( ( )) ( )i E i
(1) harÙ , thereby also determining the

sampling range for the coupling corrections. In a second loop
over n-tuples of normal modes, we then sample {((qi1

j1, ..., qin
jn),

V(n)(qi1
j1, ..., qin

jn))} in a similar fashion and extract the coupling

corrections V(n)(qi1, ..., qin) using cubic spline fits. Currently,
sampling and fitting of n = 2, 3 are implemented. The extracted
coupling corrections are stored for use within the VSCF solver
module.
The module for solving the VSCF problem consists of two

submodules, the first of which performs the VSCF calculation
itself. The thermal density determining the mean-field potentials
{V̅i(qi)} is initialized as the IMF thermal density. Within a VSCF
step the MF independent mode Hamiltonians for the given MF
potentials are constructed, expanded in an SHO basis, and
diagonalized to determine the updated MF thermal vibrational
density and the free energy Avscf. To stabilize the VSCF
convergence, 50% of the thermal density resulting from the
previous VSCF iteration are mixed in before the mean-field
potentials {V̅i(qi)} are updated and the next VSCF step is
initiated. This is repeated until self-consistency has been reached
as indicated by convergence of the associated free energy Avscf to
within the required threshold.
The second submodule allows the calculation of an MP2

correction on top of theMF eigenstates and -energies by looping
over pairs of eigenstates (s, s′) to evaluate the MP2 corrections
in eq 20 on a real-space grid of predefined density. We only
consider eigenstates of the self-consistent MF description with
eigenenergies Es

vscf within a set multiple of kBT.
3.3. Self-Consistent Phonons.Our implementation of the

SCP method is schematically shown in Figure 3. In the first loop
over SCP steps, we construct the trial density matrix ρ̂scp(r)
using the mean position rscp and Hessian Kscp obtained from the
previous step. In the first step ρ̂scp(r) is built based on the
equilibrium geometry and the harmonic Hessian. In the second
loop we calculate the ensemble averages of the forces and the
Hessian, necessary to perform the optimization steps described
in eq 26. These are realized as Gaussian integrals and computed
using MC importance sampling as

∑⟨□⟩ = □ +
=N

N
1

(1/ )H
s i

N

s
1

s

scp

(33)

where Ns is the number of samples. Samples are generated by
translating 3(N−1) -tuples of (quasi-)random numbers on the
interval [0, 1] into atomic displacements from themean position
rscp using the inverse cumulative distribution function of ρscp(r)
with a Beasley−Springer−Moro algorithm.57,58 To speed up the
convergence of the averages with respect to the number of
samples, we employ the following tricks:

1. For small system sizes, instead of drawing pseudo random
numbers, we use low-discrepancy quasi-random num-
bersspecifically Sobol sequences59as was done in the
implementation of Brown and co-workers.37 This leads to
a more uniform sampling, so that error in eq 33 decays as

Figure 2. Schematic representation of the (a) VSCF mapper and (b)
VSCF solver module. See the main text for a detailed discussion of the
implementation.
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N N(ln( ) / )s
d

s which becomes ∼ N(1/ ) for low dimen-
sional integrals.60 For large system sizes, we resort to
pseudo random numbers as the performance of Sobol
sequences degrades.61 We use the FORTRAN imple-
mentation of Burkardt62 to generate Sobol sequences.

2. As was done in the implementation of Errea and co-
workers,63 we reuse samples from previous SCP iterations
via a reweighting scheme. Given the updated trial density
ρ̂l
scp at the lth SCF iteration, the reweighted average using

theNs samples {r}k drawn from the trial density ρ̂k
scp at the

kth SCP iteration is
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We minimize the error in the global estimates ⟨□⟩l at the
lth SCP iteration by weighting samples drawn in the kth
SCP iteration according to a “batch weight”
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where □k ≡ □({r}k) and the variance of a generic
observable over samples from kth SCP iteration is64

□ = □ + ⟨−□ ⟩

−

w

w
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l
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s (36)

where wl
k ≡ wl

k({r}k), provided both □ and −ln wl
k are

normally distributed. Neglecting ⟨−□ln wl
k⟩ renders the

batch weights independent of the observable being
considered
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and thereby also suitable for both Hessians and forces.
3. Taking inspiration from stochastic over-relaxation algo-

rithms,65,66 we always draw pairs of configurations (qi,
qi+1), where qi+1 = −qi, ensuring that forces from the
symmetric part of V cancel out exactly.

4. To compute the average Hessian, we use integration by
parts, as suggested in ref 37, and to further reduce the
variance, we express it in terms of the difference between
the harmonic and the anharmonic forces:

⟨ ⟩ = − ⟨[ − ]

[ − ]⟩
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(38)

Samples are drawn in sets of Ns until at least one component of
the average forces (in terms of normal mode coordinates) is
statistically significant, as assessed by whether the average over
samples is larger than the standard deviation.
Direct application of eq 26 in Cartesian space may lead to

instability due to the residual statistical errors. Therefore, we
only update rscp along those normal modes which exhibit a
statistically significant net force, ⟨fqi⟩, where ⟨fq⟩ = ŨT⟨fr(r)⟩.
The optimization continues until no statistically significant force
component remain or the batch weights become smaller than a
preset threshold, at which point a new SCP iteration begins.
While for a bound potential all modes all modes must be real

upon convergence, insufficient statistics may lead to spurious
imaginary modes with ωi

2 < 0 before convergence is achieved.
Such imaginary modes are treated by setting ωi

2 = −ωi
2 in the

effective harmonic description. It is also possible to define a
lower threshold for the permissible value of ωi, although it was
not necessary to apply this threshold for any of the examples
discussed here.

4. RESULTS AND DISCUSSION
We first describe the systems that have been studied and the
potentials that have been used to compute interparticle
interactions. We then investigate the scaling of the computa-
tional cost of the methods with respect to the system size, before
assessing their accuracy by systematically comparing the
approximate free energies to reference quantum thermodynamic
integrations. We neglect the center of mass contribution to the
free energy throughout as it cancels out when comparing
methods. We converge all results with respect to the sampling of
the vibrational BZ by increasing the simulation cell size, allowing
us to compare the different methods in equivalent and physically
meaningful conditions.

4.1. Systems and Computational Details. Three sets of
materials are studied in this work in order of increasing
complexity. As a first example we consider the diamond67 and
lonsdaleite68 allotropes of carbon. These differ only in the
stacking of hexagonal bilayers of tetrahedrally coordinated
carbon atoms. Their room temperature densities are identical to
within experimental error67,68 and equal to 3.51 g/cm3. We

Figure 3. Schematic representation of the SCP module. See the main
text for a detailed discussion of the implementation.
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consider simulation cells containing up to 64 atoms, starting
from the two- and four-atom primitive cells for diamond and
lonsdaleite, respectively. All the cells were designed to be as close
to cubic as possible to render the effective sampling of the
vibrational BZ as uniform as possible. Interatomic interactions
are modeled using the Gaussian approximation potential (GAP)
of Deringer and Csańyi,69 which is based on LDA DFT
calculations on configurations from MD simulations of liquid
and amorphous carbon. For crystalline carbon (including
diamond and graphite), it has been shown to reproduce DFT
energies and forces to within RMS errors of 2meV/atom and 0.1
eV/Angstrom, respectively.
As a second benchmark, we discuss two proton-ordered

polymorphs of ice, hexagonal (XIh)70,71 and cubic (XIc)72 ice.
These become thermodynamically (meta-)stable below the
experimental transition temperature for proton-disordering of
72 K.70,71 For XIc we assume I41/amd symmetry, noting that the
true experimental structure of XIc is still under debate.72 In
direct analogy to the above carbon allotropes the oxygen
sublattices of XIh and XIc only differ in the stacking of bilayers of
tetrahedrally coordinated oxygen atoms. In view of the absence
of experimental data for sufficiently pure XIc, we take its density
to be identical to that of XIh. We use the experimental density at
ambient pressure and 10 K of 0.93 g/cm3, noting that the
thermal expansion of ice XIh between 10 and 70 K is less than
0.5%. We use simulation cells containing up to 16 molecules to
allow for the possibility of coupling between pseudotranslations,
which are not present at the Γ-point of the unit cell, and
librational, bending, and O−H bond stretching modes. The
interatomic interactions are described using a Behler−Parinello
type neural network (NN),73 based on B3LYP+D3 DFT
reference calculations for around 20 000 liquid water and
hexagonal ice configurations from MD and PIMD trajectories.
This potential successfully reproduces the density of states, pair
correlation functions, and energy fluctuations of B3LYP+D3
liquid water74 and has been used to study the quantum kinetic
energy, proton momentum distribution, and vibrational density
of states of solid and liquid water.75,76

Finally we analyze two polymorphs of paracetamol (N-acetyl-
p-aminophenol), the monoclinic form I77 and the orthorhombic
form II.78 The two forms differ in the packing of hydrogen
bonded sheets of molecules−zigzag for form I and almost planar
for form II. We consider the conventional unit cells containing
four and eight formula units for forms I and II respectively, at
room temperature experimental densities. Interatomic inter-
actions are described on the basis of the Merk Molecular Force
Field also used in ref 18. The accuracy parameter of the PPPM
method79 used for calculating electrostatic interactions was set
to 10−6 fractional error in the individual force components,
which is smaller than the value usually required, to ensure a
smooth PES. While this simple potential contains harmonic
terms for bonds and angles, it remains highly anharmonic as the
dihedral interaction term describes a (almost) free rotation of
the methyl groups at room temperature.
4.2. Computational Cost. We define the computational

cost of an approximate method (□) as the minimum number of
energy or force evaluations required to converge the per atom
anharmomic free energy (A□ − Ahar) to within 10% of the
reference value for the largest system size including both
statistical uncertainty and systematic (e.g., grid related) errors.
For the case of diamond, this tolerance is equal to a stringent 0.2
meV/atom. Figure 4 shows how the cost of these methods and

the reference QTI scales with the number of atoms in the
simulation cell.

The cost of IMF calculations depends linearly on the number
of normal modes−which scales linearly with system size−and
the number of points sampled along each mode. In our
implementation, the later remains weakly dependent on the
potential due to the variable, dynamically optimized sampling
point density.
Analogously the VSCF approach exhibits a rough scaling

behavior of Nn where n is the dimensionality of the potential
surfaces that are being sampled. For the case of diamond we use
n = 2 and therefore observe a N2 dependence for large N. As the
anharmonicity of the potential for diamond is very much
dependent on BZ sampling (see Supporting Information (SI)
S.1.1), the cost for the primitive cell is an outlier.
The cost for the SCP scheme, using pseudo random numbers,

arises from the use of Monte Carlo importance sampling of the
optimal effective harmonic description, which scales independ-
ently of system size. The statistical reweighting scheme reduces
the cost for small sizes but becomes increasingly less beneficial as
N is increased.64 The net result is a near linear scaling behavior
for the system sizes that we have considered. We note that the
use of Sobol sequences improves the convergence of the MC
integrals for small system sizes and, thereby, reduces the cost of
the SCP but leads to an unfavorable exponential scaling (see SI
S1.3) for large N.
The reference calculations (QTI) were performed using a

combination of a TI from the harmonic reference to the
anharmonic potential using classical MD and a quantumTI over
mass using PIMD.We define the cost of a QTI simulation as the
total number of force evaluations required to drive the statistical
errorthe dominant source of error, given we converged the
discretization of the integral80,81 and the number of replicas in a
high-order PIMD scheme74 beyond that levelto below 10% of
the reference value for the largest system size obtained from a

Figure 4. Scaling of computational costs in the case of diamond in terms
of the number of energy and force evaluations for IMF (pink), VSCF
(green), SCP (blue), and QTI (black) with the number of atoms in the
simulation cell. Here, we do not make use of any crystal symmetries to
reduce the cost of calculations. For the approximate methods the free
energy was converged to within 10% of the fully converged QTI results
for 64 atoms with respect to all relevant convergence parameters.
Analogously, the cost of QTI is defined as the total number of force
evaluations required to drive the statistical error to below 10% of the
fully converged QTI results for 64 atoms.
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fully converged QTI simulation. One should note that the
variance of the integrands and the cost of performing one
molecular dynamics step is different for classical and quantum
MD. Thus, the minimum number of force evaluations required
to reduce the error to within the tolerance is an optimization
problem detailed in the Supporting Information (see SI S4).
Since both the integrals are effective energies and the
fluctuations of the potential energy in the canonical ensemble
display a ∼ N1/ behavior with respect to its mean, QTI also
displays a ∼ N1/ scaling behavior.
In summary, in the limit of small system size, SCP and IMF

display the most favorable scaling. The reference technique QTI
displays a N(1/ ) behavior, making it the least expensive
method in the limit of large system size. For carbon, however, as
well as for all of the systems discussed in this work, we do not
reach this limit, and QTI requires a substantially larger number
of force evaluations than either SCP or IMF. It is worth noting
that at fixed cell size (unlike the other anharmonic methods)
IMF and VSCF also provide the temperature dependence of the
free energy without any additional force evaluations.
In the current implementation, none of the above free energy

methods exploit crystal symmetries. Exploiting crystal symme-
tries in HAR, IMF, and VSCF is straightforward and the

reduction in computational cost is simply related to the
reduction in the number of independent normal modes. Crystal
symmetries can similarly, albeit not quite as trivially, be exploited
in SCP63 and the other methods. However, crystal symmetries
do not affect the overall scaling behavior with respect to the
number of degrees of freedom considered in a given calculation
and have therefore not been regarded in the benchmarks for the
computational cost.

4.3. Accuracy. We gauge the accuracy of the approximate
methods by studying the error incurred in the absolute
anharmonic free energy and in the free energy differences
between two phases of the same material.

4.3.1. Allotropes of Carbon. Diamond and lonsdaleite are
mildly anharmonic systems which serve as excellent starting
points for our study. We find that 32-atom simulation cells
suffice to converge the free energy difference between diamond
and lonsdaleite, with respect to BZ sampling. A detailed
description of the workflow and system size convergence can be
found in the SI (see S1.1).
As shown in panels a and b of Figure 5, the quantum

anharmonic contribution to the free energy of both diamond
and lonsdaleite is approximately 2 meV/atom. IMF, which
considers anharmonicity only along normal modes, under-

Figure 5. (a and b) Quantum anharmonic Helmholtz free energies A□ − Ahar of (a) diamond and (b) lonsdaleite allotropes of carbon at 300 K with
IMF (pink), VSCF (green), SCP (blue), and QTI (black). (c) Difference in the potential energies of the minimum-energy configurations V (gray) and
the free energy difference Adiam

□ − Alons
□ obtained using the harmonic approximation (yellow) and the aforementioned anharmonic methods.

Figure 6. (a and b) Quantum anharmonic Helmholtz free energies A□ − Ahar of (a) hexagonal and (b) cubic polymorphs of ice XI at 70 K with IMF
(pink), VSCF (green), SCP (blue), and QTI (black). (c) Difference in the potential energies of the minimum-energy configurations V (gray) and the
free energy difference AXIh

□ − AXIc
□ obtained using the harmonic approximation (yellow) and the aforementioned anharmonic methods.
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estimates the anharmonic free energy by around 1 meV/atom.
Including pairwise mean-field coupling using VSCF leads to a
large over correction that increases the error to over 2 meV/
atom, while SCP (which also includes a mean-field anharmonic
corrections within Gaussian statistics) gives excellent results in
comparison to the reference. This indicates that the error in
VSCF arises from the truncation of the potential.
We also study the accuracy of the methods in reproducing the

free energy difference between diamond and lonsdaleite, as
shown in panel c of Figure 5. Notably, the free energy
contribution from quantum anharmonic motion for the two
allotropes is almost identical so that there is almost no
anharmonic correction to the free energy between the two
phases.
Fortuitously IMF and VSCF benefit from large amounts of

error cancellation and reproduce the exact result within the
errors in the anharmonic free energies. Overall, all approximate
methods perform reasonably well at reproducing both the (very
small) anharmonic corrections and the free energy difference.
4.3.2. Polymorphs of Ice. Ice XIh and ice XIc are a more

challenging test case because of the large anharmonic
contribution due to the pronounced anharmonicity of the O−
H bond, the coupling between the high and low frequency
modes,82 and the small free energy difference between the
hexagonal and cubic polymorphs.25,26 Supercells containing 16
molecules of water suffice to converge the free energy difference
for all methods. Details of the calculations can be found in the SI
(see S2.1)
As shown in a and b of Figure 6, the overall contribution from

quantum anharmonicity to the free energy is around 25 meV/
molecule for both systems. Contrary to the case of carbon, we
find the approximate methods do not accurately reproduce the
reference anharmonic free energy. For instance, the IMF
technique produces qualitatively incorrect anharmonic correc-
tions. The VSCF approach with pairwise couplings of normal
modes provides the best approximation but remains off by over
10 mev/molecule. The SCP scheme incurs errors of around 20
meV/molecule.
In line with previous path integral calculations on hexagonal

and cubic ice,26 we find the free energy difference between the
polymorphs of ice XI to be almost zero, as shown in panel c of
Figure 6. IMF predicts the hexagonal form to be more stable by
around 7 meV/molecule. After adding mean field coupling

corrections within VSCF the margin of stability reduces to
around 5 meV/molecule. The SCP scheme benefits from
cancellation of errors and fortuitously gives the correct result
within 1 meV/molecule.

4.3.3. Polymorphs of Paracetamol. As a final test, we
consider forms 1 and 2 of crystalline paracetamol. These are
more complex molecular crystals, for which free energy
calculations are complicated by the presence of quasi-free
rotations of the methyl groups. Reference free energies are
obtained by first integrating from the harmonic reference to the
full potential at 10 K, then by performing classical TI with
respect to temperature52 from 10 to 300 K, and finally by
quantumTI overmasses.We found that, for this system, classical
anharmonicity is almost completely suppressed at 10 K, and the
classical anharmonic correction for the fluctuations around the
potential energy minimum is essentially zero. We expect that, at
an appropriately low temperature, a similar behavior will be
shared by many systems, making this route more efficient than
integrating between harmonic and full potential at the target
temperature.18 The subtle issues connected with the degeneracy
of the rotational conformers of the methyl group are discussed
below. For reference, the free energies were recalculated using
the TI route employed in ref 18, and we were able to reproduce
the same result within statistical error. As shown in Figures 7a
and b, the overall quantum anharmonic corrections for forms I
and II are around−58 and−46 meV/molecule. All approximate
anharmonic methods produce qualitatively incorrect anhar-
monic free energy corrections.
As shown in Figure 7c, the free energy difference between the

two forms is around 12 meV/molecule. The difference with
respect to ref 18 arises due to the use of slightly different lattice
constants (see SI S3.1.4), a more accurate path integral sampling
technique,74 and a finer PPPM mesh for the Ewald summation
of electrostatics. As in the cases of carbon and ice, the IMF and
SCP benefit from significant error cancellation. The former
correctly predicts form II to be more stable but performs worse
than a harmonic approximation in getting the correct
magnitude. The latter also predicts the correct sign but
fortuitously estimates the magnitude to within 5 meV/molecule
of the exact result. VSCF does not benefit from error
cancellation to the same extent and overestimates the stability
of form II by over 70 meV/molecule.

Figure 7. (a and b)Quantum anharmonic Helmholtz free energiesA□−Ahar of form I and form II polymorphs of crystalline paracetamol at 300 Kwith
IMF (pink), VSCF (green), SCP (blue), and QTI (black). (c) Difference in the potential energies of the minimum-energy configurations V (gray) and
the free energy difference AI

□ − AII
□ obtained using the harmonic approximation (yellow) and the aforementioned anharmonic methods.
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An important contribution to the anharmonic free energy
correction for each phase is due to the degeneracy of the
rotational conformers of the methyl groups. In the presence ofD
degenerate, nonoverlapping states, the conformational contri-
bution to the free energy amounts to − kBT ln D (for reference,
at room temperature a 3-fold degeneracy contributes about 30
meV, which is comparable with the overall anharmonic
corrections in this system). We take this term into account in
QTI calculations by computing harmonic to anharmonic
corrections for a single minimum at low temperature, explicitly
including the configurational entropy. This term is very small at
sufficiently low temperature (<1 meV per molecule at 10 K, in
this case) and can be safely ignored in general cases, in which
knowledge of possible degeneracies is not available. We then
perform a TI over temperature using replica exchange molecular
dynamics,83 so that the degenerate states are sampled even at the
lowest temperatures. We do not include this term in the
approximate methods, because at 300 K the distributions
associated with the three states show some overlap, and so a
simple configurational entropy term ceases to be rigorous.
The failure of normal mode based approaches for paracetamol

is unsurprising, as the description of quasi-free rotations requires
curvilinear coordinates. In paracetamol the potential energy
barrier for rotational motion corresponds to approximately
200kB K, implying (even classically) quasi-free rotation of the
methyl groups at room temperature. For the force field used to
describe paracetamol, the potential governing rotation and
breathing of methyl groups can be extracted explicitly
(neglecting coupling to the remainder of the molecule) and
takes the simple form

θ θ= − + −θV r k r r V( , )
1
2

( ) (1 cos(3 ))0
2

(39)

where k = 53.114 eV/Å2, r0 = 1.09 Å, and Vθ = 8.54 meV. This
allows us to study the failure of the above approximate free
energy methods with the activation of angular motion on the
basis of a simple toy model
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which can easily be studied over a range of temperatures. The
exact solution for this simple model is obtained by exact
diagonalization (ED) of the Hamiltonian matrix on a regular,
square two-dimensional real space grid of 256 × 256 points
spanning from (x, y) = (−1.5r0,−1.5r0) to (x, y) = (1.5r0, 1.5r0).
We find that the reference free energy is converged to within 0.2
meV.
The temperature dependence of the free energy of the model

system is shown in Figure 8. At high temperature, a large fraction
of the discrepancy is due to the degeneracy, that is not captured
by the approximate descriptions. Even at the lowest temper-
ature, where the configurational entropy term is small, however,
only VSCFwhich in this case treats the full dimensionality of
the problem, albeit at the mean-field levelaccurately captures
the full anharmonic correction. With rising temperature the
VSCF approximation becomes increasingly inaccurate, as the
amplitude of angular motion of methyl groups increases and the
vibrational density delocalizes over the three equivalent
potential energy minima (see Figure 8). The harmonic, IMF,
and SCP approximations severely overestimate the free energy
throughout. For the harmonic approximation this can be
explained by the fact that linear coordinates mix angular and

much higher frequency radial motion, so that the effective
“angular mode” is stiffened substantially, while the radial mode
retains the true harmonic frequency. IMF and SCP exacerbate
this effect and yield essentially the same free-energy estimate.

5. CONCLUSIONS
Diamond and lonsdaleite, as examples of simple weakly
anharmonic solids, highlight the utility of approximate free
energy methods. While the accuracy of the approximate
Helmholtz free energies varies, all approaches achieve sub 2
meV/atom accuracy and, more importantly, consistently yield a
systematic improvement over the harmonic approximation at a
substantially lower computational cost than the reference QTI.
On the other hand, ice and paracetamol, as examples of more
complex, molecular crystals, highlight the limitations of
approximate techniques. The free energies of the molecular
crystals are substantially overestimated due to the inherent
limitations of normal modes based descriptions in the presence
of large-amplitude curvilinear librational or quasi-free rotational
motion. The simple model description of the rotation of the
methyl group in paracetamol demonstrates that SCP, IMF, and
VSCF artificially stiffen the rotational modes, leading to an
overestimation of the total free energy. The failure of these
methods for ice can also be understood along the same lines: at
larger displacements along the normal modes initially
corresponding to librational motion, O−H bonds are stretched
and bent, leading to an overestimation of the effective frequency
of librational motion and consequently the free energy. This is
confirmed by the blue shifts of the librational modes observed in
the case of IMF and SCP with respect to the harmonic
approximation (see SI S2.3). Consequently, these methods do
not consistently yield systematic improvements over the
harmonic approximation for free energies of solids that possess
high amplitude librational or quasi-rotational modes. However,
we expect these techniques to perform well for atomic and ionic
solids, where the point-like nature of the atomic/ionic building
blocks suppresses large-amplitude curvilinear motion, including
also cases, such as ferroelectrics, in which anharmonicities are
very strong but do not have a curvilinear character. It is worth
mentioning that (in suitable applications) normal mode based

Figure 8. Temperature dependence of the Helmholtz free energy of a
quasi-free rotor obtained with IMF (pink), VSCF (green), and SCP
(blue). Reference data obtained from exact diagonalization are shown
in black. The insets show the position distribution function at
temperatures of 25, 50, 100, and 200 K with blue and white indicating
high and low probability.
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approximate methods lend themselves to identifying the
atomistic/structural origins of anharmonicity and facilitate
analyses of, for example, spectral properties of strongly
anharmonic phonons, as probed by inelastic scattering
processes, the formation of charge-density-waves, and ferro-
electric instabilities.84

We also find that the approximate methods benefit from error
cancellation, leading to errors in free energy differences that are
consistently smaller than the errors in the absolute Helmholtz
free energies. One should consider, however, that we have
compared systems with very similar local environments. In
general such beneficial cancellation of errors is not guaranteed.
We demonstrate this in section S5 of the SI by studying the free
energy of a few high density phases of ice (II, IX, and XV)
relative to that of XIh. As shown in Figure S5, SCPwhich
benefits from error cancellation when comparing the cubic and
hexagonal forms of icedoes not yield a qualitatively correct
order of relative free energies.
As the approximate results can vary from almost quantitatively

accurate to qualitatively incorrect results, QTI is the only free
energy methods among those considered in this work that
provides reliable anharmonic free energies for large and complex
organic solids. Given that it displays a N(1/ ) computational
cost, it may furthermore require comparable or fewer force
evaluations than a SCP or VSCF calculation for systems of
interest, in particular when considering biological or pharma-
ceutical compounds that involve large unit cells with flexible
molecular units. It is further worth noting that QTI (and other
statistical sampling methods such as SCP) are substantially less
susceptible to noise in the underlying PES than the harmonic
approximation, IMF, and VSCF. While random noise largely
cancels out in the ensemble averages calculated in statistical
sampling methods, especially in combination with stochastic
thermostats,85,86 the harmonic approximation relies on the
ability to determine a meaningful dynamical matrix and thus a
differentiable PES, and the IMF and VSCF require an
interpolatable PES. This is demonstrated by performing the
Ewald summation in the description of paracetamol using a
coarser PPPMmesh, which leads to discontinuities in the PES of
0.50 meV (see SI S6). While the resultant QTI and SCP free
energies remain largely unaffected, the free energy estimates
obtained from the analytic methodsat least in the
implementation we discuss heredepend heavily on the size
of the finite displacements underlying the mapping of the PES,
and the VSCF in particular eventually fails to converge
altogether. In cases in which achieving sufficient absolute
accuracy is impossible, one should consider using regularized
approximations of the PES rather than a strict interpolation.
Efforts toward obtaining a computationally feasible anhar-

monic free energy should therefore be channelled toward
reducing the cost of performing a QTI or, at least, a classical-
nuclei TI with nuclear quantum contributions evaluated at a
more approximate level.18,29 This includes streamlining
hierarchical frameworks87 that perform the full free energy
calculations using inexpensive bespoke potentials88 or cheaper
basis sets,12 reducing the cost to that of reversibly switching an
ab initio potential. Machine learning potentials offer exceptional
promise to provide ab initio-quality potential energy surfaces to
evaluate the anharmonic free energy, and approximate methods
could also constitute an effective sampling approach to generate
data to train and validate such ML potentials.
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