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Abstract

Statistical learning is regarded as the most promising technique to accelerate and sys-
tematically facilitate insights into computational material science. This has been recently
successfully demonstrated by using compressed-sensing techniques, for instance to predict
the relative stability of zincblende versus rocksalt octet binary materials from the properties
of their atomic constituents alone (Ghiringhelli et al. Phys. Rev. Lett. 114, 105503 (2015)).
For an application in practical materials science, it is however uncertain to which extent
these approaches can be generalized, e.g., to predict metastable polymorphs. To clarify
this question, we have computed the relative stability of octet binaries for several different
(meta-)stable crystal structures. We use recently developed statistical tools that go beyond
the method introduced in the 2015 Phys. Rev. Lett., in order to find a single descriptor
(a non-linear function of atomic properties) that quantitatively predicts the difference in
energy among eight different polymorphs of the same material. We also introduce a new
class of descriptors, mapping the geometry of the different structures into a well defined
scalar (the reduced Madelung energy), that is shown to improve the predictive ability of
the statistical-learning model.

Zusammenfassung

Statistical Learning wird als die vielverspechensde Herangehensweise betrachtet, um system-
atisch Einsichten in der Materialwisschenschaft zu gewinnen. In der Tat wurde kürzlich unter
Beweis gestellt, dass Energiedifferenzen zwischen Rocksalt und Zincblende für sogenannte
binary octet Materialien ausschliesslich aus Atomeigenschaften vohergesagt werden können
(Ghiringhelli et al. Phys. Rev. Lett. 114, 105503 (2015)). Jedoch müssen solche Ansätze für
eine breitere Anwendung erforscht werden. In Anlehnung haben wir Energiedifferencen von
binary octet Materialien für diverse (meta-)stabile Kristallstrukturen berechnet. Neu en-
twickelte statistische Methoden werden verwendet, die gegenüber denen im Phys. Rev. Lett.
(2015) veröffentlichten Techniken, einen Fortschritt bieten, indem sie einen sogenannten
Deskriptor (eine nicht-lineare Funktion der Atomeigenschaften) identifizieren, der mehrere
Energiedifferenzen gleichzeitig vorhersagen kann. Desweiteren integrieren wie eine neue
Klasse an Deskriptoren: Energien (Madelung-Energie), die geometrische Eigenschaften
des Kristalls abbilden. Diese tragen zur akkurateren Vorhersage der Energiedifferenzen
bei.

Emre Ahmetcik 1





1 Introduction

There are about 200 000 materials known to exist, however the basic properties, such
as elastic modulus or conductivity, are known for only a few of them. While studying
promising materials for different applications (catalysis, thermoelectricity, photovoltaics),
the amount of data increases exponentially with time and stored data is not used again.
The use of machine learning on this big data provides an alternative, efficient way to reach
the target. The data is analysed by modern statistical techniques to explore correlations
and identify trends and anomalies, such that predictions for new materials can be readily
made. The gained insights would facilitate the rational design of advanced materials.
However, many challenges remain to be overcome to enable the statistical learning approach
to reach its full potential. For progress to be made, two critical aspects are required: (1)
the structured storage of big data, being available and easy to read out by scientists
(like a reference book); (2) the efficient application of statistical techniques which handle
large amounts of data and give reliable predictions of materials properties. The former is
already in avail, such as the NOMAD data base [12], being designed and enhanced for
the explained purpose. The latter is a young and fast growing field in material science,
and trustful machine-learning methods for a broad use still have do be developed and tested.

One significant progress has been recently realized by using compressed-sensing techniques
to predict the relative stability of zincblende versus rocksalt octet binary materials from
the properties of the atomic constituents alone [10]. The application on octet binary
materials, which is a rather well studied field, provides a simple platform to develop and
study machine-learning techniques for a practical application in material science. The
prediction of the relative stability between rocksalt and zincblende crystals structure for
the same material is only one example of perhaps the most fundamental and important
challenge in materials science, i.e., the prediction of the ground-state and metastable
crystal structures of a material, given its composition.
Trends in the relative stability of these AB compounds have been analysed long ago,
and correlations to physical parameters (coordinates) have been found to classify the
materials in 2-dimensional structure maps, separating the comnpounds with respect to
(meta-)stable or ground state structures. Coordinates as Mooser and Pearson’s (∆χ,n)
[11] with Pauling’s electronegativity scale ∆χ vs. the average principal quantum number
n = 1

2(n(A) + n(B)) or Phillips and Van Vechten’s (Eh, C) [13, 14, 15] with the average
covalent energy gap Eh and the average ionic energy gap C have proven successful. A
further pair (rσ,rπ) [16] based on orbitally dependent radii rσ and rπ was presented by St.
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1 Introduction

John and Bloch.

By using compressed sensing techniques, Ghiringhelli et al. [10] introduced a scheme, to
overcome the cumbersome trial-and-error search for such coordinates (descriptors). The
authors demonstrated how the most important descriptors can be determined out of
several thousand candidate features, where the candidate features consist of atomic input
parameters (primary features) such as orbital radii and atomic Kohn-Sham energy levels.
The work goes one step beyond only classifying the octet binaries, predicting also the
gauge of their relative stability (energy differences). However, the underlying technique is
limited to feature spaces of few thousands features, and thus restricted to rather simple
non-linear functions of a small number of physical input parameters.

In this thesis, a recently developed scheme is presented, which discovers the most important
features out of more than 1010 candidates to describe the relative (meta-)stability of octet
binary compounds. The developed scheme is applied to predict the energy differences
between eight crystal structures of the 82 octet binary compounds. The eight crystal
structures of the octet binaries examined are: zincblende, rocksalt, CsCl, NiAs, NaTi, CoSn,
NbP, CrB. The crystal structures had their energies predicted using density-functional
theory within the local density approximation (LDA). The structures NiAs, CoSn, NbP
and CrB have proven to be more complex systems than the original cubic structures,
leading to multiple minima and hence the necessity for extensive scans with a careful and
critical analysis. In this work, the interest is laid on advanced descriptors providing the
opportunity, that one descriptor can predict several energy differences at the same time.
Moreover, non-linear functions of higher complexity are used and the number of primary
features is extended, including the atomic number, valence-electron numbers and also
non-atomic parameters as dimers distances and the Madelung energy. Due to logical and
physical restriction to be applied to the possible candidate primary features, i.e., that
their determination must involve much less intensive calculations than those needed for
the energy differences, the Madelung energy, depending on the geometry of the crystal, is
included in an indirect way by a two-step procedure, that involves first the prediction of
the crystal geometry from atomic features.
The main result is the identification of a procedure for finding a low dimensional descriptor
and a model, that is able to quantitatively predict the relative stability (the difference
in energy) between the eight selected crystal structures for each of the 82 octet-binary
material, with a prediction (absolute) error that is on average smaller than 0.1 eV per
atom.

The present thesis is divided into six chapters. Chapter 2 briefly summarizes the concepts of
electronic-structure theory. In chapter 3 an introduction to the used statistical methods is
given. This involves motivations and mathematical basics, providing detailed and descriptive
insights. The details about the electronic structure calculations is presented in Chapter

4



4, giving a concise description of the techniques to find the equilibrium properties of the
materials. Afterwards, in Chapter 5 the target to predict energy differences is formulated
and put in an statistical concept, followed by the results. Chapter 6 summarizes and
concludes the work.
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2 Theoretical backround

2.1 The many-electron problem

In order to understand the physics of solids and molecular systems, we consider here the
time-independent Schrödinger equation

ĤΨ = EΨ (2.1)

for a set of interacting atoms, consisting of Nel electrons and Nnuc nuclei. We may write
the non-relativistic Hamiltonian as a sum [3]

Ĥ = T̂el + T̂nuc + V̂el-el + V̂el-nuc + V̂nuc-nuc (2.2)

of the kinetic energy operator of the electrons

T̂el = −1
2

Nel∑
i

∆i, (2.3)

the kinetic energy operator of the nuclei

T̂nuc = −1
2

Nnuc∑
i

∆I

MI
, (2.4)

the electron-electron interaction operator

V̂el-el = 1
2

Nel∑
i

Nel∑
j 6=i

1
|ri − rj |

, (2.5)

the electron-nuclear interaction operator

V̂el-nuc = −1
2

Nel∑
i

Nnuc∑
I

ZI
|ri −RI |

, (2.6)

and the nuclear-nuclear interaction operator

V̂nuc-nuc = 1
2

Nnuc∑
I

Nnuc∑
J 6=I

ZIZJ
|RI −RJ |

. (2.7)

7



2 Theoretical backround

Here atomic units are used. The electronic and nuclear coordinates are given by ri and RI ,
the Laplacian by ∆.
The ratio mi

MI
< 10−4 leads to the fact, that the nuclei move much slower than the electrons,

which allows us to to treat, in an (the Born-Oppenheimer) approximation, the electrons
as following the movements of the nuclei adiabatically, which allows us to factorize the
wavefunction into an electronic and a nuclear part:

Ψ = Ψel(ri, {RI})Ψnuc(RI). (2.8)

Here Ψel depends only parametrically on the nuclear coordinates RI as highlighted
by the brackets {}. As a result 2.1 can be decoupled into an electronic equation

ĤelΨel = EelΨel (2.9)

with
Ĥel = T̂el + V̂el-el + V̂el-nuc (2.10)

and into an nuclear equation[
−1

2

Nnuc∑
i

∆I

MI
+ V̂nuc-nuc + Eel({RI})

]
Ψnuc = EnucΨnuc. (2.11)

2.2 Density-functional theory and Hohenberg-Kohn Theorems

The electronic equation 2.9 depends on the function Ψel with 3Nel variables. Density-
functional theory is based on the fact, that the energy of the electrons can be written as a
functional of the electron density n(r) and the ground state energy is obtained from the
minimum of the the functional via variation of n(r). As a result, the complexity of the
problem is reduced, since the electron density

n(r) = Nel
w
...

w
|Ψel(r, r2, ..., rNel)|

2 dr2...Nel (2.12)

depends on only 3 variables. The theory is build on the two Hohenberg-Kohn theorems [4]

First Hohenberg-Kohn theorem: For any system of interacting particles in an
external potential, the external potential is determined up to a constant by the ground state
electron density.

Second Hohenberg-Kohn theorem: A universal functional E[n] of the electron
density existsts. The minimum of the functional via variation of n(r) is the ground state
energy at the ground state electron density.

8



2.3 Kohn-Sham equations

The energy functional is defined as

E[n] = F [n] +
w
νext(r)n(r)dr (2.13)

with the external potential νext(r) and the universal functional

F [n] = 〈g|T̂el + V̂el-el|g〉 = Tel[n] + Eel-el[n]. (2.14)

Here, 〈·|·〉 denotes the usual bra-ket notation and |g〉 the ground state.

2.3 Kohn-Sham equations

Formally the expression 2.14 is exact, however the analytical form of the functional F [n]
remains unknown, also no satisfying direct approximations exist [5]. A way to solve this
problem by reintroducing individual electronic states, was presented by Kohn and Sham.
The idea behind the approach of Kohn and Sham [6] is that we study a system of non-
interacting electrons in an auxiliary potential Vaux. This system is constructed such that it
has the same ground-state density as the interacting system and thus, by the Hohenberg-
Kohn theorems, the same ground-state energy. This non-interacting system is described by
the Schrödinger equation

(−1
2∆ + vaux)φi(r) = εiφi(r). (2.15)

It has the electron density

n =
Nel∑
i

w
|φi(r)|2dr. (2.16)

In this spirit, the energy E[n] of the interacting system is rewritten

E[n] = T̄s[n] + EH[n] +
w
νext(r)n(r)dr + Exc[n] (2.17)

with the kinetic energy T̄s[n] of the non interacting electron system , the exchange-correlation
functional

Exc[n] = F [n]− T̄s[n]− EH[n], (2.18)

and the the Hartree energy

EH = 1
2

w w n(r)n(r′)
|r − r′|

,drdr′. (2.19)

This provides a mapping between the non interacting auxiliary system and the interacting
system. The variational minimum of Eq. (2.17) is given by

δT̄s[n]
δn(r) + δEH[n]

δn(r) + νext(r) + δExc[n]
δn(r) −

δ

δn(r)(µ
w
n(r′)dr′) = 0 (2.20)

Emre Ahmetcik 9



2 Theoretical backround

δT̄s[n]
δn(r) + νH[n](r) + νext[n](r) + νxc[n](r)︸ ︷︷ ︸

Vaux(r)

−µ = 0 (2.21)

whereby the Lagrange multiplier µ takes the side condition, that the number of particles

Nel =
w
n(r′)dr′ (2.22)

shall be fixed, into account.

To solve Eq. (2.21) we would need to know an expression for the functional T̄s[n] in terms
of the density. Although we do not know an exact expression of T̄s[n], we can express it in
terms of single particle states:

Ts[n] = −1
2

Nel∑
i

〈φi|∆|φi〉 . (2.23)

where the orbitals φi are connected to the density n through[
−1

2∆ + vaux(r)
]

︸ ︷︷ ︸
hKS

φi(r) = εiφi(r). (2.24)

The electron density is obtained by solving the Kohn-Sham equations 2.24 and 2.16 in a
self-consistent manner. The energy is determined by

E[n] =
occ.∑
i

εi − EH[n]−
w
νxc(r)n(r)dr + Exc[n]. (2.25)

2.4 Approximations to the exchange-correlation functional

To obtain the exact ground state energy, the energy functional 2.17 must be known. The
only unknown part is the energy-correlation functional, so approximations to it are needed.
There exist different approximations with different level of accuracy and computational
cost. In the following the concepts behind local-density approximation, the generalized
gradient approximation, and hybrid functionals are introduced.

2.4.1 Local-density approximation

The simplest approximation is the local-density approximation (LDA), in which the electron
density is locally approximated by a homogeneous electron gas. The exchange-correlation
functional is written

ELDA
xc [n] =

w
n(r)εLDA

xc (n(r))dr. (2.26)

10



2.5 Solving the Kohn-Sham equations

2.4.2 Generalized gradient approximation

The generalized gradient approximation introduces an explicit dependence on the gradient
of the density in the exchange-correlation functional

EGGA
xc [n] =

w
n(r)εLDA

xc (n(r))Kxc(n(r),∇n(r))dr, (2.27)

where Kxc(n(r),∇n(r)) is a factor modifying εLDA
xc (n) in dependence of n(r) and ∇n(r)).

Examples are the PBE[7] or PBEsol[8] functional. Going beyond, in the so-called meta-GGA,
also the second derivative of the electron density is considered.

2.4.3 Hybrid functionals

Further improvements are obtained by using hybrid functionals, which reduce the so-called
self-interaction error. The exchange functional is given by

Ehyb
x = αEHF

x + (1− α)EDFA
x , (2.28)

with the Hartree-Fock (HF) exchange

EHF
x = −1

2

occ.∑
i,j

w w φ∗i (r)φj(r)φ∗j (r′)φi(r′)
|r − r′|

,drdr′ (2.29)

and the parameter α ∈ [0, 1], determining the weight of the HF contribution to a Density-
Functional approximation (DFA) exchange.

2.5 Solving the Kohn-Sham equations

We would like to solve the Kohn-Sham equations in an efficient implementation, now. A
truncated expansion

φi =
∑
j

cijϕj (2.30)

is used, where cij are expansion coefficients and ϕj are basis functions. Thus the Kohn-Sham
equations translate into a eigenvalue problem

∑
j

hnjcji = εi
∑
j

Anjcji (2.31)

Here hnj are the matrix elements of the Kohn-Sham hamiltonian hKS

hnj =
w
ϕ∗n(r)hKSϕj(r)dr, (2.32)

Emre Ahmetcik 11



2 Theoretical backround

and the Anj are the components of the overlap matrix

Anj =
w
ϕ∗n(r)ϕj(r)dr. (2.33)

In this work, the code FHI-aims [9] is used, which is an all-electron, full potential code
utilizing numeric atom-centered basis functions

ϕi(r) = unl(r −Rnuc)
r

Ylm(Θ,Φ). (2.34)

The Ylm(θ, φ) are spherical harmonics and the unl(r−Rnuc) are numerically defined radial
functions, centered at the considered nucleus.

2.6 Periodic boundary conditions

To describe materials with periodically arranged constituents in an efficient way, a unit
cell for the considered system is defined, being spanned by three lattice vector a1, a2 and
a3. Additional we define the basis, as the positions of the atoms in the unit cell. The unit
cell with its basis is chosen, such that, the periodic system can be described by infinitely
repeating the unit cell. To map to each unit cell a translation vector T (n) = An is used
with a vector n = (n1, n2, n3), where ni ∈ Z and A = (a1,a2,a3).
The periodicity imposes restrictions on the form of the orbitals. The so called Bloch theorem
states, that the orbitals can be written

φ
(k)
i = eikru

(k)
i (r) (2.35)

with
u

(k)
i (r) = u

(k)
i (r + T (n)). (2.36)

In FHI-aims this is accounted for by using Bloch-like basisfunction

Θ(r,k) =
∑
n

eik·T (n)ϕ(r −Rnuc + T (n)). (2.37)

As a result the KS Hamiltonian hKS and the KS states φi(r) become k dependant. In practice
a finite number of k points is considered, leading to the need of testing the convergence of
the property of interest with respect to the density of the k-grid.

2.7 Madelung energy

The Madelung energy denotes the electrostatic energy of as point charges approximated
ions in a crystal. We define the Madelung energy per ion pair on the side of ion i:

Emad,i = − z2e2

4πεr0
Mi. (2.38)
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2.7 Madelung energy

Here z is the number of charges of an ion, e the electric charge and ε Coulomb’s constant.
The Madelung constant

M =
∑
j

±1
rij/r0

(2.39)

is a sum over the ions with positive and negative charges in the crystal, where rij denotes
the distance between atom i and atom j normalized by a distance r0, e.g. the nearest
neighbour distance. Moreover we introduce the reduced Madelung energy, in which the
charges are neglected:

Emad,i = − e2

4πεr0
Mi. (2.40)

Emre Ahmetcik 13





3 Statistical-learning background

In this study, a recently developed statistical learning scheme [2] is applied to enable
construction of a sparse (low-dimensional) descriptor that accurately predicts materials
properties of interest. The descriptor is selected out of a feature space of 1010 candidates
to ensure that an accurate model can constructed. The aim of the used methods is to find
linear models f({di}) (or linear combinations) of only a few vectors of a huge set of m
input vectors di ∈ Rm, approximating a target vector P ∈ Rn, as good as possible.
We call P the property, consisting of a chosen physical property of n materials, to be
predicted. The vectors di are called descriptors, where each entry is a function of some
physical input parameters, which map to a material. In this work, we define non-linear
functions of the input parameters, so that the resulting model is a linear combination
of non-linear functions of the input parameters. A descriptor matrix D ∈ Rn×m+1 is
constructed out of the m available descriptors, as columns, with an additional column full
of ones 1. The mapping f : Rm+1 → Rn is defined by

f(c) = Dc, (3.1)

where c is the coefficient vector. The coefficient corresponding to the vector full of ones is
called bias and will be included in all our solutions. The number of non-zero coefficients is
denoted by

‖c‖0 = |{j, cj 6= 0}|. (3.2)

Here, the symbol | · | denotes the cardinality of a set, e.g. the number of elements in the
set. A vector c with ‖c‖0 ≤ k is called k-sparse. If ‖c∗‖0 = k, we call the model f(c∗) a
(k− 1)-dimensional descriptor. Since the bias is included in all our models, a 0-dimensional
descriptor is a vector full of the bias. The target is to find a low dimensional descriptor2,
which minimizes the euclidean distance between P and Dc. This kind of constraining c, is
called `0-regularization and written

arg min
c∈Rm

{‖P −Dc‖22 + λ‖c‖0}. (3.3)

1In general, linear functions include an absolute term c0, e.g. f(x1, ..., xk) = c0 + c1x1 + ...ckxk, where
{c1, ...ck} are constants and {x1, ..., xk} variables.

2In this work we focus on values ‖c‖0 ≤ 8
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3 Statistical-learning background

Here, ‖ · ‖2 denotes the euclidean norm (`2-norm). In Eq. 3.3 a compromise between a
small `2-norm and a sparse solution is sought3. The sparsity is tuned by the regularization
parameter λ ∈ R+

0 . The significant drawback of solving this problem is, that it becomes
computationally infeasible with increasing sparsity and size of the feature space. The
problem is called NP-hard [28]. In this context, it suffices to say that there is essentially
no better algorithm to solve exactly Eq. 3.3 than enumerating all possible solutions
(combinations of non-zero coefficients) for the given level of sparsity and select the one
with lowest `2-norm. There are several methods approximating the l0-problem, such as
`1-regularization as a convex relaxation of 3.3 or greedy algorithms. In this work, different
methods are considered, each with its advantages, and combined to a powerful scheme
called the `1-`0 method [2]. Each of them is used to reduce the feature space size by
filtering the important descriptors and is applied on a different level of size. They are
introduced in the following sections.

3.1 Standardization of the descriptors

When applying `1-regularization and matching pursuit, it is crucial that the descriptors di
are comparable, i.e., that their `2 norms do not affect their contribution. Thus, the di are
standardized. First, each di is centered to have mean µi=0, to cancel its influence on the
bias. The bias of a closest model to P is then given by the mean of P and can be ignored
in the minimization problem. Second, each centered di is scaled to have same `2-norm by
dividing by the standard deviation σi of the not centered di:

d̃i = 1
σi

(di − µi). (3.4)

Here, µi is a vector full of µi. Note, that if a di ∈ Rn, then ‖d̃i‖2 =
√
n. To compare two

descriptors di and dj we define the correlation (Pearson’s correlation)

cor(di,dj) = 〈d̃i, d̃j〉
‖d̃i‖2‖d̃j‖2

, (3.5)

where 〈·,·〉 denotes the dot product. If two standardized d̃i and d̃j are parallel, their
correlation cor(d̃i, d̃j) = 1

3The way 3.3 is written, it is assumed that all the columns of D are centered, since the bias should not be
effected by the `0-penalty. A centered column is di − µi, where µi is a vector full of the mean µi of the
entries of di. With centered columns the influence of each column on the bias is cancelled. Thus the
bias is not needed in the minimization.
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3.2 Least-squares solution

3.2 Least-squares solution

Our scheme (presented in Sec. 3.7) is based on a stepwise technique which filters the
most promising descriptors for a sparse linear model in the first steps. With the selected
descriptors the coefficients have to be determined, such that ‖P −Dc‖2 is minimized, e.g

arg min
c∈Rk+1

‖P −Dc‖22. (3.6)

Now c ∈ Rk+1 and D ∈ Rn×k+1, with k filtered descriptors. The solution to this problem
is called least-squares solution.
The textbook definitions 1 - 4 are reminded for clarity to define the terms direct sum,
orthogonal complement, and orthogonal projection. Similarly, the textbook theorems 1 to 3
remind what a least-square solution is.

Definition 1 A vector space V is called the direct sum of two subspaces U and W ,
written V = U

⊕
W , if V = {u+w : u ∈ U,w ∈W} and U ∩W = {0}

Definition 2 Let U be subspace of an inner product space V . Then the orthogonal
complement of U is denoted by U⊥ = {v ∈ V : 〈v,u〉 = 0,∀u ∈ U}.

Definition 3 Let U and W be subspaces of a vector space V . A linear transformation
T : V 7→ V is called the projection of V onto the subspace U along W , if V = U

⊕
W

and T (y) = u for y = u+w ∈ U
⊕
W

Definition 4 Let V be an inner product space, and let U be a subspace of V so that
V = U

⊕
U⊥. Then the projection of V onto U along U⊥ is called the orthogonal

projection of V onto U, denoted ProjU . For y ∈ V , the component vector ProjU (y) ∈ U
is called orthogonal projection of y into U .

Theorem 1 Let U be a subspace of an inner product space V , and let {u1,u2, ...,un} be
an orthonormal basis for U . Then, for any y ∈ V , the orthogonal projection ProjU (y) of y
into U is

ProjU (y) = 〈y,u1〉u1 + 〈y,u2〉u2 + ...+ 〈y,un〉un. (3.7)

Theorem 2 Let U be a subspace of an inner product space V , and let y ∈ V . Then, the
orthogonal projection ProjU of y satisfies

‖y − ProjU (y)‖2 ≤ ‖y − x‖2 (3.8)

for all x ∈ U . The equality holds if and only if x = ProjU (y).
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3 Statistical-learning background

Let us now consider the linear system

P = Dc (3.9)

with P ∈ Rn, D ∈ Rn×m and c ∈ Rm. This system has at least one solution if and only
if P belongs to the column space C(D) = {Dc ∈ Rn : c ∈ Rm}. Now let P /∈ C(D).
Then we would like to have a solution c∗, such that Dc∗ is as close as possible to P , e.g.

c∗ = arg min
c∈Rm

‖P −Dc‖2. (3.10)

c∗ is called a least square solution. From Theorem 2, we know, that Dc∗ is the
orthogonal projection of P into C(D). To find this projection the following theorem is
used.

Theorem 3 Let the columns of D be linearly independent. Then

ProjC(D)(P ) = D(DTD)−1DTP . (3.11)

To evaluate the performance of a given model Dc∗, the mean-square error

MSE = 1
n
‖P −Dc∗‖22 (3.12)

is defined, where n is the dimension of P . In the case of this work, n is the number
of Materials. In all the results, rather the root-mean-square error RMSE =

√
MSE is

reported, as a measurement with the same unit as the predicted quantity. To maximum
absolute error (MaxAE) denotes the entry of the vector P −Dc∗ with the highest absolute
value.

3.3 `0-regularization

The `0-method will be used as a last step of the used scheme (see Sec. 3.7), for a reduced
feature space size below 100. The way of solving 3.3 for a given P and D is explained in
the following.

1. Choose a number k for the dimension of the descriptor.

2. Calculate the least square solution c∗ for all possible k-dimensional descriptors. This
defines a model f(c∗) for each k-dimensional descriptor.

3. Choose the model with the lowest MSE.

We go through this procedure for a set of k values, not higher than k = 7. The different
dimensional descriptors are all considered and compared.
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3.4 `1-regularization

3.4 `1-regularization

A convex re-formulation of the `0-regularization is given by the LASSO (Least Absolute
Shrinkage and Selection Operator)[26], in which the `0-norm is replaced by the `1 norm

‖c‖1 =
∑
i

|ci|. (3.13)

The problem is denoted by

arg min
c∈Rm

{‖P −Dc‖22 + λ‖c‖1}. (3.14)

Now a compromise between a small euclidean distance and a small ‖c‖1 is sought. This
leads to sparse solutions, which lie on the edges of the `1-ball Bτ = {c ∈ Rm : ‖c‖1 ≤ τ},
see Fig. 3.1. With decreasing λ, τ increases, such that the solutions become less sparse. For
λ→ 0 the solution converges to the least square solution. Note, that we use the LASSO
with standardized matrices D. In this way, the `2-norm of a column does not affect bias
its contribution to the model. If the columns did not have all same `2-norm, columns
with relatively small `2-norm would need higher coefficients to be comparable with other
columns, but since high coefficients are penalized, these small-`2-norm columns could be
disadvantaged.

c1

c 2

c∗LS

c∗LASSO

Figure 3.1: A schematic depicting the LASSO estimation of coefficients c1 and c2..
The red ellipses are the contours of the LS error function. The blue area
is the constraint region ‖c‖1 ≤ τ .

3.4.1 Multi-task LASSO

In this work, we are also interested in finding descriptors, which are the same for different
property vectors Pj . The difference between the models fj lies in the values of the non-zero
coefficients, e.g. the weights on the descriptors. We construct a property matrix B ∈ Rn×q
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3 Statistical-learning background

out of q different properties Pj ∈ Rn, and analogously a coefficient matrix C ∈ Rm×q. Our
target is achieved by the multi-task LASSO

arg min
C∈Rm×q

{‖B −DC‖2F + λ
m∑
r=1

√√√√ q∑
s=1

C2
rs, (3.15)

where the Frobenius norm of a matrix A ∈ Rn×m is denoted by

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

A2
ij . (3.16)

The solutions of the multi-task LASSO, are "sparse" matrices C, in the sense, that only
a few rows of C are not full of zeros. For q = 1, the multi-task LASSO is the same as LASSO.

3.4.2 Compressed sensing

We now consider the target, to recover the sparsest c from P = Dc. In the the-
ory of compressed sensing (CS), it is studied under which conditions the solutions
of

arg min
c∈Rm

‖c‖0 subject to P = Dc, (3.17)

and

arg min
c∈Rm

‖c‖1 subject to P = Dc, (3.18)

coincide. An important result is given in the following definition and result, taken from
Ref. [30].

Definition 5 The matrix D ∈ Rn×m is said to have the Null Space Property (NSP) of
order k ∈M = {1, ...,m} if ∑

j∈K
|vj | <

∑
j /∈K
|vj | (3.19)

for all v ∈ kerD \ {0} and all K ⊂M with |K| ≤ k.

Theorem 4 Let D ∈ Rn×m and let k ∈ {1, ...,m}. Then every k-sparse vector c ∈ Rm is
the unique solution of 3.14, with P = Dc if and only if D satisfies the NSP of order k.

Unfortunately it is not easy, to check, if a matrix has the NSP. Nevertheless it is known,

20



3.5 The `1-`0 method

that there exists a constant C such that whenever

n > Ck ln(m), (3.20)

there exists a D ∈ Rn×m with NSP of order k. If D is a random matrix, it will satisfy the
NSP with high probability.

3.5 The `1-`0 method

In the recently demonstrated `1-`0 method [10], the `1-regularization is used to reduce the
size of the feature space to a small number N`1(in our cases N`1 < 100), and apply the
`0-regularization with a matrix D ∈ Rn×N`1 +1. For low N`1 and low sparsity, the `0-step is
computational feasible. The method is described in the following

1. Build a sequence of 120 λ-values on a log scale, with λmax = 1
n max

i
|〈di ,P 〉| and

λmin = 0.001λmax
4.

2. Calculate the LASSO solutions for the given λ-sequence, starting from λmax, and
save the descriptors di corresponding to the non-zero coefficients ci

3. Stop 2. at a chosen number N`1 of saved descriptors

4. Build a new matrix D ∈ Rn×N`1 +1 and apply the `0-method

Note, that in step 1, λmax denotes the smallest λ, for which the LASSO solution is c∗ = 0
[27]. The method has shown to give low dimensional models with smaller RMSE than a
pure `1-regularization. A drawback of the LASSO, is that sparse models with a high ‖c‖1
are less preferred, and the true model of the `0-problem on the same feature space can
be missed [1]. High coefficients occur for example, when descriptors are highly correlated,
since otherwise (with not high coefficients) a linear combination of such almost parallel
vectors would be a short vector, e.g. too short to describe a residual to P . The motivation
for the method is given by the following example.
Assume that f(ctrue) and f(ca) are two k-dimensional descriptors with ‖P −Dctrue‖2 <
‖P −Dca‖2 and let f(ctrue) be the true model of the `0-problem, which is the best k-
dimensional descriptor. Note that for a model f(cr) with a bias, ‖P −Dcr‖2 = ‖P −D̃c̃r‖2,
where D̃ is the standardized matrix and c̃ the correspondingly transformed coefficients. If
at a given λ the LASSO solutions5 c̃true,λ and c̃a,λ fulfill

λ(‖c̃true,λ‖1 − ‖c̃a,λ‖1) > ‖P − D̃c̃a,λ‖22 − ‖P − D̃c̃true,λ‖22, (3.21)

then f(c̃a,λ) will be preferred to f(c̃true,λ). Thus f(ctrue) may be missed when applying
LASSO.

4The number 120 is chosen empirically.
5Here a LASSO solution for a matrix with only the k columns of the corresponding model, f(ctrue) or
f(ca), is meant.
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3 Statistical-learning background

Now tuning down λ, will lead to less weight on the `1-score, such that on the one hand
3.21 does not hold anymore, but also higher dimensional descriptors are selected. Such
higher dimensional descriptors may be a linear combination of the descriptors of f(c̃true,λ)
and a model f(c̃b,λ), where the latter is close to the residual P − f(c̃true,λ). By an `0-
regularization, with a matrix D, consisting of all descriptors in of f(c̃true,λ) and f(c̃b,λ),
the solution for the best k-dimensional descriptor will be f(ctrue,λ). Hence the `1-`0 manage
such cases6.

3.6 Orthogonal matching pursuit

In this section the orthogonal matching pursuit (OMP) is presented, which gives the basis
for the sure independent screening (SIS), presented in the next section. The OMP is a
greedy algorithm, which finds at each iteration, the closest vector dr to the current residual
R = P − fcurrent from the available set of descriptors {di},

‖R− drcr‖22 ≤ ‖R− dici‖22 (3.22)

for all di ∈ {di} with corresponding least square solutions ci. It is characterized by its low
computational complexity, which is a matrix multiplication DTR and find the index of
the entry of the resulting vector with the highest absolute value, in each iteration. Thus
the OMP can be applied to large feature spaces.
To find the dr, we assume that the descriptors di are standardized vectors and rewrite
3.22:

‖R− drcr‖22 + ‖drcr‖22 + ‖dici‖22 ≤ ‖R− dici‖22 + ‖drcr‖22 + ‖dici‖22.

Since 〈R− dici,dici〉 = 0 and with the Pythagorean theorem:

⇔ ‖R− drcr + drcr‖22 + ‖dici‖22 ≤ ‖R− dici + dici‖22 + ‖drcr‖22
⇔ ‖dici‖22 ≤ ‖drcr‖22
⇔ |ci| ≤ |cr|,

since all di have same lengths ‖di‖2. From Sec. 3.2 we know, that

|cr| =
∣∣∣∣ 1
‖dr‖22

〈R,dr〉
∣∣∣∣ . (3.23)

6The presented scenario considers the case to find the true model. Nevertheless the method does not
ensure, that the true model is found, but gives in general an improvement to results found directly by
the LASSO for a desired k, e.g. in this scenario the true model can be replaced by another model, which
has a lower MSE than the one, found by LASSO.
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3.7 The SIS-`1-`0 method

Hence, the closest vector to R is given by the di corresponding to the entry of the vector

DTR. (3.24)

with the largest absolute value. Hence, the OMP is applied in the following way. Note that
D is standardized.

1. Initialize R1 = P and X = ∅ the set of saved descriptors. Chose a target dimension
k for the linear model and let the iteration counter j = 1

2. Find the closest di to Rj and add it to X

3. Build the matrix D with all di ∈ X. Calculate c∗ = arg minc∈Rj ‖Rj −Dc‖2. Let
Rj+1 = Rj −Dc∗

4. If j = k, stop. Otherwise set j = j + 1 and return to the 2. step

3.7 The SIS-`1-`0 method

In this section we present the scheme, used in this work. The method is called Sure-
independent-screening-`1-`0 (SIS-`1-`0) [2] and is a subsequent application of the SIS [29]
and the `1-`0 method. Here, the sure independence screening part generalizes the OMP
in the sense that, in the 2. step, the NSIS ≥ 1 closest vectors to the current residual
are saved. In the third step the best linear model is found by the `1-`0-method. In
detail:

1. Initialize R1 = P and X = ∅ the set of saved descriptors. Chose a target dimension
k for the linear model and let the iteration counter j = 1

2. Find the NSIS closest di to Rj and add them to X

3. Build the matrix D with all di ∈ X. Calculate the best j-dimensional descriptor
Dc∗, using the `1-`0-method. Let Rj+1 = Rj −Dc∗

4. If j = k, stop. Otherwise set j = j + 1 and return to the 2. step

Note, that in iteration j = 1, the best 1-dimensional descriptor is already given by the
closest d1 to R1 in step 2. The method is controlled by the two parameters NSIS and N`1 .
After the SIS is applied (2. step) in an iteration j, the size of the current feature space is
j ·NSIS. The features selected by the SIS in an iteration are highly correlated with each
other. As discussed in Sec. 3.5, the performance of the LASSO on feature spaces with high
correlations is rather low. However, it is shown [2], that the combination of SIS and `1-`0
proves advantageous, compared to OMP. We will also apply the scheme with a `0-method
in the 3. step instead of a `1-`0 for low dimensions k, as a benchmark.
If we are interested, in a multi-task problem, as presented in 3.4, in the 2. step a mean
residual vector R̄ is constructed, where each entry with index i is the quadratic mean of the
entries of the different property residuals with index i. In the multi-task `0-regularization,

Emre Ahmetcik 23



3 Statistical-learning background

the combination of descriptors with the lowest quadratic mean of the RMSE of each
property model is used in the 3. step in 3.3.

3.8 Cross-validation

The methods presented till now, are constructed to find the best linear fit to a property
vector of n materials. Now, it is crucial, to investigate, its performance in predicting
the same property for new materials. Especially when reducing the error of a fit, e.g. by
increasing the complexity of the model, the risk of overfitting occurs. In our case the
complexity of a model could be given by its dimension k. With higher k the models
become more flexible, such that also unimportant fluctuations can be fitted, resulting in
low predicting performance.
To judge the predicting quality, we apply a 10-fold-cross-validation for a setK of dimensions
of descriptor7:

1. Divide the set of n samples (Materials) into 10 subsets Si of (almost) equal size,
randomly distributed. Set the index j = 1.

2. Chose Sj as the test set, and build the union of the remaining 9 subsets, to be the
training set.

3. Find for each k ∈ K the best k-dimensional descriptor for the training set.

4. Calculate the found models with the descriptors corresponding to the materials of
the test set, for each k. (prediction)

5. If not j = 10, continue with step 2. Otherwise calculate the RMSE between the
values to be predicted and the predicted values for all n materials, for each k.

We will call the RMSE in step 5 the prediction error. We generally do several rounds of cross-
validation and build the average over the prediction errors. The reason for considering all
k ∈ K at the same time, is that thereby their difference do not depend on the training/test
set and thus they are more comparable. When applying a multi-task SIS-`1-`0, for each
property vector (energy difference) the same materials are considered in a training set. For
each property, a model is built on the training set, where the models distinguish themselves
only by the size of the coefficients. The model of a chosen property vector is then evaluated
on the compounds of the test set belonging to the same property vector, e.g. a model for a
structure stability is only used to predict materials of the same structure stability.
Note that, with this type of cross-validation, we don’t judge the prediction performance of
a specific liner fit, but the prediction performance of the used technique with the given
feature space. At each iteration a different model can be selected, describing the current
training set best. Here, we validate the idea of using the best fit for a given training set
and predicting the property of new materials.

7If for example we are interested in 1 and 2-dimensional descriptors, then K = {1, 2}
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4.1 Materials and structures

In this section, we describe how the reference data for the compressed-sensing investigation
presented in Chap. 3 was calculated. The data set consists of 82 octet binary materials
(see App. B for the list of materials), each optimized in 8 different crystal structures. The
structures are selected from the Pettifor structure map for AB compounds [20] and listed in
table 4.1. Not all 82 materials are known to crystallize in all 8 crystal structures, however,
with LDA-DFT, at least one (possibly meta-stable) minimum is found for all materials
and crystal structures. Details about the lattice vectors (a, b, c), atomic coordinates and
defined structural parameters (a, b, c, d, u and v) are found in App. B. The properties of
interest, i.e., the total energy Etot and the lattice parameters, are calculated in an (energy)
minimum at each corresponding crystal symmetry. While the materials in cubic structures
are characterized by one minimum, the materials in the structures with more than one
degree of freedom can show multiple minima (see Sec. 4.3).

Table 4.1: Used crystal structures and their degrees of freedom
class prototype degrees of freedom

lattice atomic coordinates

cubic

rocksalt (RS) 1 0
zincblende (ZB) 1 0

CsCl 1 0
NaTi 1 0

hexagonal NiAs 2 0
CoSn 2 0

tetragonal NbP 2 0
orthorhombic CrB 3 2

4.2 Numerical settings for the electronic structure calculations

The total energies of the data are estimated to be converged below 10 meV per atom, the
energy differences between structures below 5 meV and the lattice constants below 0.02Å1.
A convergence test with respect to the k-points, integration grids, and basis set was done
for 6 materials in the structures RS, ZB, CsCl, and NiAs. Here, from each octet group

1These estimates are based on tests performed on a subset of structures and materials (see App. C).
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combination (i.e., I-VII, II-VI, etc.) one-two materials were chosen, e.g. MgS, NaCl, Si,
GaSb, Ge, and AlSb. For the remaining structures, only the convergence with respect to
the k-points was tested, with the materials MgS and Si. The convergence tests and details
are represented in App. C. For each test, the convergence tolerances were set to 1 meV per
atom.

Table 4.2: k-grid settings. The values for k-points and k-points density are given per
reciprocal lattice vector a∗,b∗, and c∗. In the case of CoSn, the variable
γ is the double of the k-points density k̃a∗(k) of a∗, corresponding to 10
k-points, e.g. γ = 2 · k̃a∗(10).

k-points k-points density [1/Å] σgaus[eV] reference mat.
a∗ b∗ c∗ a∗ b∗ c∗

RS 22 11.4 0.1 AlSb
ZB 14 7.2 0.01 Ge
CsCl 30 15.7 0.01 Ge
NaTi 20 11.2 0.1 Si
NiAs 25 25 25 12.2 12.2 25.4 0.1 GeSi
CoSn 10 10 γ 7.1 7.1 14.2 0.1 Si
NbP-α 20 20 20 10.6 10.6 14.1 0.1 Si
NbP-β 16 16 22 8.8 8.8 8.8 0.1 Si

CrB prim. 20 19 20 10.0 10.0 10.0 0.03 Si
CrB super 11 19 11 10.0 18.0 10.0 0.03 Si

All DFT calculations are performed with FHI-aims [9], using the local density approxima-
tion (LDA), based on the homogeneous electron gas quantum Monte Carlo calculations of
Ceperley and Alder [21] for the correlation energy, as parametrized by Perdew and Wang
1992 [22]. No spin polarization is considered. The atomic ZORA relativistic correction [23]
is applied. Tight settings for the numerical integration grids and 3rd tier basis set are
used.2 For each structure, a reference material that shows to need a relatively dense k-grid
to be converged, is selected. For materials with a smaller volume of the reciprocal unit cell
than the one of the reference material, V ∗ < V ∗ref , the reference converged k-grid is used,
for V ∗ > V ∗ref the corresponding reference k-points density per lattice vector. The used
k-grids and k-grid densities are listed in table 4.2.

2Exception are a) some materials with hard converging self-consistency cycles, for which A or B of the
AB compounds is calculated in 2nd tier and b) the CrB structure, for which 2nd tier is used for both
A and B, because, due to the large number of degrees of freedom, the equilibria are obtained with a
laborious procedure. In general, after a relaxation with tier 2 a further relaxation with tier 3 would not
add much expensive calculations. However, the underlying technique requires an alternating relaxation,
which could lead to more not converged calculations.
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4.3 Techniques to find the equilibria

For all structures but CrB we use a fit to the Birch-Murnaghan (BM) equation of states,
given by

E(V ) = E0 + B0V

B′0

[
(V0/V )B′0
B′0 − 1 + 1

]
− B0V

B′0 − 1 , (4.1)

where V0 and E0 are the equilibrium volume and energy, B0 the bulk modulus and B′0 its
derivative with respect to pressure. 5-8 volume points are used for the fit, with a linear
sequence of lattice constants a, such that the highest/lowest value is ã± γ

100 ã, where ã is a
starting value close to the equilibrium lattice constant a0. We call such a fit a (5-8)-point
BM-fit with a γ%-range. Also for the hexagonal and tetragonal structures the a-parameter
is used to build the sequence. The choice of γ is a compromise between a small range for
accuracy (App. C) and a high range for including the equilibrium a0.
The equilibrium properties of the cubic systems are obtained by a 5-point BM-fit with a
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Figure 4.1: Fits to determine the equilibrium properties for CuF in the NiAs structure.
The red squares represent the data to be fitted, the circles stand for the
determined equilibrium. Left: 8-point BM-fit with a 4%-range. Right:
second degree polynomial fit cpol(a).

4%-range. The reason for applying the BM-fit-technique also for the non-cubic systems,
is to ensure in an easy way, that the space group holds, i.e. that the lattice vectors a
and b have same length in the case of NiAs. For these systems, the lattice parameter a
is sampled. For each a the second parameter c (d in the case of NbP) is relaxed, using
the geometry relaxation function in FHI-aims with the BFGS-algorithm and a tolerance
value of below 10−4eV/Å for the forces. For each relaxed point a volume and an energy are
obtained to be used in a (5-8)-point BM-fit with a 4%-range 3. To obtain the equilibrium
a0 and c0 (d0) from the equilibrium volume V0, a second degree polynomial fit cpol(a) is
used for the (a,c)-pairs (Fig. 4.1). In the case of NiAs for example, a0 is calculated by
solving the cell volume equation V0 = a2 · c · cos (30◦) = a2 · cpol(a) · cos (30◦).
The main effort in calculating the equilibrium properties is caused by the search for ã, c̃

3For some materials a 4%-range along a correspond to a 6%-12% -range of c. For these cases a 1.5%-2%
-range of a was set.
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or d̃ with fixed crystal symmetry, described in the following. To obtain these equilibrium
regions always the default basis set is used.

4.3.1 Cubic systems

In the case of CsCl and NaTi, ã is obtained by sampling the Energy surface with 50 points
along 2.3Å < a < 7.8Å (CsCl) and 30 points along 4.5Å < a < 16.0Å (NaTi) for each
material, using light grids and 4-8 k-points per lattice vector. For RS and ZB the a0-values
from the supplementary information of [10] are used.

4.3.2 NiAs

For the NiAs structure, the potential energy surface of ten materials, at least one for
each octet combination group (I-VII, II-VI, etc.), is sampled, using a 50×50 grid, with
50 points along 1.8Å < a < 9.0Å and 50 along 1.8Å < c < 9.5Å, with tight settings,
20× 20× 20 k-points for III-V and IV-IV materials and 12× 12× 12 k-points for the other
materials4. For the considered 4th group materials Si and Ge, two minima were found, for
the remaining materials one minimum was observed. For the higher-energy minimum of Si
and Ge, the ratio c/a is 3.4 and 3.1, for the lower-energy minimum, 1.6 and 1.7. For the
remaining considered materials, the ratio is 1.4 < c/a < 1.8. The material NiAs shows a
ratio c/a = 1.4, consistently the literature [17, 19]. To determine ã and c̃ for all materials, a
unit cell relaxation with fixed angles between the lattice vectors, implemented in FHI-aims,
is done with the NiAs literature values a = 3.618Å and c = 5.034Å (c/a = 1.4) as a start
geometry. The BM-technique is applied afterwards, since the lenghts of the relaxed a and
b can differ up to 0.01Å. ã = ‖a‖+‖b‖

2 and the relaxed c as c̃ is used.

4.3.3 CoSn

The CoSn structure depends on the order of the atom types in the unit cell, AB or BA,
i.e., the two sites are not equivalent. Please note, that in this work A labels the element
with the smaller electronegativity.
For the case BA, the potential-energy surface of all 82 materials is sampled, using a 45×45
grid along 2.3Å < a, c < 11.0Å. Light settings and 8× 8× 14 k-points are used. Except
for the materials AlSb, GaSb, InSb5 CC, BN, and BP, for all materials one minimum is
found. On avarage, c/a = 0.59. For the exceptions two minima are found. For CC, BN,

4III-V and IV-IV materials show to have a rather small HOMO-LUMO gap and to need a relatively dense
k-grid to be sufficiently converged.

5but not BSb
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and BP one in the region c/a = 0.52 and one in a region c/a > 1. For all three cases, the
minimum in the region c/a = 0.52 is lower in energy, thus only this minimum is considered.
For AlSb, GaSb InSb both minima are in a region 0.52 < c/a < 0.8. The energy difference
between the two minima shows rather small values, 25 meV for AlSb, 4 meV for InSb and
50 meV for GaSb. For AlSb and and InSb, the considered region of the surface is additional
sampled with a 25× 25× 25 k-grid and no significant qualitative change is obtained. From
this point, only the lower minima are considered.
For the AB case, in the first step the surface of the materials AlSb, CC, MgS, NaCl
and is SiSi is sampled. The found minima are in a region c/a = 0.67, in values close
to the one of the BA case. For the remaining materials, the surfaces are sampled along
smaller ranges. Using aBA and cBA from the BA minimum, the considered ranges are
aBA − 3Å < a < aBA + 3Å and cBA − 1.9Å < c < cBA + 2.5Å.
For both, AB and BA, all materials are calculated in the found minima with converged
settings. For the machine-learning part of this work, to each material the lowest minimum
of the both cases is assigned.

4.3.4 NbP

x

z

atom 1

atom 2

atom 4
atom 3

Figure 4.2: Geometry of MgS in the NbP structure. Left: Defined atoms and distances.
Center: Geometry in the α-minimum. x is shorter than z. Right: Geometry
in the β-minimum. z is shorter than x.

For the NbP structure, the potential-energy surface of all 82 materials is sampled. The
observed ranges are 2Å < a < 10.4Å and 1.7Å < a < 16.2Å. Light settings and 8× 8× 12
k-points are used. Each material shows to have two minima, GaP, GaAs, GeSi, InAs, InSb
and Si even three. We would like to assign two minima to each material, instead of one.
We will characterize the minima using the criteria
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Figure 4.3: Surface contour plot of NaCl in the NbP structure. The contour plot
is done for 955 points. Light settings, default basis set and 8 × 8 × 12
k-points are used.

1) ratio r = x/z of the atomic distances x =
√

1
2a and z = d

2 (as drawn in figure 4.2,
left)

2) the next neighbour to atom 1.

For all materials, one minimum is found in the region with r > 1, which we call β, and one
minimum is found with r < 1, called α (Fig. 4.3). The ratios of the α-minima are even
rα < 0.62 for all materials, except for Sn, with rα,Sn = 0.85, and except for the second
α-minimum of the materials GaP, GaAs, GeSi, InAs, InSb and Si, having 0.83 < rα < 0.93.
The nearest neighbor of atom 1 is atom 2 for all materials in the α-minimum, except
for Sn and the materials in the second α-minimum. For these exceptions atom 3 is the
nearest neighbor. In the case of the β-minimum, for 70 materials atom 4 is the nearest
neighbor and for 12 materials (which are found to be III-V and IV-IV materials), atom
3 is the nearest neighbor. From this point, only two minima per material are taken into
consideration: the beta minimum and the alpha minimum, with atom 2 as the nearest
neighbor (except Sn, with atom 3).

4.3.5 CrB

The CrB structure has 5 degrees of freedom, the lattice parameters a, b, and c, and two
atomic cooridinate parameters u and v. The values for the CrB material are listed and
compared to the literature values in table 4.3.
To obtain the equilibrium, alternately the unit cell and the atoms are relaxed, until the
forces are below 5 · 10−3[eV/Å]. For the cell relaxation the orthorhombic super cell is used,
with fixed angles in FHI-aims. For the atoms relaxation the primitve unite cell is used, and
the forces are projected on the vector −a+ b, in order that only movements along −a+ b
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Figure 4.4: u-v-surface contour plot for MgS in the CrB structure. For 565 pairs (u,v),
the unit cell was relaxed with with fixed u and v, with the relaxation start
values a = 3.60,b = 9.69,and c = 3.60 and fixed angles. Tight settings,
default basis set and 8× 8× 12 k-points are used.

are allowed. Please note that the parameters a, b and c are the lengths of lattice vectors of
the orthorhombic super cell, while in the case of the primitive cell ‖a‖ = ‖b‖ = 1

2
√
a2 + b2.

A test on the materials MgS, Nacl and Si with the literature values of 4.4 shows, that
depending on what is relaxed first, lattice or atoms, two different minima can be found,
listed in table 4.4. A u-v-surface plot for MgS is shown in figure 4.4. The first minimum
of table 4.4 (cell first) is not found in the surface, because the (u,v)-pair (0.09, 0.39) is
a minimum for a cell with a ratio b/c close to 1. The parameters of the relaxed cell at
(0.09, 0.39) on the represented surface are a = 3.36, b = 13.54, and c = 3.62.
In order to relax all 82 materials in the CrB structure, initial relaxation parameters in the
area of the average of the lower minima in table 4.4 are used, a = c, b/a = 3.3, u = 0.16
and v = 0.38. The initial cell volume VCrB,mat for each material is determined by scaling
with respect to MgS,

VCrB,mat = VRS,mat + VZB,mat
VRS,MgS + VZB,MgS

· VCrB,MgS. (4.2)

The technique to obtain the minimum now is: While alternately relaxing cell and atoms,

Table 4.3: Structural parameters of the material CrB. Calculated values or compared
to experimental literature values [18, 19] For the calculation, tight settings,
default basis set and 20× 10× 20 k-points are used.

calculated literature
a 2.87 2.98
b 7.72 7.87
c 2.87 2.93
u 0.146 0.146
v 0.436 0.440
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Table 4.4: Structural parameters of the material CrB. For the calculation, tight
settings, default basis set and 20× 10× 20 k-points are used.
relaxation first for a b c u v Etot [eV]

MgS cell 3.74 7.57 6.38 0.09 0.39 -8141.094
atoms 3.52 12.16 3.56 0.17 0.37 -8141.392

NaCl cell 3.65 11.42 3.99 0.13 0.37 -8475.292
atoms 3.65 11.42 3.99 0.13 0.37 -8475.292

Si cell 3.23 9.21 3.98 0.11 0.39 -7873.766
atoms 3.42 10.19 3.44 0.16 0.41 -7873.800

each round of cell/atoms relaxation, the cell or atoms are not fully relaxed (below the
forces tolerance) but only up to several BFGS-steps. Starting with 1 step in the first round,
the BFGS-steps are increased each round 1-2 steps.
For each material the relaxation is started with once relaxing the cell first and once re-
laxing the atoms first. In this case, always one minimum is found, except for AgBr,
where two different minima are obtained and the lowest-energy minimum is consid-
ered.
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5.1 Primary features

Although the two-dimensional descriptors (parameters describing the materials) proposed
by Mooser and Pearson [11] and by Phillips and Van Vechten [13, 14, 15] were able to
satisfactorily classify the octet binaries, they do not fulfill one important criteria of this
work. The determination of those material parameters implies already the knowledge of
which is the most stable material. In practice, in a computational setting, one would have
to first optimize the crystal structures and, for the energetically most stable, calculate the
descriptor for predicting the stability itself. It should be recognized that such descriptors,
computationally as expensive as directly calculating the property of interest, can still help
to understand important underlying mechanisms. However, similar descriptors cannot be
predictive, i.e., help discovering new materials, because the material has to be known in
order to calculate its descriptor. The demands in our work are set higher: The use of
machine learning shall provide the opportunity to discover new promising materials much
faster. Thus, the descriptors are restricted to be determined with (much) less expensive
calculations than for the property to be predicted.
In this work, we call primary features a set of basic candidate parameters describing
the materials, that are expected to determine the property of interest. We call derive
features, or simply features a possibly large set of, in general non-linear, functions (algebraic
combinations) of the primary features.
The descriptor (rσ,rπ) of St. John and Bloch [16], already mentioned in the introduction,
based on orbitally dependent radii rσ and rπ gives a good starting point. The two dimesion
of the descriptor are defined as:

rπ = |rp(A)− rs(A)|+ |rp(B)− rs(B)|

rσ = |[rp(A) + rs(A)]− [rp(B) + rs(B)]|.

In their work St. John and Bloch analytically solved the radial part of a Schrödinger
equation describing the one electron valence states. Their solution yields the eigenvalues

E(n, l) = − Z2

2(n+ l̂(l)− l)2
. (5.1)

With the parameter l̂ depending on the angular momentum quantum number l, which was
determined by fitting Eq. (5.1) to experimental results. They then defined the radii rl as
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the radial maximum of the lowest valence eigenfunction

rl = l̂(l̂ + 1)
Z

. (5.2)

In analogy to St. John and Bloch’s work, Ghiringhelli et al. [10] included the atomic-
orbital radii rs, rp, rd from DFT-calculations, as the radii at which the radial part of
probability density has its maximum. As done in Ghiringhelli et al.’s work, we include
these radii, the highest occupied and lowest unoccupied KS level (HOMO and LUMO),
and the ionization potential (IP) and the electron affinity (EA) of the atoms. Although the
IP and EA contribute with similar information as the HOMO and LUMO, complicated
algebraic combinations are expected to yield to different derived features. With these
primary features, Ghiringhelli et al. described the energy differences of the considered 82
octet binaries between RS and ZB, with 65% lower error than with (rσ,rπ)1. Furthermore,
we include the atomic number N and the number of valence electrons Nval. Besides atomic
information, for the AB compounds also the dimer distances dAB

dim, dAA
dim and dBB

dim are
considered. A further meaningful parameter, the Madelung energy EMad is considered. As
discussed in Pettifor’s book [20], the Madelung energy provides an intriguingly easy way
to assess the relative stability of ionic crystals. However it is important to note that the
Madelung energy depends on the geometry of the given material. Since the geometries are
obtained in our case by the same calculations as the energies, a representative Madelung
enregy is included, which is determined in a first step by primary features2. Note that,
we rather include the reduced EMad (see Eq. 2.40) with neglected charges, in this work.
Without neglecting the charge given by the number of valence electrons, for IV-IV binaries
the Madelung energy ought to be 0. More constructively, it makes sense to consider only
monovalent ions (charge +/-1) so that the reduced Madelung energy is just an encoding,
a descriptor, of the geometrical structure, while electronic information is in the EA, IP,
etc.. In the considered feature spaces also features with the prodcts as EN2 · EMad are
constructed, giving a reasonable scale for a realistic non-reduced Madelung energy, where
EN = 1

2(IP + EA) is the electronegativity.

5.2 Formulation of the problem

Given 82 materials, with their calculated DFT energies in 8 different crystal structures (see
Chap. 4), the formulation of the problem and combining it with the statistical methods
is not trivial; namely, the challenge is to obtain an accurate and sparse description of
complicated materials-science properties (i.e., in this case the crystal structure energy
differences). It specifies the target, the mathematical description and the demands on the

1Note, that here not the rate of classification is addressed but the error on predicted energy difference
values for RS vs. ZB

2The assumption is, that geometries are easier to describe/predict then energy differences. Indeed, if the
ratio RMSE/σ is as comparison measurement, the models for the geometry dependent quantities are
better fitted, as presented in Sec. 5.6.2.
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descriptors to describe the desired properties. One example could be focusing on predicting
the cohesive energies of 82 materials, where each material is in its ground state. Another
example could be predicting the energies of the 82 materials in one structure with the
same geometrical parameters, e.g. all in RS with a = 5 Å. Finding the equilibrium energy
could then be the next step with a formulation of a new problem. Depending on the target,
the right statistical method must be used and the considered data has to be integrated
correctly.
We are interested in describing the relative stabilities of the 82 compounds, e.g. their energy
differences between two structures with a given set of features. An example for a derived
feature could be EA(A)2

rs(B) , where EA(A) is the electron affinity of atom A and rs(B) the
valence-s orbital radius of atom B. We consider only energy differences, relative to ZB.
This gives 7 energy differences ∆EX-ZB, where X ∈ {RS, CsCl, NaTi, NiAs, CoSn, NbP}.
For a considered structure X, we would like to find a linear combination of only a few
features out of the feature space, which describe ∆EX-ZB of the 82 materials accurately.
The property vector PX ∈ R82 is constructed, out of the energy differences ∆EX-ZB of the
82 materials. Given a feature space of size m, for each feature a descriptor column di ∈ R82

is built, in which each entry is the feature evaluated for a compound. The order of the
compounds in di is the same as the one in PX . Finally the m descriptors di are formed to
a descriptor matrix D ∈ R82×m. A linear model f of our interest can be written in the
form

f(c) = Dc, (5.3)

where the most entries of the coefficient vector c ∈ Rm are 0. We say, that the model
is a k-dimensional descriptor, if f is a linear combination of k ∈ N descriptors di, e.g.

di1ci1 + di2ci2 + ...+ dikcik . (5.4)

The task to find a model for a case ∆EX-ZB is formulated:

1. Find a linear model fX(c) = Dc, such that most of the entries of c are 0.

2. Find a linear model fX , such that PX ≈Dc.

The task is written in 3.3 (`0-regularization), to which solutions can only be found combi-
natorially. Hence, the problem can only be solved for small feature spaces and dimensions
k in a reasonable time. In this work, the SIS-`1-`0 method (see Sec. 3.7) is applied, as an
approximation to the `0-regularization, scanning feature spaces of above 1010 for models
with k ≤ 7.
A further step is done, by demanding different models fX for different energy differences
∆EX-ZB, which consist all of the same descriptors di. The different models fX are just distin-
guished by their coefficients. The coefficients act as weights on the descriptors di, depending
on the structure. We call the set of such models a multi-task-model and the underlying
mathematical problem a multi-task problem. The realization of solving a multi-task problem
with SIS-`1-`0 method is demonstrated in Sec. 3.4.1 and Sec. 3.7.
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5.3 Construction of the feature space

We will consider three different sets of primary features in this work:

F19 = {IP(A), IP(B), EA(A), EA(B), HOMO(A), HOMO(B), LUMO(A), LUMO(B),

rs(A), rs(B), rp(A), rs(B), rd(A), rd(B), dAB
dim, N(A), N(B), Nval(A), Nval(B)}

and unions

F21 = F19
⋃
{dAB

dim, dAA
dim, dBB

dim}

Fmad = F19
⋃
{EX

Mad, EZB
Mad}.

The sets will be used in different cases. Note that EX
Mad labels the Madelung energy of a

material in a structure X, when an energy differenc ∆EX−ZB is considered.
Given a set of primary features F , new features are built by applying the operations
{x+ y, x− y, x · y, x / y, x2, x3, exp(x)} on x, y ∈ F . New descriptor columns di are then
constructed, e.g. each entry of the column is filled with the new combination x(A) + y(B)
with the entry corresponding to the compound AB. With this larger set of available
descriptors di, the SIS-`1-`0 method can be applied. The resulting models may then be
linear models of non-linear functions of the given primary features. This procedure can be
repeated on the just generated features space, e.g. x(A)+y(B)

exp(z(A)) , where also z ∈ F . To express
a resulting feature space in dependence of the number of repetitions, we define the symbol

Ci(F ) (5.5)

with the procedure repeated i times and C0(F ) = F . We say, that a feature space Cj+1(F )
contains more complex features then a space Cj(F )3. While generating new features,
we forbid sums and differences of features with different physical units, e.g. operations
as size + energy or size + size2 are excluded. Furthermore, the resulting features are
constrained to depend on both elements of a compound, A and B. Since the models of
the SIS-`1-`0 are characterized by descriptors, where the descriptor from the first iteration
gives the main contribution to the fit, this contribution will be given by both elements.
Note that |C1(F19)| ≈ 400, |C2(F19)| ≈ 3 · 105 and |C3(F19)| ≈ 1010.

5.4 Complexity of the feature space

In this section, the performance of the models, obtained by the SIS-`1-`0 method, in
dependence on the complexity is testes. The test is done with the primary features F19

for the case RS-ZB, see Fig. 5.1. While for higher dimensions k of the descriptors, the
RMSE shows a convergent behaviour from C0 till C3, for lower k, the highest improvement

3We include also all less complex features from the steps before. Thus not all, but most features of Cj+1(F )
are more complex.
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Figure 5.1: Dependence of the RMSE (left) and maximum absolute error (right) on
the complexity of the feature space. The values are given by fits on the
energy difference between RS and ZB for all 82 materials with the primary
features F19. The SIS-`1-`0 parameters are NSIS = 500 and N`1 = 80.

is observed from C1 to C2. The maximum absolute error (MaxAE) behaves similar. For
C0 with k ≤ 4 and C1 with k ≤ 2, the MaxAE is given by diamond, which shows also the
highest absolute value (2628 meV) of the energy differences (see Fig. 5.2). In the case
C3 and k = 1 the model is sufficiently complex, to describe diamond with a error below
100 meV, for C3 and k ≥ 2 even below 50 meV. For all following calculations, C3 is applied.
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Figure 5.2: Energy difference between RS and ZB for the 82 materials. The standard
deviation is 0.444 eV, the mean 0.106 eV. The maximum value 2.628 eV
corresponds do diamond.

5.5 Setting the SIS-`1-`0 parameters

The SIS-`1-`0 method is controlled by the two parameters NSIS and N`1 . In each iteration
j, after the SIS is applied, the feature space has the reduced size of j ·NSIS , following by
a further reduction to N`1 by the LASSO. Finally the `0 method is applied to the feature
space of size N`1 , and a j dimensional descriptor obtained is obtained (see Sec. 3.7).
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Figure 5.3: Dependence of the RMSE on the SIS-`1-`0 parameters NSIS and N`1 . The
values are given by fits on the energy difference between RS and ZB for
all 82 materials. The feature space C3(F19) is used. The data points given
by the circles (left) are obtained by a SIS-`0 method, in which an `0
regularization is applied on the feature space obtained by SIS, in each
iteration. When varying NSIS (left), N`1 = 80 is used. When varying N`1

(right), NSIS = 500 is used.

The used SIS-`1-`0 parameters in this work are NSIS = 500 and N`1 = 80. It is observed,
that for all considered dimensions k of descriptor, NSIS = 500 gives the lowest RMSE (see
Fig. 5.3). The increase of the RMSE for NSIS > 500 is expected to be caused by the fact,
that the SIS provides more correlated features, on which the LASSO shows rather low
performances, as discussed in Sec. 3.7 and 3.5. The both obtained models fNSIS=500,k=4

and fNSIS=1000,k=4 are investigated in the following.
We will refer to the both cases with case A = {NSIS = 1000, k = 4} and case B = {NSIS =
1000, k = 4}. The four descriptors of the model fA are found in the LASSO step as
descriptors of a LASSO model gA, being a linear combination of 26 descriptors, which
occurred at a λ = 0.050. The descriptors of fA do not occur at any considered λ in the
LASSO step of case B. The four descriptors of fB , are contained in a 43 dimensional model
gB, which occurred at λ = 0.0144. Two matrices DA ∈ R82×26 and DB ∈ R82×43 are built
and compared, using the LASSO. It is observed that for all λ < 0.15, DB gives a lower
LASSO score. Hence, gB is preferred to gA.
By increasing NSIS, more possible models are offered, to be discovered by the `1-`0 -method,
but, if a good sparse model can be obtained by a low NSIS, the probability to find it can
be decreased with a higher NSIS.
Furthermore, it is observed that only in the case {NSIS = 100, k = 2}, the solution of `1-`0
and `0 coincide5. In general the lower the k is, the closer is the RMSE of the models found
by `1-`0 to the RMSE of the models found by `0.
Varying N`1 , shows that the RMSE is more sensitive for higher k values(see Fig. 5.3, on

4Please note, that we are not interested in the absolute values, since they will depend on the used scaling
in front of the `2-norm of the LASSO. In all cases, the same λ-sequence is used, since λmax is determined
by the closest descriptor di to P . Thus the λ-sequence is given by the total feature space.

5This is also true for all cases of k = 1.
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the right). From N`1 = 50 and higher, no further improvements are obtained, except in the
case k = 2. For all following calculations a N`1 = 80 is chosen, to ensure low errors also for
higher dimensions of k with acceptable computational cost.

5.6 Results

5.6.1 Fitting performance for F19
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Figure 5.4: RMSE and MaxAE for multi-task and separate models. All considered
structure stabilities, are build relative to ZB. The dotted line (upper left)
denotes the quadratic mean over the RMSE lines of the seven stabilities.

A multi-task SIS-`1-`0 was applied on seven structure energy differences, where all
differences are built to ZB. The found 6 dimensional descriptor, consisting of the same
descriptor columns di for all energy differences with different sizes of the coefficients
(weights on the descriptors), achieve RMSEs below 100 meV (see Fig. 5.4, upper left). The
highest errors are achieved with the structures NaTi, NbP and CsCl. The energy difference
data of NaTi and CsCl exhibits relatively high standard deviations σ (see Tab. 5.1). For
the case k = 6, the ratio RMSE/σ shows comparable values between 10% and 15%, for all
structures, except NbP 6. For NbP, the ratio is 26%.
The multi-task results show higher values, than the models built separately for each
relative stability. The difference becomes lower for higher dimensions k. For k = 1, the

6The standard deviation is the same as the RMSE of a fit µ, full of entries with mean µ of P .
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(quadratic) averaged RMSE of the multi-task models is 80 meV higher than the one of the
separate models, while For k = 5 the difference is 50 meV.
The constraint by the multi-task method becomes more apparent, considering the MaxAE.
For a chosen relative stability, we consider by which materials the MaxAE is given for
1 ≤ k ≤ 6. For example in the case of the multi-task model for CoSn, for k = 5 the MaxAE
is given by InP, for all remaining k-values it is given by LiI. So for this case the MaxAE is
given by only 2 different materials along the different k-values. For the separately built
models, the MaxAE is given by 3-5 different materials per structure stability, among the 5
different dimensions k. In contrast, in the multi task case, only 1-3 different materials are
observed over the six k-values for a given structure stability, e.g. for RS-ZB for all six k
values the MaxAE is given by AlN.
The found multi-task descriptors are shown in App. A.
A further separate model is built, using all 82 NbP-α minima as the data input, which
shows a lower RMSE than the model obtained by using the global minima. Considering the
performance relative to the standard deviations σNbP = 376 meV and σNbP-α = 470 meV,
the qualitative difference is even higher. This shows, that the demands on the descriptors
can be lower, when one goes beyond our formulation of the problem (see Sec. 5.2), in which
the materials are considered in the global minimum of a given structure as.

Table 5.1: Standard deviations of relative energies ∆EX−ZB built to ZB, of Madelung
energy EMad and Lattice constants. For CrB, only ∆EX−ZB is considered
in this work.

σ∆EX−ZB
[meV] σEMad [meV] σLat[Å]

ZB - 901 1.01
RS 444 818 0.85
CsCl 800 680 0.47
NaTi 873 536 0.89
NiAs 463 798 σa = 0.59, σc = 1.08
CoSn 540 801 σa = 0.90, σc = 0.78
NbP 376 924 σa = 0.81, σd = 2.59
NbP-α 470 877 σa = 0.65, σd = 1.47
CrB 448 - -

5.6.2 Fitting performance for Fmad

In this section the inclusion of the Madelung energy EMad, as a primary feature, is
considered. The target is to determine EMad from the primary features C3(F21), in the
first step. In the second step, the fitted EMad is included in the set of primary features,
so that models are built from C3(FMad) to describe the relative structure stabilities. For
the first step, two options are investigated. One is, building models, to fit EMad directly.
The other is, to determine EMad by fitted lattice constants. To become acquainted with
this technique the data of CrB-ZB is excluded, since the geometry of the CrB structure is
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characterized by five degrees of freedom.
At the beginning of this section the inclusion of EMad, obtained from the geometries from
the DFT calculations, is investigated. Then the two options, to determine EMad from
C3(F21), are analysed. Afterwards the influence of the errors from the first step on the final
models is studied.

In Fig. (5.5), the results of the multi-task models, built from the feature space C3(FMad)
with EMad, obtained from the DFT geometries, are compared to models from C3(F19). For
all seven k values, the found descriptors consist of EMad. Although the improvements in
RMSE are not significant (< 11 meV), they are increasing with increasing k. A decrease is
obtained in the case k = 2. Here, one descriptor of the 2 dimensional model from C3(F19),
is not included in the feature space, which was reduced from C3(FMad) by SIS. For the
MaxAE, an alternating behaviour is observed.
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Figure 5.5: Performance of multi-task models from the feature spaces C3(F19) and
C3(FMad). All considered structure stabilities, are build relative to ZB.
On the left, the quadratic mean of the RMSE over all considered struc-
ture stabilities is shown. On the right the over all maximum error (per
dimension) is shown.

The models for the lattice constants, are built separately for each structure. For structures,
depending on two lattice constants, the models are obtained from a multi-task problem
with both properties. The results are represented in Fig. 5.6. The lowest RMSE is obtained
by cubic structures, the highest by NbP and NbP-α.
In both cases NbP and NbP-α, the d parameter exhibits a higher RMSE than a. We
note that, for NbP-α, 8.27 Å < d < 15.46 Å with a mean of 12.21 Å, and for NbP,
2.55 Å < d < 15.46 Å with a mean of 11.69 Å. In the case of NbP (global minimum),
7 materials are in the β minimum, the rest is in the α minimum. Thus the obtained
models suffer from the high variances between the two geometries. Improvements could be
obtained, by building separate models for each parameter or considering atomic distances,
instead of lattice constants. Both options are not considered in the frame of this work.
Exluding NbP and NbP-α, the RMSE/σ-values of the models for the geometries are lower
than the ones for the energy differences. Now, values of or below 11% are achieved, for the
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cubic structures even below 5%, e.g. for ZB RMSE/σk=5 = 0.02.
The found multi-task descriptors are shown in App. A.
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Figure 5.6: RMSE for models built to describe the lattice constants. NbP is shown
separately in the left, with a larger y-range.

Next, EMad is calculated from the models built on the lattice parameters, and compared
with the EMad-values, calculated from the DFT geometries (see Fig. 5.7, on the left and
in the center). The obtained performances reflect the ones from Fig. 5.6. For the NbP
case with k = 2, the MaxAE is 10.097 eV, given by diamond. For diamond, a = 6.60Å
and c = 2.55Å (c/a = 2.59), while the fits to the lattice constants give fa = 5.86Å and
fc = 1.12Å (fc/fa = 5.23).
Furthermore models were build to fit EMad directly (see Fig. 5.7, right). For k = 5, the
RMSE/σ-values are all below 5%. For the cubic systems, the results are comparable with
the results of the models for the lattice constants, or got higher. For example, in the case
of RS with k = 1, the error is 26 meV higher. For all non-cubic systems, improvements
are achieved. Their improvements could be caused by the fact, that in the case of lattice
constants, the performances are lower due to the constraint by the multi-task problem. As
mentioned before, building separate models for each lattice constant, is not considered in
the frame of this work.

EMad, given by the direct fits, is included in the feature space now (C3(FMad)), from which
models are built to describe the energy differences. This is done for different dimensions
kEMad of the input models, representing the different degrees of error (see Fig. 5.8). The
resulting RMSE of the final models f∆E are not significantly different to the RMSE of
models with EMad from the DFT geometries (case X). The new found descriptors and the
descriptors of the models from X, only coincide for low dimensions of k∆E . For kEMad = 5
(smaller error), the descriptors of k∆E = 1 and k∆E = 2 coincide with the corresponding
ones from case X. For kEMad = 1 (higher error), only the descriptor of k∆E = 1 coincide
with the one from case X.
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Figure 5.7: RMSE for models to describe the the Madelung energy EMad. On the left
and in the center, the errors for EMad, calculated from models, built to
describe the lattice constants, are represented. On the right, the errors,
built to describe EMad directly, are shown.

5.6.3 Prediction for F19

Five times 10-fold-cross-validation was performed for four different sets of considered
structures in the multi-task problem7. The used feature space is C3(F19). The sets are
defined, as in the following:

S1 = {RS, CsCl, NaTi, NiAs, CoSn, NbP, CrB}

S2 = {RS, CsCl, NaTi, NiAs, CoSn, NbP }

S3 = {RS, CsCl, NaTi, NiAs, CoSn, CrB}

S4 = {RS, CsCl, NiAs, CrB}.

As described in Sec. 3.8, in each of the ten cross-validation iterations, for all structures, the
same materials are considered in the training/test. The descriptors are obtained from the
test set for a given Si. With the different coefficients for different structures, predictions
are evaluated on the materials of the test set for only the same structures (of Si).
The obtained results are shown in 5.9. The prediction errors are higher than the errors
from fitting all 82 materials (Fig. 5.4), varying from 80 meV (S4, CrB) to 854 meV (S2,
NbP). Still, the structures CsCl, NaTi, and NbP give the highest errors. As mentioned
before the energy differences of CsCl and NaTi, show relatively high standard deviations.
The highest RMSE/σ ratio is given by NbP. For the remaining structures with 2 ≤ k ≤ 4,
in general, errors around 100 meV are achieved. The performance of these cases, do not
depend significantly on the used set of structures. In opposition to the fitting errors (Fig.
5.4), in the cases S2, S3 and S4, the averaged error does not increase with each higher
dimension k (overfitting). In contrast, when including all structures (S1), a convergence
behaviour is observed, for the considered k-values.

7Note, that the cross-validation is applied for all sets separately. The purpose is, to analyse the contribution
of the included structures to the prediction performance of the obtained model.
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Figure 5.8: Influence of the errors of kEMad , on models f∆E , built to describe the
energy differences. The quadratic mean over the RMSE of all relative
stabilities is represented. The final models are obtained from C3(FMad), for
different k∆E . The used EMad is obtained from fits fEMad . The influence
is considered for different dimension kEMad of fEMad . The errors of the
models fEMad are shown in Fig. 5.7. X stands for the models f∆E , where
EMad is obtained from the DFT geometries (red line in Fig. 5.5). Y
represents models obtained from C3(F19) (purple line in Fig. 5.5)

The predicted energy differences ∆Epredict for S2 and CsCl, as an example of overfitting,
are shown in Fig. 5.10. The increase of the error for k = 5 is not caused, by all 82
materials, but by BN. The RMSE (prediction error) for the remaining materials is in the
case k = 2 lower than in the case k = 5. For excluded BN, RMSEk=2 = 172 meV and
RMSEk=5 = 117 meV. Note, that for exluded BN and CC, RMSEk=5 = 100 meV.
A similar behaviour is observed for S1 and NbP, where now the dimension of overfitting
is lower. The highest errors are again achieved by BN and C. For excluded BN and C,
RMSEk=2 = 161 meV and RMSEk=5 = 96 meV. Moreover, the build models underestimate
high energy differences (except BN and C) and tend to overestimate low energy differences.
This characteristic is reduced by the 5-dimensional model.
The highest errors are not for all cases given by C and BN. However, C exhibits most
frequently the highest error, showing also most frequently the highest outlying energy
difference8.

A way to reduce the large errors could be given by building more than one model on the
training set, i.e., local rather than global models. The idea is that, for different materials,
different physical quantities could dominate, when describing different energy differences.
A technique called sub-group discovery [24] has been recently applied [25] to successfully
classify rocksalt and zincblende materials, for the usual set of 82 octet binaries, by means of

8For all differences relative to ZB, diamond shows the highest energy difference, except for NbP. Also for
differences not relative to ZB, C exhibits the highest or relatively high values for several cases.
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Figure 5.9: Prediction Error for multi task models for the four sets S1, S2, S3 and
S4 of structures. The used feature space is C3(F19). For each set, five
times 10-fold-cross-validation is performed. The dotted line represents
the quadratic mean over the RMSE of all relative stabilities.

simple boolean statements about the atomic properties of the constituents. This technique
can be modified in order to discover sub-groups where the SIS−`0 model is locally optimal.
Work in this direction is currently in progress.
However, from the analysis on fitting all 82 materials (Fig. 5.4), we know that there
exist models, which can describe all 82 materials accurately. Obviously, the prediction
performances suffer from the small set of materials, e.g. that materials, which are similar
to the outliers, are not contained in the training set. Out of the frame of this work, also a
leave-1-out-cross validation is needed, in which the model is built on the 81 Materials and
the remaining one is predicted, to judge if with the 81 materials enough information is
obtained to describe also the outliers.
Furthermore, the effect of including all the eight Madelung energies directly into the feature
space has to be tested. It was shown, that different models achieve similar good results
in fitting the energy differences, as with F19 and FMad similar fitting performances are
obtained. Nevertheless when one good model can show an overfitting behaviour, the other
good model could show reasonable prediction performances.
As seen in Fig. 5.9, the overfitting behaviour is observed rather for higher k-values. A not
addressed issue in this work, is the dependency of the prediction on the complexity of the
features, as a product of Ci. In Sec. 5.3, it was shown that, already with C2 errors around
50 meV are achieved for separate models on the RS-ZB case. It has to be investigated,
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how a multi task problems perform in fitting and predicting with C2, and how much and if
improvements are gained in predicting with C3. In addition, the prediction performance
of the separate models has to be compared with the one of the multi-task models, to
investigate if improvements are obtained in prediction by multi-task models although they
show worse training errors, e.g. if a multi-task problem contributes in the sense, that the
size of the set of materials (samples) is increased, and thus more information is obtained in
the resulting model.
What we learn from the prediction results is, that with k = 2 and k = 3 good estimates are
obtained and the risk of overfitting is smaller than for higher k-values, thus better suitable
for prediction. Hence, to build a model for prediction, cross-validation could be used to
determine the optimal k. A promising model would then be built on all 82 materials for
k = 3.
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5.6 Results

The cross-validation as presented in this work evaluates the performance of the idea
of using the best obtained fit for prediction. As seen, this can lead to low prediction
performances in some case. Thus a models should be built in a smarter way, such as by
different cross-validation techniques and taking also other quantities besides the RMSE
into consideration.
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6 Conclusions

In this work, we have addressed the challenge of predicting the ground-state and metastable
crystal structures of materials, by knowing just their composition and physical information
on the atomic species building them. This is perhaps the most fundamental and important
challenge in materials science. We have focused on a class of binary semiconductor with eight
valence electrons per unit cell, the so called octet binaries, and we have applied a recently
developed statistical-learning method, inspired by the work presented in Ghiringhelli et al.,
Phys. Rev. Lett. 114, 105503 (2015). The improved method allows for the discovery of a
predicting model out of more than 1010 candidates to describe the relative (meta-)stability
of the octet binary compounds. Each candidate model is built as a non-linear function of
primary features, i.e., physical properties (Kohn-Sham levels, radial extension of the valence
orbitals, etc.) of the gas-phase atomic species building the material. The eight crystal
structures zincblende, rocksalt, CsCl, NiAs, NaTi, CoSn, NbP, and CrB were considered
for 82 octet binary compounds.
For all materials and crystal structures, the accurate energy of the relaxed (local minimum)
geometry was calculated, within the work of this thesis, by using the density-functional
theory within the local-density approximation (LDA). The structures NiAs, CoSn, NbP,
CrB have proven to be more complex than the original cubic structures from Ghiringhelli
et al.’s work, leading to multiple minima, therefore requiring extensive scan of the potential
energy surfaces and a careful analysis.
With respect to the statistical-learning compressed-sensing based scheme introduced in
Ghiringhelli et al.’s work, the new compressed-sensing scheme applied in this thesis, mainly
developed by Runhai Ouyang and Luca Ghiringhelli in the group of Prof. Matthias Scheffler,
overcomes the limitation to few thousands of candidate models (the feature space), by
allowing feature spaces of billions to trillions features (models). New primary features
were introduced in this work, from the more obvious atomic and valence-electron numbers,
through non-atomic features such as dimer formation energy, equilibrium distance, to a
representative of a novel class of features that express the basic geometrical information
of the various crystal structures. The introduction of a feature that maps the complex,
multidimensional information into a well defined scalar, here in the form of a reduced
Madelung energy, requires the definition of a two-steps approach. First, the geometrical
parameters are predicted from the “pure” atomic (and dimer) properties, then the Madelung
energy is evaluated and used as primary feature alongside with the others. Moreover, a
new multi-task concept was introduced: finding a descriptor capable of describing several
energy differences simultaneously. With excluded Madelung energy, such a descriptor
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could describe the relative stabilities with an average error below below 0.1 eV. Further
improvements were obtained by adding the Madelung energy.
The work was concluded with an outlook, providing a motivation and basis for smartly de-
signed techniques to overcome difficulties in predicting new materials.

50
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In the following, the descriptors of a multi-task model built from F19 and by using all 82
data points are represented for different dimensions k of descriptor:

k = 1 :

|EA(A)−HOMO(B)| · Nval(B)
Nval(A) ·

eEA(B)

|rs(B)− ddim|

k = 2 :

|EA(A)−HOMO(B)| · Nval(B)
Nval(A) ·

eEA(B)

|rs(B)− ddim|
,

||rp(A)− ddim| − rp(A)|
| rp(A)
N(B) −

ddim
Nval(A) |

k = 3 :

|EA(A)−HOMO(B)| · Nval(B)
Nval(A) ·

eEA(B)

|rs(B)− ddim|
,

||rp(A)− ddim| − rp(A)|
| rp(A)
N(B) −

ddim
Nval(A) |

,

|EA(A) · rp(A)
EA(B) · rp(B) − |

HOMO(A)
EA(A) − ers(B)||

k = 4 :

|EA(A)−HOMO(B)| · Nval(B)
Nval(A) ·

eEA(B)

|rs(B)− ddim|
,

||rp(A)− ddim| − rp(A)|
| rp(A)
N(B) −

ddim
Nval(A) |

,

| EA(A)
|EA(A)−HOMO(A)| −

Nval(A)
EA(B) ·

LUMO(B)
N(A) |,

|EA(A) · rs(A)
EA(B) · rs(B) − |

HOMO(A)
EA(B) − ers(B)||
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k = 5 :

|EA(A)−HOMO(B)| · Nval(B)
Nval(A) ·

eEA(B)

|rs(B)− ddim|
,

||rp(A)− ddim| − rp(A)| · Nval(A)
eddim

,

LUMO(B)
EA(B) + N(A)

Nval(B)
(EA(A) + EA(B)) · ddim ·N(A) ,

N(B)
IP(A) ·

LUMO(A)
Nval(A) + |HOMO(A)

EA(A) − ers(A)|,

|EA(A) · rp(A)
EA(B) · rp(B) − |

HOMO(A)
EA(B) − ers(B)||

k = 6 :

|EA(A)−HOMO(B)| · Nval(B)
Nval(A) ·

eEA(B)

|rs(B)− ddim|
,

||rp(A)− ddim| − rp(A)|
| rp(A)
N(B) −

ddim
Nval(A) |

,

LUMO(B)
EA(B) + N(A)

Nval(A)
EA(A) + EA(B) · ddim ·N(A) ,

|EA(A) · rs(A)
EA(B) · rs(B) − |

HOMO(A)
EA(B) − ers(B)||,

N(A)+Nval(A)
|HOMO(A)-LUMO(B)|

|N(A)−Nval(A)|+ |N(B)−Nval(A))| ,

|EA(A)
ddim

+ LUMO(B)
rp(B) − |EA(B)− LUMO(B)

rp(A) ||

In the following, the descriptors of a multi-task model built from FMad and by using all 82
data points are represented for different dimensions k of descriptor:

k = 1 :

| EX
Mad

eddim · rp
− EZB

Mad · rs(B)
rp(B) · dsim

|

k = 2 :

IP(B) ·N4
val(B) · eEA(B)

rs(B)− ddim
,

||EX
Mad − EA(B)| · |rs(A)− rs(B)|| − EA(B)r2

s(B)
ddim
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k = 3 :

|EA(A)-HOMO(B)| · Nval(B)
Nval(B) ,

|HOMO(B)
EZB

MAD
− rs(A)
ddim · |EX

Mad − EA(B)|+ EA(A) +HOMO(B)
|,

|EX
Mad − EA(B)|

EX
Mad − EA(A)

· ||rp(A)− ddim| − rs(A)|

k = 4 :

| EX
Mad

rp(B)eddim
− EZB

Mad · rs(B)
rp(B) · ddim

|,

IP(B) ·N3
val(B) · eEA(B)

|rs(B)− ddim|
,

|HOMO(B)|
EZB

Mad
− rs(A)

ddim

|EX
Mad − EA(B)+EA(A)+HOMO(B)|

,

|EX
Mad − EA(B)| · ||rp(A− ddim)| − rs(A)|

EX
Mad + EA(A)

k = 5 :

(EZB
Mad ·HOMO(B))3 · eHOMO(B) ·HOMO(B)3,

EX
Mad|rs(A− ddim)|

rs(A) + EA(A) ·HOMO(B)
HOMO(A)+LUMO(B) ,

|E
ZB
Mad

IP(B) + Nval(A)
Nval(B) −

IP(A)+HOMO(B)
|IP(B)-HOMO(A)| ,√

|EX
Mad − EZB

Mad| · |EXMad − EA(A)| · Nval(A)
ddim

,

|HOMO(B)
EZB

Mad
| − rs(A)
|EX

Mad − EA(A)|
+ EA(B)+HOMO(B)

k = 6 :

(EZB
Mad ·HOMO(B))3 · eHOMO(B) ·HOMO(B)3,

EX
Mad|rs(A− ddim)|

rs(A) + EA(A) ·HOMO(B)
HOMO(A)+LUMO(B) ,

|E
ZB
Mad

IP(B) + Nval(A)
Nval(B) −

IP(A)+HOMO(B)
|IP(B)-HOMO(A)| ,√

|EX
Mad − EZB

Mad| · |EXMad − EA(A)| · Nval(A)
ddim

,

|LUMO(B)
IP(B) + EA(A)

HOMO(A) −
|rd(A)− ddim|
rd(A) + ddim

|,

|HOMO(B)
EZBMad

− rs(A)
ddim · |EX

Mad − EA(A)|+ EA(B)+HOMO(B)
|
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B Materials and details about the crystal
structures

The used 82 materials are listed in the following:
LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbF, RbCl, RbBr, RbI,
CsF, CsCl, CsBr, CsI, AgF, AgCl, AgBr, AgI, CuF, CuCl, CuBr, CuI, BeO, BeS, BeSe,
BeTe, MgO, MgS, MgSe, MgTe, CaO, CaS, CaSe, CaTe, SrO, SrS, SrSe, SrTe, BaO, BaS,
BaSe, BaTe, ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, BN, BP, BAs, BSb, AlN,
AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, SnSn, SnGe, SnSi, SnC,
GeGe, GeSi, GeC, SiSi, SiC, CC.

Details about the unit cell and atomic coordinates of the used crystal structures are
represented in the following table [19]:
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crystal structure lattice vectors atomic coordinates

RS
0 a/2 a/2
a/2 0 a/2
a/2 a/2 0

0 0 0
1/2 1/2 1/2

A
B

ZB
0 a/2 a/2
a/2 0 a/2
a/2 a/2 0

0 0 0
1/4 1/4 1/4

A
B

CsCl
a 0 0
0 a 0
0 0 a

0 0 0
1/2 1/2 1/2

A
B

NaTi
0 a/2 a/2
a/2 0 a/2
a/2 a/2 0

1/8 1/8 1/8
−1/8 −1/8 −1/8
3/8 3/8 3/8
−3/8 −3/8 −3/8

A
A
B
B

NiAs
a/2 −

√
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C Convergence tests

In this chapter several convergence tests are demonstrated. All energies are given in the
unit per atom.

C.1 Birch-Murnaghan-fit

In Fig. C.1, the influence of the range of a BM-fit on the obtained equilibrium energy is
represented. For the tests, RS, ZB, CsCl and NiAs is considered. A 4%-range was chosen.
With smaller ranges, the risk increases, that lattice constants found with light setting,
could lie out of the range for tight settings and third tier basis set. For the not considered
structures, which depend on 2 parameters, also the range of the second parameter has
to be checked when building a range of 4% for a, e.g. a 4%-range for a leads for some
materials NbP structure to d-ranges above 10% in the .

C.2 k-grid

The dependence of the energy on the Gaussian broadening width is demonstrated in Fig.
C.2. Here the converged energies with respect to the k-grid (below 0.5 meV) are plotted vs.
the width.
In Fig. C.3 they k-grid test is presented, where the k-points are varied along one lattice
vector and is fixed for the others. From the tests, a ratio between ka and kc is determined,
see 4.2.
The k-grid convergence tests are demonstrated in Fig. C.4 for energies, and in Fig. C.5
and Fig. C.6. In the NbP-α case, in general a converged k-grid wit 20× 20× 20 is used.
There are some exceptions which show a high sensitivity on the k-grid, such as SiSi, GeC,
GeGe, GeSi, InSb, SnC, SnGe and SnSn. For these exceptions 40× 40× 40 k-points are
used.

C.3 Integration grid

The test on the integration grid was done with converged a k-grid (see 4.2) and default tier
basis set. For the tests (see Fig. C.7), the structures RS, ZB, CsCl and NiAs are considered.
The different structures give similar pictures, e.g. a low dependency of the convergence of
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Figure C.1: The dependence of the equilibrium energy from a 5-point BM-fit on its
range. For the 5 points within ã± γ

100 ã , the range is defined to be 2 · γ%.
ã is a start value close to the equilibrium a0. For the cubic systems
systems, light settings and 8 × 8 × 8 k-points are used, for the NiAs
structure tight settings and the converged k-grid (see Tab.4.2) with a
k-point density of 12.2 and 25.4 for a∗ and b∗

the integration grids on the structures is observed. The dependence of the lattice constants
on the integration grid is demonstrated in Fig. C.8.

C.4 Basis set

The tests with respect to the basis set is done with a converged k-grid (see 4.2) and tight
settings. The tests for the energies are shown in Fig. C.9 and for the lattice constants in
Fig. C.10.
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