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Upon ionization, rare-gas �like Ar and Xe� clusters shift their absorption spectrum from the
ultraviolet to the visible. This happens as bonding becomes much stronger due to the removal of an
electron from a strongly antibonding orbital. In this article, we study the absorption spectrum of
small cationic xenon clusters �Xen

+, with n=3, . . . ,35� by means of time-dependent density
functional theory. These calculations include relativistic effects through the use of relativistic
j-dependent pseudopotentials in a two-spinor formulation of the Kohn–Sham equations. The peak
positions in our calculated spectra are in fairly good agreement with experiment and confirm that
absorption is mainly due to a charged linear core composed of 3, 4, or 5 Xe atoms where the positive
charge is localized. However, we find large deviations concerning the oscillator strengths, which can
be partially explained by the unsatisfactory treatment of exchange in common density functionals.
Furthermore, we find that adequate ground-state geometries are necessary for the correct prediction
of the qualitative features of the spectra. © 2009 American Institute of Physics.
�doi:10.1063/1.3265767�

I. INTRODUCTION

Neutral rare-gas clusters are van der Waals bound and
their first electronic transition is in the ultraviolet region.
However, when one electron is removed from the system, the
bonding becomes much stronger and the absorption shifts to
the visible region. In 1991, Haberland et al.1 measured the
absorption cross section for Xen

+, 3�n�30. They found that
for all these clusters three broad peaks are observed in the
1–4 eV range, except for Xe3

+, where only two peaks are
present. From these results they concluded that there were
two isomeric structures for the xenon clusters present in the
experiment. Theoretical calculations suggested that all cat-
ionic xenon clusters geometries were similar:2,3 a charged
linear core with almost neutral atoms arranged in rings per-
pendicular to the core axis. The rings are located in the
middle of the core bonds and contain up to five atoms. Be-
cause most of the charge is localized around the linear core,
the shape of the absorption cross section is mainly deter-
mined by the core of the cluster. Thus, the two isomeric
structures found in experiment must correspond to structures
with a different number of atoms in the charged core. These
results were confirmed by further experimental evidence and
by theoretical calculations of the photoabsorption of cationic
xenon clusters.4–7

Up to now, most theoretical studies of cationic xenon
clusters made use of semiempirical methods, especially the
“diatomics in molecules” �DIM� approach. The DIM
method8 has been quite successful in describing Xe clusters,
both for the ground state3,5 and their optical absorption.6,7 In
this approach, a model Hamiltonian is built using high qual-
ity ab initio diatomic data, such as energy surfaces of the
neutral and the cationic dimer, both in the ground state and
first excited state. Several extensions to the DIM model are
required in order to accurately describe the electronic prop-
erties of cationic xenon clusters. These extensions include
the spin-orbit coupling, three-body polarization contributions
to the interaction energy, and three-body dispersion terms.

The scarcity of ab initio calculations for these systems is
probably due to several reasons. From a fundamental point
of view, methods like density functional theory �DFT�, with
the standard approximations to the exchange-correlation
functionals, are well capable of describing covalent bonding,
but have problems with the long-range correlation9 present in
these systems. From a more practical point of view, these are
clusters with a large number of electrons where relativistic
effects are of utmost importance. Indeed, inclusion of scalar
relativistic effects is important to obtain correct ground state
geometries, while a proper description of the absorption
cross section also requires the inclusion of spin-orbit cou-
pling. For example, if spin-orbit coupling is neglected, the
Xe3

+ absorption cross section only exhibits one peak.
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In fact, there are many interesting examples where rela-
tivistic effects are essential in the interaction of nanostruc-
tures with electromagnetic radiation. For instance, gold
nanoclusters have been extensively studied as possible com-
ponents for new optical devices10,11 and the importance of
relativistic effects in gold is well known.12 The presence of
heavy elements is not the only factor that makes relativistic
effects important: spin-orbit coupling links the charge and
spin dynamics of a system. This is very important for the
field of spintronics, as it opens the possibility of controlling
the spin of a system by means of electric fields.13 We should
note, however, that most of what is known about the impor-
tance of relativistic effects in this kind of systems is mainly
related to the ground state, while there are still many open
questions regarding excited-state properties.

After the impressive success of DFT in describing the
ground state properties of a wide variety of systems, time-
dependent DFT14,15 �TDDFT� is in turn becoming a wide-
spread tool to investigate excited state properties of clusters
and nanostructures.16 Like DFT, TDDFT offers a reasonable
compromise between accuracy and computer efficiency, such
that the theoretical study of complex phenomena in systems
of several hundreds of atoms is now within our reach. Al-
though the use of TDDFT to study excited states properties
still poses several challenges, recent developments are ex-
tending the range of systems and phenomena where TDDFT
yields accurate results.16

In this article, we present ab initio calculations of the
absorption spectrum of cationic Xe clusters using TDDFT.
These calculations were made possible by the inclusion of
spin-orbit in the code OCTOPUS

17,18 using the recipe given in
Ref. 19.

II. TECHNICAL DETAILS

All the calculations presented below are done consider-
ing the core electrons of xenon within a norm-conserving
pseudopotential framework. The pseudopotentials were gen-
erated from the ground-state configuration 5s25p6 of the free
atom using the relativistic extension20 of the Troullier–
Martins method21 as implemented in the code APE.22 Spin-
orbit coupling was included using j-dependent pseudopoten-
tials in the Kleinman and Bylander form.19,23 The cutoff radii
used were 1.32, 1.32, and 1.69 Å for the s, p, and d compo-
nents, respectively.

The optical absorption cross sections were computed us-
ing real-time propagation of the time-dependent Kohn–Sham
equations24 as implemented in the code OCTOPUS.17,18 The
wave functions were represented on a real-space regular grid.
A box composed of spheres of radius 4.5 Å around every
atom and a grid spacing of 0.42 Å were required to obtain a
convergence of better than 0.1 eV in the spectra.

For linear Xe3
+ and linear Xe4

+ clusters we also optimized
their geometries using DFT. We started our optimizations
from previously published geometries3 and used the
Broyden–Fletcher–Goldfarb–Shanno conjugate gradient al-
gorithm with a convergence criterion of 10−3 eV /Å in the
forces on every atom. The calculation of the forces with the
necessary accuracy required the use of a grid spacing of 0.3

Å. To avoid unwanted effects from the boundaries during the
optimization, a spherical box of radius 12 Å was used. Due
to reasons that will become apparent in the following, we
used previously published geometries3 for all the other clus-
ters.

III. RESULTS AND DISCUSSION

The linear Xe3
+ and linear Xe4

+ clusters are of particular
interest, since they form the core of the larger clusters and
previous studies suggested that the shape of the absorption
cross section is mainly determined by this core. We thus
started by optimizing the ground-state geometries of linear
Xe3

+ and linear Xe4
+ using the Perdew–Wang parametrization

of the local density approximation25 �LDA� and the general-
ized gradient approximation �GGA� of Perdew, Burke, and
Ernzerhof26 �PBE�. Our results are summarized in Table I.
We have also included for comparison in Table I the geom-
etries obtained using the DIM semiempirical model,3 since to
our knowledge no high quality ab initio result is available for
these systems. Nevertheless, we expect the DIM geometries
to be quite accurate, as a good agreement with experiment
was obtained by DIM calculations of evaporation energies
for Xen

+→Xen−1
+ +Xe �Ref. 3� and of the photoabsoption

cross section of Xen
+ clusters.7

These results indicate that, compared to the DIM geom-
etries, the LDA overestimates considerably the bond lengths
�with the exception of the b1 bond in Xe4

+�. As for the GGA,
it produces larger bond lengths than the LDA. This is the
typical behavior of the GGA, as the LDA usually underesti-
mates the bond lengths, while the GGA overestimates them.
Since in this case the LDA overestimate the bond lengths, it
is not surprising that the GGA results appear to be worse. A
possible reason for this overestimation is that both LDA and
GGA fail to describe long-range correlation effects9 that
should play an important role in the bonding of these sys-
tems and act to decrease the bond lengths.

Using the geometries from Table I we calculated the
corresponding optical absorption spectra using TDDFT. For
the LDA and PBE geometries the time propagation was car-
ried using the same functional that was used to obtain the
geometry. As for the geometries obtained with the DIM
model, we computed the spectra using the LDA functional.
The calculated spectra can be seen in Fig. 1. The overall
structure of the spectra obtained with the LDA and DIM
geometries is the same, although with differences in the po-

TABLE I. Calculated bond lengths b angstrom of linear Xe3
+ and linear Xe4

+.
For the Xe4

+ cluster b2 denotes the central bond. The DIM results are from
Ref. 3.

Cluster Method b1 b2

Xe3
+ LDA 3.33

PBE 3.68
DIM 3.27

Xe4
+ LDA 3.47 3.43

PBE 4.01 3.99
DIM 3.55 3.18
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sition and intensities of the peaks. As for the spectra obtained
with the PBE geometries, they present larger differences,
specially in the case of linear Xe4

+.
We also included in Fig. 1 the experimental results for

Xe3
+. The positions of the peaks obtained with LDA and DIM

geometries are close to the experimental values and the error
is close to the expected accuracy of the method �0.1–0.4 eV�.
As for the PBE results, they seem to be worse than the LDA
results. As it will be shown later, this is because of the dif-
ferences in the geometries. We also note that the relative
intensities of the two peaks appear to be inverted in all our
calculated spectra1,7 and that the splitting due to spin-orbit
coupling is underestimated; the experimental value is 1.35
eV, but we obtain around 1.0 eV with the LDA and DIM
geometries, while the PBE one yields an even smaller value.

There are several possible sources of error in the relative
intensities of the peaks of our calculated photoabsorption
spectra. Two of them are the geometry and the exchange and
correlation functional. Using a pseudopotential is in most
cases a good approximation, but since the relative intensities
are at least partly determined by the spin-orbit coupling,
which is included through the pseudopotentials, it should
also be considered as a possible source of error. Each of
these possible sources of error was further investigated.

In order to check the effect of the geometry on the rela-

tive intensities of the peaks, we computed the photoabsorp-
tion spectra of Xe3

+ for several bond lengths ranging from 3.1
to 3.9 Å. We verified that, in this range, the position of the
peaks is much more sensitive to the geometry than the rela-
tive intensities. Indeed, only at large bond lengths �3.9 Å� did
the relative intensities get inverted, but in that case the posi-
tion of the peaks differs from experiment by more than 1 eV.
This suggests that the error in the geometries is not the cause
for the error in the relative intensities of the peaks.

Concerning the error arising from the pseudopotential,
we first note that, in our calculations, all relativistic effects
were included in the pseudopotential and that the valence
electrons were subsequently treated using the nonrelativistic
version of the �TD�DFT equations. This is justified by the
fact that the Dirac equation for the valence states outside the
core region reduces to the nonrelativistic Schrodinger equa-
tion. Nevertheless, important errors can be introduced if rela-
tivity is not properly taken into account during the construc-
tion of the pseudopotential.20 Although our pseudopotential
was constructed using a scheme that should avoid this prob-
lem, we have performed the following tests to verify its qual-
ity. First, we computed the dipole matrix elements of the Xe+

valence states obtained from a fully relativistic all-electron
calculation and compared them to the ones obtained from
two pseudopotential calculations: one treating the valence
states with the Schrödinger equation and the other one treat-
ing them fully relativistically using the Dirac equation. A
very good agreement was found in all cases: the differences
in the dipole-matrix elements obtained from the all-electron
and pseudopotential calculations where smaller than 2.5%,
while the differences between the ones obtained from the
two pseudopotential calculations where smaller than 0.01%.
Next, we computed the photoabsorption cross section of Xe3

+

using a modified Hamiltonian where the spin-orbit coupling
term was multiplied by a prefactor �. This term can be iden-
tified by writing the Kleinman and Bylander form for the
j-dependent pseudopotentials in terms of the Pauli matrices,
as shown in Appendix. In Fig. 2 we plot the optical absorp-
tion spectra of Xe3

+ as a function of � considering a fixed
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geometry. In this case the DIM geometry was used. As ex-
pected, for �=0 there is only one peak present and a second
peak at lower energy appears when � increases. From Fig. 2
we verify that, by varying �, it is possible to modify and
even invert the relative intensities of the peaks, but the best
agreement between the calculated and measured values is
obtained for a value of � between 1.5 and 1.75. Considering
how well the pseudopotential is able to reproduce the fully
relativistic all-electron results for Xe+, it seems unlikely that
it could introduce an error such that it can justify the need to
use such a large value of � to correct it.

Finally, in order to isolate the effect of the exchange and
correlation functional in the spectra, we calculated the opti-
cal absorption spectra of Xe3

+ using different exchange and
correlation potentials, but keeping the geometries fixed. The
geometries used were the ones obtained with the DIM
model. Besides the LDA and PBE functional we also used
the LB94 functional,27 which is a GGA with a correct
asymptotic behavior, and the B3LYP hybrid functional.28 The
results can be seen in Fig. 3. It turns out that, for all the
functionals considered, the position of the peaks changes by
less than 0.05 eV. Concerning the relative intensities of the
peaks, the LDA and GGA functionals give very similar re-
sults, but B3LYP changes the relative intensities in the cor-
rect direction, although they are still inverted with respect to
experiment. These results indicate that improving the treat-
ment of the exchange part of the functional by adding a
parcel of Hartree–Fock exchange reduces the error in the
spectrum. One should note, however, that this is unrelated to
the asymptotics of the exchange potential, as LB94 �that has
the correct asymptotics� yields the same spectrum as the
simple LDA and PBE. These results also confirm that the
differences between LDA and GGA spectra in Fig. 1 come
from the differences in the geometries. As a further analysis
of the errors arising from the exchange and correlation func-
tional, we computed the potential energy curve of the ground
state of Xe2

+ and performed a TDDFT calculation to obtain
the energy differences with respect to the ground state of the
two lowest dipole allowed transitions. We used the LDA and
compared the curves thus obtained with the ones obtained by

the coupled cluster calculations of Paidarová and Gadea.29

As expected, for large bond lengths the LDA curves are not
able to reproduce the coupled cluster curves, but we find a
very good agreement for bond lengths close to the equilib-
rium distance. Also, for all bond lengths, including the ones
shorter than the equilibrium distance, the relative intensities
of the transition dipole moments obtained with the LDA are
inverted with respect to the coupled cluster results. This in-
dicates that the error in the relative intensities is not related
to the inadequate treatment of static correlation.

From the previous results, we conclude that adequate
geometries are necessary in order to have a good agreement
between the position of the peaks obtained from our calcu-
lations and the ones measured experimentally, while the error
in the relative intensities of the peaks is most likely related to
the approximate functional used in the TDDFT calculation.
Because of this, and since our results seem to indicate that
the spectra computed from the DIM geometries are more
accurate than the spectra computed from DFT geometries,
we have used the DIM geometries in all the remaining cal-
culations. As for the functional used for the time propaga-
tions, although the results obtained with B3LYP are more
accurate, we have used the LDA in the remaining calcula-
tions, as it gives the same excitation energies than B3LYP
with a small modification of the oscillator strengths, and the
usage of hybrid functionals in our real-space implementation
of the TDDFT equations is computationally too expensive
for systems with a large number of electrons.

In Fig. 4 we show the calculated spectra for Xe3
+ and for

two isomers of Xe4
+: a T-shaped geometry, which is the

ground state, and a linear geometry. The spectra of Xe3
+ and

of the T-shaped Xe4
+, which has a trimer core, are very simi-

lar. On the other hand, the linear Xe4
+ has a quite different

structure with three distinct peaks that are redshifted with
respect to Xe3

+ and the T-shaped Xe4
+. This confirms previous

experimental and theoretical work that showed that the ab-
sorption cross section of these clusters is mainly determined
by the charged core.

More than one isomer is present in the experiment.1,4

This means that the existence of different metastable isomers
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needs to be taken into account in order to compare our re-
sults with experimental data. A crude way to simulate the
absorption cross section at finite temperature is to sum the
spectra of the different isomers using a Boltzmann distribu-
tion to weigh them. This, of course, neglects all effects in the
spectra due to the vibration of the nuclei. For each cluster
size, we have calculated the absorption cross section for all
the local mimina found in the DIM calculations by Pǎska et
al.3 and then used this method to obtain a spectra at finite
temperature. In Fig. 5 we plot the absorption cross section, of
Xen

+ as a function of n, for 3�n�35. A temperature of 100
K was used for all cluster sizes, as the temperature in experi-
ment was estimated between 60 and 100 K. From the overall
structure of the spectra, three regions can be clearly identi-
fied. These regions correspond to values of n where different
core sizes become more relevant in the spectra: trimer core
for 3�n�13, tetramer core for 14�n�22, and pentamer
core for n�23.

We now analyze more in detail the trends in the posi-
tions of the main peaks. In our calculations, the position of
the peak at around 3 eV is systematically redshifted with
respect to the experimental value. The reason for the disap-
pearance of this peak for n�15 is due to the fact that few
isomers have been found in the DIM calculations for those
clusters,3 as an extensive search in conformational space for
such large clusters was prohibitive. The lack of experimental
points for this peak makes it difficult to draw any further
conclusions. As for the peak at around 2 eV, we see that for
n�19 our calculation is able to describe quite accurately the
trend in the position of the peak. In particular, the change in
slope at n=13 is well reproduced. The trend in the position
of the lower energy peak measured in experiment is also
reasonably well described, although the intensity of this peak
is clearly underestimated. For all the peaks, at large values of
n, comparison between our results and experiment becomes
more difficult, as the structure of the spectra increases in
complexity.

Finally, we note that in our calculation a broad peak can
be found close to 0.5 eV. This peak is present for most iso-
mers and becomes broader as the cluster size increases. This

suggests that this low energy excitation is plasmonlike. Un-
fortunately there are no experimental measurements at these
energies for us to compare with.

IV. CONCLUSIONS

We studied the optical absorption of cationic xenon clus-
ters using TDDFT, and showed that, provided that adequate
ground-state geometries are used, TDDFT is able to correctly
predict the qualitative features of the spectra. Our results are
in agreement with previous theoretical calculations that con-
cluded that the absorption cross section is mainly determined
by the charged linear core of the clusters. Indeed, from our
calculated spectra, the linear core of each isomer could
clearly be identified. Even if the position of the peaks were
well described, we found a poor agreement for the relative
intensities of the peaks. The exchange and correlation func-
tional was found to be responsible for this error.
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APPENDIX: KLEINMAN AND BYLANDER FORM FOR
j-DEPENDENT PSEUDOPOTENTIALS

The nonlocal part of the Kleinman and Bylander form
for j-dependent pseudopotentials is given by19

v̂NL = �
l,j,mj

��l,j,mj

PP �vl,j
PP���l,j,mj

PP �vlj
PP�

��l,j,mj

PP ��vl,j
PP��l,j,mj

PP �
, �A1�

where ��l,j,mj

PP � are the atomic pseudowave functions and �vl,j
PP

are the differences between the j-dependent pseudopotentials
vl,j

PP and an arbitrary local component. In Eq. �A1�, the sum
over j runs from j= l− 1

2 to j= l+ 1
2 while the sum over mj

runs from −j to j. The atomic pseudowave functions are in
turn given by

��l,j,mj

PP � = �Rl,j
PP��� j,l,mj

� , �A2�

where �Rl,j
PP� is the radial part of the pseudowave function and

�� j,l,mj
� are the total angular momentum eigenfunctions. The

�� j,l,mj
� can be written in terms of the spherical harmonics

�Yl
m� and the eigenfunctions of the z component of the Pauli
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spin operator, �↑ � and �↓ �. For j= l+ 1
2 , mj =m+ 1

2 they are
given by

�� j,l,mj
� = 	 l + m + 1

2l + 1

1/2

�Yl
m��↑� + 	 l − m

2l + 1

1/2

�Yl
m+1��↓� ,

�A3�

while for j= l− 1
2 , mj =m− 1

2 we have

�� j,l,mj
� = 	 l − m + 1

2l + 1

1/2

�Yl
m−1��↑� − 	 l + m

2l + 1

1/2

�Yl
m��↓� .

�A4�

In order to separate the spin-orbit part from the scalar
relativistic one in Eq. �A1�, we write the nonlocal part in
terms of spherical harmonics and in terms of the Pauli ma-
trices �x, �y, and �z. To do this we note that

�↑��↑� = 1
2 ��0 + �z� , �A5a�

�↑��↓� = 1
2 ��x + i�y� , �A5b�

�↓��↑� = 1
2 ��x − i�y� , �A5c�

�↓��↓� = 1
2 ��0 − �z� , �A5d�

with �0 being the unity matrix. By making the appropriate
changes in the summation ranges, and after some straightfor-
ward manipulations, we get

v̂NL = �
l
� �

m=−l

l �	 l + 1

2l + 1
�0 +

m

2l + 1
�z
P̂l,l+1/2

m,m

+ 	 l

2l + 1
�0 −

m

2l + 1
�z
P̂l,l−1/2

m,m 

+ �

m=−l−1

l ��l + m + 1��l − m�
2�2l + 1�

���x + i�y��P̂l,l+1/2
m,m+1

− P̂l,l−1/2
m,m+1� + ��x − i�y��P̂l,l+1/2

m+1,m − P̂l,l−1/2
m+1,m��� , �A6�

where

P̂l,j
m1,m2 =

�Rl,j
PPYl

m1�vl,j
PP��Rl,j

PPYl
m2�vl,j

PP�
�Rl,j

PP��vl,j
PP�Rl,j

PP�
. �A7�

The spin-orbit coupling term in Eq. �A6� corresponds to
the terms in �x, �y, and �z. Indeed, if we keep only the terms
in �0 we end up with

v̂NL = �
l

�
m=−l

l 	 l + 1

2l + 1
P̂l,l+1/2

m,m +
l

2l + 1
P̂l,l−1/2

m,m 
 , �A8�

which is just, as expected, the j-average of the j-dependent
projectors.
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