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Abstract

Over the last decades, a first-principles assessment of anharmonic effects in solids has be-
come possible. To date, non-perturbative molecular-dynamics based methodologies exists to
account for all orders of anharmonicity and thus to treat these effects accurately. Nonethe-
less, perturbative approaches that only incorporate anharmonic effects to the lowest order
are widely popular due their manageable computational cost. It is, however, yet unclear
how severely the involved approximations affect the computed material properties. To shed
light on this issue, thermal expansion coefficients and thermal conductivities of 35 group
IV and group III-V compound semiconductors in the temperature range of 0 K to 1000 K
using a perturbative approach, i.e., density-functional theory and phonon calculations based
on the quasi harmonic approximation and the relaxation time approximation, respectively,
are calculated. Particular focus was laid on the computational numerical parameters, so
to reveal the intrinsic uncertainty associated to such perturbative calculations and their
physical and numeric origin. The resulting thermal expansion coefficients reproduce the
qualitative experimental trends, e.g., the negative thermal expansion of silicon below 100 K.
Similarly, the computed thermal conductivities reproduce qualitative experimental trends
correctly, yielding for instance small thermal conductivities for heavy compounds and large
ones for light systems. In all cases, accounting for mass defect scattering and lattice ex-
pansion improved the results considerably, yielding closer agreement with experiment. This
comparison suggests that “good” thermal conductors are indeed reliably described by pertur-
bative approaches, whereas “bad” thermal conductors are not: We find that the computed
thermal conductivities deviate from the measured ones by up to 45.3 WK−1m−1 (77 %) for
compounds with thermal conductivities below 100 W/mK at 300 K. Since these deviations
are not explainable within the intrinsic numeric uncertainty of the calculations, the com-
puted results can serve as a reliable reference set, against which higher-order methods can
be benchmarked.
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Übersicht

In den letzten Jahrzehnten wurde eine grundlegende Bewertung von anharmonischen Effek-
ten in Festköprern möglich. Heutzutage existieren nicht perturbative auf Molekulardynamik
basierende Methoden um alle Ordnung der Anharmonizität zu berücksichtigen und so diese
Effekte akkurat zu behandeln. Nichts desto trotz werden perturbative Ansätze, die anhar-
monische Effekte nur bis zur niedrigsten Ordnung berücksichtigen, oft verwendet, da ihre
computionellen Kosten handhabbar sind. Es ist allerdings immer noch unklar wie stark
die verwendeten Näherungen die berechneten Materialeigenschaften beeinflussen. Um Licht
auf dieses Problem zu werfen, wurden thermische Ausdehnungskoeffizienten und thermische
Leitfähigkeiten für 35 Gruppe IV und Gruppe III-V Halbleiter im Temperaturbereich zwis-
chen 0 K und 1000 K mit einem perturbativen Ansatz berechnet. Der verwendete Ansatz
nutzt Dichtefunktionaltheorie und Phononenrechnungen basierend jeweils auf der quasihar-
monischen Näherung und der Relaxationszeitnäherung. Besonderer Focus wurde auf die
numerischen Parameter gelegt, um die intrinsische Ungenauigkeit von Rechnungen auf Basis
dieser perturbativen Ansätze und deren Herkunft aufzuklären. Die berechneten thermische
Ausdehnungskoeffizienten reproduzieren die qualitativen experimentellen Trends, wie zum
Beispiel die negative thermische Ausdehnung von Silizium unter 100 K. Ähnlich korrekt re-
produzieren die berechneten thermischen Leitfähigkeiten die qualitativen experimentellen
Trends, zum Beispiel geringe thermische Leitfähigkeiten von schweren Materialien und hohe
thermische Leitfähigkeiten von leichten Materialien. In allen Fällen verbesserte die Betrach-
tung von Massdefektstreuung und thermischer Ausdehnung die Übereinstimmung mit dem
Experiment beträchtlich. Dieser Vergleich legt nahe, dass

”
gute “thermische Leiter tatsc̈hlich

durch perturbative Ansätze beschrieben werden können und schlechte nicht: Die berech-
neten thermischen Leitfähigkeiten für Materialien mit thermischen Leitfähigkeiten unter
100 WK−1m−1 weichen bis zu 45.3 WK−1m−1 (77 %) von den gemessenen ab. Da diese
Differenzen nicht durch intrinisische numerische Unsicherheiten erklären lassen, können die
berechneten Ergebnisse als Refernzset dienen, an der sich Methoden höherer Ordnung messen
lassen.
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1. Introduction

Both efficient heat transport and insulation are of great interest in technical applications
and scientific studies likewise. For example, turbines and combustion engines can be insu-
lated by thermal barrier coatings to improve their durability and efficiency. The efficiency
is increased due to higher possible operational temperatures [1]. Other applications can be
found in the development of thermoelectric materials which allow for direct conversion of
heat into electrical power or vice versa [2]. Since the thermoelectric figure of merit depends
on the thermal conductivity, controlling it is important to increase efficiency. Moreover, the
application of high thermal conductance materials is crucial in electronics, as in electronic
components local “hot spots” of high heat can originate. Enhancing thermal conductivity
to remove heat from these spots can significantly improve lifetimes of these devices and in-
crease the temperature operation range. These components mostly contain semiconductors;
thus, their thermal conductivity is of great interest. Frequently used semiconductors are for
example silicon, gallium nitride or gallium arsenide. They all are part of the group IV and
group III-V compound semiconductors. This work will investigate the thermal properties
of the materials of these groups in their cubic (zincblende or diamond) structure and their
hexagonal wurtzite structure by calculations from first principles. Various approaches to
describe and compute phonon thermal conductivities from first-principles exist, which can
generally be classified by the extent of which anharmonic effects are accounted for: a) Pertur-
bative approaches account for the lowest order of anharmonicity via third-order (and possibly
fourth-order) force constants computed in the 0 K limit [3]. The thermal conductivities are
then computed by solving the linearized Boltzmann transport equation either exactly [4] or
in the relaxation time approximation [3]. b) Temperature-dependent approaches improve the
description of anharmonic effects by determining the third-order (and possibly fourth-order)
force constants at finite-temperatures, e.g., via molecular dynamics [5]. c) Non-perturbative
approaches rely on molecular-dynamics simulations and thus account for all orders of an-
harmonicity. In this case, the thermal conductivity is computed using Green-Kubo linear
response theory [6]. In spite of the fact that such more accurate approaches exist, the per-
turbative approach (a) based on third-order force constants is still the most widespread due
to its manageable computational cost. The accuracy of such calculations is, however still
topic of scientific debate: Depending on the numerical parameters used in this approach, lit-
erature reports quite different thermal conductivity values between 130 and 160 WK−1m−1

even for silicon at 300 K [7], a material and temperature range for which higher-order anhar-
monicities are expected to be negligible. Understanding the numerical uncertainty of such
calculations is thus one of the main focuses of this work. Therefore, convergence tests were
run for all the different numerical parameters, thus yielding a systematic and reliable set
of benchmark calculations. This allows to study trends of the thermal conductivity across
chemical and structural space. The comparison with experimental values in Sec. 4.4 then
enables to identify the materials for which such a perturbative approach appears to work
and the materials for which it appears to fail, thus providing a reliable benchmark set for
testing higher-order methodologies such as (b) and (c).
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1. Introduction

This work is structured as follows:
In Sec. 2, the underlying theory is discussed. The many-body problem and its reformulation
through density functional theory is discussed. The harmonic approximation and the deriva-
tion of the thermal properties through the dynamical matrix are performed. The picture is
extended to the perturbative treatment of anharmonic effects with the thermal conductivity
in the relaxation time approach and the thermal expansion in the quasi harmonic approxi-
mation.
In Sec. 3, the computational parameters for force calculations through the all-electron, full-
potential electronic structure code FHI-aims [8], the second-order force constants and har-
monic properties with phonopy [9] and the thermal conductivity with phono3py [10] are
tested for the example of silicon.
In Sec. 4, harmonic properties, thermal expansion and thermal conductivity are discussed for
silicon. Moreover, the thermal expansion coefficients for 35 group IV and group III-V com-
pound semiconductors in zincblende/diamond and wurtzite structure are calculated within
the quasi harmonic approximation. Thermal conductivities are calculated for the same class
of materials. The discussed approximations are applied and mass defects due to isotopes are
neglected. Then, these mass defects are included in the calculations. Lastly, the influence
of thermal expansion of the lattice on the thermal conductivity is examined. Therefore, the
thermal expansion calculations of this work are applied to simulate expanded lattice sizes.
In Sec. 5, the results of this work are summarized and a critical view of this work is given.
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2. Theoretical Background

2.1. Many-Body Problem

Under the neglection of relativistic effects, a system of Nel electrons with positions r =
(r1, ..., rNel

) and charge −e and Nnuc nuclei with positions R = (R1, ...,RNnuc) and charge
ZI · e can be generally described by the time independent Schrödinger equation

H(r,R)Ψ(r,R) = EΨ(r,R) , (2.1.1)

where H(r,R) is the Hamiltonian which describes the system, E is its energy and Ψ(r,R)
is the many-body wave function. The Hamiltonian can be split into [11]

H = Tnuc + Tel + Vnuc-nuc + Vel-el + Vel-nuc , (2.1.2)

where Tnuc and Tel are the kinetic energies of the nuclei and electrons with the masses MI

and mel respectively,

Tnuc =

Nnuc∑
I=1

PI
2

2MI
, Tel =

Nel∑
i=1

pi
2

2mel
. (2.1.3)

Moreover, Vnuc-nuc, Vel-el, and Vel-nuc describe the electrostatic interactions between nuclei-
nuclei, electrons-electrons, and electrons-nuclei:

Vnuc-nuc =
1

2

e2

4πε0

Nnuc,Nnuc∑
I,J=1
I 6=J

ZIZJ
|RI −RJ |

, (2.1.4)

Vel-el =
1

2

e2

4πε0

Nel,Nel∑
i,j=1
i 6=j

1

|ri − rj |
, (2.1.5)

Vel-nuc = − e2

4πε0

Nnuc∑
I=1

Nel∑
i=1

1

|RI − ri|
ZI . (2.1.6)

Finding a general solution Ψ(r,R) which solves Eq. (2.1.1) is a non-trivial problem. Due to
the mass difference mel �MI , one possible simplification consists in decoupling the motion
of the light electrons from the heavy nuclei, under the assumption that the electrons adjust
instantaneously to changes in the position of the nuclei. This approximation is called the
Adiabatic or Born-Oppenheimer approximation: Although this approximation is certainly
not valid under all possible circumstances, its validity is assumed in the rest of this work.
Mathematically, it can be expressed by a product ansatz for the wave function Ψ(r,R) =
Ψel(r, {R})Ψnuc(R). Hereby {R} means that the nuclei positions enter the electronic wave
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2. Theoretical Background

function Ψel(r, {R}) as parameters. The wave function of the nuclei Ψnuc(R) depends on
the positions of the nuclei R but is independent of the positions of the electrons r. Within
this approximation the Schrödinger equation separates to

(Tel + Vel-nuc(r, {R}) + Vel-el(r))︸ ︷︷ ︸
Hel

Ψel(r, {R}) = Eel({R})Ψel(r, {R}) , (2.1.7)

(Tnuc + Vnuc-nuc(R) + Eel({R}))︸ ︷︷ ︸
Hnuc

Ψnuc(R) = EnucΨnuc(R) . (2.1.8)

Equation (2.1.7) gives the electronic Schrödinger equation with the electronic energy Eel({R}).
The electronic energy enters Eq. (2.1.8) as an additional potential for the nuclei. Together
with the nuclei-nuclei repulsion, it forms the potential-energy surface, on which the atoms
move.

2.1.1. Density-Functional Theory

Even with the simplification as made in the Born-Oppenheimer approximation above, the
problem of finding the ground state energy is still complicated. One approach to solve this
problem is through density-functional theory (DFT) for which Walter Kohn was awarded
the Nobel prize in chemistry in 1998. In DFT, the ground state is expressed in terms of the
electron density n, which only depends on three cartesian coordinates, as opposed to the
original 3Nel coordinates.
The idea behind DFT can be expressed in two statements as derived by Hohenberg and
Kohn [12]:

• For an interacting electron system, there is a bijection between the ground state density
and the external potential.

• If an energy functional EV [n] exists, the density which minimizes this functional is the
ground state density.

The energy functional can be written as [12]

EV [n] = FHK[n] +

∫
d3r V (r)n(r) , (2.1.9)

with FHK[n] = 〈Ψ[n]|T +W |Ψ[n]〉 , (2.1.10)

where FHK includes all electron-electron interactions W as well as the kinetic energy. The
potential V represents all interactions of the electrons with an external potential. In the
case discussed here, it represents the interaction of the electrons with the nuclei. This can
be written as ∫

d3r V (r)n(r) = −
∑
I

∫
ZIn(r)

|r −RI |
d3r . (2.1.11)

Accordingly, DFT is “only” an elegant reformulation of the Schrödinger equation. In this
form, it has only little practical use, since, so far, there has not been found any analytical
expression for the functional FHK. For practical applications, the Kohn-Sham formalism

4



2.1. Many-Body Problem

can be applied to recast the equations into a form that allows to find useful approximation
schemes.

Kohn-Sham Formalism

The essence of the Kohn-Sham formalism is that the electron density is expressed by Nel

non-interacting single-particle wave functions ϕi(r) as

n(r) =

Nel∑
i

|ϕi(r)|. (2.1.12)

By this means, Eq. (2.1.9) can be rewritten so that the single-particle wave functions have
to obey a different, formally non-interacting single-particle Schrödinger equation, i.e, the
Kohn-Sham equation [13](

− ~2

2m
∇2 + Veff(r)

)
ϕi(r) = εiϕi(r) , (2.1.13)

with Veff(r) = V0(r) +

∫
d3r′

n(r)

|r − r′|
+ Vxc ([n(r)], r) , (2.1.14)

with the effective potential Veff, where V0(r) is the external potential which includes the elec-
trostatic potential of the nuclei. The second term in Veff(r) gives the Hartree contribution of
the electron-electron interaction. The so called exchange correlation potential Vxc([n(r)], r)
incorporates all many-body effects. As the potential Veff(r) includes the ground state density
itself the Kohn-Sham equation has to be solved self-consistently. The ground state energy
E0 becomes

E0 =

occupied∑
i=1

εi −
1

2

∫ ∫
d3rd3r′n(r)W (r, r′)n(r′)+

Exc[n]−
∫

d3rVxc ([n(r)], r)n(r) , with

(2.1.15)

Exc =FHK[n]− 1

2

∫ ∫
d3rd3r′n(r)W (r, r′)n(r′)− TS[n] , (2.1.16)

with the kinetic energy of the non-interacting system TS[n] and the electron-electron interac-
tions expressed through the term with W (r, r′). A detailed introduction of the Kohn-Sham
formalism can be found for example in Ref. [14]. In addition, if the potential Veff(r) =
Veff(r +R) is periodic due to the crystal symmetry, one can choose a Bloch ansatz for the
wave function in the volume of the primitive unit cell V0 [11]

ϕi,k(r) =
1√
V0

eikrui,k(r) , (2.1.17)

ui,k(r) = ui,k(r +R) , (2.1.18)

with a periodic function ui,k(r) and the crystal momentum k as additional quantum number.
The k’s are restricted to the first Brillouin zone in the reciprocal space, which corresponds
to the primitive unit cell in real space. The resulting differential equation leads to unique
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2. Theoretical Background

solutions. Inserting the ansatz in Eq. (2.1.13) yields a differential equation for the ui,k(r),[
~2

2m
(−i∇ + k)2 + Veff(r)

]
ui,k(r) = ε(k)ui,k(r) . (2.1.19)

Formally, this equation must be solved for every k in the first Brillouin zone. In practice,
a finite grid of sampling points in the first Brillouin zone is typically sufficient to achieve
accurate and converged calculations.

Approximation of the Exchange-Correlation Functional

Even though the Kohn-Sham formalism as discussed above is formally exact there is no
analytical representation for the exchange-correlation functional known. However, there are
multiple approximation schemes of which two will be explained briefly in the following.

Local-Density Approximation (LDA): In the LDA the exchange-correlation energy Exc

gets approximated at every point r with the value of the corresponding exchange-correlation
energy of a homogeneous electron gas εhom

xc [14],

ELDA
xc =

∫
d3r εhom

xc [n(r)]n(r) . (2.1.20)

General Gradient Approximation (GGA): To improve the LDA, the GGA can be made in
the spirit of a Taylor expansion. Therefore, the local exchange-correlation energy becomes
dependent not only on the local electron density, but also its local derivative ∇rn(r)

EGGA
xc = EGGA

xc [n(r),∇rn(r)] . (2.1.21)

There are many different flavours of this approximation due to some freedom in the parametriza-
tion of EGGA

xc . Perdew–Burke-Ernzerhof (PBE) [15] and its adaption for solids PBEsol [16]
are two commonly used in solid state physics and will be used in this work as well.

Hellmann-Feynman Theorem

In the case of the general quantum-mechanical problem, the Hellmann-Feynman theorem
can be used in Kohn-Sham-DFT to calculate the first derivatives of the energy, namely the
forces on the atoms [17]. The theorem states that for a time independent Hamiltonian H
with eigenfunctions Ψλ the derivative of the total energy Eλ with respect to a parameter λ
(in this work, the displacement) is

Fλ =
dEλ
dλ

=

〈
Ψλ

∣∣∣∣dHdλ
∣∣∣∣Ψλ

〉
, (2.1.22)

so that for λ = RI and the above discussed crystal Hamiltonian (see Eq. (2.1.13))

FI =
∑
J,J 6=I

ZIZJ
|RI −RJ |3

(RI −RJ)−
∫

d3r n(r)
∑
I

ZI
|r −RI |3

(r −RI) , (2.1.23)

6



2.2. Harmonic Approximation

with the last equation being the force on the nuclei in the electrostatic field of the electron
density and the other nuclei [8]. As the wave function Ψλ can be mapped on the electron
density, the forces become a functional of the electron density. The used DFT code FHI-
aims includes some more contributions to the forces [8]. Firstly, electrostatic multipole
derivatives which arise due to a truncation of the electrostatic potential. Secondly, the
Pulay forces which arise due to basis function sets which are not independent of the atomic
positions, and thirdly relativistic corrections.

2.2. Harmonic Approximation

The position of the kth atom in the Ith unit cell in the crystal is described as a displacement
uIk around the equilibrium position R0

Ik. The equilibrium position can be split into the
position of the unit cell RI and the position of the atom in the unit cell rk,

RIk = R0
Ik + uIk = RI + rk + uIk . (2.2.1)

Due to the translational symmetry of the lattice, the vector RI − RJ describes a lattice
vector again. The dynamics of the system is determined by the Hamilton operator (see
Eq. (2.1.8))

H =
∑
I,k

P 2
Ik

2MIk
+ Φ(R) . (2.2.2)

The potential energy operator Φ(R = (R1,1, ...,RN,n)) is determined by the positions of the
atoms, where N is the number of unit cells and n the number of atoms in the unit cells.
The potential energy can be expanded into a Taylor series around the equilibrium positions,
where α denotes a cartesian component in the three dimensional space,

Φ = Φ0 +
∑
I,k

∑
α

∂Φ

∂RIkα

∣∣∣∣
R0
Ikα

· uIkα

+
1

2

∑
I,k,J,l

∑
α,β

∂2Φ

∂RIkα∂RJlβ

∣∣∣∣
R0
Ikα,R

0
Jlβ

· uIkαuJlβ +O(u3) .

(2.2.3)

In the equilibrium position, where the energy is minimal, the first order term vanishes. The
zeroth order term is a constant and can be chosen to be zero. In the harmonic approximation
terms higher than 3rd order are neglected. The resulting potential is completely determined
by the second order derivative,

ΦIkα,Jlβ =
∂2Φ

∂RIkα∂RJlβ

∣∣∣∣
R0
Ikα,R

0
Jlβ

=
∂FIkα
∂RJlβ

∣∣∣∣
R0
Jlβ

∼ lim
d→0

FIkα(R0
Ik + d · eJlβ)

d
, (2.2.4)

i.e., the Hessian of the system, commonly identified as harmonic force constants because
the first derivative of the potential gives the force FIkα. Note that the last expression
introduces the finite difference method, which allows to compute the required derivatives in
an approximative fashion: The derivative of the force gets approximated by the difference of
the force of two atoms with a finite displacement distance of d and the direction vector eJlβ.

7



2. Theoretical Background

If one atom is to be chosen in the equilibrium position its force is zero and only the force
of one displaced atom has to be calculated. This is the simplest approach for determining
force constants, the analytical computation of which requires the application of perturbation
theory.
The Hamiltonian can be brought into the standard form after rescaling positions u and
momenta p and introducing the dynamical matrix,

(D)Ikα,Jlβ =
1√

MIkMJl
ΦIkα,Jlβ , (2.2.5)

H =
1

2

(
pTp+ uTDu

)
. (2.2.6)

Since Φ is a real, symmetric, and positive definite matrix, the dynamical matrix shares these
properties, so it can be diagonalized.

Equations of Motion

The classical equations of motion derived from the harmonic potential can be written as

MküIkα = − ∂Φ

∂uIkα
= −

∑
Jlβ

ΦIkα,Jlβ · uJlβ , (2.2.7)

with ΦIkα,Jlβ given by Eq. (2.2.4). By dropping the unit cell index I in the mass MIk, a
perfect crystal without disorder is considered. Moreover, the matrix Φ does not depend on
the lattice vectors RI and RJ separately but only on their difference due to the translational
symmetry of the crystal,

ΦIkα,Jlβ = Φkα,lβ (RI −RJ) . (2.2.8)

The same holds for the dynamical matrix. The time dependent, Bloch like ansatz with time
independent coefficients wkα and the reciprocal space vector q

uIkα =
wkαeiqRI

√
Mk

e−iωt , (2.2.9)

solves Eq. (2.2.7). Calculating the equation of motion with this ansatz yields an eigenvalue
equation for the time independent wkα,

ω2wkα =
∑
lβ

∑
I

Dkα,lβ(RI −RJ)eiq(RI−RJ )wlβ , (2.2.10)

with the dynamical matrix as defined in Eq. (2.2.5). Due to the translational symmetry of
the systems, RJ can be chosen to be zero. Furthermore, the definition

Dkα,lβ(q) =
∑
I

Dkα,lβ(RI)e
−iqRI , (2.2.11)

8



2.2. Harmonic Approximation

allows to evaluate the eigenvalue equation,

ω2wkα =
∑
lβ

Dkα,lβ(q)wlβ . (2.2.12)

This simplifies the equation of motion in Eq. (2.2.7) to an eigenvalue problem of the 3n×3n
dynamical matrix. At each crystal momentum q, this gives 3n eigenvalues ωqs with the band

index s ∈ [1, 3n] and 3n dimensional eigenvectors e
(s)
k respectively. With this, the solution

of the equation of motion Eq. (2.2.7) becomes

u
(s)
Ik =

1√
Mk

e
(s)
k ei(qRI−ωqst) . (2.2.13)

With the calculated phonon dispersion ωqs, one can in principle obtain all properties of the
system.

Supercell approach

The evaluation of the Fourier transformed dynamical matrix, Eq. (2.2.11), is still a sum over
all unit cells. However, the forces of an atom on its surrounding decay with the distance so
that one can truncate the sum and only include atoms in a finite size supercell. The forces
decay with negative powers of |RI −RJ | depending on the type of the force. Consequently
the force constants decay as well with higher distances between the atoms. Note that higher
order force constants tend to decay faster.

Quantum Mechanical Harmonic Oscillator

With the symmetric, diagonalisable dynamical matrix, the quantum mechanical Hamiltonian
in the harmonic approximation can brought into the from

H =
∑
q

nd∑
s

~ωqs

(
nqs +

1

2

)
, (2.2.14)

with the mode dependent phonon occupation number nqs = a†qsaqs and the creation and
annihilation operators

a†qs =

√
ωqs

2~

(
uqs +

ipqs
ω

)
, (2.2.15)

aqs =

√
ωqs

2~

(
uqs −

ipqs
ω

)
, (2.2.16)[

aqs, a
†
q′s′

]
= δs,s′δq,q′ ,

[
uqs, pq′s′

]
= i~δs,s′δq,q′ . (2.2.17)

The essence of the solutions is that one finds basic excitations of the energy ~ωqs which are
called phonons in the case of lattice vibrations. For more details see for example Ref. [18].
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2. Theoretical Background

Thermal Properties

With Eq. (2.2.14) the energy of the phonon system E becomes

〈n0
qs〉 =

1

exp
(
~ωqs

kBT

)
− 1

, (2.2.18)

E =
∑
q,s

~ωqs

(
1

2
+ 〈n0

qs〉
)
. (2.2.19)

Here, 〈n0
qs〉 is the occupation number of the phonon mode, which is given through the Bose-

Einstein distribution. The heat capacity at constant volume can be calculated directly from
the temperature derivative of the energy:

cV =
1

V

∂E

∂T

∣∣∣∣
V

=
1

V

∑
q,s

kB

(
~ωqs

kBT

)2 exp
(
~ωqs

kBT

)
(

exp
(
~ωqs

kBT

)
− 1
)2 , (2.2.20)

=
1

V

∑
q,s

cqs . (2.2.21)

Here, cqs defines the mode heat capacity. In the high temperature limit, the heat capacity
approaches the classical Dulong-Petit result cV = 3NkB/V , where N is the total number of
atoms. For low temperatures, the heat capacity is approximately proportional to T 3 as in
the Debye model [19]. Moreover, the thermodynamic partition function can be calculated
within the solution of the harmonic problem [19]

Z =
∏
q,s

exp
(
−~ωqs

2kBT

)
1− exp

(
−~ωqs

kBT

) . (2.2.22)

With this, the Helmholtz free energy F becomes [19]

F = −kBT ln(Z) =
1

2

∑
q,s

~ωqs + kBT
∑
q,s

ln

(
1− exp

(
−~ωqs

kBT

))
. (2.2.23)

Furthermore, the entropy can be directly calculated from the free energy [20],

S = − ∂F

∂T

∣∣∣∣
V

=
∑
qs

~ωqs

T

1

exp
(
~ωqs

kB

)
− 1
− kBln

(
1− exp

(
−~ωqs

kb

))
. (2.2.24)

Density of States

The density of states g(ω) (DOS), which is a useful tool for computation of above properties,
gives the number of states in a given energy interval dω, [21]

g(ω)dω =
Ω

(2π)3

∑
s

∫
ω=const.

dfq
|∇qωqs|

dω , (2.2.25)
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2.3. Thermal Conductivity

with the volume of the Brillouin zone Ω. This formula shows the correlation between density
of states and the band structure ωqs. Flat bands result in high DOS. For extrema in the band
structure this can even lead to points where the DOS is not smooth anymore or can even
diverge; these are called van Hove singularities. A short discussion of the phonon dispersion
relation can be found in App. A.

2.3. Thermal Conductivity

In general, a temperature gradient leads to heat conduction through particle diffusion or
convection and thermal radiation within the material. Thermal radiation is usually a major
contribution at high temperatures and convection is only dominant in fluids and gases. In
solid state, heat is conducted by free electrons and quasi-particles such as phonons [22]. Due
to the minor presence of free electrons, phonons give the major contribution in (pristine
or moderately doped) semiconductors [3], so that only phononic heat conduction has to be
considered. The thermal conductivity κ is a second order tensor and macroscopically defined
through Fourier’s law [11]

Q = −κ∇T . (2.3.1)

Here, Q is the heat flux generated by the temperature gradient ∇T , thus describing non-
equilibrium phenomena. If only a locally small variation in the temperature is considered,
the heat flux in terms of the phonon modes becomes [22]

Q =
1

NV0

∑
q,s

~ωqs〈nqs(T )〉νqs , (2.3.2)

with the group velocity νqs = ∇qωqs of the phonon, the energy of a phonon ~ωqs with
average occupation 〈nqs〉 , as derived in the harmonic approximation (see Sec. 2.2), the
volume of the unit cell V0 and N the number of unit cells. In the following, the temperature
dependence of the distribution is not written down explicitly anymore for better readability.
The symmetry of the phonon dispersion relation leads to an antisymmetry of the group
velocity ωqs = ω−qs ⇒ νqs = −ν−qs, so that in equilibrium with a symmetric occupation
number 〈n0

qs〉 = 〈n0
−qs〉 the average heat flux becomes zero. A net heat flux can only

arise if the q symmetry of the phonon distribution is broken, 〈nqs〉 6= 〈n−qs〉. As the
symmetrical Bose-Einstein distribution holds in the harmonic approximation, anharmonicity
has to be taken into account to break the symmetry in the phonon distribution and allow for
a total heat flux unequal to zero. The deviation of the distribution from the Bose-Einstein
distribution is enforced through a mode dependent deviation ηqs which leads to the phonon
distribution

〈nqs〉 =
1

exp
(
~ωqs

kBT
− ηqs

)
− 1

= 〈n0
qs〉 −

∂〈nqs〉
∂ηqs

∣∣∣∣
ηqs=0

ηqs +O(η2
qs) , (2.3.3)

= 〈n0
qs〉+ ηqs

kBT
2

~ωqs

∂〈n0
qs〉

∂T
+O(η2

qs) . (2.3.4)

The Taylor expansion is truncated after the first order as the deviation from the equilibrium is
considered to be small. The non-equilibrium phonon distribution should fulfill the linearized

11



2. Theoretical Background

Boltzmann equation in steady state [3]

−νqs∇T
∂〈nqs〉
∂T

= − ∂〈nqs〉
∂t

∣∣∣∣
scattering

. (2.3.5)

The left hand side gives the diffusion of the distribution due to the applied temperature
gradient. The right hand side gives the change of the distribution due to scattering, so that
the total rate of change of the phonon distribution vanishes. In general the right hand side
is complicated but it can be solved by applying the so called single mode relaxation time
approximation (RTA) . This approximation assumes for the relaxation time of a phonon that
all other phonons follow the equilibrium distribution (ηq′s′ = 0 for q′s′ 6= qs)

∂〈nqs〉
∂t

∣∣∣∣
scattering

≈
〈nqs〉 − 〈n0

qs〉
τqs

≈ ηqs
τqs

kBT
2

~ωqs

∂〈n0
qs〉

∂T
. (2.3.6)

In the last step, the truncated Eq. (2.3.4) was plugged in and the relaxation time τqs was
introduced. With Eq. (2.3.5) and (2.3.6), an expression for ηqs can be found which is inserted
into the phonon occupation number and then into Eq. (2.3.2)

Q = − 1

V0

∑
q,s

(~ωqs)
2

kBT 2
τqs〈n0

qs〉(〈n0
qs〉+ 1)νqs ⊗ νqs∇T . (2.3.7)

Comparing this to the Fourier’s law, Eq. (2.3.1), yields for the thermal conductivity

κ =
1

V0

∑
q,s

(~ωqs)
2

kBT 2
τqs〈n0

qs〉(〈n0
qs〉+ 1)νqs ⊗ νqs (2.3.8)

=
1

V0

∑
q,s

τqscqsνqs ⊗ νqs. (2.3.9)

To obtain a scalar quantity, one takes κ = 1
3Tr(κ). The phonon mode specific heat cqs,

which is defined by Eq. (2.2.21), and the group velocity νqs can already be calculated in the
harmonic approximation.
Because of Matthiessen’s rule the inverse of the total relaxation time can be split into multiple
parts due to boundary scattering, mass defect scattering and phonon-phonon scattering.
Boundary scattering can be neglected as we assume an infinite size crystal. Mass defect
scattering will be neglected for the further derivation as well as the crystal is considered to be
perfect without mass defects. Within these restrictions the relaxation time is approximated
with the life time of a phonon. However, in the harmonic approximation the phonon life time
is infinite because no scattering processes are limiting it and its mean free path is infinite. If
anharmonicity is taken into account, the phonon life time can be obtained via the imaginary
part of the self-energy Γqs

τqs =
1

2Γqs
. (2.3.10)
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2.4. Thermal Expansion

Where Γqs can be expressed through [20]

Γqs =
18π

~2

∑
q′s′,q′′s′′

|Ψs,s′,s′′(q, q
′, q′′)|2

×
{(
〈n0

q′s′〉+ 〈n0
q′′s′′〉+ 1

)
δ(ωqs − ωq′s′ − ωq′′s′′)

+
(
〈n0

q′s′〉 − 〈n0
q′′s′′〉

) [
δ(ωqs + ωq′s′ − ωq′′s′′)− δ(ωqs − ωq′s′ + ωq′′s′′)

]}
,

(2.3.11)

if only third order anharmonicity is taken into account, with the Fourier transformed third
order force constants

Ψs,s′,s′′(q, q
′, q′′) =

1

3!

(
~

2N

) 3
2

√
1

ωqsωq′s′ωq′′s′′

×
∑
IJK

∑
αβγ

ΨIJK,αβγ

√
1

MIMJMK
eiqRI eiq′RJ eiq′′RK

× eIsα(q)eJs′β(q′)eKs′′γ(q′′) .

(2.3.12)

The eigenvectors eIsα(q) are obtained from the dynamical matrix in Eq. (2.2.12). Finally,
this force constants ΨIJK,αβγ can be obtained through force calculations as explained in Sec.
2.1.1 and the finite difference method.
In the high temperature limit the major contribution of the phonons have the energy ~ωmax.
If assuming this holds for all phonons, the phonon distribution becomes proportional to the
temperature T and the relaxation time proportional to T−1 which yields for the thermal
conductivity [4]

κ ∝ 1

T
. (2.3.13)

2.4. Thermal Expansion

Another anharmonic effect is the lattice expansion with respect to the temperature, which
is simply defined as the temperature derivative of the volume V

α(T ) =
1

V

∂V

∂T

∣∣∣∣
P

(2.4.1)

β(T ) =
1

L

∂L

∂T

∣∣∣∣
P

=
α(T )

3
. (2.4.2)

The last equation only holds for isotropic crystals with the length L. In a harmonic potential
as treated in Sec. 2.2, there is no thermal expansion because the expectation value of the
position does not change with temperature due to the symmetry of the potential. However,
to obtain the expectation value of the position one actually has to minimize the Helmholtz
free energy F .
In the quasi harmonic approximation it is assumed that the harmonic approximation holds
for every volume. The free energy can be approximated in the way that F ≈ Eel +F vib

ha (T ) ,
with the the vibrational free energy F vib

ha (T ) of the nuclei and the electronic energy Eel .
So the free energy is a function of the volume and can be minimized with respect to this
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2. Theoretical Background

parameter. For the minimization the Birch-Murnaghan equation for the energy is applied
to have a direct representation of lattice properties [23]

E(V ) = E0 +
9B0V0

16


[(

V0

V

) 2
3

− 1

]3

B′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

] . (2.4.3)

Here, B0 is the bulk modulus, B′0 its first derivative and the equilibrium volume V0. This
can be done for all temperatures and so the temperature derivative of the volume can be
accessed. This procedure is illustrated in Fig. 2.1. This equation can be generalized to
include more degrees of freedom in the lattice parameters and this generalization for one
more degree of freedom can be found in App. B.

Volume/Atom
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Figure 2.1.: Quasi Harmonic approximation. Dots give the different calculated points, which
were plotted. The black line gives the equilibrium position at the given temper-
ature, which increases with rising temperature.
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3. The Computational Setup: A Case Study
of Silicon

The first-principles calculations with the all-electron, full-potential electronic structure density-
functional theory code FHI-aims determine the electronic structure of the systems, so the
electron density and from that the forces on the atoms [8]. The relevant physical approxi-
mations of the exchange-correlation functional and the relevant numerical parameters, the
number of integration points in the reciprocal space, the accuracies of the density and the
forces, and the used basis functions, must be tested. To calculate harmonic properties via
force constants, the functionalities of phonopy are used [9]. This algorithm utilizes the finite
difference and supercell approaches. The relevant parameters in this model are the displace-
ment distance and the supercell size. To calculate thermal conductivities via force constants,
the functionalities of phono3py are used [10]. It uses the same utilities as above and the same
parameters are investigated. A special focus must be placed on the force accuracy as this
has a considerable influence on the thermal conductivity. In the following, these parameters
will be checked on the case of diamond structured silicon. If nothing else is mentioned light
basis sets as implemented in FHI-aims are used.

3.1. Settings for the Force Calculations

Force calculations and calculations of the equilibrium structure for 0 K, neglecting zero point
vibrations, do not require any phonon calculations and are performed in FHI-aims. There-
fore, these settings are tested first. Relaxations of the structure were done with tight basis
sets.

3.1.1. Convergence of the Reciprocal Space Sampling Grid

The total energy and the lattice constant converge depending on the number of integration
points in every direction. Therefore, the structure is relaxed for up to 40 integration points in
every direction. In Fig. 3.1, the convergence over the number of integration points is shown.
The deviation of the lattice constant to its converged value with 40 integration points in
every direction is already zero for 7 integration points in every direction. The deviation of
the total energy is below 10 meV per atom, which is “chemical accuracy”, at 3 integration
points.

3.1.2. Influence of the Exchange-Correlation Functional on the Lattice
Constant

As explained in Sec. 2.1.1 one has to approximate the exchange-correlation functional. The
lattice constant is evaluated for some of the most common functionals. In Fig. 3.2, a com-
parison is shown. The experimental value for the lattice constant a = 5.43 Å [24] is shown
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3. The Computational Setup: A Case Study of Silicon
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Figure 3.1.: Convergence of the integration grid, with same number of integration points in
every direction. (Red) Deviation of the lattice constant a from its converged
value at a density of integration points (k-points) of 40. Zero from 6 points on.
(Blue) Deviation of the total energy of the conventional unit cell E from its
value with the highest number of k-points (40).

(red line). The bars represent the lattice constants a calculated with the PW-LDA [25]
approximation, the GGA approximations PBE [15] and PBEsol [16], the hybrid functional
PBE0 [26] and the pure Hartree-Fock (HF ) approximation. In the hybrid functional PBE0,
PBE exchange-correlation and Hartree-Fock exchange are mixed together. PBEsol and
the computationally costly PBE0 deviate the least from the experimental lattice constant.
Additionally, the deviation of the lattice constant calculated with PBE and PBEsol were
compared for all 35 examined materials, which yielded a smaller root mean square for PBEsol
compared to the experiment. Please note that zero-point vibrations still slightly alter the
equilibrium lattice constants at 0K, as discussed later in the context of thermal expansion.
Nonetheless, root mean square errors for PBEsol are ∆acubic = 0.02 Å, ∆awurtzite = 0.008 Å
and ∆cwurtzite = 0.011 Å. Consequently all further calculations were done with PBEsol.

PW-LDA PBE PBEsol PBE0 HF5.400

5.425

5.450

5.475

5.500

a[
Å]

Figure 3.2.: Lattice constant with different approximations of the exchange-correlation func-
tional. The line gives the experimental value of the lattice constant [24].

3.1.3. Influence of the Basis Set on the Lattice Constant

In FHI-aims, default basis sets and numerical presets are provided to reach different levels
of accuracy. Light basis sets yielded a = 5.45 Å and tight and really tight basis sets yielded
a = 5.44 Å for the lattice constant. The influence on the lattice constant is thus around
0.2%.
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3.2. Settings for the Second-Order Force Constants

3.2. Settings for the Second-Order Force Constants

Since the forces do not follow a variational principle themselves, they typically require more
accurate numerical settings to converge than the densities and the lattice constants. Con-
sequently, the forces converge differently compared to the density and their convergence
behaviour has to be investigated separately. Second-order force constants are calculated
with phonopy from the forces calculated in a supercell. A not converged, i.e., large enough,
supercell size gives an error, as it is a truncation of the sum in Eq. 2.2.11. This was explicitly
investigated. Similarly, the displacement distance for the finite difference calculations was

doubled and the force accuracies were tuned up from 10−4 eVÅ
−1

. None showed a significant
influence on the harmonic properties.

3.2.1. Influence of the Supercell Size on the Phonon Band Structure
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Figure 3.3.: Left: Calculated phonon band structure for diamond silicon for a 2×2×2 (black)
and 4 × 4 × 4 (red) supercell. Right: Calculated density of states for the same
structure with the same settings.

A bigger supercell should give better results as also longer ranging forces are calculated and
the force constants are built upon that. The supercell was tuned between 2 × 2 × 2 and
4 × 4 × 4 of the conventional unit cell. In Fig. 3.3 two phonon band structures are shown
together with the density of states which deviated as well according to the supercell size.
The 4 × 4 × 4 supercell phonon band structures shows small deviations from the 2 × 2 × 2
supercell. The biggest deviations can be observed between 10 and 11 THz at the W,L and
K point in the third band. The 3 × 3 × 3 phonon band structure gave the same results as
the 4× 4× 4 phonon band structure, so that convergence was reached.
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3. The Computational Setup: A Case Study of Silicon

3.3. Settings for the Third-Order Force Constants

Third-order force constants computed with phono3py are even more sensible to numerical
noise, given that this relatively small quantities are obtained from a second-order finite
difference. Accordingly, not only the supercell size but also the force accuracy and the
displacement distance are important to check. Generally, the size of the supercell can be
smaller than in the case of harmonic calculations, as the third-order forces are typically of
shorter range.

3.3.1. Influence of the Displacement Distance on the Thermal Conductivity

For a 3×3×3 supercell of the conventional cell with a sampling mesh of the reciprocal space
in the primitive unit cell of 10 × 10 × 10, the thermal conductivity was calculated depend-
ing on the displacement distance. The thermal conductivity in these settings for different
displacements can be seen on the left side of Fig. 3.4. The thermal conductivity deviates for
displacement distances between 0.03 Å and 0.09 Å by 5 Wm−1K−1, which corresponds to a
relative error of below 5%. For the remaining calculations the default displacement distance
of 0.03 Å is chosen as it allows for comparison with Ref. [10]. The same test was done for a
2× 2× 2 supercell, which showed the same dependence of the thermal conductivity on the
displacement distance.
The influence of the displacement was probed with more accurate calculated forces, using a
tight basis sets. The behaviour is similar, beside the fact that even at smaller displacement
distances the obtained values did not deviate more than 5 Wm−1K−1 from the rest. Cal-
culating better converged forces thus allows for a smaller displacement which consequently
allows for a better approximation of the derivative of the force and so the force constants. To
check the importance of the displacement distance, the calculations were repeated for gallium
arsenide. The thermal conductivity of gallium arsenide showed smaller absolute deviations,
but larger relative deviation in the probed range than silicon, which is understandable from
its smaller thermal conductivity.

3.3.2. Influence of the Force Accuracy on the Thermal Conductivity
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Figure 3.4.: Left: Influence of the displacement distance on the thermal conductivity. Right:
Influence of the accuracy of the forces on the thermal conductivity.

As the thermal conductivity is highly sensitive on the accuracy of the forces, different force
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3.3. Settings for the Third-Order Force Constants

accuracies were tested. To examine this influence thermal conductivities were calculated in
the same settings as above. The force accuracy was tuned from 10−4 eVÅ

−1
to 10−9 eVÅ

−1
.

In Fig. 3.4 one can see the influence of the forces accuracy on the thermal conductivity.

Convergence seems to be reached for a force accuracy of 10−7 eVÅ
−1

. The same convergence

test for a 2× 2× 2 supercell yielded nearly no deviation up from 10−2 eVÅ
−1

.

3.3.3. Influence of the Basis Set on the Thermal Conductivity

The accuracy of the forces depend on the basis sets. In the same manner as above thermal
conductivities were calculated for different basis sets as implemented in FHI-aims. The
supercell was set to 2×2×2 of the conventional cell because calculation with tight and really

tight basis sets are computational very demanding. The force accuracy was set to 10−5 eVÅ
−1

as this tends to be a smaller issue in smaller supercells. The basis set for the relaxation of the
geometry and the basis set for the force calculation were treated separately. Note that the
chosen settings are not the converged settings, so that the experimental value is not reached.
In Tab. 3.1 the thermal conductivity is listed over the different applied parameters. One can
see that more accurate forces tend to give higher thermal conductivities which results in a
8% lower thermal conductivity of the light basis set calculation compared to the tightest
ones. If the geometry is calculated with tight basis sets first, the thermal conductivity only
deviates 6% from the tightest value. The geometry in tight and really tight did not deviate
at all. Even though a tighter basis set gives better results, they are computational more
demanding, so that force calculations in the light basis set were standard. The relaxation
were done with tight basis sets. This choice of basis sets yields an error for the thermal
conductivity which is material dependent as one can see in App. F.

Table 3.1.: Influence of different basis sets as implemented in FHI-aims on the thermal con-
ductivity. The experimental value is for isotope purified silicon.

Relaxation basis set Force calculation basis set κ[ W
mK ]

light light 116.41
light tight 125.78
tight light 118.54
tight tight 123.88
tight really tight 126.39

Experiment [27] 156.4

To summarize, we find that the calculation of third-order force constants typically requires
much more accurate numerical settings than typically used in electronic-structure theory
calculations. This is not too surprising, given that much smaller quantities need to be
assessed in a second-order finite difference approach. Still, the fact that even individual
numerical parameters can alter the resulting thermal conductivities by up to 10% is alarming,
given that these numerical uncertainties have so far not yet been systematically discussed in
literature.
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4. Results

4.1. The Computational Settings

In line with the above discussed tests, the computational settings were chosen as: The
PBEsol exchange correlation functional was used. The electron density was calculated with

a precision of 10−6 eV and the forces with a precision of 10−5 eVÅ
−1

. The reciprocal space
of the conventional cell was sampled with 8× 8× 8 and 10× 10× 9 grids for the zincblende
and wurtzite structures respectively.
For second-order force constant calculations the displacement distance was chosen to 0.01 Å
and for the third-order force constant calculations 0.03 Å. For calculations of the second-
order force constants and the harmonic properties with phonopy the supercell for zincblende/
diamond and wurtzite type were 4 × 4 × 4 (512 atoms) and 5 × 5 × 3 (300 atoms) of the
conventional cell respectively. The reciprocal lattice for the zincblende/diamond supercell
was sampled in 2× 2× 2 grid and for the wurtzite one in 2× 2× 3.
Third-order force constants were calculated with phono3py in a 2 × 2 × 2 (64 atoms) and
a 3 × 3 × 2 (72 atoms) supercell for zincblende/diamond and wurtzite respectively. For
zincblende the reciprocal space was sampled in a 4×4×4 grid and for wurtzite in a 3×3×4
grid. The thermal conductivity was calculated with a 20 × 20 × 20 sampling mesh in the
reciprocal space of the primitive unit cell.

4.2. Diamond Silicon

Silicon is the second most abundant element in earth’s crust and an important semicon-
ductor. Its diamond structured phase is the starting point for the discussion of thermal
expansion and conductivity in this work.

4.2.1. Harmonic Properties

In Sec. 2.2, the harmonic approximation and the possibility to predict certain properties
within it was discussed.
The phonon band structure ωqs of silicon is displayed in Fig. 3.3 along the path Γ, X, W, K,
Γ, L, U, W, L, K and U, X, which can be found in App. A. In total there are six phonon bands
in this crystal due to the three dimensions and the two atoms in the primitive unit cell. The
three lower ones are acoustic modes and the three upper ones are optical modes. In Fig. 3.3
the density of states is plotted over the frequency. The relation between band flatness and
high densities of states can be observed for example at 4 THz or 14 THz. As discussed in
Sec. 2.2, the harmonic approximation allows for the evaluation of the Helmholtz free energy
F , the entropy S and the heat capacity CV . In Fig. 4.1, these properties are shown. In
the high temperature limit the heat capacity approaches the classical Dulong-Petit value
(dashed line).
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Figure 4.1.: Calculated Helmholtz free energy, entropy and heat capacity over the tempera-
ture. The dashed line gives the Dulong-Petit limit of the heat capacity.

4.2.2. Thermal Expansion

The thermal expansion was calculated in the quasi harmonic approximation as briefly ex-
plained in Sec. 2.4. The linear thermal expansion coefficient for diamond silicon is shown in
Fig. 4.2. The calculated thermal expansion is negative around 100 K. This matches with ex-
periment and previous theoretical discussion [28, 29]. This property is typical for zincblende
semiconductors. The calculated linear thermal expansion at 300 K is 2.87 · 10−6 K−1. This
compares well with the experimental value of 2.59 · 10−6 K−1 [30].
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Figure 4.2.: Left: Linear thermal expansion coefficient β over the temperature. Right: Cal-
culated thermal conductivity κ of isotropic diamond silicon. The calculation
was done including mass defect scattering effects for the 0 K geometry.

4.2.3. Thermal Conductivity

The thermal conductivity was calculated using phono3py with and without inclusion of
mass defect scattering for the relaxation time. A calculation for the 0 K geometry and one
with a adjusted lattice were made including mass defect scattering. The expansion was
obtained through the thermal expansion calculations from above. For all calculations the
obtained force constants were symmetrized due to the symmetry of the lattice. The thermal
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4.3. Thermal Expansion

Table 4.1.: Thermal conductivity of silicon diamond for different settings at 300 K. The ex-
perimental value is for a natural composition of silicon.

Settings κ [ W
Km ]

Without isotope effect 141.22 ± 6.50
With isotope effect 132.86 ± 6.17

With isotope effect and adjusted lattice 124.63 ± 3.76
Experiment 148 [31]

conductivity can be seen in Fig. 4.2 on the right side including the mass defect effects for
the 0 K geometry. The thermal conductivities for the different calculations can be found in
Tab. 4.1. The error values are obtained from comparing the calculation with symmetrisation
and without symmetrisation of the force constants. This is a measure for the quality of the
force constants [10].
All calculated conductivities are smaller than the experimental. One reason could be the
chosen basis set (see Sec. 3.3.3).

4.3. Thermal Expansion
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Figure 4.3.: Comparison of the calculated and experimental linear thermal expansion coeffi-
cients β at 300 K for the cubic materials. The line (yellow) gives the matching
line of experiment and calculation.

Thermal expansion coefficients were calculated for group IV and group III-V compound
semiconductors in zincblende/diamond and wurtzite structure within the quasi harmonic
approximation. For the cubic materials the Birch-Murnaghan equation of state was used to
minimize the Helmholtz free energy. For the wurtzite materials a two dimensional Birch-
Murnaghan was applied, which takes the ratio between the two different lattice constants
as an additional degree of freedom (see App. B). From this, direction dependent thermal
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expansion coefficients were calculated. In the following, x defines the in plane direction
and z the perpendicular one to the plane. The calculations were performed in the temper-
ature range between 0 K and 1000 K. A comparison between the calculated linear thermal
expansion coefficients at 300 K with the corresponding experimental values is illustrated in
Fig. 4.3. The values can be found in App. C. In some cases, the calculations deviate signifi-
cantly with respect to the experimental value. Please note that germanium is a special case,
since it is a metal in the PBEsol approximation, even though it is a semiconductor in reality.
For gallium arsenide and boron nitride the deviations to the experiment are around 40%
but for the discussed case of silicon, carbon, boron phosphide and gallium phosphide these
deviations smaller than 13%. For carbon only 3% deviation to the experimental value was
observed. The RMSE of the linear thermal expansion compared to the experimental data
is 2.1 · 10−6 K−1 and without germanium 0.8 · 10−6 K−1. For aluminium arsenide the quasi
harmonic approximation predicts a negative thermal expansion over the whole temperature
range.
The quasi harmonic approximation can thus give reasonable qualitative and quantitative
results, but one should not rely blindly on it. A discussion in this spirit can be found in
Ref. [32]. However, for most of the zincblende structures a negative thermal expansion was
found in the low temperature range which compares well to experiment. An explanation and
further discussion of this behaviour of zincblende semiconductors can be found in Ref. [29].

4.4. Thermal Conductivity

The thermal conductivity for 35 materials was obtained by computing second- and third-
order force constants from supercells with displacements created by phono3py, using FHI-
aims with the in Sec. 4.1 discussed settings. The post processing was performed with
phono3py using a sampling grid of the reciprocal space of the primitive unit cell of 20×20×20.
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Figure 4.4.: Comparison of the calculated thermal conductivity at 300 K with the experimen-
tal values. Left: Without isotope scattering. Right: With isotope scattering.
The yellow line gives the conformance of experimental and calculated value.
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4.4. Thermal Conductivity

Firstly, the thermal conductivity was calculated in the relaxation time approximation with
neglected mass defect scattering. In App. D the thermal conductivities are listed for the
zincblende/diamond and wurtzite structures at 300 K. On the left side of Fig. 4.4 one can
see a comparison of the calculated values with the experimental ones. For the comparison
of the wurtzite the scalar thermal conductivity was used (κ = Tr(κ)/3 ). The values devi-
ate from the line of conformance with experiment but the right trend was captured. The
thermal conductivities are for 9 cubic materials between 10-100 Wm−1K−1 for 8 between
100-1000 Wm−1K−1 and for 3 above 1000 Wm−1K−1. The corresponding wurtzite type ma-
terials follow the same distribution.
Note that PBEsol still is not a good functional to discuss germanium as already mentioned
above. This leads to an unreliable thermal conductivity for germanium. Moreover, carbon
deviates approximately 1000 WK−1m−1 from its experimental value. Carbon has a high
thermal conductivity due to a long relaxation time and so a long mean free path of the
phonons. Consequently, other scattering effects (e.g. boundary and mass defect scattering)
may be more important for the real thermal conductivity. The RMSE to experiment was
determined to be 316.2 WK−1m−1 for the cubic materials, 69.2 WK−1m−1 for the wurtzite
materials and 288.4 WK−1m−1 for the combination of both. This exceeds most of the actu-
ally computed thermal conductivities, so that an improvement of the calculations is needed.

Mass defect scattering was then taken into account as the experimental values are for nat-
ural compositions of the materials and not isotopic purified ones. In Tab. 4.2 the thermal
conductivities at 300 K are shown with the inclusion of this. The thermal conductivities are
for 10 cubic materials between 10-100 Wm−1K−1, for 8 between 100-1000 Wm−1K−1 and for
2 above 1000 Wm−1K−1. The illustrated comparison of experiment and calculations can be
found on the right hand side of Fig. 4.4. For example, the calculated value of boron nitride
shifted to a lower value and nearly matches the experimental value. In general, the inclusion
of the treatment of mass defects leads to decreasing thermal conductivities because an addi-
tional scattering term is included. Moreover, for some low thermal conducting materials the
calculations were done with more accurate calculated forces as well. Therefore tight basis
sets were used. The deviations range from 0.2% up to 54% and are material dependent. The
results can be found in App. F.
The thermal conductivities compare well to Ref. [10]. However, the RMSE to the exper-
iment is 148.1 WK−1m−1 for cubic materials, 52.3 WK−1m−1 for wurtzite materials and
134.4 WK−1m−1 for the combination of both. Even though this is a drastic decrease in the
RMSE, the RMSE still exceeds many of the values. However, it was checked if only the
better conformance of a some high thermal conductivity materials lead to this decrease.
This was not the case as the RMSE also decrease excluding thermal conductivities above
100 WK−1m−1.
The mass does not influence the thermal conductivity only by mass defect scattering but
generally there is a trend that with increasing reduced mass the thermal conductivity de-
clines. In Fig. 4.5 the thermal conductivity was plotted over the reduced mass, which was
equated for wurtzite and zincblende

µ =
m1m2

m1 +m2
. (4.4.1)
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Table 4.2.: Calculated thermal conductivities including mass defect scattering, as
treated in phono3py, at 300 K in W K−1m−1. Cubic means zincblende
and diamond structure. Experimental values are for 300 K as well.

Cubic structure Wurtzite structure

C
Si
Ge
Sn
BN
BP
BAs
BSb
AlN
AlP
AlAs
AlSb
GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb

κ Exp

1890.1±10.0 1350.0 a

132.9±6.2 148.0 a

13.7±0.2 59.0 a

13.5±1.1 -
768.6±6.5 760.0 b

446.6±7.4 350.0 b

1236.7±45.0 -
371.8±26.2 -
268.8±8.1 -
76.1±6.3 90.0 c

45.5±10.2 98.0 b

67.4±16.9 56.0 b

147.4±58.4 -
107.6±14.4 100.0 b

30.0±2.5 45.0 b

27.4±6.0 40.0 b

129.5±19.1 -
93.8±19.9 93.0 b

21.9±3.6 30.0 b

11.1±1.1 20.0 b

κx κz Exp

- - -
- - -
- - -
- - -

622.6 ± 4.9 623.5 ± 17.9 -
395.5 ± 6.4 329.2 ± 63.3 -

1108.4 ± 117.9 955.7 ± 191.7 -
- - -

263.1 ± 20.3 263.2 ± 26.6 350.0 b

64.3 ± 5.9 65.9 ± 8.1 -
47.2 ± 13.7 54.3 ± 12.4 -
39.7 ± 15.4 40.7 ± 14.6 -

187.5 ± 45.9 202.4 ± 44.2 210.0 b

102.5 ± 37.3 98.2 ± 38.8 -
25.7 ± 10.3 27.8 ± 9.5 -
17.0 ± 9.6 17.5 ± 9.7 -

111.5 ± 28.4 125.3 ± 35.7 135.0 d

37.7 ± 21.5 47.0 ± 23.5 -
16.0 ± 10.2 17.2 ± 10.1 -
7.7 ± 4.4 9.0 ± 4.1 -

a Ref. [31]
b Ref. [33]
c Ref. [34]
d Ref. [35]

As the phonon frequency is calculated from the dynamical matrix, which scales approx-
imately with µ−1 (Eq. (2.2.5)), the phonon frequency should show the same behaviour.
With its quadratic influence on the thermal conductivity the same should scale with µ−2

(Eq. (2.3.8)). The fit κ = a · µb with b = −1.98 is in good agreement with this predicted
dependency.

Lastly, the influence of the lattice size on the thermal conductivity was examined. For
the wurtzite types the influence of the lattice size on the thermal conductivity can be di-
rectly seen if one has a look a the direction dependent thermal conductivity divided by
the corresponding lattice constant. For both the ratio is nearly equal. In App. E this was
illustrated. For the cubic materials the unit cells were expanded due to the calculated ther-
mal expansions. The calculated values can be found in App. F. There are still two materials
above 1000 WK−1m−1, but only 7 between 100-1000 WK−1m−1 and 11 below 100 WK−1m−1.
Overall the thermal conductivity decreased compared to the other calculations.
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Figure 4.5.: Thermal conductivity plotted over the reduced mass µ. The yellow line gives a

fit to κ = a · µb.

The RMSE in this calculation decreased further to 70.2 WK−1m−1. This means that RMSE
can be brought down to less than a fourth of the starting value with negligence of mass
defect scattering. This leads to the conclusion that when calculating thermal conductivities
one should always have a look at the lattice and its actual size at the given temperature.
Additionally, for gallium phosphide, with a high thermal expansion, the whole temperature
dependence of the thermal conductivity was calculated. Therefore every 100 K from 0 K to
1000 K the lattice size was taken and a full thermal conductivity calculation were performed.
In App,G the obtained thermal conductivities are plotted. The calculated thermal conduc-
tivity of gallium phosphide is only 7% higher than the experimental value, which is in the
error margin.
To sum up these results the thermal conductivity over temperature was fitted in its high
temperature limit (above 500 K) to a power law

κ(T ) = a+ b ·
(
T

300

)c
. (4.4.2)

The resulting coefficients can be found in App. G. The mean value for the magnitude is -0.99,
which compares well to Eq. (2.3.13). An example fit can be found in App. G.
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In this work, the thermal expansion and the thermal conductivities for the group IV and
group III-V compound semiconductors in zincblende/diamond and wurtzite structure were
calculated from first principles at the GGA (PBEsol) level of theory. For this purpose, the
all-electron density-functional theory code FHI-aims was used to obtain relaxed geometries,
energies, and forces. Phonon calculations were performed using the forces obtained via FHI-
aims using the harmonic approximation in the finite-difference approach as implemented
in phonopy to compute phonon band structures and densities of states, as well as phonon
group velocities, heat capacities, and Helmholtz free energies. By combining multiple such
harmonic calculations in the quasi-harmonic approach, the volume-dependent Helmholtz free
energies, which were minimized to compute thermal expansion coefficients, were obtained.
Last but not least, thermal conductivities were calculated in the relaxation time approxima-
tion using third-order force constants, which were computed in the supercell, finite difference
approach with the use of the phono3py framework.
The quasi-harmonic calculations turned out to be not particularly sensitive to the com-
putational settings, since it “only” requires harmonic calculations. Generally, these quasi-
harmonic calculations could reproduce all qualitative trends such as the negative thermal
expansion observed experimentally for zincblende structures at low temperatures. Quantita-
tively, a relatively low RMSE of 8 · 10−7 K−1 with respect to the few available experimental
data points for the thermal expansion coefficient was found. Although this approach should
not be trusted blindly, it thus appears to be able to allow for almost quantitative predictions.
As discussed in detail in Sec. 3, finding converged computational settings to reach a suit-
able level of numerical accuracy in thermal conductivity calculations turned out to be more
complicated than expected. The required third-order force constants are per se quite small
and are obtained via numerical finite differences. Even minor numerical noise can affect
the calculation quite significantly, i.e., by altering the thermal conductivity by more than
20%. Even when using computational settings that are much more converged than the ones
typically used in such calculations, an intrinsic uncertainty in the results of the order of 5%
was found. This is an important finding that must be kept in mind when comparing such
calculations to experimental values or other computational approaches.
The calculation of the thermal conductivity itself revealed that the used perturbative ap-
proach generally allows to capture qualitative trends, e.g., that the thermal conductivity
decreases with increasing reduced mass (κ ∝ µ−2, as shown in Sec. 4.4). However, quite
large deviations with respect to experimental values were observed, as discussed in Sec. 4.4.
Partially, these deviations could be reduced by accounting for additional physical effects: For
materials with high-thermal conductivities, including mass defect scattering turned out to
be crucial to obtain results that are comparable with experiment. Similarly, accounting for
lattice-expansion by re-computing the third-order force constants at the equilibrium volume
predicted at 300 K with the quasi-approximation turned out to have a significant influence
on the actual thermal conductivities of up to 20% (see App. F). But even when accounting
for all these effects, the root mean square error obtained with respect to experiment was still
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significant (70 W/mK), i.e., comparable to the actually computed thermal conductivities in
many cases.

In summary, this work thus gives a collection of thermal conductivities and a suggestion
for computational settings that are reasonably suited to calculate thermal conductivities.
The found deviations with respect to experiment call for a reinvestigation of the thermal
conductivities with more sophisticated methods, so to clarify which role higher-order an-
harmonic effects play. For this purpose, the results obtained in this work can serve as a
systematic reference and benchmark set. Along this lines, it would be desirable to extend
the investigated materials to more complex semiconductors, e.g., carbides and oxides, to
verify to which extent the observed trends hold across material and structural space.
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A. Phonon Dispersion Relation

Figure A.1.: Brillouin zone of FCC lat-
tice. The high symmetry
points in terms of the recip-
rocal lattice vectors can be
found in Tab. A.1. Figure
from Ref. [36].

Table A.1.: High symmetry points in the Bril-
louin zone of the FCC lattice. The
corresponding lattice vectors in
real space are: a1 = (a, 0, 0), a1 =
(0, a, 0) and a1 = (0, 0, a). High
symmetry points as in Ref. [36].

b1 b2 b3

Γ 0 0 0

X 1
2 0 1

2

W 1
2

1
4

3
4

K 3
8

3
8

3
4

L 1
2

1
2

1
2

U 5
8

1
4

5
8

The phonon dispersion relation ωqs depends on the reciprocal space vector q. One only has
to include reciprocal lattice vectors of the first Brillouin zone, which is the reciprocal space
equivalent of the unit cell, due the translational symmetry of the crystal. To illustrate the
phonon dispersion relation, ωqs is plotted along a two-dimensional path in this first Brillouin
zone. A common path for the face centered cubic lattice is Γ, X, W, K, Γ, L, U, W, L, K
and U, X with the high symmetry points as defined in Tab. A.1. The first Brillouin and the
high symmetry points can be seen in Fig. A.1.
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B. Two Dimensional Burch-Murnaghan
Equation

To generalize the Birch-Murnaghan equation for the energy an the two dimensional case one
should start with writing Eq. 2.4.3 as a polynomial of x = V −

2
3

E = A0 +A1x+A2x
2 +A3x

3 (B.0.1)

A0 = E0 +
9

16
B0(6V0 −B′0) (B.0.2)

A1 =
9

16
B0(3B′0 − 16)V

−3
5

0 (B.0.3)

A2 = − 9

16
B0(3B′0 − 14)V

−3
7

0 (B.0.4)

A3 =
9

16
B0(B′0 − 4)V 3

0 . (B.0.5)

To generalize Eq. B.0.1 one can introduce another parameter ξ = c
a and expand the equation

due to that 1

E = A0 +A1x+A2x
2 +A3x

3 +B1ξ +B2xξ +B3ξ
2 +B4xξ

2 +B5x
2ξ. (B.0.6)

A physical interpretation of the new parameter was not done as only the minima for x and
ξ were of interest for this work. Moreover, one should note that this is only one way to
approach the more dimensional problem of fitting the potential energy surface and other
approximations can be made.

1As implemented by Olle Hellmann in TDEP: https://github.com/ollehellman/ollehellman.github.io
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C. Thermal Expansion Coefficients

Table C.1.: Linear thermal expansion coefficients in 10−6K−1 at
300 K, where cubic means zincblende and diamond
structure.

Cubic structure Wurtzite structure

Material

C
Si
Ge
Sn
BN
BP
BAs
BSb
AlN
AlP
AlAs
AlSb
GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb

β Exp

1.08 1.05 a

2.87 2.57 a

0.66 5.90 a

7.54 -
1.69 1.20 a

3.12 2.94 a

3.98 -
3.23 -
3.08 -
3.97 -

d -1.04 -
1.93 -
3.72 -
5.24 4.65 a

3.89 6.38 b

5.02 -
4.21 -
6.89 -
5.17 -
5.55 -

βx Expx βz Expz
- - - -
- - - -
- - - -
- - - -

1.78 - 1.81 -
2.97 - 3.19 -
3.88 - 4.05 -

- - - -
3.17 - 2.57 -
3.55 - 1.98 -
1.96 - 7.19 -
4.78 - 0.25 -
4.19 - 4.04 -
5.06 - 4.44 -
5.36 - 10.77 -
7.86 - 2.01 -
4.02 - 0.94 -
3.73 - 4.15 -
6.03 - 0.57 -
3.73 - 8.26 -

a Ref. [37]
b Ref. [38]
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D. Thermal Conductivities without Mass
Defect Scattering

Table D.1.: Calculated thermal conductivities neglecting mass defect scattering at 300 K in
W K−1m−1. Cubic means zincblende and diamond structure.

Cubic structure Wurtzite structure

C
Si
Ge
Sn
BN
BP
BAs
BSb
AlN
AlP
AlAs
AlSb
GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb

κ

2342.2±17.4
141.2±6.5
15.1±0.3
14.5±1.2

1380.6±20.1
489.0±8.7

2353.5±38.8
811.2±152.0
269.2±8.1
76.1±6.3
45.5±10.2

123.0±36.8
198.6±87.6
126.5±18.6
30.7±2.6
29.1±6.4

134.5±21.2
96.1±21.1
22.0±3.6
11.2±1.2

κx κz
- -
- -
- -
- -

1004.8 ± 6.2 1010.7 ± 16.8
428.3 ± 5.9 350.7 ± 71.2

1394.1 ± 166.2 1181.6 ± 263.0
- -

263.5 ± 20.4 263.5 ± 26.7
64.3 ± 5.9 65.9 ± 8.1
47.2 ± 13.7 54.3 ± 12.4
43.9 ± 18.0 44.2 ± 16.8

295.0 ± 84.9 284.5 ± 84.9
119.7 ± 44.7 113.7 ± 46.5
26.2 ± 10.5 28.4 ± 9.7
17.7 ± 10.0 18.2 ± 10.0

114.9 ± 30.0 128.4 ± 37.6
38.0 ± 21.7 47.7 ± 23.9
16.0 ± 10.2 17.2 ± 10.1
7.7 ± 4.5 9.1 ± 4.2
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E. Direction Dependence of Thermal
Conductivities for Wurtzites

100 101 102

x a 1
x  [WK 1m 2]

100

101

102

z
a

1
z

 [W
K

1 m
2 ]

Conformance line
Calculated values

Figure E.1.: Direction dependent thermal conductivities of the wurtzite structures divided
by the respective lattice constant against each other.
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F. Temperature Corrected Thermal
Conductivity

Table F.1.: Calculated thermal conductivities including mass defect scattering, as treated
in phono3py, and corrected structure at 300 K in W K−1m−1 compared to the
thermal conductivities calculated upon the 0 K structure. For the 0 K structure
same calculations with forces calculated in tight basis sets are available.

Zincblende/Diamond structure

C
Si
Ge
Sn
BN
BP
BAs
BSb
AlN
AlP
AlAs
AlSb
GaN
GaP
GaAs
GaSb
InN
InP
InAs
InSb

T = 0 K T = 0 K tight T = 300 K Exp (T = 300 K)

1890.1±10.0 - 1556.0± 10.2 1350.0 a

132.9±6.2 - 124.6± 3.8 148.0 a

13.7±0.2 - 14.1± 0.2 59.0 a

13.5±1.1 - 14.8± 0.5 -
768.6±6.5 - 624.1± 16.2 760.0 b

446.6±7.4 - 383.1± 16.4 350.0 b

1236.7±45.0 - 1255.6± 53.2 -
371.8±26.2 - 376.3± 135.1 -
268.8±8.1 - 234.1± 9.0 -
76.1±6.3 75.9± 1.5 75.1± 5.9 90.0 c

45.5±10.2 69.9± 14.5 43.3± 9.5 98.0 b

67.4±16.9 71.2± 11.2 62.2± 18.0 56.0 b

147.4±58.4 - 153.2± 53.1 -
107.6±14.4 - 99.5± 5.7 100.0 b

30.0±2.5 33.0± 6.1 28.4± 0.9 45.0 b

27.4±6.0 20.8± 1.3 15.4± 0.9 40.0 b

129.5±19.1 - 121.7± 18.9 -
93.8±19.9 80.8± 30.9 83.6± 8.5 93.0 b

21.9±3.6 20.1± 2.4 18.5± 2.4 30.0 b

11.1±1.1 - 11.9± 1.4 20.0 b

a Ref. [31]
b Ref. [33]
c Ref. [34]
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G. Power Law Coefficients

Table G.1.: Power law coefficients as defined in Eq. 4.4.2 of the zincblende/diamond type
materials compared to the calculated thermal conductivity at 300 K for the 0 K
geometry. The power law was fitted to the calculated data in the high temper-
ature limit above 500 K.

a b c κ [WK−1m−1]

C 40.48 1665.81 -0.93 1890.1
Si 4.27 123.88 -1.13 132.9
Ge -0.24 14.05 -0.92 13.7
Sn -0.11 13.59 -0.96 13.5
BN -32.02 735.06 -0.69 768.6
BP 22.13 401.84 -1.26 446.6
AsB -80.77 1341.36 -0.80 1236.7
BSb -159.43 538.58 -0.39 371.8
AlN 11.99 242.58 -1.23 268.8
AlP 2.07 71.95 -1.12 76.1
AlAs -0.10 45.60 -0.99 45.5
AlSb -10.32 79.18 -0.59 67.4
GaN -6.88 154.47 -0.80 147.4
GaP -0.71 107.57 -0.94 107.6
AsGa 0.28 29.47 -1.03 30.0
GaSb -0.06 27.39 -0.98 27.4
InN 0.52 128.06 -1.00 129.5
InP -0.01 93.56 -0.99 93.8
AsIn 0.13 21.66 -1.02 21.9
InSb 0.03 11.06 -1.01 11.1

42



Table G.2.: Power law coefficients as defined in Eq. 4.4.2 of the wurtzite type materials com-
pared to the calculated thermal conductivity at 300 K for the 0 K geometry. The
Power law was fitted to the calculated data in the high temperature limit above
500 K.

a b c κ [WK−1m−1]

BN 11.67 538.54 -0.82 622.9
BP 19.12 334.14 -1.28 373.4
AsB -72.56 1150.41 -0.79 1057.5
AlN 12.99 233.14 -1.28 263.1
AlP 1.79 61.20 -1.12 64.8
AlAs 0.02 49.45 -1.00 49.5
AlSb -2.16 42.97 -0.83 40.0
GaN -7.10 197.24 -0.78 192.4
GaP -0.97 101.57 -0.93 101.0
AsGa 0.23 25.91 -1.03 26.4
GaSb -0.03 17.14 -0.98 17.1
InN 0.70 114.42 -1.01 116.1
InP -0.56 41.66 -0.95 40.8
AsIn 0.07 16.23 -1.01 16.4
InSb 0.02 8.09 -1.01 8.1
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G. Power Law Coefficients

In Fig. G.1 Eq. (4.4.2) (blue line) was fitted to the fully lattice corrected thermal conductivity
of gallium phosphide. The thermal conductivities were calculated with the respective volume
correction. The fit was done between 100 K and 800 K. The values above 800 K showed a
deviation from the power law which in its derivation did not include lattice expansion.
Moreover, the temperature dependence of the thermal conductivity with respect to the
300 K structure, including mass defect scattering is plotted.

102 103

T [K]

102

 [W
K

1 m
1 ]

(T) with scaled lattice
(T) = 1.13 + 96.83 (T/300) 1.14

(T) for 300 K structure
(T) = 4.09 + 95.80 (T/300) 1.04

Figure G.1.: Thermal conductivity over temperature for the 300 K lattice (red). The stars
give the calculated values and the red line give a to these results fitted function,
Eq. (4.4.2). The function was only fitted above 500 K. Additionally, temperature
dependency of the thermal conductivity for gallium phosphide with expanded
lattices (blue). The blue dots give the calculated values. The function was only
fitted between 100 K and 800 K.
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