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Abstract. The random-phase approximation to the ground state correlation
energy (RPA) in combination with exact exchange (EX) has brought the
Kohn–Sham (KS) density functional theory one step closer towards a universal,
‘general purpose first-principles method’. In an effort to systematically assess
the influence of several correlation energy contributions beyond RPA, this paper
presents dissociation energies of small molecules and solids, activation energies
for hydrogen transfer and non-hydrogen transfer reactions, as well as reaction
energies for a number of common test sets. We benchmark EX + RPA and
several flavors of energy functionals going beyond it: second-order screened
exchange (SOSEX), single-excitation (SE) corrections, renormalized single-
excitation (rSE) corrections and their combinations. Both the SE correction
and the SOSEX contribution to the correlation energy significantly improve
on the notorious tendency of EX + RPA to underbind. Surprisingly, activation
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energies obtained using EX + RPA based on a KS reference alone are remarkably
accurate. RPA + SOSEX + rSE provides an equal level of accuracy for reaction
as well as activation energies and overall gives the most balanced performance,
because of which it can be applied to a wide range of systems and chemical
reactions.
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1. Introduction

In the context of first principles electronic structure theory, ‘exact-exchange plus correlation
in the random-phase approximation (EX + RPA)’ [1, 2] has recently attracted renewed and
widespread interest [3–30]. In practice, the RPA calculations are most often performed in
a non-self-consistent manner where the exchange-correlation (xc) energy contributions are
evaluated with input orbitals corresponding to an approximate, usually semilocal xc energy
functional. The great interest in EX + RPA is largely due to its three attractive features: (i)
the exact-exchange energy (EX) cancels the spurious self-interaction error present in the
Hartree energy, (ii) the RPA correlation energy is fully non-local and includes long-range
van der Waals (vdW) interactions automatically and seamlessly [31] and (iii) EX + RPA is
applicable to small-gap or metallic systems by summing up the sequence of ‘ring’ diagrams
to infinite order. The latter is in contrast to order-by-order perturbation theories (e.g. second-
order Møller–Plesset (MP2) [32]) that break down for systems with zero gap. Moreover, one
can interpret the RPA as an approach that screens the non-local exchange, resulting in a
frequency-dependent non-local screened exchange interaction, as opposed to conventional or
global hybrid functionals where the parameters that reduce or ‘screen’ the EX contribution are
fixed and system independent [33–35]. Such a system-independent ‘screening’ is expected to
be unreliable for metals or wide-gap insulators, where non-local exchange is almost entirely
screened (metals) or prevails to a large extent (insulators).
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While a critical assessment of EX + RPA is emerging [5–10, 12–26, 28], some
shortcomings have been known for a while. Total energies are typically significantly
overestimated [3, 9, 11, 28, 36, 37], which is caused by an overestimation of the correlation
energy at the short range. Binding energies, on the other hand, show a tendency to be
underestimated [3, 7, 8, 12, 13, 16, 17, 25, 38]. Moreover, the RPA correlation energy is not
self-correlation-free [9, 37, 39].

It has been demonstrated that overestimation of the absolute correlation energy
can be almost entirely removed by adding a second-order screened exchange (SOSEX)
term [36, 37, 39]. For one-electron systems the self-interaction error in EX + RPA is exactly
canceled by adding this term [37, 39]; however, for systems with more than one electron, a
many-electron self-interaction error [40, 41] prevails [39]. The SOSEX can also be interpreted
as a correction to the RPA correlation energy that can be included to approximately restore the
antisymmetry of the many-electron description [39]. Furthermore, SOSEX improves binding
energies, although a sizeable underestimation persists [9, 36, 37, 39, 42, 43]. The underbinding
problem can also be alleviated, in particular for weakly interacting systems, by adding a
correction deriving from single excitations (SEs) [25] to EX + RPA built on a reference state
obtained from the Kohn–Sham (KS) density functional theory (DFT). This suggests that
RPA(+SOSEX) yields good estimates for the correlation energy, but errors in the exchange
energy are sizeable if KS orbitals are used to evaluate the EX.

In light of these observations it is timely to extend the critical assessment of EX + RPA to
a wider class of systems and to consider combinations of the corrections suggested before. In
this paper, we will address this objective by performing benchmark calculations for atomization
energies on an appreciable test set of archetypal insulating solids and small molecules [44–47]
as well as reaction and activation energies for hydrogen and non-hydrogen transfer reactions
[48, 49]. The schemes we include are EX + RPA based on KS-DFT reference states, and those
beyond EX + RPA by adding corrections from SE or SOSEX individually, or from both of them.
In addition we will also assess the hybrid-type schemes [25] where one replaces the total energy
at the EX level evaluated with KS-DFT orbitals by that evaluated with Hartree–Fock (HF)
orbitals, as an effective way to approximate the SE contribution [50]. The second-order SE
correction can diverge when the gap between occupied and virtual states closes, with detrimental
effects for the description of the transition states in chemical reactions. As discussed briefly
in [25], including higher-order terms in the spirit of RPA permits a resummation of the SE
correction, as will be demonstrated in section 2.3. This so-called renormalized SE (rSE) is well
behaved and is included in our benchmark tests.

The paper is organized as follows. Sections 2 and 3 briefly summarize the important
aspects of the underlying theory and the computational parameters of our work. Results on
molecular and solid-state atomization energies as well as reaction energies and barrier heights
are presented in section 4 before we draw conclusions in section 5.

2. Theory

2.1. Basics of random-phase approximation (RPA)

In order to properly position the methods applied in the present work within the formal
framework of DFT, we briefly recapitulate essential equations and outline the structure of
the functionals used. Currently, for total energy calculations, RPA-based functionals usually
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use either KS-DFT reference states, i.e. single-particle wavefunctions and eigenvalues or
generalized KS (GKS) [51] reference states, to compute the non-local EX energy as well as
the non-local correlation energy [3, 5, 7]. In this context, the total energy is defined as

E[n] = Ts[{φi}] + EH[n] + Eext[n] + Ex[{φi}] + Ec[{φi}], (1)

where the terms deriving from the potential contributions in the Hamiltonian, EH, the
electrostatic Hartree or Coulomb energy, and Eext, the (external) electron–ion interaction,
depend on the local density, whereas the last two terms, EX energy Ex and correlation energy
Ec, are nonlocal contributions. Note that the KS kinetic energy, in analogy to the EX energy, is
not an explicit functional of the density, but rather of the KS orbitals. The non-locality in Ex is
due to the nonlocal exchange operator acting on each (occupied) orbital φiσ (r) associated with
spin σ and its well-known dependence on the (nonlocal) reduced one-particle density matrix
ρσ (r, r′) =

∑occ
j φ jσ (r)φ∗

jσ (r′) reads

Ex,σ = −
e2

2

∫ ∫
|ρσ (r, r′)|2

|r − r′|
d3r d3r′. (2)

In contrast to the optimized effective potential (OEP) method [52–54], in the HF theory the
exchange operator is fully nonlocal, and the action of the exchange operator on a single-
particle wavefunction (i.e. orbital) depends on the value of that very orbital throughout the
entire space (see [55]). Note that the correlation energy Ec is a functional of both occupied
and unoccupied eigenstates and requires knowledge of the associated eigenenergies as well
(see below). However, both Ex and Ec are implicit functionals of the electron density n
(see, e.g., [56]). Recent work pursuing the construction of a local RPA correlation potential
is presented in [57–62]. Work in this direction is of great value, since it ultimately enables
calculations of self-consistent RPA correlation energies staying rigorously within the KS-DFT
picture.

The RPA correlation energy can be conveniently derived from (i) perturbation theory or (ii)
from the adiabatic-connection fluctuation-dissipation (ACFD) theorem [63–65]. Fundamental to
the formalism is the adiabatic connection between the Hamiltonian Ĥ of an interacting many-
electron system and the corresponding non-interacting KS Hamiltonian ĤKS. Formally, both
systems may be simultaneously described by a coupling constant-dependent Hamiltonian Ĥ(λ),
with λ being the coupling constant or the scaling factor in the electron–electron interaction,
vλ = λv(r − r′). The electrons move in a λ-dependent external potential vλ

ext(r). Note that the
ground-state density of Ĥ(λ) for all λ ∈ [0, 1] is constant and is equal to the physical ground-
state density n(r), i.e. the ground-state density of the real system. Ĥ(λ = 1) is the physical
many-electron Hamiltonian with vλ=1(r) = vext(r), and Ĥ(λ = 0) is the KS Hamiltonian with
vλ=0(r) = vKS(r) = vext(r) + vH(r) + vxc(r). vH(r) is the electrostatic Hartree potential and vxc(r)
is the xc potential. Within ACFD, the exact KS correlation energy can be written as

Ec = −

∫
∞

0

du

2π

∫ 1

0
dλ

∫
dr

∫
dr′, {ν(r − r′) × (χλ(r, r′

; iu) − χ0(r, r′
; iu))}. (3)

Here ν(r − r′) = 1/|r − r′
| is the bare Coulomb interaction kernel, and χ0 is the KS

independent-particle response function at imaginary frequencies iu,

χ0(r, r′
; iu) = 2

occ∑
i

unocc∑
a

φ∗

i (r)φa(r)φ∗

a(r
′)φi(r′)

iu + εi − εa
+ c.c., (4)
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where c.c. denotes the ‘complex conjugate’ and the prefactor 2 accounts for the spin degeneracy
in closed-shell systems. In equation (3), χλ is the density–density response function of the
‘intermediately’ interacting many-electron system employing a scaled Coulomb potential νλ.
We adhere to the commonly used notation of i, j, . . . being occupied i.e. hole KS states
and a, b, . . . being unoccupied or virtual, particle states. In principle, a Dyson-type integral
equation [66] has to be solved for χλ,

χλ = χ0 + χ0 (νλ + f λ
xc) χλ, (5)

with f λ
xc being the xc kernel, i.e. the functional derivative of the xc potential with respect to

the density. Within RPA, fxc = 0, i.e. using many-body terminology [67], the so-called vertex
corrections are not included in the response function χ or equivalently in the screening of the
Coulomb interaction. Solving equation (5) for χλ with f λ

xc = 0 corresponds to the diagrammatic
resummation of ring graphs [36, 68] to infinite order. In passing, we note that, working within
RPA, equation (5) can be rearranged to

χλ = (1 − χ0νλ)
−1

· χ0 = [1 + χ0νλ + χ0νλχ0νλ + · · ·] · χ0, (6)

reflecting the above-mentioned summation of the (screened) Coulomb interaction up to infinite
order in χ0νλ. As will be seen later, equation (6) resembles the CC amplitude equations where
the so-called particle–particle, particle–hole and hole–hole ladder terms have been removed (see
equation (17)). Starting from equation (6), the λ-integral is readily done and the final expression
for the RPA correlation energy reads

ERPA
c =

∫
∞

0

du

2π
Tr{ln(1 − χ0(iu)ν) + χ0(iu)ν}. (7)

2.2. From coupled-cluster theory to RPA and RPA+ second-order screened exchange (SOSEX)

From a DFT purist’s point of view, the previously outlined ACFD terminology for the RPA is
certainly the most consistent way to classify ‘RPA’ as a correlation energy functional to the
many-electron ground state. An alternative formulation of the RPA may be motivated starting
from many-body theory. Many-body or equivalently field-theoretical diagrammatic techniques
originally developed in quantum electrodynamics and nuclear physics [69] have been applied
to the homogeneous electron gas as well as finite systems such as atoms and molecules for
several decades already. For systems that are not strongly correlated, the most successful
diagrammatic, partial summation technique (see [56] and [70]) is the coupled-cluster (CC)
expansion of the many-electron wavefunction. The CC expansion to the homogeneous electron
gas has been applied by Freeman [36], Kümmel, Lührmann and Zabolitzky [71] and Bishop
and Lührmann [72, 73]. The same CC expansion techniques are indispensable ingredients for
highly accurate molecular calculations. Here, Čı́žek [74, 75], Paldus et al [76] and Bartlett and
Purvis [77] have been pioneers, to name a few. A more complete list of references can be found
in the recent review article by Bartlett and Musiał [70].

The CC expansion relies on the ansatz for the many-electron wavefunction, |9〉,

|9〉 = eT̂
|8〉, (8)

to generate the exact ground state from the ground state |8〉 of the reference system
commonly within the HF approximation. Note that T̂ may be represented by a sum of single,
double and higher-order excitation operators, generating, in a similar way to configuration
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interaction (CI) techniques, singly, doubly substituted determinants based on the HF reference
wavefunction |8〉. However, the CC expansion is distinct from CI by virtue of the exponential
ansatz used in CC expansions (equation (8)) for the wavefunction |9〉, with

eT̂
= 1 + T̂ +

1

2!
T̂ 2 +

1

3!
T̂ 3 + · · · , (9)

introducing so-called disconnected products of excitations responsible for the size-extensivity
of the CC correlation energy [78].

In coupled-cluster doubles theory (CCD), the excitation operator corresponds to a double
excitation operator only, where

T̂ ≡ T̂2 with (10)

T̂2|8〉 =

Nocc.∑
i< j

Nvirt.∑
a<b

tab
i j |8ab

i j 〉. (11)

The amplitudes tab
i j are obtained by solving a set of so-called double amplitude equations reading〈
8ab

i j |e−T̂ ĤeT̂
|8

〉
= 0. (12)

Solving equation (12) self-consistently for tab
i j leads to a resummation of infinitely many

diagrams of a certain type. Removing all the terms from the above amplitude equation that
do not correspond to so-called ring-diagrams defines the so-called ring-CCD.

Recently, the equivalence between direct i.e. ‘Coulomb term only’ ring-CCD (drCCD)
and RPA as considered by Freeman [36], re-examined by Grüneis and Kresse [43] and
Scuseria et al [6], was demonstrated. Scuseria et al algebraically showed that the CCD
approximation to the many-electron wavefunction contains ring-approximation, i.e. the RPA
to the ground-state correlation energy, but also includes selected higher-order exchange and
ladder diagrams [36, 72, 73]. In other words, RPA equals drCCD and therefore corresponds to
a subset of CCD diagrams.

Within the framework of CC expansions, the RPA and RPA + SOSEX correlation energies
may be calculated using drCCD amplitudes {tab

i j } by employing the respective equations
[6, 36, 37]

ERPA
c =

1

2

∑
i jab

Bia, jb tab
i j , (13)

ERPA+SOSEX
c =

1

2

∑
i jab

Kia, jb tab
i j . (14)

The matrices Bia, jb and Kia, jb are of rank Nocc × Nvirt, and are defined by two-electron integrals
Bia, jb = 〈 i j | ab〉 and Kia, jb = 〈 i j | ab〉 − 〈 i j | ba〉, respectively,

〈pq|rs〉 =

∫ ∫
φ∗

p(x)φr(x)
1

|r − r′|
φ∗

q(x
′)φs(x′)dx dx′, (15)

with x = {r, σ }. The amplitudes {tab
i j } are obtained by solving a set of nonlinear Riccati

equations, closely related to the time-dependent HF or more precisely the time-dependent
Hartree method [6],

〈i j |ab〉 +(εc − εk)δacδikt cb
k j + 〈ic|ak〉t cb

k j

+tac
ik (εc − εk)δbcδ jk + t cb

k j 〈ic|ak〉

+tac
ik 〈kl|cd〉tdb

l j = 0.

(16)
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The previous equation can be rewritten in a more compact form [6],

B + AT + TA + TBT = 0, (17)

with Aia, jb = (εa − εi)δi jδab + 〈ib|aj〉, Bia, jb = 〈i j |ab〉 and Tia, jb = tab
i j , underlining the

quadratic order in the amplitudes’ matrix T.
Freeman has evaluated the RPA correlation energy of the unpolarized electron gas for

various electron densities [36] using the drCCD equations and compared them to Hedin’s RPA
results (see table 2 in [79]) following an approach suggested by Nozières and Pines [80].

Both agree to within the numerical accuracy employed in the calculations. Moreover,
Freeman has gone beyond RPA via the inclusion of the SOSEX diagram. He found that
SOSEX reduces the correlation energy by about 30%. Monkhorst and Oddershede [81] came to
similar conclusions employing RPA and RPA + SOSEX to metallic hydrogen, and Grüneis [37]
observed a similar reduction of the correlation energy for small atoms finding good agreement
with highly accurate CC correlation energies only after inclusion of SOSEX. Finally, we note
that until recently the formulation of SOSEX within an ACFD framework has not been entirely
clear, but has lately been shown by Jansen et al [82].

2.3. Single excitations and their renormalization

As alluded to above, in most practical calculations, RPA and SOSEX correlation energies
are evaluated using KS orbitals from local or semilocal density functionals [3, 12] or GKS
orbitals [7, 9, 17] from range-separated density functionals. This way, both RPA and SOSEX
can be interpreted in terms of many-body perturbation theory (MBPT) based on a (generalized)
KS reference state, where only a selected type of diagrams are summed up to infinite order.
If one performs a simple Rayleigh–Schrödinger perturbation theory (RSPT) starting from an
(approximate) KS-DFT reference, and examines the perturbation series at second order, one can
identify a term arising from SEs which is not included in RPA or SOSEX correlation energies.
In terms of single-particle orbitals, this term can be expressed as

ESE
c =

∑
ia

|〈i |vHF
− veff

|a〉|
2

εi − εa
, (18)

where vHF is the self-consistent HF potential, and veff is the effective single-particle potential that
defines the non-interacting reference Hamiltonian heff giving rise to the single-particle orbitals
|i〉 and |a〉 in the above expression. (See the supplementary material of [25] for a detailed
derivation.) As is obvious from equation (18), ESE

c trivially vanishes for the HF reference,
i.e. when veff

= vHF, but is non-zero otherwise. It has been shown that adding this term to
RPA significantly improves the description of weak interactions [25]. Note that the choice of
veff in equation (18) is slightly different in RSPT from that in the second-order Görling–Levy
perturbation theory (GL2) [83]. In the latter case, veff

= vEXX−OEP, with vEXX−OEP being the
EX OEP [52–54] potential. The difference between the two perturbation theories lies in the
choice of the adiabatic-connection path (λ-integral)—in GL2 the electron density is kept fixed
along the pathway and the perturbative Hamiltonian has a nonlinear dependence on λ, whereas
in RSPT the λ-dependence of the perturbative Hamiltonian is linear, but the electron density
varies along the λ-integral. Equation (18) in RSPT is more efficient and practically useful in the
sense that there is no need to solve the computationally intensive and sometimes numerically
problematic EXX-OEP equation and more flexible in the sense that it can be matched to any
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suitable reference state. The price one has to pay is that the theory, strictly speaking, is not
KS-DFT formulated within the ACFD framework.

The SE contribution at second order as given by equation (18) may become ill-behaved
when the single-particle gap closes. To deal with this problem, in [25] a sequence of higher-
order terms involving SE processes have been identified and summed up in the spirit of RPA.
This leads to an ‘rSE contribution’ to the correlation energy,

ErSE
c =

∑
ia

|〈i |1v|a〉|
2

εi − εa + 〈i |1v|i〉 − 〈a|1v|a〉
, (19)

where 1v = vHF
− veff. The additional term 〈i |1v|i〉 − 〈a|1v|a〉 in the denominator of

equation (19) is negative definite, and prevents possible divergence of the expression even
when the KS gap closes. The rSE correction is therefore expected to have a more general
applicability, while preserving the good performance of the second-order SE for wide-gap
molecules and insulators. In deriving equation (19), however, the ‘non-diagonal’ elements in
the higher-order SE diagrams have been neglected for simplicity. Such an approach lacks
invariance with respect to unitary transformations (orbital rotations) within the occupied and/or
unoccupied subspaces. The orbital-rotation-invariance can be restored by including the ‘non-
diagonal’ elements. This can be achieved by first semi-diagonalizing the Fock Hamiltonian
f = heff + vHF

− veff separately within the occupied and unoccupied subspaces of heff and
utilizing the resultant (so-called semi-canonical) orbitals and orbital energies in equation (18).
A detailed description of this procedure will be presented in a forthcoming paper. However, we
emphasize that the results presented in our paper are based on equation (19), but despite the
lack of rotational invariance in the orbitals of this approach, the numerical results are only very
slightly affected.

As also demonstrated in [25], the SE contributions to the correlation energy can be
effectively accounted for to a large extent by replacing the non-self-consistent HF total energy
computed using KS orbitals by its self-consistent counterpart. In this so-called hybrid-RPA
scheme, the RPA correlation energy is still evaluated using KS orbitals, whereas the EX term is
evaluated using HF orbitals. The same strategy can be applied to ‘RPA + SOSEX’ calculations.
In this paper, we will benchmark the influence of SE contributions on the performance of RPA
and SOSEX both by explicitly including the (r)SE corrections and in terms of the hybrid scheme.

As outlined by Ren et al in [25], rendering the energy functional stationary with respect
to variations in the orbitals implies a zero correlation energy contribution stemming from SEs.
This is well known as Brillouin’s theorem. It will be demonstrated in this work that SE effects
represent a non-negligible contribution to the correlation energy and consequently affect the
results on thermochemistry and kinetics. In the field of quantum chemistry, effects induced by
SEs are known as orbital-relaxation effects [84, 85]. Besides MBPT discussed above, the SE
terms are present in the CC theory as well. In this context, Scuseria and Schaefer have shown
that CCD employing optimized-orbitals (see [86]) gives results very close to CCSD. On the
other hand, optimizing orbitals for CCSD calculations does not lead to significant improvement
of the wavefunction. In other words, changes in the correlation energy induced upon inclusion
of SEs may be effectively incorporated by means of a unitary transformation, i.e. rotation of the
orbitals, as given in equation (6) of [86].

We close this section by presenting table 1, which summarizes the acronyms of the various
methods applied in this work. For the KS single-determinant reference wave function we
use the Perdew, Burke and Ernzerhof (PBE) [87] generalized gradient approximation (GGA).
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Table 1. List of methods used throughout this work and their acronyms. Note
that the total energy at the EX level is abbreviated as ‘EX’.

(EX + RPA)@PBE EX and RPA evaluated with a PBE reference, i.e. PBE orbitals and eigenvalues
HF + RPA @PBE HF total energy combined with RPA using a PBE reference
(EX + RPA + SE)@PBE EX and RPA augmented with SE using the PBE reference
(EX + RPA + rSE)@PBE EX and RPA augmented with rSE using the PBE reference
HF + (RPA + SOSEX)@PBE HF total energy combined with RPA + SOSEX using the PBE reference
(EX + RPA + SOSEX)@PBE EX, RPA + SOSEX using the PBE reference
(EX + RPA + SOSEX + rSE) EX, RPA + SOSEX and rSE using the PBE reference
@PBE

We adopt the notation introduced by Ren et al in [17]; hence ‘@PBE’ means ‘evaluated using
PBE orbitals and orbital energies’. This particular choice of orbitals is mainly driven by the
following arguments: (i) PBE contains no empirically adjusted parameters, (ii) it performs
slightly better than LDA (see e.g. [12]) and (iii) it is computationally less expensive to calculate
the orbitals using semilocal functionals instead of e.g. hybrid functionals [17]. In addition, once
one restricts the input orbitals to KS orbitals, results have shown to be virtually identical to those
obtained using PBE orbitals [24, 88].

3. Computational details

Computational results of this work are based on calculations using (i) the Vienna ab initio
simulation package (vasp) [89–91], (ii) a development version of the gaussian [92] suite
of programs and (iii) FHI-aims [93, 94]. All of the software packages used have had the
RPA and RPA + SOSEX functionals available since recently [7, 9, 12, 17]. vasp uses periodic
boundary conditions and projector augmented plane waves as a basis set, which makes it ideally
suited for extended, crystalline systems. gaussian is based on local, analytic Gaussian-type
(GT) basis functions using open boundary conditions and the linear combination of atomic
orbitals to expand the molecular orbitals. FHI-aims primarily uses numeric, atom-centered basis
functions, but GT orbitals can be employed as well. In both cases, all the required integrals are
evaluated numerically on an overlapping atom-centered grid [93]. The resolution-of-identity
approximation is used to handle the four-centered Coulomb repulsion integrals and the KS
response function (details of the implementation are presented in [94]). In this work, GT orbitals
are used in FHI-aims calculations to facilitate a direct comparison with gaussian and the
extrapolations to the complete basis set (CBS) limit.

In this work, we present statistical errors for the G2-1 set [44–47] as well as for BH6 [95],
HTBH38/04 and NHTBH38/04 sets of 38 hydrogen transfer and 38 non-hydrogen transfer
barrier heights after Zhao et al [48, 49]. Results for the molecular test sets use a two-point
extrapolation procedure on the correlation energies to attain the CBS limit [96–98]. The
chosen ansatz is motivated by an atomic partial wave expansion of the two-particle many-body
wavefunction [97],

E X
corr = E∞

corr +
a

X 3
, (20)

where E X
corr are correlation energies corresponding to the c.c.-pVXZ basis sets. For G2-1,

CBS calculations are based on Dunning’s correlation-consistent c.c.-pVQZ and c.c.-pV5Z basis
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Table 2. Matching radii rc of the PAW potentials used in the present work. If the
matching radii differ for specific quantum numbers, they are specified for each
l-quantum number using subscripts.

Valence rc (a.u.) Valence rc (a.u.)

H 1s 1.0s 1.1pd F 2s2p 1.1s 1.4pd

Li 1s2s 1.2s 1.5pd Mg 2p3s 2.0sd 1.6p

B 2s2p 1.5s 1.7pd Al 3s3p 1.9spd 2.0 f

C 2s2p 1.2s 1.5pd Si 3s3p 1.5s 1.9pd

N 2s2p 1.3s 1.5pd P 3s3p 1.9sp 2.0d f

O 2s2p 1.2s 1.5pd Cl 3s3p 1.7s 1.9pd f

sets [99, 100]. Note that throughout this work CBS extrapolation will be denoted by, e.g., c.c.-
pV(Q,5)Z.

Moreover, G2-1 calculations employ the Boys–Bernardi counterpoise correction [101]
to correct for basis set superposition errors (BSSE) within a particular basis set. Therefore,
we emphasize that the CBS procedure uses BSSE-free correlation energies. In order to avoid
inaccuracies from numerical quadrature of xc energy contributions, gaussian calculations use
a grid of 400 radial shells and 770 angular points in each shell to converge the KS orbitals.
gaussian employs a root-mean-square convergence criterion for the density matrix in the SCF
iteration of 0.1 µHartree, which implies an energy convergence no worse than at least 0.01
µHartree (gaussian keyword: SCF=tight). In FHI-aims the grid setting ‘tight’ together with
‘radial multiplier=6’ has been used to achieve convergence within 1 µHartree.

Results on barrier heights in BH6, HTBH38/04 and NHTBH38/04 use a c.c.-pV(T,Q)Z
CBS extrapolation of the correlation energies and do not employ counterpoise corrections. To
test for the errors incurred, we make a comparison with benchmark results obtained using
RPA and RPA + SOSEX given in [9]. The statistical errors in barrier heights deviate from
the aforementioned benchmark values by at most 1 kJ mol−1. Hence, the errors incurred using
smaller basis sets are minute and consequently are not expected to bias the conclusions.

The test set on atomization energies for crystalline solids includes 11 archetypal
semiconductors and insulators. Specifically, it comprises C, Si, SiC, BN, BP, AlN, AlP, LiH,
LiF, LiCl and MgO. The projector augmented wave (PAW) pseudopotentials (technical details
in table 2) and kinetic energy cutoffs employed in the present calculations are identical to
those used in [102]. Table 3 summarizes the lattice constants used in ‘post-RPA’ calculations.
Moreover, we specify plane wave cutoffs for the overlap charge densities described in [38] and
[102]. The SOSEX correlation energy was calculated using a (3 × 3 × 3) 0-centered k mesh,
except for BN and BP due to a slower k-point convergence of the energy. For these systems a
(4 × 4 × 4) mesh was used. RPA correlation energies are taken from the literature (see [38]).
In vasp, atoms are calculated using a supercell approach. The dimension of the supercells has
been chosen as (9 × 9 × 9) Å3 in size. To reduce the computational cost of the ‘RPA + SOSEX’
calculations for isolated atoms, natural orbitals obtained using second-order perturbation theory
have been employed. As outlined in [107], natural orbitals substantially improve convergence
of the correlation energy with respect to the number of virtual orbitals.

To assess the codes used in this work, we compare numerical results obtained using
the ‘RPA’ and ‘RPA + SOSEX’ implementations of gaussian and FHI-aims. Table 4 shows
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Table 3. Experimental lattice constants, aexp, extrapolated to 0 K. Energy
cutoffs for the one-electron wave functions EPW as well as energy cutoffs
representing the overlap charge densities Eχ employed in the calculation of the
atomization energies of solids. The corresponding structures are denoted using
the Strukturbericht symbols in parentheses in the first column (A4 = diamond,
B1 = rock-salt, B3 = zinc-blende). All energies and lattice constants are in eV
and Å, respectively.

aexp EPW Eχ

C (A4) 3.567a 550 400
Si (A4) 5.430a 450 300
SiC (B3) 4.358a 550 400
BN (B3) 3.607b 550 400
BP (B3) 4.538b 450 350
AlN (B3) 4.380c 550 400
AlP (B3) 5.460b 450 350
LiH (B1) 4.064d 600 450
LiF (B1) 4.010a 600 450
LiCl (B1) 5.106a 600 450
MgO (B1) 4.207a 600 450

a Staroverov et al [103].
b Madelung [104].
c Trampert et al [105].
d Smith and Leider [106].

Table 4. Benchmark calculations for atomic He using FHI-aims and gaussian
and a c.c.-pV5Z GT orbital basis set. Results are given in Hartree atomic units.

He/c.c.-pV5Z gaussian FHI-aims

HF −2.861 624 68 −2.861 624 83
MP2 −0.036 406 06 −0.036 406 51
RPA@HF −0.065 244 88 −0.065 245 70
(RPA + SOSEX)@HF −0.032 622 44 −0.032 622 85

correlation energies for the He atom obtained using the c.c.-pV5Z basis set. In order to avoid
errors caused by numerical integration, we decided to use (restricted, i.e. spin-unpolarized) HF
orbitals and eigenvalues for the calculation of RPA and RPA + SOSEX. The agreement found is
close to perfect. Differences between the results are within a sub-micro-Hartree error margin.
In passing we mention that FHI-aims employs the resolution-of-identity (RI) technique [94],
which (i) reduces the computational workload significantly and (ii), as shown in table 4,
does not sacrifice accuracy. For the molecular test sets, we always crosscheck the ‘RPA’ and
‘RPA + SOSEX’ results obtained with the gaussian suite of programs and FHI-aims to make
sure that the results presented in this paper are not affected by actual implementations. ‘SE’ and
‘rSE’ have so far been implemented only in FHI-aims and we use these results throughout.

New Journal of Physics 14 (2012) 043002 (http://www.njp.org/)

http://www.njp.org/


12

Table 5. MEs and MUEs in atomization or binding energies of 11 solids (see
table 3) and 55 molecules (G2-1), in the barrier heights comprised in BH6,
in HTBH38/04 (hydrogen transfer barriers), as well as in NHTBH38/04 (non-
hydrogen transfer barriers). Results are given in kJ mol−1.

Solids G2-1 BH6 HTBH38 NHTBH38

Method ME MUE ME MUE ME MUE ME MUE ME MUE

(EX + RPA)@PBE −67.5 67.5 −42.7 42.8a 1.2 7.5a
−0.8 7.1 −10.5 12.1

HF + RPA @PBE −34.7 36.7 −25.3 30.3 −25.5 25.5 −36.8 36.8 −48.5 48.5
(EX + RPA + SE)@PBE −14.2 22.9 −23.8 23.8 −52.7 52.7 −50.6 51.9
(EX + RPA + rSE)@PBE −26.2 27.4 −14.8 16.3 −18.0 21.7 −31.4 31.4
(EX + RPA + SOSEX)@PBE −27.0 27.0 −20.3 23.0a 17.6 17.6a 22.2 22.2 13.4 15.5
HF + (RPA + SOSEX)@PBE 5.8 17.4 −2.9 13.0 −9.2 9.2 −13.8 13.8 −24.7 25.5
(EX + RPA + SOSEX + rSE) −4.0 13.9 3.1 3.7 3.6 5.4 −6.3 17.6
@PBE

a See [9]. Note that differences in the MUE of G2-1 are due to the different values of the experimental dissociation
energies (see [108]).

4. Results and discussion

The central findings of this work are summarized in table 5, presenting binding energies
in molecules (G2-1) and solids, HT activation energies or barrier heights (BH6, HTBH38)
as well as NHT barrier heights (NHTBH38). Whenever results are compared to experiment
or to the best theoretical estimates, we use the mean error (ME) and mean unsigned error
(MUE) as statistical measures to assess the accuracy of individual methods employed. Note
that the experimental reference values are corrected for zero-point effects and are taken from
the literature (G2-1: [108]; atomization energies in solids: [109]; barrier heights in BH6,
HT/NHTBH38: [48, 95] and [49]). Reaction energies, as presented in table 6, are calculated
from barrier heights in HTBH38 and NHTBH38, respectively.

4.1. Atomization energies of small molecules and solids

The notorious underbinding of (EX + RPA)@PBE in molecules and solids has already been
demonstrated in many studies [3, 9, 12, 13, 17, 37, 38]. Table 5 presents MEs and MUEs
in binding (atomization) energies obtained using (EX + RPA)@PBE for insulating solids (see
section 3) as well as for the molecules contained in the G2-1 set. On average, (EX + RPA)@PBE
underbinds solids compared to experiment by −67 kJ mol−1 (see also [38]) and molecules by
−43 kJ mol−1. We repeat that experimental binding energies are corrected for zero-point effects
and are taken from the literature (for G2-1, see [108]; for the test set on solids, see [109] and
references therein).

Following the suggestion of Ren et al [25], effects incurred by replacing the EX@PBE
reference energy by the HF total energy have been checked for both molecules and solids.
Indeed, HF + RPA @PBE improves binding energies of molecules and solids by almost 50%
compared to (EX + RPA)@PBE. Figure 1 presents mean unsigned relative errors (MURE) in
molecular (full bars) as well as solid state (squared bars) binding energies. Overall differences
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Table 6. MEs and MUEs (kJ mol−1) in the reaction energies obtained using
calculated barrier heights of the HTBH38/04 hydrogen transfer as well as
NHTBH38/04 non-hydrogen transfer barrier heights.

HTBH38 NHTBH38

Method ME MUE ME MUE

(EX + RPA)@PBE −3.2 18.2 −7.8 9.7
HF + RPA @PBE 2.2 12.3 −1.6 14.4
(EX + RPA + SE)@PBE −3.0 16.9 9.4 24.6
(EX + RPA + rSE)@PBE −2.9 17.0 −1.2 11.8
(EX + RPA + SOSEX)@PBE 2.7 4.6 −18.4 20.5
HF + (RPA + SOSEX)@PBE 2.8 4.1 −12.2 15.7
(EX + RPA + SOSEX + rSE)@PBE 3.0 4.4 −11.9 15.5
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Figure 1. MURE in the atomization energies of 55 small molecules contained in
G2-1 (full bars) and 11 insulating solids (squared bars) obtained using four of
the RPA-based methods presented in this paper.

in MUREs are rather small. For the commonly applied (EX + RPA)@PBE method, the MURE
is found to be approximately 6%. Using HF at the EX level reduces the MURE by more than
1%. It appears that the aforementioned improvements are less pronounced at the relative scale,
and the error reduction is apparently bigger for solids than for molecules.

The explicit inclusion of the SE contribution to the correlation energy ‘SE@PBE’
obtained using equation (18) has been evaluated for molecules only. Adding ‘SE@PBE’
to (EX + RPA)@PBE leads to an ME of approximately −14 kJ mol−1 (see table 5) and
an MUE of approximately 23 kJ mol−1, clearly outperforming HF + RPA @PBE. Relative
unsigned errors in G2-1 collected in figure 2 further corroborate the improvements of
(EX + RPA + SE)@PBE over HF + RPA@PBE. Overall, these results confirm the findings
presented by Ren et al in [25]. However, ‘renormalization’ of the SE contributions, as
required for systems with a small one-electron band gap in PBE (see activation energies
discussed in section 4.2), brings the atomization energies in the G2-1 test set back into almost
perfect agreement with HF + RPA@PBE. Therefore, the good agreement with experiment
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Figure 2. MURE (given in %) in G2-1 for all RPA-based methods presented
in this paper. Atomization energies use counterpoise correction and correlation
energies are CBS extrapolated using c.c.-pV(Q,5)Z.

for the G2-1 test set on the level of (EX + RPA + SE)@PBE is most likely to some extent
fortuitous.

As extensively discussed in [37] and [9], the (RPA + SOSEX) correlation energy, here
denoted as ‘(RPA + SOSEX)@PBE’, represents a correction to (EX + RPA)@PBE rectifying
the one-electron self-interaction error contained in ‘RPA@PBE’ due to exclusion principle
violating diagrams [39]. Results for G2-1 obtained using (EX + RPA + SOSEX)@PBE are taken
from [9] and included in table 5. The ME in G2-1 obtained using (EX + RPA + SOSEX)@PBE
is approximately equal to −20 kJ mol−1. For solids, the ME error reduces to −27 kJ mol−1.
Compared to (EX + RPA)@PBE, this represents substantial improvements of approximately
50% for atomization energies.

Given that both SOSEX and rSE, or alternatively replacing EX@PBE by HF, alleviate the
tendency of (EX + RPA)@PBE to underbind, both schemes are expected to work cooperatively
for the atomization energies of small molecules. Indeed, replacing ‘EX@PBE’ in (EX + RPA +
SOSEX)@PBE by the HF total energy yields excellent results, with a slight underbinding
for molecules (ME = −2.9 kJ mol−1) and a slight overbinding for solids (ME = 5.8 kJ mol−1).
Again, the HF + (RPA + SOSEX)@PBE (ME = −2.9 kJ mol−1) and the (EX + RPA + SOSEX +
rSE)@PBE methods (ME = −4.0 kJ mol−1) perform almost on par for molecules.

In summary, SE diagrams improve (EX + RPA)@PBE atomization energies of small
molecules at virtually zero additional computational cost. However, as we will see below,
this method fails when the one-electron band gaps in PBE become small. The better
founded rSE does not perform equally well for atomization energies when combined with
RPA. Combined with RPA + SOSEX it yields impressive atomization energies that are
also in almost perfect agreement with the ‘hybrid variants’, e.g. the (self-consistent) HF
total energy together with ‘(RPA + SOSEX)@PBE’. Overall, this indicates that (EX + RPA +
SOSEX + rSE)@PBE or HF + (RPA + SOSEX)@PBE are the methods of choice for atomization
energies.
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Figure 3. Schematic representation of activation and reaction energies.

4.2. Activation energies in HTBH38 and NHTBH38 chemical reactions

The ability to accurately describe the topology of multidimensional potential energy surfaces
spanned by the internal molecular degrees of freedom, i.e. the reaction coordinates, in the course
of a chemical reaction, is central to first-principles electronic structure methods. Calculating the
energy difference between reactants and transition states (see figure 3) is a stringent test for
the accuracy of density functionals. As mentioned in section 3, the HTBH38 and NHTBH38
test sets established by Truhlar and coworkers [48, 49] will be used here to test the RPA-based
functionals considered.

Our findings on barrier heights, i.e. activation energies (figure 3), are summarized in
table 5. MEs and MUEs are calculated with respect to the best theoretical estimates currently
available for HT and NHT barrier heights given in [48] and [49], respectively. Furthermore,
the MUREs in HT barriers (panel (a)) and NHT barriers (panel (b)) are depicted in figure 4.
Note that legends given in figure 4 follow the color code used in figure 2. To establish a
connection to [9], table 5 also shows MEs and MUEs for the BH6 test set [95], which has been
introduced as a computationally less intensive, but statistically representative subset of HT/

NHTBH38. However, we do not present a detailed discussion on BH6 here, but stress that
errors in BH6 essentially follow the trends found for HT/NHTBH38.

One of the main findings of this work is the astonishingly good performance of the
conventional (EX + RPA)@PBE scheme for activation energies. To be more specific, (EX +
RPA)@PBE performs significantly better for the transfer of hydrogen atoms than for reactions
involving heavier atoms. For HTBH38, the ME obtained using (EX + RPA)@PBE amounts to
−0.8 kJ mol−1 and the associated MUE amounts to 7.1 kJ mol−1. These error margins are similar
to those of some of the range-separated, GKS-DFT functionals such as e.g. LC-ωPBE [110].
The latter performs very well for chemical reaction barriers (see also section 4.4). However,
for (EX + RPA)@PBE, the MUE increases by more than 50% when elements heavier than H,
such as e.g. F or Cl, are transferred. The MUE in NHTBH38 obtained using (EX + RPA)@PBE
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Figure 4. (a) MURE in HT barrier heights of HTBH38; (b) MUREs in
NHTBH38 for the RPA-based methods presented in this work. Energies use
a c.c.-pV(T,Q)Z extrapolation and the frozen core approximation in calculated
correlation energies.

amounts to 12.1 kJ mol−1 together with a rather distinct underestimation of the barriers by
−10.5 kJ mol−1 (ME).

On a relative scale, the MURE for HT reactions obtained using (EX + RPA)@PBE (see
figure 4) amounts to approximately 20%, but increases to a value approximately twice as large
for NHT reactions (panel (b)). Note that reaction number 7 in NHTBH38 has a barrier height of
only −1.42 kJ mol−1. For this reaction MUREs are extraordinarily large, leading to an increase
that is seven to eight times as large as the corresponding value in HT reactions. The statistics
would be drastically biased by such a case, being very likely compensated by significantly
extending the test set. Therefore, we decided to exclude reaction number 7 from the test set
when calculating the MURE in NHTBH38.

Both HF + RPA @PBE and (EX + RPA + SE)@PBE show a strong underestimation of
barriers with maximal errors as large as 50 kJ mol−1. As mentioned above, the reason
for this behavior has been attributed to small HOMO-LUMO differences found for some
of the transition state structures, which are not correctly described by the simple (EX +
RPA + SE)@PBE scheme. Indeed, the renormalization of SE alleviates the problem, and the
corresponding ME and MUE in HTBH38 obtained using (EX + RPA + rSE)@PBE are improved
by almost 60% compared to (EX + RPA + SE)@PBE. Note that numerical results given in
table 5 nicely reflect the trend induced by incorporation of SE effects in the correlation
energy contribution, i.e. it partially takes care of the lack of self-consistency in the EX@PBE
energy. However, the rSE corrects for the strong underestimation of barriers seen in HF + RPA
@PBE and (EX + RPA + SE)@PBE, but qualitatively reflects the same trend compared to
(EX + RPA)@PBE.

The performance of (EX + RPA + SOSEX)@PBE for barrier heights has already been
tested by Paier et al for the BH6 test set [9]. This work extends the findings of [9] by

New Journal of Physics 14 (2012) 043002 (http://www.njp.org/)

http://www.njp.org/


17

discriminating between HT and NHT reactions. (EX + RPA + SOSEX)@PBE is less accurate
for HT barriers than (EX + RPA)@PBE, as indicated by an MUE of about 22 kJ mol−1 compared
to 7 kJ mol−1. Quantitatively, (EX + RPA + SOSEX)@PBE on average overestimates barrier
heights for HTBH38 by the aforementioned 22 kJ mol−1. This is in perfect agreement with the
errors found for the BH6 test set [9]. On the other hand, (EX + RPA + SOSEX)@PBE performs
substantially better for NHT barrier heights, where ME and MUE are found to be close to those
obtained using (EX + RPA)@PBE. On average, (EX + RPA + SOSEX)@PBE overestimates
NHT barriers by approximately 13 kJ mol−1, whereas (EX + RPA)@PBE underestimates
them by 11 kJ mol−1. As shown in figure 4, the MURE in NHT barriers obtained using
(EX + RPA + SOSEX)@PBE amounts to 34% (panel (b) in figure 4), slightly outperforming
(EX + RPA)@PBE by approximately 3%.

Incorporation of SE effects into (EX + RPA + SOSEX)@PBE in the hybrid fashion, i.e.
HF + (RPA + SOSEX)@PBE, leads to very different results when applied to HT and NHT
reactions, respectively. HF + (RPA + SOSEX)@PBE improves HT reaction barrier heights,
whereas NHT barrier heights deteriorate appreciably compared to (EX + RPA + SOSEX)@PBE,
ending up with an overall underestimation of barrier heights.

The situation becomes noticeably better, for both HT and NHT barrier heights, upon
combination of explicitly computed rSE with (EX + RPA + SOSEX)@PBE. Barrier heights
obtained using (EX + RPA + SOSEX + rSE)@PBE are of similar quality to ‘conventional’ (EX +
RPA)@PBE, although the unsigned error in the NHT test set is slightly larger. (EX + RPA +
SOSEX + rSE)@PBE overestimates HT barriers by approximately 3.6 kJ mol−1, but reduces the
ME in NHT barriers (ME − 6.3 kJ mol−1) compared to (EX + RPA)@PBE.

To summarize this section, SOSEX and rSE tend to overestimate and underestimate
reaction barrier heights, respectively. Thus it appears advantageous to combine the correction
schemes in order to achieve a partial error compensation. This mechanism works most
efficiently for HT reactions and somewhat less so for NHT reactions. Taking the excellent
performance of (EX + RPA + SOSEX + rSE)@PBE for binding energies (see the previous
section) into account, this functional offers the most balanced description in terms of binding
energies as well as activation energies.

4.3. Reaction energies in HTBH38 and NHTBH38

As shown in figure 3, knowing both forward (V 6=

f ) and reverse (V6=

r ) reaction barrier heights,
corresponding reaction energies 1E are readily calculated using

1E = V 6=

f − V6=

r . (21)

Note that 17 out of the 38 reactions contained in HTBH38 lead to a nonzero 1E, whereas
NHTBH38 comprises 13 reactions with a forward barrier different from the reverse barrier. The
corresponding MEs and MUEs of the RPA-based functionals are compiled in table 6, and the
MUREs are depicted in figure 5.

Similar to the trends found for atomization energies, HT reaction energies are significantly
improved upon inclusion of (SOSEX)@PBE to (EX + RPA)@PBE as reflected in the MUEs.
For (EX + RPA)@PBE the MUE in HT reactions amounts to 18.2 kJ mol−1 and drops down
to 4.6 kJ mol−1 employing (EX + RPA + SOSEX)@PBE. Hence, it appears that eliminating
the one-electron self-correlation error contained in RPA@PBE is beneficial for HT reaction
energies. This is not entirely surprising, since the aforementioned error will be largest for
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Figure 5. (a) Shows MURE in HT reaction energies of HTBH38; (b) shows
MURE for the reaction energies of NHTBH38. Energies use a c.c.-pV(T,Q)Z
extrapolation and the frozen core approximation to the correlation energies. The
color code of legends follows figure 4.

breaking and creating covalent hydrogen bonds. For reactions involving heavier atoms, as
exemplified by the reaction energies in NHTBH38, the correction due to (SOSEX)@PBE
appears to perform less favorably. This can be seen by inspection of figure 5 presenting MUREs
in HT (panel (a)) as well as NHT reaction energies (panel (b)). For (EX + RPA)@PBE the MUE
in NHTBH38 amounts to 9.7 kJ mol−1, which is rather low, whereas for NHT reaction energies
obtained using (EX + RPA + SOSEX)@PBE, the MUE increases to 20.5 kJ mol−1.

Concerning effects due to SE@PBE and rSE@PBE to (EX + RPA)@PBE, no significant
improvement of HT reaction energies over (EX + RPA)@PBE has been found. The MEs and
MUEs given in table 6 for (EX + RPA + SE)@PBE (ME − 3 kJ mol−1; MUE = 16.9 kJ mol−1)
and (EX + RPA + rSE)@PBE (ME = −2.9 kJ mol−1; MUE = 17 kJ mol−1) are essentially unal-
tered compared to (EX + RPA)@PBE. In contrast to HT, the rSE correction helps to improve the
NHTBH38 reaction energies and alleviates the overestimation found for simple (EX + RPA +
SE)@PBE drastically (ME = −1.2 kJ mol−1 compared to 9.4 kJ mol−1). The associated MUE
as well as MURE decrease by approximately 50%.

We now turn to a discussion of results obtained using the ‘hybrid variants’, which employ
the HF energy as the reference energy on the EX level. Specifically for (EX + RPA)@PBE,
HT reaction energies are substantially improved upon replacement of EX@PBE through
HF. As can be seen from table 6, the MUE is reduced by approximately 6 kJ mol−1, which
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Table 7. Comparing the three best-performing functionals presented in table 5 to
widely used semilocal and HF/DFT hybrid functionals. Mean unsigned errors in
individual test sets are given in kJ mol−1.

Method G2-1 BH6 HTBH38 NHTBH38

(EX + RPA)@PBE 42.8a 7.5a 7.1 12.1
HF + (RPA + SOSEX)@PBE 13.0 9.2 13.8 25.5
(EX + RPA + SOSEX + rSE)@PBE 13.9 3.7 5.4 17.6
PBE 36.0b 38.9c 39.0d 33.9d

BLYP 19.7b 32.6c 31.5d 36.4d

PBE0 14.6b 19.2c 17.7d 14.1d

B3LYP 10.0b 19.7c 17.7d 18.2d

LC-ωPBE 15.6e 5.4e 10.0e

a See [9]. Note that differences in the MUE of G2-1 are due to the different values of the
experimental dissociation energies (see [108]).
b Ernzerhof and Scuseria [111].
c Yang et al [112].
d Zhao et al [49].
e Vydrov and Scuseria [110]. Note that the MUE given here for G2 refers to G2-2 comprising
148 molecules. The MUE for G2-1 will be lower.

translates into an improvement of the MURE by approximately 50%. HT reaction energies
obtained using (EX + RPA + SOSEX)@PBE, which are fairly accurate, are hardly affected
by changing to the corresponding hybrid scheme. Employing HF + (RPA + SOSEX)@PBE,
however, the MUE in NHT reaction energies is reduced by 5 kJ mol−1. In addition, the ME
amounts to −12 kJ mol−1, which compares very favorably to the ME of −18 kJ mol−1 obtained
using (EX + RPA + SOSEX)@PBE. In terms of performance, the combined scheme (EX +
RPA + SOSEX + rSE)@PBE is on par with HF + (RPA + SOSEX)@PBE for both HTBH38 and
NHTBH38 reaction energies.

(EX + RPA + SOSEX + rSE)@PBE has two apparently favorable features: (i) it substan-
tially improves HT reaction energies obtained using (EX + RPA)@PBE and (ii) it performs ap-
proximately similarly well for all of the test sets investigated in this work. In other words, the
overall variation in error margins for atomization energies, barrier heights and reaction energies
is smallest for (EX + RPA + SOSEX + rSE)@PBE lending the functional robustness. Among the
functionals discussed in this work, (EX + RPA)@PBE performs best for NHT reaction energies.
Nevertheless, (EX + RPA + SOSEX + rSE)@PBE performs only slightly worse, but given the
better HT reaction barrier heights and the significantly better reaction energies in HTBH38,
(EX + RPA + SOSEX + rSE)@PBE is among the RPA-based functionals tested in this work, the
functional of broadest applicability.

4.4. Comparison of RPA to semilocal and hybrid functionals

To close the discussion on the performance of the RPA- and RPA + SOSEX-based functionals,
we briefly compare molecular atomization and activation energies to results obtained using
commonly applied semilocal as well as HF/DFT hybrid functionals. To render direct
comparisons easier, table 7 repeats MUEs for G2-1, BH6, HTBH38 and NHTBH38 for three
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of the RPA-based functionals which perform best, namely (EX + RPA)@PBE, HF + (RPA +
SOSEX)@PBE and (EX + RPA + SOSEX + rSE)@PBE. The above-mentioned statistical errors
are compared to PBE-GGA, BLYP-GGA [113, 114] as well as the PBE0 [111, 115] and
B3LYP [116] global hybrid functionals. In addition, we also present results obtained using
the above-mentioned LC-ωPBE range-separated hybrid functional [110]. LC-ωPBE mixes a
fraction of EX at the long range of the Coulomb interaction (for definitions, see [110]), but uses
only one parameter (0.40 bohr−1) to define a universal range separation. It is remarkable that LC-
ωPBE describes reaction barriers and atomization energies extremely accurately, representing a
landmark among hybrids for thermochemistry and kinetics. Admittedly, for extended systems,
admixture of EX on the long range is detrimental and leads to e.g. strongly overestimated band
gaps [117].

Returning to RPA, activation energies obtained using (EX + RPA)@PBE are de facto on
a par with LC-ωPBE (table 7). Trends for GGA and global hybrid functionals like PBE0 or
B3LYP are rather general; hence, other GGA-type and global hybrid functionals perform quite
similarly (for other functionals, see, e.g., [112]). Although HF + (RPA + SOSEX)@PBE does
not perform as well as (EX + RPA)@PBE for activation energies of non-hydrogen transfer
reactions (corresponding MUE is almost twice as large), it certainly performs better than
PBE and BLYP. HF + (RPA + SOSEX)@PBE is only slightly outperformed by B3LYP for the
aforementioned activation energies in NHTBH38. According to this synopsis, (EX + RPA +
SOSEX + rSE)@PBE certainly shows the most balanced description of molecular binding and
barrier heights. It performs as well as hybrid functionals in terms of atomization energies,
outperforms both GGA and hybrid functionals in terms of hydrogen-transfer barrier heights
and performs equivalently well for non-hydrogen barrier heights as the aforementioned
hybrids do.

Although this work is not devoted to weak, vdW-type interactions, it should be emphasized
that all of the RPA-based functionals presented here do include them seamlessly as already
mentioned in the introduction. It is well known that neither GGA nor hybrid functionals show
the correct vdW asymptote.

5. Conclusions

In summary, we have reported an extensive assessment of several EX-based post-KS density
functionals involving RPA correlation energies and beyond. Correlation energies have been
assessed for solids as well as for small molecules. Specifically, we calculated atomization
energies of solids and molecules using (EX + RPA)@PBE, (EX + RPA + SOSEX)@PBE as well
as HF + RPA @PBE and HF + (RPA + SOSEX)@PBE, where the latter approach gives binding
energies improved by approximately 50% compared to ‘conventional’ (EX + RPA)@PBE.
Furthermore, we investigated the performance of individual functionals for chemical reaction
barrier heights or activation energies employing large and well-established test sets. Generally,
we found that it is rather difficult to systematically improve on (EX + RPA)@PBE reaction
barrier heights, although modest improvements using (EX + RPA + SOSEX + rSE)@PBE were
achieved for HT barriers. Importantly, the favorable impact of the correlation energy
contribution stemming from SE effects on binding energies does not translate into reaction
barriers. This has been explained by divergent correlation energy contributions in systems
with small HOMO–LUMO gaps. Therefore, the application of ‘SE’ to systems with small
one-electron band gaps is not possible, but a renormalization of ‘SE’ helps to alleviate the
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problem. Surprisingly, (EX + RPA)@PBE yields reaction energies of high accuracy for reactions
involving non-hydrogen atoms. Good and robust performance of a novel RPA-based functional
(EX + RPA + SOSEX + rSE)@PBE is a central finding of this work. It improves on binding or
atomization energies compared to (EX + RPA)@PBE, improves on HT barrier heights as well
as reaction energies.
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[20] Lebègue S, Harl J, Gould T, Ángyán J G, Kresse G and Dobson J F 2010 Phys. Rev. Lett. 105 196401
[21] Eshuis H, Yarkony J and Furche F 2010 J. Chem. Phys. 132 234114
[22] Ismail-Beigi S 2010 Phys. Rev. B 81 195126
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[117] Gerber I C, Ángyán J G, Marsman M and Kresse G 2007 J. Chem. Phys. 127 054101

New Journal of Physics 14 (2012) 043002 (http://www.njp.org/)

http://dx.doi.org/10.1002/(ISSN)1097-461X
http://dx.doi.org/10.1146/annurev.pc.32.100181.002043
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1007/BF02725103
http://dx.doi.org/10.1103/PhysRevLett.30.797
http://dx.doi.org/10.1063/1.3481575
http://dx.doi.org/10.1103/PhysRevB.47.13105
http://dx.doi.org/10.1007/BF01113521
http://dx.doi.org/10.1002/(ISSN)1097-461X
http://dx.doi.org/10.1016/0009-2614(87)85122-9
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1103/PhysRevB.48.13115
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1021/jp035287b
http://dx.doi.org/10.1021/jp0379190
http://dx.doi.org/10.1063/1.462811
http://dx.doi.org/10.1063/1.473863
http://dx.doi.org/10.1016/S0009-2614(98)00111-0
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.464303
http://dx.doi.org/10.1080/00268977000101561
http://dx.doi.org/10.1063/1.3466765
http://dx.doi.org/10.1103/PhysRevB.69.075102
http://dx.doi.org/10.1107/S0021889868005418
http://dx.doi.org/10.1021/ct200263g
http://dx.doi.org/10.1063/1.478747
http://dx.doi.org/10.1063/1.3524336
http://dx.doi.org/10.1063/1.2409292
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.3382342
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1063/1.2759209
http://www.njp.org/

	1. Introduction
	2. Theory
	2.1. Basics of random-phase approximation (RPA)
	2.2. From coupled-cluster theory to RPA and RPA+ second-order screened exchange (SOSEX)
	2.3. Single excitations and their renormalization

	3. Computational details
	4. Results and discussion
	4.1. Atomization energies of small molecules and solids
	4.2. Activation energies in HTBH38 and NHTBH38 chemical reactions
	4.3. Reaction energies in HTBH38 and NHTBH38
	4.4. Comparison of RPA to semilocal and hybrid functionals

	5. Conclusions
	Acknowledgments
	References

