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Some years ago Kleinman and Bylander [Phys. Rev. Lett. 48, 1425 (1982)] proposed a fully non-
local form of norm-conserving pseudopotentials. Its application reduces—if compared to other
ab initio pseudopotentials—the computational effort to calculate potential matrix elements. How-
ever, if the procedure is not applied cautiously, it can destroy important chemical properties of the
atoms. In this paper we identify the origin of this problem, and we give a theorem which tells if a
“ghost” state occurs below the zero-node state of the atom. We also show how the difficulties can
be avoided, i.e., how reliable, fully nonlocal, norm-conserving pseudopotentials can be obtained.

Some years ago Kleinman and Bylander! (KB) pro-
posed a fully nonlocal form of norm-conserving pseudo-
potentials. Its application reduces—if compared to other
ab initio pseudopotentials—the computational effort to
calculate potential matrix elements. Although the sug-
gestion is intriguing, it has not been applied widely. The
reason is that the calculated chemical binding of mole-
cules and solids [e.g., GaAs (Ref. 2)] is sometimes de-
scribed incorrectly. These problems arise, although for
atomic calculations the wave functions and the logarith-
mic derivatives D;(E) and dD,(E)/dE at the reference
energies E; and for r >r, equal those of the all-electron
calculations. Here r. defines the range of “pseudoiza-
tion” of the ionic potential, and it roughly equals the
range of the core electrons.

In this paper we analyze the properties of the KB
Hamiltonian and explain why it may cause unphysical re-
sults. In short, the problem is due to the fact that the KB
Hamiltonian does not obey the Wronskian theorem,’
which implies that atomic eigenfunctions are energetical-
ly ordered such that (for a given quantum number /) the
energies increase with the number of nodes. As this
theorem is not valid for the KB Hamiltonian, it can have
eigenstates with nodes even below the zero-node state.
Or, the zero-node states may be followed directly by an
n >2 node state. Both possibilities will usually prevent
an application of these potentials for a reliable descrip-
tion of chemical binding. Below we show how this prob-
lem can be avoided, so that no difficulties arise in actual
calculations.

We take selenium as an example. In Fig. 1 the highest
occupied eigenstates (4s and 4p) of the all-electron calcu-
lation, the corresponding states of the norm-conserving
pseudopotential of Bachelet, Hamann, and Schliiter
(BHS),* and the corresponding results of the BHS-based
KB potential are displayed. The two pseudopotential cal-
culations give exactly identical wave functions, which for
r > r, also equal those of the all-electron calculation. Fig-
ure 2 shows the logarithmic derivatives of the s, p, and d
states of the three calculations. In the d results of the
all-electron calculation we also see the Se 3d level at
—2.01 hartrees, which in the pseudopotential calcula-
tions is treated as a core state. We see that at the refer-
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ence energies E, the logarithmic derivatives D;(E) of the
three different calculations are the same, and also the en-
ergy derivatives dD;(E)/dE at E, are identical. This is a
result of the norm-conserving condition. Therefore the
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FIG. 1. The 4s (solid curve) and 4p (dashed curve) wave func-
tions of a Se atom. Bottom: from an all-electron calculation.
Middle: from the pseudopotential of Bachelet, Hamann, and
Schliiter (Ref. 4). Top: the BHS-based Kleinman-Bylander po-
tential gives the same states as those of the middle row.
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scattering of these three potentials is well described in the
energy range around E;,. However, for p states the KB
potential deviates significantly if we move away from
E,=—0.24 hartrees and at —2.94 hartrees we find a
“ghost” state (see Fig. 3), i.e., a one-node state below the
zero-node reference state. As a consequence, there are
also differences in the scattering properties at higher en-
ergies.

In order to analyze this problem we note that the
“standard” (Hamann-Schliiter-Chiang® or Kerker®) pseu-
dopotential (ps) of the ion is usually written as an opera-
tor,

Vps-ion(r)=VIocal(r)+EAVI(?‘)“,m) (I,ml . (1)

IL,m

Here |I,m) are normalized spherical harmonics and
AV(r) is a localized function, which is zero for r > r,. It
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FIG. 2. Logarithmic derivative at » =2.33 a.u. for the s (top),
p (middle), and d (bottom) states of a Se atom. Solid curve: re-
sults of the all-electron calculation. Dashed curve: results us-
ing the potentials of Bachelet, Hamann, and Schliiter (Ref. 4).
Dot-dashed curve: results using the BHS-based Kleinman-
Bylander potential. At the reference energies E, = —0.64 har-
trees, E,=—0.24 hartrees, and E;=—0.43 hartrees the
different potentials give the same results. Note that there is an
additional p state in the KB potential at E ., = —2.94 hartrees
(also see Fig. 3).
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FIG. 3. Radial wave function of the p-like “ghost” state of
the BHS-based KB potential.

is often convenient to choose the splitting between Vol
and AV, such that AV;(r) vanishes for / =2. For sp-
bonded systems the higher-/ components of AV, can be
neglected. This approximation is acceptable, because all
AV,(r) are localized and for higher-/ values the centrifu-
gal potential, /(I +1)/r%, dominates at small values of .
A systematic list of ¥'°?(r)+AV,(r) for many atoms of
the Periodic Table has been compiled by BHS.*

Kleinman and Bylander! pointed out that a significant
reduction of the numerical effort of electronic-structure
calculations can be achieved if the nonlocality of the po-
tential is not restricted to the angular parts as in Eq. (1),
but if also the radial potential is replaced by a projection
operator:

AV (n=E[P|g) (&1, @)
with
___ AV(IRP(D
((RPIAVER V2

E(r) (3)

which are normalized and well-localized functions (zero
for r>r.). The energies EXB, which determine the
strength of the nonlocality, are given by

_(R]|AVER]®)

(R*|AV/IR)
It is obvious that the eigenenergies E; and the radial
wave functions R ,p *(r) are unchanged by this procedure of

Eq. (2): It can be seen immediately that
E[PIE;) (&R (r) is identical to AV,(r)R C(r).

The possibility that such a fully nonlocal pseudopoten-
tial may give rise to a *“ghost” prevents a simple applica-
tion of the BHS potentials. It is important to ensure in
the construction of the potentials that no ghost state
occurs in the chemically important energy range around
E,. How can one decide if there is a ghost? A careful
look at the logarithmic derivatives (compare Fig. 2) may
help, but it can be also misleading: A deep-lying ghost
state could give rise to a very sharp structure in D,(E),
which then is likely to be missed. Therefore, the follow-
ing theorem which tells if there is a ghost state below the
reference energy level E; is helpful.

It is useful to introduce the “local Hamiltonian,”
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FIG. 4. Dependence of the KB energy EXP [see Eq. (4)] on
the cutoff radius of the Se d pseudopotential (see text). The
solid line shows the results for s states and the dashed line those
for p states.

which equals the self-consistent nonlocal atomic Hamil-
tonian without the AV, components. For each [ value the
two lowest eigenvalues of this local Hamiltonian are
E}°0 and E[°**'!, As will be shown in detail in Ref. 2,
we have to distinguish two possibilities, for which we ob-
tain the following.

(1) EXB<0: There is a ghost below the reference level
E, if and only if E; is higher than E}°*'° (the energy of
the zero-node state of the local Hamiltonian).

(2) EXB>0: There is a ghost below the reference level
E, if and only if E, is higher than E}°*®'! (the energy of
the one-node state of the local Hamiltonian).

A detailed proof of this theorem will be given in Ref. 2.
For the above-discussed Se BHS potential we obtain
EXB>0, E.=—0.64 hartrees, and E!°''=—0.04 har-
trees. Thus, there is no s-like ghost below E;. For the Se

p states the relevant energies are EX?<0, E,=—0.24
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FIG. 5. Left: the Se potential of BHS (Ref. 4) which gives
rise to the logarithmic derivatives shown in Fig. 2. Right: our
pseudopotential for which no “ghost” state occurs and which
gives rise to the logarithmic derivatives in Fig. 6. For the s po-
tential (solid line) and the p potential (dashed line) we start from
the ground-state configuration 4s’4p®. For the d potential
(dotted-dashed line) we use 4s'4p?7344%%,
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hartrees, and E}m“'°= —0.25 hartrees. Thus, the above
theorem predicts a ghost below E,, which we indeed had
already identified in Figs. 2 and 3.

If we know that there is no ghost below E;, a careful
look at the logarithmic derivative at higher energies is
still important. As an example we mention the case of a
BHS-based KB pseudopotential for gallium. We do not
find a ghost below E,;, but for the s states there is
significant deviation of D,(E) at higher energies (see Ref.
2). As a consequence, the band structure of a calculated
GaAs crystal becomes incorrect.

How can one avoid a ghost below E; and in the chemi-
cally important energy range of E; =1 hartrees? As it can
be inferred from Eq. (4), the parameter EXP depends sen-
sitively on the matrix element (R*|AV;|R"). Analyz-
ing many atoms of the Periodic Table, we found that
difficulties and instabilities often occur when this matrix
element is close to zero. Then EXB is large, and the pseu-
dopotential logarithmic derivative deviates rapidly from
the all-electron results if we go away from E,;. Besides
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FIG. 6. Logarithmic derivative at r =2.33 a.u. for the s (top),
p (middle), and d (bottom) states of a Se atom. Solid curve: re-
sult of the all-electron calculation. Dotted-dashed curve: re-
sults using the Kleinman-Bylander procedure based on the po-
tential shown at the right of Fig. 5.
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such usually not acceptable inaccuracy, we also noted
that self-consistent calculations can become instable. A
slight modification of the pseudopotential, which is usual-
ly possible without destroying its scattering properties,
will significantly change EXB. For the Se example this is
shown in Fig. 4, where the pseudopotential is modified by
changing the cc; parameter of the d potential. The cc,
parameter is defined* by

¥ max
p = Lmax 5)
cC

where r_,, is the position of the maximum of the radial
wave function of the all-electron calculation. We solve
the Dirac equation and therefore we obtain different wave
functions for s, p spin up, p spin down, d spin up, and d
spin down. Therefore our r. values are different for
different / and different spins. For the s- and p-potentials
we use cc;=1.6 and cc, =1.7. And cc, is used as the pa-
rameter. The /-dependent pseudopotential is then ob-
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tained from the average of its spin-up and spin-down
components. EXB is calculated from Eq. (4), using the d
pseudopotential as V2!, As Fig. 4 shows, the KB ener-
gy has a pole at cc; =1.925. Therefore this cc,; value and
values close to it should be avoided. For cc;=2.1 we ob-
tain a pseudopotential which is very similar to that of
BHS,* but which does not cause problems in the con-
struction of a fully nonlocal pseudopotential. In Fig. 5
we show the BHS (Ref. 4) and our pseudopotential. Fig-
ure 6 displays the logarithmic derivatives, which are now
well acceptable for molecular and crystal calculations.
At present we perform such analyses for many elements
of the Periodic Table. A list of these fully nonlocal,
norm-conserving pseudopotentials will be published else-
where.’
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