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Abstract. Focusing on the fundamental band gaps in Si, diamond, BN, LiF,
AlP, NaCl, CaSe and GaAs, and the semicore d-state binding energies in ZnS,
ZnSe, ZnTe, CdS, CdSe, CdTe and GaN, we study the differences between the
all-electron (AE) and the pseudopotential (PP)-based G0W0 method. Leaving
aside issues related to the choice of PPs within PP-G0W0, we analyze in
detail the well-known discrepancies between AE-G0W0 and PP-G0W0 band
gaps by separately addressing the approximations underlying PP-G0W0, i.e.
the frozen-core approximation, the core–valence partitioning and the use of
pseudo-wavefunctions. The largest differences, of the order of eV, appear in the
exchange part of the self-energy and the exchange–correlation potential due to
the core–valence partitioning. These differences cancel each other and, in doing
so, make the final core–valence partitioning effect on the band gaps controllable
when the semicore states are treated as valence states. This cancelation, however,
is incomplete for semicore d-state binding energies, due to the strong interaction
between these semicore states and the deep core. From our comprehensive
analysis, we conclude that reliably describing the many-body interactions at the
G0W0 level and providing benchmark results require an AE treatment.
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1. Introduction

Many-body perturbation theory (MBPT) establishes a formally exact framework for the
interpretation of quasi-particle band structure in solids in terms of single-particle excitations.
Within this framework, the central quantity is the Green function. Its poles in the complex
frequency plane determine the excitation energies of the system in terms of single electrons in
formerly unoccupied states or single holes in formerly occupied states, as measured by inverse
and direct photoemission, respectively. Calculating the Green function, however, requires
knowledge of another quantity, i.e. the self-energy through the self-consistent solution of
the Dyson equation. Being a non-local, energy-dependent operator that contains information
about all many-body interactions between electrons, the self-energy needs to be approximated
in practical calculations. A very successful approach that includes the exact-exchange and
dynamical correlation effects within the random-phase approximation (RPA) is the GW
method originally proposed by Hedin [1]. In this method, self-energy is calculated solely
from the product of the Green function and the dynamically screened Coulomb potential.
Solving the Dyson equation self-consistently using the self-energy in this form gives the self-
consistent GW quasi-particle energies [2]. In practice, under the assumption that the non-
interacting Kohn–Sham (KS) particles in density-functional theory (DFT) constitute a good
zeroth-order approximation to the quasi-particles, this self-energy is often calculated using
the Green function and the screened Coulomb potential obtained from the KS eigenvalues
and eigenfunctions [3, 4]. When the resultant self-energy is treated as a correction to the
exchange–correlation (xc) potential of the KS system, and the quasi-particle energies are given
by the corresponding corrections over the KS eigenvalues, the GW method simplifies into its
most often used form, i.e. the G0W0 approximation.

In the last two decades, this scheme has achieved great success in predicting/reproducing
reasonable fundamental band gaps and band structures of semiconductors and insulators [5–7].
However, the results can depend on the KS starting point, which reflects the limitations of this
approximation. In recent years, several approximate self-consistent GW methods have been
proposed to overcome the limitations of G0W0 by mapping the non-Hermitian energy-dependent
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self-energy to a static Hermitian effective potential. Applications to sp semiconductors and a few
d- and f-electron systems have shown promising results [8–10]. In any case, the quality of G0W0

itself has remained an open issue.
For simplicity and computational efficiency, most calculations performed to date are based

on the pseudopotential method (the PP-G0W0 method) [5]. Traditional calculations within this
framework have treated only the outermost shell as valence electrons [11–13]. In the presence
of semicore states, the interactions between core and valence electrons have turned out to be
important for getting proper single-particle excitation spectra [14–16]. Accordingly, to improve
the quality of such calculations, the shell of the semicore states is often included in the valence
configuration for constructing the PPs. Two prominent examples are CdS [14] and Cu [16],
where the xc contributions to the self-energy arising from the 3s and 3p core states have been
shown to be crucial for getting reasonable semicore d-state binding energies. Leaving aside these
issues related to the choice of PPs, recent implementations within the full-potential all-electron
framework (the AE-G0W0 method) have consistently revealed discrepancies between AE-G0W0

and the traditional PP-G0W0 results (when only the outermost shells of the respective elements
are treated as valence) [17–21]. In this context, PP-G0W0 band gaps usually show better
agreement with experiments than AE-G0W0 results. These differences can be traced back to the
approximations underlying the PP-G0W0 calculations, as not only shown recently by Gomez-
Abal et al [21] but already argued by Shirley and Martin [22]: ‘. . . any calculation following
core–valence partitioning can never be better than the accuracy with which the interactions
between core and valence electrons have been treated’. Understanding such inconsistencies
is of fundamental importance not only for a reliable description but also for an evaluation of
the G0W0 approximation itself. This is also a prerequisite for a systematic development of
methods to compute quasi-particle energies beyond the G0W0 approximation. Based on these
considerations, we analyze the discrepancies between the AE-G0W0 and PP-G0W0 (outermost
shell as valence, unless specified) results by addressing the approximations underlying
PP-G0W0. The fundamental band gaps in diamond, Si, BN, AlP, GaAs, LiF, NaCl and CaSe are
taken as quantities. Besides this, the properties of IIB–VI semiconductors and group-III nitrides
(ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe and GaN) are also studied, together with a systematic
analysis of the partitioning of core–valence interactions, an important approximation underlying
the PP-G0W0 method.

The paper is outlined as follows. An introduction of the method is given in section 2.
In section 3, we analyze the discrepancy between the AE-G0W0 and PP-G0W0 band gaps in
diamond, Si, BN, AlP, GaAs, LiF, NaCl and CaSe. The properties of the IIB–VI semiconductors
and group-III nitrides, together with an analysis of the partitioning of core–valence interactions,
are studied in section 4. We draw our conclusions in section 5.

2. Methods

In the present study, we employ our recently developed computer code FHI-gap (Green function
with augmented plane waves). This code represents an add-on to the full-potential (linearized)
augmented plane waves plus local orbitals (FP-(L)APW+lo) package WIEN2k [23, 24]. The
method and details of FHI-gap are described in [25]. For a clear understanding of the following
discussion, we start with the basic G0W0 formalism. For a detailed description, we refer the
reader to [6].
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2.1. The G0W0 approximation

The calculation of self-energy requires knowledge of the non-interacting Green function, G0,
and the screened Coulomb potential, W0:

6(r, r′
; ω) =

i

2π

∫
G0(r, r′

; ω′ + ω)W0(r, r′
; ω′ )eiω′0+

dω′. (1)

G0 is represented in terms of the KS orbitals as

G0(r, r′
; ω) =

∑
n,k

[
ϕnk (r′)

]∗
ϕnk(r)

ω − εKS
nk − iη

, (2)

where η = 0+ for occupied states (holes) and η = 0− for unoccupied states (electrons). The
dynamically screened Coulomb potential is given by

W0(r, r′
; ω) =

∫
ε−1(r, r1; ω)v(r1, r′)dr1. (3)

v(r, r′) is the bare Coulomb potential and ε(r, r′
; ω) is the dielectric function, which is

calculated from

ε(r, r′
; ω) = 1 −

∫
v(r, r1)P0(r1, r′

; ω)dr1. (4)

P0(r, r′
; ω) is the polarizability within the RPA, and is evaluated using

P0(r, r′
; ω) = −

i

2π

∫
G0(r, r′

; ω + ω′)G0(r′, r; ω′)dω′. (5)

To separate the exchange part of the self-energy, 6x, from the correlation, 6c
= 6 − 6x,

the bare Coulomb potential is subtracted from the screened one by W c
0 = W0 − v. The exchange

part of the self-energy is then given by

6x(r, r′ ) =
i

2π

∫
G0(r, r′

; ω′ )v(r, r′ )eiω′0+
dω′

= −

occ∑
n,k

ϕnk(r)v(r′, r)ϕ∗

nk(r
′ ), (6)

while the correlation part of the self-energy is given by

6c(r, r′
; ω) =

i

2π

∫
G0(r, r′

; ω′ + ω)W c
0 (r, r′

; ω′ )dω′. (7)

The quasi-particle energy of the state, characterized by the band index n and the reciprocal space
vector k, is obtained by taking the first-order correction over the KS eigenvalue through

ε
qp
nk = εKS

nk + 〈ϕnk|<
[
6

(
r, r′

; ε
qp
nk

)]
− V xc(r)|ϕnk〉 (8)

with V xc being the xc potential of the KS particles.

2.2. Levels of approximations underlying PP-G0W0

To compute G0W0 quasi-particle energies without further approximations requires
implementation of the above equations within a full-potential AE framework. In this case, the
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correction to the KS eigenvalue in equation (8) is calculated through

1εAE
nk = <

(〈
ϕnk|6

(
{ϕnk, ϕcore} , ε

qp
nk

)
|ϕnk

〉)
− 〈ϕnk|V

xc(nval + ncore)|ϕnk〉 . (9)

Here, the ϕ and n values are the wavefunctions and densities of the KS particles.
In the more often used PP-G0W0 method, PPs are employed allowing for efficient

expansion of P0, ε, W0 and 6 in a plane-wave basis. These PPs are generated from KS
calculations of free atoms. They are much softer than their full-potential counterparts close
to the nuclei and the divergence on the nuclei is totally removed. In PP-DFT calculations of
polyatomic systems, Hartree and xc potentials are formally treated as functionals of the valence
electron density alone, with the PPs accounting for interactions of the valence electrons with
core electrons and nuclei. This implies two major approximations. Firstly, the core–valence xc
potential is linearized with respect to its dependence on ncore and nval. Secondly, modifications
of the core states due to the environment generated by the neighboring atoms are discarded
(frozen-core approximation). In addition, the corresponding KS PP wavefunctions (density) are
much smoother than their AE counterparts. In later discussions, we denote them as pseudo-
wavefunctions (pseudo-density). The reliability of using these PPs in DFT calculations depends
on the fulfillment of two conditions. Firstly, the same xc functional should be used for generating
the PP and performing the self-consistent calculation of the polyatomic system [7, 26].
Secondly, the overlap of core- and valence-electron densities should not be significant. When
this is not the case, like in systems containing alkali metal elements, nonlinear core corrections
have to be added [27, 28]. A contrived core density needs to be carried along and included in
the evaluation of the xc potential.

When the G0W0 correction is applied, the self-energy and the xc potential are calculated
from the pseudo-wavefunctions, ϕ̃, and pseudo-density, ñ, for the valence states only. Therefore,
this correction reads

1εPP
nk = <(〈ϕ̃nk|6({ϕ̃nk}, ε

qp
nk)|ϕ̃nk〉) − 〈ϕ̃nk|V

xc(ñval)|ϕ̃nk〉. (10)

Compared with the AE-G0W0 method (equation (9)), the same three approximations
underlying PP-DFT calculations of polyatomic systems, i.e. the frozen-core approximation,
the core–valence linearization and the use of pseudo-wavefunctions, exist in PP-G0W0. Since
the self-energy is calculated from the valence-state wavefunctions, not the density, and no
linearization of the density is used, analogous to the term ‘core–valence linearization’ in DFT,
‘core–valence partitioning’ [21, 22] is used in the G0W0 framework. In PP-DFT, using the
same xc functional for the generation of PPs and the subsequent calculation for the polyatomic
system ensures that the same projector is used for the pseudoization of the wavefunction. In
contrast, in PP-G0W0, the self-energy is unrelated to the xc functional with which the PPs are
generated. Therefore, effects of using pseudo-wavefunctions in the calculation of the self-energy
are expected.

In this paper, we investigate the impact of these approximations by addressing them
separately. Four sets of calculations are performed to assess their influence on the results. For
the AE-G0W0 calculations, we use our newly developed G0W0 code based on the full-potential
(linearized-)augmented plane wave plus local orbitals method. Then, we fix the KS eigenvalues
and eigenfunctions of the core states at the atomic DFT level and evaluate the G0W0 corrections
to the KS eigenvalues (represented as AE-FC-G0W0 in later discussions) by

1εAE−FC
nk = <

(〈
ϕnk|6

({
ϕFC

nk , ϕFC
core

}
, ε

qp
nk

)
|ϕnk

〉)
−

〈
ϕnk|V

xc
(
nFC

val + nFC
core

)
|ϕnk

〉
. (11)
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Differences between the results obtained from equations (11) and (9) show the impact of the
frozen-core approximation on G0W0 corrections.

After this, we calculate the self-energy and xc potential as functions of the AE valence
wavefunctions and density (denoted as AE-V-G0W0) by

1εAE−V
nk = <

(〈
ϕnk|6

({
ϕFC

nk

}
, ε

qp
nk

)
|ϕnk

〉)
−

〈
ϕnk|V

xc
(
nFC

val

)
|ϕnk

〉
. (12)

Comparing this equation with equation (11), we see the impact of the core–valence partitioning.
The results are, in the end, compared with PP-G0W0 calculations (equation (10)) performed
with the GWST code [29, 30]4. That way, the remaining differences are traced back to the effect
of using pseudo-wavefunctions.

3. Open problems

3.1. The G0W0 band gaps

In spite of the above-mentioned deficiencies, for many materials, PP-G0W0 gives band gaps
in good agreement with experiments. The first few AE-G0W0 calculations [17, 18], however,
showed noticeably different results. For a fair comparison of the two methods, we only
consider results using the local-density approximation (LDA) for the KS particles as the starting
point (G0W0@LDA) unless specifically mentioned. The PP-G0W0 results agree better with
experiments than their AE counterparts in many cases [21]. If we take Si as an example,
early reports using the AE-G0W0 method show band gaps of 0.85 eV [18] and 0.9 eV ([17]),
compared with the formerly reported PP-G0W0 band gaps of 1.19 to 1.29 eV. Ku and Eguiluz
attributed the better agreement of the PP-G0W0 results with experiments to an error cancelation
between the absence of core electrons and lack of self-consistency [18]. Delaney et al, in turn,
ascribed the success of PP-G0W0 to the error cancelation between self-consistency and vertex
corrections [31]. They further claimed that the discrepancy between the PP-G0W0 band gaps and
the AE ones is due to the lack of convergence with respect to the number of unoccupied bands
in the AE calculations [32]. Leaving aside these arguments about the effects of self-consistency
and vertex corrections, Tiago et al performed a set of AE-like PP-G0W0 calculations for Si,
GaAs and Ge including the outermost two shells (one valence shell and one ‘core’ shell) as
valence states [19]. They reported a value of 1.04 eV for the band gap of Si when convergence
with respect to the number of unoccupied states is achieved. This number is supported by a
well-converged value of 1.00 eV obtained by the projector-augmented wave (PAW) method [33],
and FP-(L)APW + lo results of 1.05 eV [20] and 1.00 eV [21]. This analysis suggests that the
band gap reported in [18] is only converged by roughly 0.1 eV with respect to the number of
unoccupied states. However, the reason for the mismatch between the well-converged AE-G0W0

band gaps and the previous PP-G0W0 ones is still an interesting and important question to be
investigated. In our previous letter [21], this issue has been addressed for several distinct crystals
(diamond, Si, BN, AlP, LiF, NaCl, CaSe and GaAs). It was revealed that the core–valence
partitioning effects on the exchange part of the self-energy and the xc potential are strong,
but tend to cancel each other. For materials without semicore states (diamond, Si, BN, AlP and
LiF), discrepancies of the order of 0.1 eV remain. This justifies the PP-G0W0@LDA method in
obtaining the band gaps of such systems with an accuracy of the order of 0.1 eV. For materials

4 The KS eigenvalues and eigenfunctions are generated using the SFHIngX code; see http://www.sphinxlib.de/
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with semicore states (NaCl, CaSe and GaAs), this inaccuracy turned out to be larger. In addition
to these findings, two questions remain to be addressed. What is the effect of the frozen-
core approximation? To what extent can the core–valence partitioning effects be reduced when
including further shells as valence states?

3.2. Semicore d-state binding energies

IIB–VI semiconductors and group-III nitrides are technologically important materials in optical
applications due to their wide band gaps [34]. The semicore d states from the cation play
a crucial role in chemical bonding. Already in the 1980s, AE calculations had shown that
neglecting the effects of semicore d states on chemical bonding leads to a wrong description
of ground-state properties [35–37].

In spite of this, Zakharov et al performed the first quasi-particle band-structure calculations
for these materials employing the PP method and treating the d states as core states [38]. Later,
Rohlfing et al [14] showed that the reasonable agreement with experiments obtained by [38]
was, in fact, spurious. Furthermore, they pointed out that including the d states in the valence
configuration worsens the results, and an explicit treatment of the whole shell of semicore
states (e.g. the third shell of Ga in GaN) is necessary to obtain reliable band gaps and d band
positions and widths. This trend has been confirmed by further calculations using PP-G0W0

[15, 16, 39, 40]. Recently, Rinke et al [7] reported excellent agreement with experiments using
PP-G0W0 including only the d states in the valence region. Different from the standard
treatment, these calculations were based on the optimized effective-potential approach together
with LDA correlation (denoted as OEPx+cLDA in a later discussion). These findings highlight
the fact that different starting points on the KS level and orbitals and different core–valence
interactions can induce very different results compared to those of the above-mentioned
PP-G0W0@LDA studies.

Although AE-G0W0 calculations have been carried out for a number of materials including
some of the IIB–VI semiconductors and group-III nitrides [17, 41], a systematic study of the
electronic structure of these materials and the role of core–valence interactions within the
AE-G0W0 framework is still lacking. We also note that discrepancies up to 0.5 eV for the d-
state binding energies still remain between the PP-G0W0 and AE-G0W0 results. As semicore
d states couple to the core states differently from the valence band maximum (VBM) and the
conduction band minimum (CBM), core–valence partitioning effects are to be expected.

4. Results

4.1. Band gaps in sp semiconductors

In [21], we have analyzed the discrepancy between the AE-G0W0 and PP-G0W0 band gaps by
separating the errors from the core–valence partitioning and the use of pseudo-wavefunctions
in Si, diamond, BN, AlP, LiF, NaCl, CaSe and GaAs. Special emphasis was placed on three
examples: Si, NaCl and GaAs. In this section, we provide a more systematic discussion of this
issue by categorizing the materials in terms of two groups. Materials without semicore states
will form the first set of five examples. Errors from the core–valence partitioning and the use
of pseudo-wavefunctions will be addressed. In addition, the frozen-core approximation, a factor
that has not been discussed yet, will be studied. The corresponding PP-G0W0 and AE-V-G0W0

calculations treat only the outermost shell as valence. Since in the AE-V-G0W0 calculations the
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Figure 1. Errors in the G0W0 band-gap corrections of Si, diamond, BN, AlP
and LiF arising from the core–valence partitioning (orange), the use of pseudo-
wavefunctions (purple) and the frozen-core approximation (green). They are
computed from the differences between equations (12) and (11), equations (10)
and (12) and equations (11) and (9), respectively. The black bars show the sum
of these contributions.

valence electrons feel the potential with the core states frozen (equation (12)), small differences
in the wavefunctions from those of the general AE-G0W0 approach used in [21] (where core
states were allowed to relax) result in changes of the order of 0.01 eV in the matrix elements
of the self-energy and exchange-correlation potential. Materials with semicore states will form
the second set of three examples. It was shown in [21] that the existence of semicore states
(Na 2p in NaCl, Ga 3d and As 3d in GaAs, and Ca 3p in CaSe) makes the core–valence
partitioning inappropriate. Accordingly, we include the shell of these semicore states into the
valence configuration. In this way, we can check whether the conclusions we draw for materials
without semicore states persist for those with semicore states when these semicore shells are
treated as valence shells.

The experimental lattice constants of 5.43 Å (Si), 3.57 Å (diamond), 3.62 Å (BN),
4.02 Å (LiF), 5.45 Å (AlP), 5.63 Å (NaCl), 5.91 Å (CaSe) and 5.66 Å (GaAs) are used
throughout this paper. Using experimental geometries is appropriate and, in fact, necessary
because we like to compare our theoretical results with experimental band gaps without
unwanted problems caused by differences in the lattice constants. The integration over the
Brillouin zone (BZ) was carried out with a 4 × 4 × 4 mesh, ensuring convergence within 0.01 eV
for the band-gap correction with respect to the number of sampling points, except in diamond
and GaAs, where a 6 × 6 × 6 mesh was used instead. Convergence within 5 meV with respect to
the number of included excited states is achieved for all the materials. For example, in Si (NaCl)
we found that about 150 (300) unoccupied bands are required.

In figure 1, we show the contributions from the frozen-core approximation, the
core–valence partitioning and the use of pseudo-wavefunctions to the differences between
AE-G0W0 and PP-G0W0 band-gap corrections in Si, diamond, BN, AlP and LiF. It clearly
reveals that errors from the core–valence partitioning and the use of pseudo-wavefunctions

New Journal of Physics 14 (2012) 023006 (http://www.njp.org/)

http://www.njp.org/


9

Table 1. Matrix elements of the self-energy (correlation part 6c, exchange part
6x) and of the xc potential V xc (correlation part V c, exchange part V x) for
diamond, obtained from AE-G0W0, AE-FC-G0W0, AE-V-G0W0 and PP-G0W0

calculations. All quantities are given in eV and are shown for the VBM, 0v and
the CBM. 1 indicates that the difference between the quantities at these two
points is taken.

εLDA 6c 6x V c V x V xc 6x
− V xc 6 − V xc εG0W0

AE-G0W0

0v 1.45 −20.12 −1.80 −16.20 −18.00 −2.12 −0.67
CBM∗

−4.10 −9.77 −1.67 −13.85 −15.52 5.75 0.65
1 4.10 −6.55 10.35 0.13 2.35 2.48 7.87 1.32 5.42

AE-FC-G0W0

0v 1.45 −20.12 −1.80 −16.20 −18.00 −2.12 −0.67
CBM∗

−5.10 −9.77 −1.67 −13.85 −15.52 5.75 0.65
1 4.10 −6.55 10.35 0.13 2.35 2.48 7.87 1.32 5.42

AE-V-G0W0

0v 1.49 −19.15 −1.77 −15.00 −16.77 −2.38 −0.89
CBM∗

−5.12 −8.70 −1.65 −12.80 −14.45 5.75 0.63
1 4.10 −6.61 10.45 0.12 2.20 2.32 8.13 1.52 5.62

PP-G0W0

0v 1.24 −19.15 −16.81 −2.34 −1.10
CBM∗

−5.20 −8.67 −14.30 5.63 0.43
1 4.15 −6.44 10.48 2.51 7.97 1.53 5.68

∗ In diamond, the conduction band minimum, CBM, lies at 66.7% of the distance between 0 and X , which is a
sampling point of the 6 × 6 × 6 mesh.

account for most of the discrepancies between the AE-G0W0 and PP-G0W0 band gaps. For
a detailed analysis, we show in tables 1–3 the matrix elements of the self-energy and the xc
potential for the highest occupied and the lowest unoccupied states as well as their differences
from the AE-G0W0, AE-FC-G0W0, AE-V-G0W0 and PP-G0W0 calculations in diamond, AlP
and LiF, respectively. Taking AlP as an example, the CBM is at the X point and the VBM at
0, labeled Xc and 0v, respectively. The difference of V xc between these two points is denoted
as 1V xc

= 〈ϕXc|V
xc

|ϕXc〉 − 〈ϕ0v|V
xc

|ϕ0v〉. 16x and 16c are defined analogously. We find the
following general trends:

• The error introduced by the frozen-core approximation increases with decreasing energy
distance between the highest core state and the VBM. In other words, the core states need
to be tightly bound to justify the frozen-core approximation.

• The effect of core–valence partitioning on the correlation part of the self-energy and its
contribution to the band-gap correction is of the order of 0.01 eV and, therefore, negligible.

• The largest error appears in the exchange part of the self-energy, 6x, and the exchange part
of the xc potential, V x. These errors are due to the core–valence partitioning, and they are
of the order of 1 eV.
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Table 2. Same as table 1 for AlP with the CBM at the X point.

εLDA 6c 6x V c V x V xc 6x
− V xc 6 − V xc εG0W0

AE-G0W0

0v 1.42 −16.08 −1.58 −12.49 −14.07 −2.01 −0.59
Xc −3.96 −5.27 −1.31 −8.09 −9.40 4.13 0.17
1 1.44 −5.38 10.81 0.27 4.40 4.67 6.14 0.76 2.20

AE-FC-G0W0

0v 1.42 −16.10 −1.58 −12.49 −14.07 −2.03 −0.61
Xc −3.95 −5.31 −1.31 −8.09 −9.40 4.09 0.14
1 1.44 −5.37 10.79 0.27 4.40 4.67 6.12 0.75 2.19

AE-V-G0W0

0v 1.40 −14.08 −1.53 −10.50 −12.03 −2.05 −0.65
Xc −3.94 −4.48 −1.29 −7.25 −8.54 4.06 0.12
1 1.44 −5.34 9.60 0.24 3.25 3.49 6.11 0.77 2.21

PP-G0W0

0v 1.34 −14.09 −11.82 −2.27 −0.93
Xc −3.82 −4.57 −8.49 3.92 0.10
1 1.47 −5.16 9.52 3.33 6.19 1.03 2.50

• These core–valence partitioning errors tend to cancel each other in their contribution to the
band-gap correction. This is reflected by the difference between 16x

− 1V xc in AE-FC-
G0W0 and AE-V-G0W0 calculations. This value is 0.26 eV in diamond, −0.01 eV in AlP
and 0.24 eV in LiF.

• Summing up these errors from 16x
− 1V xc with those from 16c, the core–valence

partitioning increases the band-gap corrections. However, this increase is not enough to
solely explain the discrepancy between AE-G0W0 and PP-G0W0 results.

• The use of pseudo-wavefunctions plays an equally important role in the difference between
AE-G0W0 and PP-G0W0 band gaps.

The above analysis is based on a comparison between the AE–G0W0, AE-FC–G0W0

and AE-V-G0W0 results. As these three sets of calculations are carried out within the same
framework (FHI-gap on top of WIEN2k) and rely on the same basis sets and computational
details (convergence parameters), the differences between them truly measure the effects
of frozen core and core–valence partitioning, respectively, up to numerical accuracy. When
addressing the effects arising from the pseudo-wavefunctions, some uncertainty may be
introduced by the fact that PP calculations cannot be carried out by the same code. Comparing
the two methods applied in this work, they differ in the basis sets for the expansion of
the wavefunctions and the treatment of the frequency integration in the calculation of the
self-energy. Inconsistencies can, however, be kept small when all calculations are carefully
converged. Taking Si as an example, well-converged AE-G0W0 calculations using different
codes (and thus different basis sets, integration schemes, etc) always give a fundamental
band gap of ∼ 1.00 eV [20, 21, 33], while PP-G0W0 calculations result in a value of
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Table 3. Same as table 1 for LiF with the CBM at the 0 point.

εLDA 6c 6x V c V x V xc 6x
− V xc 6 − V xc εG0W0

AE-G0W0

0v 5.50 −31.87 −1.97 −22.26 −24.23 −7.64 −2.14
0c −3.42 −7.62 −1.45 −11.70 −13.15 5.53 2.11
1 8.97 −8.92 24.25 0.52 10.56 11.08 13.17 4.25 13.22

AE-FC-G0W0

0v 5.47 −31.87 −1.97 −22.26 −24.23 −7.64 −2.17
0c −3.37 −7.71 −1.45 −11.70 −13.15 5.44 2.07
1 8.99 −8.84 24.16 0.52 10.56 11.08 13.08 4.24 13.23

AE-V-G0W0

0v 5.49 −30.65 −1.94 −21.03 −22.97 −7.68 −2.19
0c −3.37 −5.47 −1.39 −9.74 −11.11 5.64 2.27
1 8.99 −8.86 25.18 0.55 11.29 11.86 13.32 4.46 13.45

PP-G0W0

0v 4.45 −30.43 −22.81 −7.62 −3.17
0c −3.68 −5.77 −11.05 5.28 1.60
1 8.79 −8.13 24.66 11.76 12.90 4.77 13.56

∼1.20 eV [11–13]. This difference is robust and cannot be solely explained by the effects of
frozen core and core–valence partitioning (0.06 eV). Considering an uncertainty introduced by
the (L)APW + lo basis set expansion of unoccupied states, which has been found to be smaller
than 0.03 eV [20], it is clear that the usage of pseudo-wavefunctions must play the dominant
role. The same conclusion holds for other materials.

Now we have a closer look at the error from the frozen-core approximation as this has not
been addressed in [21]. Figure 1 indicates that it is below numerical accuracy in diamond, Si and
BN. In AlP and LiF, it is −0.01 eV. We observe that it increases with decreasing energy distance
between the highest core state and the VBM. For example, in BN, the KS eigenvalues of the core
states are 170 eV below the VBM. These states are tightly bound to the nuclei. The errors from
the frozen-core approximation are negligible in both the LDA and G0W0 calculations. The error
in the matrix elements of 6c, 6x and V xc is smaller than 0.01 eV. In AlP, the KS eigenvalues
of the Al 2p states are 63.9 eV below the VBM. In FP-(L)APW+lo-based DFT calculations,
these states are normally treated as valence states. When they are considered as core states and
frozen, the error in the LDA band gap is still negligible, but that in the G0W0 correction is not.
The maximum change in the matrix elements of 6c, 6x and V xc is 0.04 eV. It appears in 6x

of the lowest unoccupied state at the X point (−5.31 eV compared with −5.27 eV in the fourth
column of table 2). This error in the self-energy is a clear indication that the self-energy is more
sensitive to the slight variation of the wavefunctions due to the frozen-core approximation than
the xc potential. In LiF, the KS eigenvalue of the Li 1s state is 39.6 eV below the VBM. Here,
the error from the frozen-core approximation is already observable in the KS band gap, which
changes by 0.02 eV. The maximum error in the matrix elements is 0.09 eV. It shows up in 6x

of the lowest unoccupied state 0c (−7.71 eV compared with −7.62 eV in the fourth column
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Figure 2. Errors in the band gaps of NaCl, CaSe and GaAs arising from the
core–valence partitioning (orange) and the frozen-core approximation (green)
when the semicore shells are treated as valence. The black bars show the
respective sums of these contributions.

of table 3). This error is fortunately canceled by the corresponding change in the correlation
part of the self-energy, resulting in a final impact of only −0.01 eV on the G0W0 band-gap
correction. In summary, for the frozen-core approximation to be valid, the core states should be
tightly bound. In Si, diamond and BN, where this is the case, the error from this approximation
is negligible. In AlP and LiF, these errors become non-negligible. The self-energies are more
sensitive to this approximation than the xc potential.

Let us now turn to the second set of materials, i.e. those with semicore states. In [21], the
matrix elements of 6c, 6x and V xc in NaCl and GaAs were analyzed for the case when only the
outermost shell was treated as valence. Due to the presence of semicore states, incomplete error
cancelation between 16x and 1V xc was observed, which led to large and negative core–valence
partitioning errors. The higher the energy of the semicore states, the larger the core–valence
partitioning errors become. Going from NaCl through CaSe to GaAs, where the center
of the semicore bands (at the KS level) is 20.8 , 18.6 and 14.8 eV below the VBM, respectively,
the corresponding core–valence partitioning errors are −0.09, −0.22 and −0.45 eV [21]. Since
the semicore states of these materials are high in energy, it is impossible to disentangle the
effects of the frozen-core approximation and the core–valence partitioning.

In [19], it was illustrated that the PP-G0W0 results for GaAs can be improved by including
the whole shell of the semicore states into the valence region. We therefore now investigate the
effects of the frozen-core approximation and the core–valence partitioning when the semicore
shells are treated as valence. In NaCl and CaSe, this means treating the outermost two shells of
the cations as valence shells. In GaAs, the same treatment applies to both Ga and As atoms.
In figure 2, we show the errors from the frozen-core approximation and the core–valence
partitioning in these three materials when the semicore shells are treated as valence shells. All
the conclusions we have drawn above about the core–valence partitioning for materials without
semicore states turn out to be also valid here. The impact of the frozen-core approximation is
negligible in NaCl and GaAs, where the KS eigenvalues of the highest core states are more than
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Table 4. Same as table 1 for CaSe, but without PP-G0W0 results.

εLDA 6c 6x V c V x V xc 6x
− V xc 6 − V xc εG0W0

AE-G0W0

0v 1.87 −17.60 −1.61 −13.64 −15.25 −2.35 −0.48
Xc −4.06 −5.70 −1.39 −9.40 −10.79 5.09 1.03
1 1.86 −5.93 11.90 0.22 4.24 4.46 7.44 1.51 3.37

AE-FC-G0W0

0v 1.81 −17.41 −1.61 −13.63 −15.24 −2.17 −0.36
Xc −4.04 −5.71 −1.39 −9.40 −10.79 5.08 1.04
1 1.86 −5.85 11.70 0.22 4.23 4.45 7.25 1.40 3.26

AE-V-G0W0 (Ca 2s, 2p, 3s; Se 4s, 4p)
0v 1.82 −14.69 −1.54 −10.76 −12.30 −2.39 −0.57
Xc −4.07 −5.12 −1.38 −8.81 −10.19 5.07 1.00
1 1.86 −5.89 9.57 0.16 1.95 2.11 7.46 1.57 3.43

181 eV below the VBM. In CaSe, the KS eigenvalues of the Se 3d states are only 46.0 eV below
the VBM. Similar to what we have observed in LiF, errors from the frozen-core approximation
become non-negligible. The largest discrepancy is due to the exchange part of the self-energy
(−17.41 eV compared with −17.60 eV in the fourth column of table 4). In this case, this error
is not fully canceled by the corresponding change in the correlation part of the self-energy. The
overall impact of the frozen-core approximation is a reduction of the band gap. Summing up
with the associated effect from the core–valence partitioning which, in contrast, increases the
gap, we can conclude that these approximations (mimicked by AE-V-G0W0) typically lead to
an overestimation of band gaps when semicore shells are included in the valence configuration.
As a matter of fact, all conclusions we have drawn above about core–valence partitioning in
materials without semicore states become valid again in these materials with semicore states,
when the shells of the semicore states are treated as valence shells. Therefore, the conclusions
we have drawn about the effects of approximations underlying PP-G0W0 in this article and in
our previous paper [21] are general.

4.2. Band gaps and semicore d states in IIB–VI semiconductors and group-III nitrides

In this section, we compare our AE-G0W0 results for IIB–VI semiconductors and group-
III nitrides with experiments and other theoretical results. To investigate the core–valence
interactions on different levels, the core–valence partitioning effects are analyzed using different
configurations of valence states. We restrict ourselves to the metastable zinc-blende structure
and experimental lattice constants. The BZ integrations were carried out with a 6 × 6 × 6 mesh
in all cases, and ∼150 unoccupied states were included to ensure the convergence of the
fundamental band gaps (d-state binding energies) within 0.01 eV (0.03 eV) with respect to the
number of unoccupied states.

In table 5, we show the band gaps together with other theoretical and experimental data.
Since spin–orbit interaction is not considered in our calculations, the VBM here corresponds to
the 015v state of the zinc-blende crystal. Including spin–orbit interaction would split it by the
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Table 5. G0W0 band gaps for GaN, ZnS, ZnSe, ZnTe, CdS, CdSe and CdTe in
the zinc-blende structure. Experimental and theoretical results from the literature
are shown for comparison. All quantities are in eV. KS values are given in
parentheses.

GaN ZnS ZnSe ZnTe CdS CdSe CdTe

Lattice constant in Å 4.50 5.40 5.67 6.09 5.82 6.05 6.48
10/3 [45] 0.00 0.02 0.13 0.32 0.02 0.14 0.32

This work
G0W0@LDA 2.79 (1.76) 3.19 (1.85) 2.36 (1.00) 2.26 (1.02) 1.85 (0.87) 1.22 (0.35) 1.36 (0.50)

AE-G0W0 results from the literature
G0W0@LDA [17, 41] 3.03 (1.81) 3.21 (1.86) 2.25 (1.05) 2.23 (1.03) 1.98 (0.93) 1.37 (0.51)

PP-G0W0 results from the literature (outermost two shells as valence)
G0W0@LDA [15] 2.88 3.50 2.45
G0W0@LDA [42] 3.41 (1.84) 2.37 (1.02) 2.27 (1.04) 2.13 (0.82) 1.38 (0.29) 1.51 (0.49)

PP-G0W0 results from the literature (semicore d states plus outermost shell as valence)
G0W0@OEPx+cLDA [7] 3.09 (2.88) 3.70 (3.08) 2.39 (1.96)

Experiment [45, 46] 3.30 3.87 2.95 2.68 2.50 1.83 1.90

spin–orbit coupling constant 10 into a 08v state and a 07v state with the corresponding energy
values increased by 10/3 and lowered by 210/3, respectively. Therefore, the band gap obtained
for the 015v state is overestimated by 10/3. For comparison with experiment, this value should
hence be corrected [17, 42]. Such a comparison confirms the general trend we have observed in
the previous section. The PP-G0W0 method (with the outermost two shells treated as valence)
gives larger band gaps than AE-G0W0. In fact, the AE-G0W0 band gaps remain seriously smaller
than the experimental values. On the other hand, our results are in excellent agreement with the
AE-G0W0 values of van Schilfgaarde et al [17, 41], using the linear muffin-tin orbital (LMTO)
method. Differences larger than 0.15 eV are only observed in GaN and CdS, which we assign to
the fact that they have used the wurtzite structure that is known to exhibit larger band gaps than
the zinc-blende phase [43, 44].

Table 6 shows our results for the semicore d-state binding energies. The presented values
refer to the average position of the semicore d states at 0 with respect to the VBM [42].
Taking GaN as an example, there are three and two degenerate d states, respectively, at −13.58
and −13.27 eV below the VBM at the LDA level. Hence, the LDA d-state binding energy of
13.46 eV given in table 6 is obtained by taking the average over these values considering the
corresponding weights of 3 and 2. As mentioned above, spin–orbit coupling is not considered
here (the 015 state is taken as reference rather than the 08v state), therefore one should add 10/3
to the computed value for comparison with experiment. (Likewise, in [42] and [17] 10/3 was
subtracted from the experimental data.)

In [42], it was pointed out that the use of the plasmon-pole approximation for the screening
as done in [15] may introduce additional errors in the band structure. Thus, we consider the
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Table 6. G0W0 d-state binding energies (in eV) for GaN, ZnS, ZnSe, ZnTe,
CdS, CdSe and CdTe in the zinc-blende structure. KS values are displayed in
parentheses.

GaN ZnS ZnSe ZnTe CdS CdSe CdTe

This work
G0W0@LDA 15.76 (13.46) 6.84 (6.35) 7.12 (6.58) 7.55 (6.99) 8.16 (7.63) 8.45 (7.86) 8.74 (8.18)

AE-G0W0 results from the literature
G0W0@LDA [17] 16.40 (13.60) 7.10 (6.20) 7.70 (6.70) 8.20 (7.50)

PP-G0W0 results from the literature (outermost two shells as valence)
G0W0@LDA [15] 15.70 6.40 8.10
G0W0@LDA [42] 6.84 (6.31) 7.17 (6.55) 7.60 (6.69) 8.13 (7.53) 8.40 (7.72) 8.79 (8.08)

PP-G0W0 results from the literature (semicore d states plus outermost shell as valence)
G0W0@OEPx+ 16.15 (15.02) 7.08 (7.05) 7.75 (7.61)

cLDA [7]

Experiment [45, 47–49] 17.1 8.7 9.2 9.84 9.5 9.7 10.5

values reported in [42] as the state-of-the-art PP-G0W0@LDA results. Indeed, these values
agree within 0.1 eV with our AE-G0W0 data. Both of them differ considerably (∼ 0.5 eV) from
the AE values of [17]. Therefore, the formerly reported discrepancies between the LDA-based
AE-G0W0 and PP-G0W0 results are reduced from up to 0.5 eV to less than 0.1 eV. Overall,
the G0W0 method represents a substantial and systematic improvement over LDA. However,
discrepancies with experiments, scattering from ∼1.3 eV (CdSe) to ∼ 2.3 eV (ZnTe), still
remain.

To analyze the role of core–valence interaction, we compare the band structures of GaN and
ZnS obtained by AE-V-G0W0 (equation (12)) using different configurations of valence states.
Since the 3s and 3p states of the IIB–VI semiconductors and group-III nitrides belong to the
core states, we call the n = 1 and n = 2 shells of these materials the deep core. In GaN, these
deep core states include Ga 1s, 2s and 2p and N 1s. In ZnS, the deep core states comprise the
n = 1 and n = 2 shells of both Zn and S. The first set of AE-V-G0W0 calculations treats the
deep core states plus the 3s and 3p states of Ga and Zn as core. The 3d, 4s and 4p states of the
cation and the outermost shell of the anion are considered as valence. The second set includes
only the deep core states in the core. The n = 3 shell of both Ga and Zn plus the outermost shell
of the anion are treated as valence. These two configurations are denoted as AE-V1-G0W0 and
AE-V2-G0W0, respectively.

The comparison between AE-V1-G0W0 and AE-V2-G0W0 results allows one to study the
interaction between electrons within the semicore shell of the cation. The further difference
between AE-V2-G0W0 and AE-G0W0 results reveals the influence of the deep core states.

In figures 3 and 4, we display the band diagrams of GaN and ZnS from the LDA, AE-V1-
G0W0, AE-V2-G0W0 and AE-G0W0 calculations. Including only the outermost shell and the
d states of the cation in the G0W0 correction (AE-V1-G0W0) moves the d states up in energy
by several electron volts. In GaN, the Ga 3d states jump out of the energy range of the N 2s
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Figure 3. Band structure of cubic GaN from G0W0 (black circles) compared to
LDA (solid gray lines). The top of the valence band is chosen as zero energy.
The panels from left to right correspond to the AE-V1-G0W0, AE-V2-G0W0 and
AE-G0W0 calculations, respectively.

Figure 4. Same as figure 3 for ZnS.

band. This is found between −13 and −17 eV in the left panel of figure 3, while the bands
at ∼ −10 eV correspond to the Ga 3d states. In ZnS, they even enter the region of the sulfur-
derived valence p bands, as can be seen in figure 4. When the interaction between the 3d states
and the 3s and 3p states (the semicore shell) in the cation is included in the G0W0 calculation
(AE-V2-G0W0), these bands shift back in the right direction toward the AE-G0W0 results. This
shows that the inconsistent treatment of the interactions between the cation semicore d states,
the sp states in the same shell and the anion sp valence states is responsible for the unphysical
lowering of these d-state binding energies. This conclusion is consistent with what has been
reported and discussed in detail for Cu in [16] and for CdS in [14]. Nevertheless, discrepancies
of the AE-V2-G0W0 results of the order of 1 eV with respect to AE-G0W0 remain, a clear
indication that also the interaction with the deep core states is necessary for a correct description
of the semicore d states. In our calculations, we observe that removing the deep core states for
the calculation of the polarizability produces a negligible effect. This is in agreement with the
expectation that deep core states do not participate in the screening. However, their interaction
with other states, especially the semicore d states, through the screened Coulomb potential is still
important.
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Table 7. Matrix elements of the self-energy in eV (correlation part: 6c; exchange
part: 6x) and xc potential V xc (correlation part: V c; exchange part: 6x) for GaN
in our AE-V1-G0W0, AE-V2-G0W0 and AE-G0W0 calculations.

εLDA 6c 6x V xc 6 − V xc εG0W0

AE-V1-G0W 0 (Ga 3d, 4s, 4p)
0v 3.16 −21.60 −18.65 0.21
0d 8.51 −38.28 −33.28 3.51
1 13.26 −5.35 16.68 14.63 −3.30 9.96

AE-V2-G0W 0 (Ga 3s, 3p, 3d, 4s, 4p)
0v 3.22 −22.62 −19.21 −0.19
0d 10.23 −51.90 −40.11 −1.56
1 13.26 −7.01 29.28 20.90 1.37 14.63

AE-G0W0

0v 3.19 −23.88 −20.48 −0.21
0d 10.50 −56.81 −43.76 −2.55
1 13.26 −7.31 32.93 23.28 2.34 15.60

To analyze the origin of these differences, we follow a procedure analogous to that
employed in the previous section for the band gaps. In table 7, we show the matrix elements
of the self-energy and the xc potential at the VBM and the highest d state at the 0 point (0d) for
GaN, as well as the difference between them. From the sign of 16c and 16x, we see that the
exchange interaction between the semicore d states, the s and p states in the same shell, and the
deep core states tends to increase the binding energy of the d states, while the corresponding
correlation interaction tends to reduce it. The correlation part of the self-energy on the VBM,
mainly a 2p state of N, shows very small differences between AE-V1-G0W0, AE-V2-G0W0

and AE-G0W0 calculations (< 0.1 eV), indicating that the correlation interaction between this
state and the 3s and 3p states of the cation as well as the deep core states is weak. However,
looking at this term for the highest d state, we observe that the correlation interaction between
the 3s, 3p and 3d states is very strong, moving the semicore d states up by ∼ 2 eV when going
from the AE-V1-G0W0 to AE-V2-G0W0 calculations. This is due to the strong overlap between
wavefunctions of electrons in the same shell. Explicitly including these interactions at the G0W0

level, the semicore d band moves down in energy due to a stronger contribution from 16x. Thus,
treating all interactions in the semicore shell at the G0W0 level is obviously necessary. Including
the deep core states further increases the correlation part of the self-energy by 0.30 eV (16c of
−7.31 in AE-G0W0 compared to −7.01 in AE-V2-G0W0 in table 7). This discrepancy is much
smaller than in the previous case, but still not negligible.

The matrix elements for the exchange part of the self-energy (fourth column in table 7)
for the VBM increase by almost 1 eV by including the 3s and 3p states (going from AE-V1-
G0W0 to AE-V2-G0W0) and by another 1.3 eV by including the deep core states (going from
AE-V2-G0W0 to AE-G0W0). On the other hand, the same matrix elements for the d state show
huge changes (∼ 13 eV when including the 3s and 3p states of Ga and a further 5 eV when
including the deep core electrons of Ga and N). These changes are carried along to the binding
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Table 8. Same as table 7 for ZnS.

εLDA 6c 6x V xc 6 − V xc εG0W0

AE-V1-G0W0 (Zn 3d, 4s)
0v 2.41 −18.44 −16.36 0.33
0d 8.00 −34.21 −30.04 3.83
1 6.06 −5.59 15.77 13.68 −3.50 2.56

AE-V2-G0W0 (Zn 3s, 3p, 3d, 4s)
0v 2.55 −20.34 −17.38 −0.41
0d 9.85 −46.61 −36.40 −0.36
1 6.06 −7.30 26.27 19.02 −0.05 6.01

AE-G0W0

0v 2.58 −23.08 −19.93 −0.57
0d 10.13 −50.87 −39.65 −1.09
1 6.06 −7.55 27.79 19.72 0.52 6.58

energy of the 3d states. Summing up all these contributions, we obtain ∼ 11 eV from the 3s
and 3p states of Ga and another ∼ 3 eV coming from the deep core states in the exchange part
of the self-energy. The corresponding contributions from the xc potential are 6.27 eV (change
of 1V xc going from AE-V1-G0W0 to AE-V2-G0W0 in table 7) and 2.38 eV (change of 1V xc

going from AE-V2-G0W0 to AE-G0W0 in table 7), respectively. The correction to the binding
energy is again much smaller, resulting from an error cancelation between the contributions
from the self-energy and the xc potential. All in all, the change in the G0W0 correction to the d
band position going from AE-V1-G0W0 to AE-V2-G0W0 and from AE-V2-G0W0 to AE-G0W0

is as much as 4.67 and 0.97 eV, respectively (last column in table 7).
From this analysis we conclude that the exchange interaction of the 3s and 3p with the

3d states of Ga is the main reason for the necessity of including all these states in the G0W0

calculations in order to obtain reliable results for the binding energy of the d states. This is in
agreement with what was found by Rohlfing et al for CdS in [14], and by Marini et al for Cu
in [16]. However, the correlation interaction between these states produces large corrections
of ∼ 2 eV, which can also not be neglected. The deep core states contribute to the d-state
binding energies through both exchange and correlation. The total contribution increases the
d-state binding energies. Unlike what was found in the previous section for the band gaps,
where the errors from core–valence partitioning of 16 and 1V xc cancel, the error cancelation
between these two quantities for the d state position is incomplete (a difference of 0.97 eV when
comparing 1(6 − V xc) from the AE-V2-G0W0 and AE-G0W0 calculations in table 7). On the
other hand, the corresponding PP-G0W0 results in table 6 are similar to our AE-G0W0 data.
We therefore conclude that a large error stemming from the use of pseudo-wavefunctions must
exist, which fortunately cancels the one arising from core–valence partitioning.

In table 8, we show the same analysis as before, but for ZnS. Similar conclusions as for GaN
can be drawn. The exchange interaction between the core states (the deep core states plus the 3s
and 3p states of the cation) and the semicore d states increases the d-state binding energy, while
the correlation interaction decreases it. The dominant core–valence partitioning effects appear
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in the exchange part of the self-energy. They are partly canceled by the large changes in the xc
potential and the small but non-negligible changes in the correlation part of the self-energy. On
going from AE-V1-G0W0 to AE-V2-G0W0 and from AE-V2-G0W0 to AE-G0W0 (last column
in table 8), we find that the total G0W0 correction to the d-state binding energy increases by 3.45
and 0.57 eV, respectively. The latter shows that also the deep core states contribute significantly
to the semicore d-state binding energy.

In view of the recent discussion on the convergence of the ZnO bands with the number
of unoccupied orbitals [50, 51], one needs to address the question of whether an improved
basis set for the unoccupied states would affect our results. We can clearly state that the
above-described findings would not change for several reasons. (i) Adding additional local
orbitals in the calculation of ZnS did not significantly change the results. (ii) The convergence
of unoccupied states enters the computation of the correlation self-energy only. The most
dramatic effects described above are, however, found for the exchange part of the self-energy.
(iii) Similar to what was noted before in section 4.1, AE-V1-G0W0, AE-V2-G0W0 and AE-
V-G0W0 calculations have been carried out within the same framework using the same
convergence parameters. Hence, even if the basis set had an influence on our results, it would
be diminished by looking into differences.

Finally, we address the issue of the starting point underlying the G0W0 calculation. In [7],
OEPx+cLDA has been used in generating both the PPs and the self-consistent DFT calculations.
Only the outermost shell and the semicore d states were treated as valence. The corresponding
results for band gaps and semicore d-state binding energies are shown in tables 5 and 6,
respectively. We observe two trends: (i) the so calculated band gaps overall agree better with
experiment than the AE results; (ii) the semicore d band positions are closer to experiments
than our AE results except in CdS, where their starting value at the KS level is comparable
to ours. These results clearly indicate that the G0W0@OEPx+cLDA calculations benefit from
their starting point at the KS level because perturbation theory is better justified when the KS
potential V xc is closer to the self-energy 6.

5. Conclusions

We have analyzed the differences between AE-G0W0 and PP-G0W0 by studying a series of sp
semiconductors, IIB–VI semiconductors and group-III nitrides. Leaving aside issues related to
the choice of PPs within the PP-G0W0, we first focus on well-known discrepancies between the
AE-G0W0 and PP-G0W0 (when only the outermost shell is treated as valence) band gaps in sp
semiconductors. Approximations underlying PP-G0W0, i.e. the frozen-core approximation, the
core–valence partitioning and the use of pseudo-wavefunctions, were separately addressed. The
frozen-core approximation is only justified when the core states are tightly bound. In such cases,
it has a negligible influence (< 0.01 eV) on the band gaps. Otherwise, the self-energy is sensitive
to slight changes in the wavefunctions, and the final impact of the frozen-core approximation
on the band gaps becomes visible. Effects as large as several eV appear in the exchange part
of the self-energy and the xc potential due to core–valence partitioning. They tend to cancel
each other and, as a consequence, make their final influence on the band gaps controllable when
the semicore states are treated as valence. The effects of using pseudo-wavefunctions play an
equally important role for explaining the differences between the AE-G0W0 and PP-G0W0 band
gaps.
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For the IIB–VI semiconductors and group-III nitrides, we have focused on the effects of
partitioning the core–valence interactions. The semicore d states strongly interact with the s
and p electrons of the same shell. Thereby, the exchange interaction increases the semicore d-
state binding energies, while the correlation interaction counteracts, however, to a lesser extent.
Hence, when the s and p states are prevented from interacting with the d electrons, the semicore
d-state binding energies become seriously underestimated, as illustrated by our AE-V1-G0W0

calculations. This finding, consistent with what has been reported in [14–16], explains in a
clean manner why the LDA-based PP-G0W0 method requires the whole shell to be treated as
valence. The deep core states, low in energy, interact weakly with the VBM. However, their
interaction with the semicore d states is strong. If they are not included in the G0W0 calculation,
large core–valence partitioning errors in the self-energy and the xc potential do not cancel.
As a consequence, the semicore d band positions are higher than those obtained from AE-
G0W0. PP-G0W0 calculations obviously benefit from a fortunate error cancelation between the
core–valence partitioning effect and the use of pseudo-wavefunctions. This effect can, however,
not be considered as guaranteed. A reliable description of many-body interactions at the G0W0

level hence requires the performance of AE calculations.
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