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We describe the computational details and numerical convergence of our calculations of the
SiC(111) (Si-side) surface phase diagram and structures, especially of the graphene-like recon-
structed (6\/§>< 6\/§) R30° SiC surface phases. Calculated reference data for the bulk phases 3C-SiC,
graphite and diamond are given for different functionals.

Methodology

We assess the surface phase diagram in the framework
of first-principles thermodynamics, using a grand canon-
ical formalism to compare surface energies according to
Egs. (1-3) in our paper. As first-principles input, we re-
quire accurately converged total energies for slab calcu-
lations, as well as bulk reference total energies for Si, SiC
and the bulk phases of carbon, graphite and diamond.

All total energies are obtained by numerically and
basis-set converged first-principles calculations using the
FHI-aims all-electron code[l, 2] and the massively paral-
lel eigenvalue solver library ELPA[3] for the solution of
the Kohn-Sham equations. The density functionals used
are the local-density approximation (LDA) in the param-
eterization by Perdew and Wang 1992[4], the generalized
gradient functional PBE, [5] and PBE4+vdW approach
as defined by Tkatchenko and Scheffler 2009[6]. In this
method, the vdW terms are included as a Cg/RS-type
sum of interatomic interactions and the Cg coefficients
are derived from the self-consistent electron density in a
non-empirical way.

In our paper, we restrict ourselves to the original
method proposed by Tkatchenko and Scheffler.[6] While
various refinements of this scheme are under active devel-
opment, to our knowledge there is no single scheme yet
that would address the complex surface structures en-
countered in our work. For semiconductor bulk phases,
however, we can compare to results from Zhang and
coworkers, who showed that the Cg dispersion coeffi-
cients are reduced compared to the free-atom values due
to long-range electrostatic screening.[7] We reference to
their result for 3C-SiC below.

We do not include the effects of zero-point corrections
(or, indeed, of finite-temperature anharmonic effects) in
any of the results presented in the main part of our paper.
The reason is that the computation of the phonon dis-
persion necessary for such corrections for the most inter-
esting large-scale reconstructed graphene phases would
be prohibitive even on the most advanced massively par-
allel computer hardware available to us today (hardware
used: Intel Westmere processor architecture with up to
~1,000 CPU cores for routine production runs). How-
ever, we show below by exemplary results for the bulk

phases that zero-point effects on their structure would
be small.

3C-SiC bulk structure and total energies

The lattice parameter for the 3C-SiC polytype used in
this work are listed in Table (I). For different function-
als the lattice parameter shows variations of the order
of 1 % at most. The zero-T extrapolated experimental
value is 4.36 A.[8] The PBE+vdW method employed in
this work comes very close to this result, both for re-
sults calculated at the bare potential energy surface, or
with zero-point corrections (ZPC) included in the quasi-
harmonic approximation.

Zero-point corrections for 3C-SiC were evaluated by
full phonon calculations in a finite-difference approach,
using a 5 x 5 x 5 supercell for 5 lattice parameters. The
minimum-energy lattice parameter for T=0 K was ob-
tained by fitting to the Birch-Murnaghan equation of
state. The inclusion of zero-point corrections results only
in small changes of the bullk cohesive properties.

The lattice parameter obtained from a refined van der
Waals treatment for the 3C SiC bulk phase, obtained by
Zhang et al.,[7] is also given in Table I. The effect on the
structure is small.

Elemental phases: diamond, graphite and silicon

The lattice parameter for the reference bulk systems C-
diamond, graphite and silicon used in this work are listed
in Table (II) for different functionals. The impact of zero-
point corrections (ZPC) is similarly small as for 3C-SiC.
For the interplanar lattice parameter ¢ of graphite, vdW
effects must be included into the PBE functional.

3C SiC: Enthalpy of formation

The enthalpy of formation AH/ is calculated for bulk
silicon and carbon in the diamond structure as the refer-
ence phases. AH is between —0.53 eV and —0.56 eV, de-
pending on the density-functional used, and shows good



PBE+vdW PBE LDA PBE+vdW?“" |experiment
PES ZPC| PES ZPC| PES ZPC|PES
ao [A] 4.36 4.38| 4.38 4.40| 4.33 4.34]4.38 4.36 [8]
Bo [Mbar] 2.10 2.09| 2.10 2.06| 2.30 2.23|2.12
€coh [eV] -6.76 -6.65(-6.52 -6.41|-7.41 -7.30
AHy [eV] [-0.56 -0.53 -0.56

TABLE I: For 3C-SiC, the lattice parameters ao [A], bulk modulus By [Mbar], cohesive energy e.on [e¢V] and enthalpy of
formation AHy [eV] as obtained in this work. “PES” refers to results computed based on the Born-Oppenheimer potential
energy surface without any corrections. Zero-point vibrational corrected (ZPC) lattice parameters and bulk moduli are given

for the LDA, PBE and PBE+vdW functionals.

PBE+vdW |PBE|LDA

PES ZPC |PES |PES ZPC
diamond ao [A]  |3.55 3.57 |3.57 [3.563 3.55
graphite ao, co [A]|2.46, 2.47, |2.47,|2.45, 2.45,

6.66 6.69 [8.65 |6.65 6.66
Silicon ao [A] [5.45 [5.47 [5.40

TABLE II: Lattice parameter ao and co for graphite, dia-
mond and silicon in diamond structure as obtained in this
work. “PES” refers to results computed based on the Born-
Oppenheimer potential energy surface without any correc-
tions. Zero-point vibrational corrected (ZPC) lattice parame-
ters are given for the LDA, PBE and PBE+4vdW functionals.

agreement with a calculated literature value of —0.58 eV
using the pseudopotential plane wave (PSP-PW) method
in the LDA [9]. The calculated cohesive energy is note-
ably smaller (less energy gain) than the experimental
room temperature value obtained by an electromotive
force (emf) measurement.[10]

Numerical convergence

Basis set

The FHI-aims code employs numeric atom-centered
basis sets; basic descriptions of their mathematical form
and properties are published in Ref. [2] (note that this ref-
erence is available as an open-access publication). What
is important for the present purposes is to demonstrate
the accurate convergence, up to a few meV at most, of
our calculated surface energies with respect to the basis
set used.

The FHI-aims basis sets are defined by numerically de-
termined radial functions corresponding to different an-
gula momentum channels. As is typical of atom-centered
basis sets (Gaussian-type, Slater-type, numerically tab-
ulated etc.), variational flexibility is achieved by succes-
sively adding radial functions for individual angular mo-
mentum channels, until convergence is achieved. In prac-
tice, the basis functions for individual elements in FHI-
aims are grouped in so-called “tiers” or “levels”: tier 1,

C Si
minimal [He]4+2s2p [Ne]+3s3p
tier 1 H(2p, 1.7) H(3d, 4.2)
H(3d, 6.0) H(2p, 1.4)
H(2s,4.9) H(4f, 6.2)

Si%*(3s)
H(4f, 9.8) H(3d, 9.0)
H(3p, 5.2) H(5g, 9.4)
H(3s, 4.3) H(4p, 4.0)
H(5g, 14.4) H(ls, 0.65)
H(3d, 6.2)

tier 2

TABLE III: Radial functions used for C and Si. The first
line (“minimal”) denotes the radial functions of the occupied
orbitals of spherically symmetric free atoms as computed in
DFT-LDA or -PBE (noble-gas configuration of the core and
quantum numbers of the additional valence radial functions).
“H(nl, z)” denotes a hydrogen-like basis function for the bare
Coulomb potential z/r, including its radial and angular mo-
mentum quantum numbers, n and . X2+ (nl) denotes a n, I
radial function of a doubly positive free ion of element X. See
also Ref. [2] for notational details.

tier 2, and so forth. In the present paper, basis functions
for Si and C up to tier 2 were used. The pertinent radial
functions are summarized in Table (III), using the exact
same notation that was established in Ref. [2].

The convergence of the calculated surface energies in
our paper with basis size is exemplified for the (v/3 x
v/3)-R30° small unit cell approximant[11, 12] to the ZLG
phase in Fig. (1) including 6 SiC-bilayer. The bottom
carbon atoms were saturated by hydrogen. Its geometry
was first fully relaxed with FHI-aims tight grid settings,
a tier 1+dg basis set for Si and a tier 2 basis set for C
basis settings. This geometry was then kept fixed for the
convergence tests shown here. What is shown in Fig. (1)
is the development of the surface energy (Si face and H-
terminated C-face) with increasing basis size for both C
and Si were calculated using

1
Sicface +VC-tace = (E®** — Ngipsi — Nepc) - (1)

where Ng; and N¢ denote the number of Si and C atoms
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FIG. 1: Effect of increasing the basis set size on the surface en-
ergy of the /3 approximant to the ZLG phase at the chemical
potential limit of bulk graphite. The PBE+vdW functional
was used. In the plot we use T1 (T2) as abbrevation of tier
1 (tier 2) , respectively

in the slab, respectively, and A is the chosen area. The
computed surface energy is shown per 1x1 surface area
as in all surface energies given in the main text.

The notation in the figure is as follows:

e “T1” and “T2” abbreviate the set of radial func-
tions included in tier 1 and tier 2, respectively (see
Table III).

e “Si T1-f” denotes the Si tier 1 basis set, but with
the f radial function omitted.

e “C T2-g denotes the set of radial functions for C up
to tier 2, but omitting the g-type radial function of
tier 2.

e “Si T1+dg” denotes the radial functions included
up to tier 1 of Si, and additionally the d and g
radial functions that are part of tier 2. This is
also the predefined default basis set for FHI-aims
“tight” settings for Si.

e “C T2” denotes the radial functions of C up to tier
2 and is the default choice for “tight” settings in
FHI-aims.

In short, the plot indicates the required convergence of
the surface energy to a few meV/(1x1) surface area if
the default FHI-aims “tight” settings are used. It is evi-
dent that the high-I g-type component for C contributes
noticeably to the surface energy.

Slab Thickness

The convergence of our surface calculations with re-
spect to the number of SiC bilayers is shown in Fig. (2)
by considering surface energies for the (v/3 x v/3)-R30°
small unit cell approximant[11, 12]. The zero reference
energy is an unreconstructed six bilayer 1x1 SiC surface.
A six bilayer slab is sufficient to accurately represent bulk

effects.
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FIG. 2: Slab thickness dependence of the surface energy of
the (v/3 x v/3)-R30° approximant to the ZLG phase.

k-Space Integration Grids

We demonstrate the accuracy of the 2D Brillouin zone
integrals for our graphene-like surface phases by compar-
ing different k-space integration grids in Table (IV) The
ZLG and MLG surface energies in the full (6\/§>< 6\/§)—
R30° cell are compared using the I'-point only and using
a 2x2x1 k-space grid. These k-mesh tests were performed
in a four bilayer slab, using the PBE+vdW functional,
light real space integration grids, a tier! basis set with-
out the f functions for Si and tier! for C. The geome-
tries were kept fixed at the configuration relaxed with a
I-point only k-space grid. In Table (IV), the surface en-
ergies relative to the unreconstructed 1x1 surface in the
graphite limit are listed for the silicon rich V/3xv/3 recon-
struction, the ZLG and MLG phases. Table (IV) clearly
shows that the surface energies are well converged using
the I'-point only. Hence in this work, all surface ener-
gies for the (6\/3 X 6\/5)—R30° phases were calculated us-
ing this k-space integration grid. For all bulk reference
energies as well as for the two silicon rich surface recon-
structions, the convergence with respect to the k-mesh
size has been tested and found to be well converged for
grids equivalent to the ZLG phase.



system | k-grid
6x6x1 12x12x1 24x24x1
V3xv/3  [-0.439 -0.435 -0.436
Ix1x1  2x2x1
ZLG -0.426  -0.426
MLG -0.454  -0.455

TABLE IV: Surface energies in [eV/SiC(1x1)] relative to the
unreconstructed 3C-SiC(1x1) surface for the chemical poten-
tial limit of graphite, four-bilayer SiC slabs. The silicon-rich
V/3x1/3 reconstruction, ZLG and MLG phases using differ-
ent k-grids are shown. The PBE+vdW exchange-correlation
functional was used.

Strategy for structure optimization

For all surface energies presented in the main text, we
used a two step procedure for computationally efficient
structure optimization. The first step was a prerelaxation
with four bilayer SiC slabs and the additional atoms of
the selected surface phase. The bottom two bilayers as
well as the bottom hydrogen atoms were kept fixed, while
the rest was relaxed (residual forces < 0.8 x 10~2eV/A)
using light real space integration grids, Si tier 1-f and C
tier 1 basis sets. The second step built on the prerelaxed
structures. Two additional SiC bilayers were added to
the bottom of the slab. The C-side was saturated with
hydrogen atoms as before. For the postrelaxation, tight
integration grids, Si tier 1+dg and C tier 2 basis sets
were used, while the hydrogen layer and the 3 bottom
SiC layer were constrained to their bulk positions.

The hexagon-pentagon-heptagon (H5,6,7) defect in
the zero-layer graphene

We consider a specific class of C-rich defects suggested
as an equilibrium feature of the ZLG phase in Ref. [13].
The defects consists of three carbon heptagons and pen-
tagons surrounding one carbon hexagon. The central
hexagon is rotated by 30° with respect to the graphene
lattice. This defect incoporates two additional carbon
atoms lowering the average C-C bond length in the ZLG.
Two different defect positions, “hollow” and “top” were
suggested.[13]. In fig. (3) the H(5,6,7) defect is shown
for both positions in the approximated 3 x 3 and in the
(6\/§ X 6\/5) R30° ZLG phase. All four phases were fully
relaxed using the same procedure as described above.
The 3 x 3 is a supercell of the approximated (v/3 x v/3)-
R30° ZLG phase with a massively strained (~ 10%) car-
bon layer.
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FIG. 3: The hexagon-pentagon-heptagon (H5,6,7) defect in
the zero-layer graphene shown in the approximated 3 x 3 cell
(insert a and b) and in the (6\/5 X 6\/§)R30° ZLG phase.
The defect was placed in two different positions. In inset a
and c the defect is placed at “hollow” position with an silicon
atom of the underlying SiC bilayer in the middle of the central
hexagon and at “top” position.
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