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Density functional theory beyond the linear regime: Validating an
adiabatic local density approximation
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We present a local density approximation (LDA) for one-dimensional (1D) systems interacting via the soft-
Coulomb interaction based on quantum Monte Carlo calculations. Results for the ground-state energies and
ionization potentials of finite 1D systems show excellent agreement with exact calculations obtained by exploiting
the mapping of an N -electron system in d dimensions onto a single electron in N × d dimensions, properly
symmetrized by the Young diagrams. We conclude that 1D LDA is of the same quality as its three-dimensional
(3D) counterpart, and we infer conclusions about 3D LDA. The linear and nonlinear time-dependent responses
of 1D model systems using LDA, exact exchange, and the exact solution are investigated and show very good
agreement in both cases, except for the well-known problem of missing double excitations. Consequently, the
3D LDA is expected to be of good quality beyond the linear response. In addition, the 1D LDA should prove
useful in modeling the interaction of atoms with strong laser fields, where this specific 1D model is often used.

DOI: 10.1103/PhysRevA.83.032503 PACS number(s): 31.15.ee, 32.10.Hq, 32.30.Jc

Over the last years the theoretical description of optical
properties of complex many-electron systems, from molecules
to nanostructures and extended systems, has reflourished due
to the efficient implementation of time-dependent density
functional theory (TDDFT) [1,2]. The good performance
shown by the adiabatic local density approximation (ALDA)
for many finite systems has limited the development of
exchange-correlation (xc) functionals with a more elaborate
time-dependence, which is clearly in its infancy compared
to static DFT. However, recently many important deficiencies,
especially of the adiabatic approximation, have been identified
[3–12].

Ultrafast time-resolved optical spectroscopy has revealed
new classes of physical, chemical, and biological reactions,
in which directed, deterministic motions of atoms have a
key role. The advent of free-electron lasers with attosecond
resolution increases the capabilities of present femtosecond
pump-probe experiments, allowing for a study of the dynamics
of nonequilibrium electronic systems in real time. In addition,
systems of all sizes can be investigated, from the atomic scale
to the most extended molecules (e.g., DNA, proteins and their
complexes) and solids. Despite these tremendous experimental
advances, the theoretical description of a real molecular system
subject to ultrashort, intense, and/or high-frequency lasers
is still in a fledgling state. Several problems need to be
addressed, ranging from the nonperturbative nature of the
physical processes involved to the simultaneous description
of the (interacting) electronic and nuclear degrees of freedom.
Therefore, it is of paramount relevance to have a theoretical
framework which allows for a nonperturbative description of
electrons and, at the same time, is able to tackle electron-ion
dynamics in the excited state. TDDFT seems to be the suitable

framework to move the realm of density functional methods
beyond the linear regime to describe the aforementioned
processes. One important advantage is the combined electron
and ion dynamics provided by TDDFT [2].

Many physical processes rely on the knowledge of nonlin-
ear response functions. Therefore, it is very timely to provide
a systematic study addressing the performance of present
functionals in the nonlinear regime. To assess the quality of a
functional, we need to have appropriate data for comparison. It
can be very difficult to obtain accurate experimental data in the
nonlinear regime for real systems due to various limitations,
e.g., solvent effects or additional approximations going into the
interpretation of the collected data [13,14]. These problems can
be avoided by using exactly solvable models, which then allow
for a direct comparison between the exact spectrum and an
approximate one. Unfortunately, an exact propagation of even
small three-dimensional (3D) systems is computationally very
demanding and needs further simplification. One possibility
is the reduction of dimensionality, i.e., the use of one-
dimensional (1D) models where the exact diagonalization is
feasible as long as the number of electrons is sufficiently small.
In the present paper, we work with systems of interacting
electrons in 1D. Having the exact solution allows us to test
orbital-dependent functionals, such as exact exchange (EXX),
which can be easily transferred to different dimensions. A local
density approximation (LDA) is achieved, as in the 3D case,
by quantum Monte Carlo (QMC) studies of the homogeneous
reference, and by parametrizing the corresponding correlation
energy.

The present work, besides adding fundamental information
concerning the relevance of spatial and temporal nonlocality in
the xc functional, also provides a proper LDA parametrization
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for electrons interacting via the soft-Coulomb interaction in 1D
systems. This model description is widely used in the context
of high-intensity lasers, where above-threshold ionization
and high-order harmonic generation play an important role
[15–18]. Also, 1D two-electron systems are employed to gain
insight into exact properties of the xc potential and kernel
in static and time-dependent density functional theory, since
these systems can easily be solved exactly [19–21].

The 1D Hamiltonian for N particles moving in a general
external potential vext reads

H =
N∑

j=1

[
−1

2

d2

dx2
j

+ vext(xj )

]
+ 1

2

N∑
j,k=1
j �=k

vint(xj ,xk), (1)

where vint describes the electron-electron interaction. In order
to avoid the singularity of the Coulomb interaction, we instead
employ the soft-Coulomb potential

vsoft-C(x1,x2) = q1q2√
a2 + (x1 − x2)2

. (2)

Here, q1 and q2 describe the charges of the particles, while
a is the usual softening parameter [atomic units (a.u.) e =
m = h̄ = 1 are used throughout this paper]. We use a = 1
for all our calculations. Mathematically, it is straightforward
to show that the Hamiltonian (1) is equivalent to a single
particle in N dimensions, moving in an external potential
consisting of all the contributions from vext and vint. The
corresponding Schrödinger equation can, hence, be solved
by any code which is able to treat noninteracting particles
in the correct number of dimensions in an arbitrary external
potential. Due to the Hamiltonian being symmetric under
particle interchange, xj ↔ xk , the solutions of the Schrödinger
equation can be chosen as symmetric or antisymmetric under
such an exchange. For the simplest case of two interacting
electrons, both the symmetric and antisymmetric solutions are
valid, corresponding to the singlet and triplet spin configura-
tions, respectively. However, for more than two electrons, one
needs to separately ensure that the spatial wave function is
a solution to the N -electron problem. For example, a totally
symmetric spatial wave function is a correct solution for a
single particle in N dimensions, however, for N > 2, there
is no corresponding spin function such that the total wave
function has the required antisymmetry to be a solution of
the N -fermion problem in 1D. We solve this problem by
symmetrizing the solutions according to all possible fermionic
Young diagrams for the given particle number N [22].
The solution of higher-dimensional problems within these
symmetry restrictions has been implemented into the OCTOPUS

computer program [23,24]. Usually, the lowest-energy solution
is found to be purely symmetric and is discarded for N > 2.
With an increasing number of electrons, we also observe an
increasing number of states which do not satisfy the fermionic
symmetry requirements.

As a result of reducing the number of dimensions, we
need to use an appropriate functional for performing the
DFT calculations. While any orbital functional can easily
be transferred between dimensions, those functionals based
on specific systems need to be recalculated. This affects the
most common functional, i.e., the local density approximation,

available only for the normal-Coulomb interaction in two and
three dimensions [25,26], an effective Coulomb interaction
of a harmonically confined wire [27,28], and some other ad
hoc 1D models [29–31]. In this work, we present and use
a parametrization of the 1D LDA obtained from quantum
Monte Carlo simulations, which are exact in 1D, using the
soft-Coulomb interaction in Eq. (2). We assess the quality of
the approximation in calculating ground-state properties as
well as the linear response for various 1D model systems. We
then proceed to calculate the nonlinear response and compare
the exact one with the ALDA and adiabatic exact-exchange
(AEXX) spectra.

The correlation energy of the LDA is parametrized in terms
of rs and the spin polarization ζ = (N↑ − N↓)/N in the form

εc(rs,ζ ) = εc(rs,ζ = 0) + ζ 2 [εc(rs,ζ = 1) − εc(rs,ζ = 0)] ,

(3)

with

εc(rs,ζ = 0,1) = −1

2

rs + Er2
s

A + Brs + Cr2
s + Dr3

s

× ln
(
1 + αrs + βrm

s

)
, (4)

which proves to be very accurate in the parametrization for
other 1D systems with a different long-range interaction [27].
Note that the additional factor of 1/2 is due to the use of hartree
(Ha) atomic units, as everywhere else in the paper. To obtain
the exact high-density result, known from the random-phase
approximation [28], i.e.,

εc(rs → 0,ζ = 0) = −4/(π4a2)r2
s , (5)

εc(rs → 0,ζ = 1) = −1/(2π4a2)r2
s , (6)

to leading order in rs , we fix the ratio α/A to be equal to
8/(π4a2) and 1/(π4a2) for ζ = 0 and ζ = 1, respectively. In
both cases, the exponent m is limited to values larger than 1. As
a result, the number of independent parameters in the function
(4) is reduced to 7. In addition, for a = 1, the denominator can
be simplified by setting B = 0.0, without loss of accuracy.The
optimal values of the parameters for a = 1 are reported in
Table I, and implemented in the OCTOPUS program [23,24].
For more details on the 1D QMC methodology and the
parametrization procedure, we refer to Refs. [27,28].

As a first test, we calculated the ground-state energies
of small atomic systems, for example, a 1D helium atom
with q = 2 in Eq. (2) and two electrons which interact via
the soft-Coulomb interaction. The ground-state energies and
ionization potentials from the exact and unpolarized LDA
calculations are given in Table II. We include all possible
systems with one, two, three, and four electrons in our
test. For open-shell systems, we additionally performed a
spin-LDA [(S)LDA] calculation, where the xc energy was spin
dependent, according to Eq. (3). All atomic calculations were
performed in a box ranging from −8 to 8 bohrs, with a spacing
of 0.2 bohr, which ensures the total energy to be converged to
the accuracy stated in the table.

As we can see, the LDA total energies for the neutral and
positively charged systems agree very well with the exact
results. As expected, the spin-resolved calculations further
improve the agreement for the open-shell systems. As a result,
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TABLE I. Values of the LDA correlation-energy parametrization
in Eq. (4) for the most widely used case, a = 1. The parametrization
is reported for both unpolarized (ζ = 0) and fully polarized (ζ = 1)
systems. The error on the last digits is given in parentheses, while the
average error (in hartree units) in the full-density range is given in
the last row.

a = 1.0

ζ = 0 ζ = 1

A 18.40(29) 5.24(79)
B 0.0 0.0
C 7.501(39) 1.568(230)
D 0.10185(5) 0.1286(150)
E 0.012827(10) 0.00320(74)
α 1.511(24) 0.0538(82)
β 0.258(6) 1.56(1.31)×10−5

m 4.424(25) 2.958(99)
avg. error 6.7×10−5 3.3×10−5

the ionization potentials, calculated as the difference of the
total energies of the N and the N − 1 electron systems from
the (S)LDA, and the exact calculations agree almost perfectly.
The largest Kohn-Sham (KS) eigenvalue ε

(S)LDA
HOMO only partially

accounts for the total ionization potential, i.e., the 1D LDA
violates this known property of the exact functional [32].
The good agreement for the positively charged systems is not
reproduced for negatively charged ones. For the small systems
investigated here, LDA does not bind an extra electron, i.e.,
the highest occupied KS orbital has a positive eigenenergy. The
exact calculation shows that the negatively charged systems are
indeed stable, giving total energies of −0.73 Ha, −2.35 Ha, and
−4.17 Ha, for H−, He−, and Li−, respectively. A comparison
with the total energies of the neutral systems shows that,
in the exact calculation, the additional electron is only very
lightly bound in 1D. It is no surprise that the LDA, with its
usual wrong asymptotic behavior of the exchange-correlation
potential, does not yield stable negatively charged ions.

As a second test of the new functional, we calculate the
dissociation curve of the 1D hydrogen molecule. For these

TABLE II. Total energies and ionization potentials for one-
dimensional atoms and ions from exact and (spin-)LDA calculations
as well as the eigenvalues of the highest occupied Kohn-Sham orbital.
All numbers are given in Hartree.

Etotal IP

Exact LDA SLDA Exact (S)LDA ε
(S)LDA
HOMO

H −0.67 −0.60 −0.65 0.67 0.65 −0.41
He −2.24 −2.20 0.75 0.75 −0.48
Li −4.21 −4.16 −4.18 0.31 0.33 −0.18
Be −6.78 −6.76 0.33 0.35 −0.16
He+ −1.48 −1.41 −1.45 1.48 1.45 −1.18
Li+ −3.90 −3.85 1.56 1.55 −1.24
Be+ −6.45 −6.39 −6.41 0.83 0.85 −0.63
Li2+ −2.34 −2.25 −2.30 2.34 2.30 −2.00
Be2+ −5.62 −5.56 2.41 2.38 −2.06
Be3+ −3.21 −3.13 −3.18 3.21 3.18 −2.86
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FIG. 1. (Color online) Binding energy per atom of the one-
dimensional hydrogen molecule as a function of the distance between
the two ions; exact and LDA calculations for the singlet ground state
and the first triplet state.

calculations, we increased the size of the simulation box to
range from −20 to 20 bohrs in order to achieve convergence
also for the stretched molecule. Figure 1 shows the binding
energy per atom as a function of the distance between the
two ions. As one can see, the known pathology of 3D LDA
is reproduced also in 1D. The singlet state yields a good
description around the equilibrium distance of 1.6 bohr, with
the binding energy being slightly overestimated by LDA.
However, the bond breaking is not described correctly due
to the strong static correlation at large distances. The LDA
calculation for the triplet state yields very good agreement
over the whole range of distances, corroborating the general
experience of LDA performing better for more-polarized
systems.

After having shown that the 1D LDA behaves very much
like its 3D counterpart for ground-state calculations, we turn
our attention to TDDFT and use it as an adiabatic approx-
imation to the exact time-dependent exchange-correlation
potential. The propagations were performed in a box ranging
from −150 to 150 bohrs with absorbing boundary conditions
[23] and a grid spacing of 0.2 bohr for a total propagation time
of 103 a.u.

In Fig. 2 we compare the spectra calculated in a linear and
nonlinear regime from the exact and the LDA calculations
for a Be2+ system, i.e., a positive charge with q = 4 and two
interacting electrons in a singlet configuration. In the linear
regime, a kick of 10−4 Ha/bohr was employed at t = 0, which
was then increased to 0.01 Ha/bohr to obtain the nonlinear
response. The values of the excitation energies can be found in
Table III. In the linear response, we see five peaks in the LDA
spectrum, which compare well with the first five excitations
in the exact case. As expected, the agreement is better for
lower-lying excitations and gets worse the closer we get to
the continuum. As a guide for the eye, we included the KS
HOMO (highest occupied molecular orbital) energy of the
LDA calculation and the exact ionization potential. The onset
of the continuum itself appears at too-low energies in the
LDA calculation, missing two more clearly visible peaks in
the exact spectrum. In other words, the LDA fails to reproduce
the proper Rydberg series, a behavior well known from 3D
calculations. For comparison we also included the results from
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FIG. 2. (Color online) Linear (top) and nonlinear (bottom) spectra
of Be2+ comparing the exact and the 1D LDA calculation. The inset
in the bottom figure shows a zoom into the region from 2.7 to 3.0 Ha.

an EXX calculation, which show a slightly better agreement
than LDA for the first three excitations but, more importantly,
reproduce the Rydberg series due to the correct asymptotic
behavior of the corresponding exchange potential. The quality
of the EXX results also implies that correlation is of secondary
importance in the system for a = 1. The nonlinear spectrum
shows the same excitations as the linear spectrum and three
additional peaks for the exact and the EXX calculation as well
as two additional peaks in the LDA spectrum. Their energies
are also listed in Table III. Due to the spatial symmetry of
the system, all even-order responses are zero and the first
nonvanishing higher-order response is of the third order. The
�1 = 0.28 Ha corresponds to an excitation from the second
to the third excited state, where the transition from the ground
to the second excited state is dipole forbidden and, hence,
can only be reached in a two-photon process. The other two
frequencies, �2 = 0.42 Ha and �3 = 0.54 Ha, correspond to
the transitions from the first to second excited state, and second
to fifth excited state, respectively. Again, both the EXX and
the LDA calculations yield a good description of the low-lying
excitations; only the third peak cannot be resolved in the LDA
spectrum.

One feature of the exact spectrum that is missing from
both the LDA and the EXX spectra is the small dip at
2.8 Ha; see inset in Fig. 2. It results from a Fano resonance

TABLE III. Excitation energies from the linear and nonlinear
response of the 1D Be2+ atom corresponding to the spectra in Fig. 2.
Excitations from the linear response are denoted as ω while those
from the nonlinear spectrum are denoted with �. All numbers are
given in hartree units.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 �1 �2 �3

LDA 1.10 1.74 1.90 1.96 2.00 0.22 0.40
EXX 1.13 1.82 2.08 2.20 2.27 2.30 2.32 0.26 0.43 0.52
exact 1.12 1.81 2.08 2.19 2.26 2.29 2.32 0.28 0.42 0.54

[33,34], i.e., the decay of an excited state into continuum
states. It is missing from both approximate spectra due
to the double-excitation character of the involved excited
state. Double excitations can only be described in TDDFT
if a frequency-dependent xc kernel is employed [5]. Any
adiabatic approximation, however, leads to a frequency-
independent kernel. Hence, double excitations, as well as
any resulting features, are missing from both the ALDA
and the AEXX calculations. Apart from the well-known
shortcomings of not including double excitations and not
giving the correct Rydberg series, the 1D ALDA repro-
duces both the linear and the nonlinear exact spectra quite
well.

We have introduced a one-dimensional LDA suitable for
the description of systems interacting via the commonly
used soft-Coulomb interaction. We have shown that the one-
dimensional functional is of the same quality as its three-
dimensional counterpart in the calculation of ground-state
energies of atomic systems and the dissociation of small
molecules. Also, the linear spectra show the same quality
known from 3D calculations with low-energy excitations being
well described, while Rydberg and double excitations are
missing. Generally, for the 1D LDA, one can expect the same
success and failure in applications that are known from 3D
calculations, i.e., the quality of the LDA results appears to
be independent of the dimensionality. We emphasize that the
1D LDA yields a good description not only in the linear
response but also in the nonlinear case. Consequently, one
can expect 3D LDA calculations to perform well for the
calculation of the nonlinear response, where the experimental
data is often difficult to interpret. The quality of the LDA
for softening parameters a �= 1 will be investigated in the
future. Choosing values smaller than one is of special in-
terest as this corresponds to an increasing correlation in the
system.

The reduced dimensionality of the model systems treated in
this work allows for a direct solution of the interacting problem
for a small number of particles. The comparison between
the DFT and an exact calculation allows for an assessment
of the quality of approximations beyond what is possible in
three-dimensional systems. One-dimensional model systems
can provide useful insight, which hopefully will allow for the
construction of new functionals in the future.
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