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We describe spin-unrestricted self-consistent linear muffin-tin-orbital (LMTO) Green-function
calculations for Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu transition-metal impurities in crystalline sil-
icon. Both defect sites of tetrahedral symmetry are considered. All possible charge states with their
spin multiplicities, magnetization densities, and energy levels are discussed and explained with a
simple physical picture. The early transition-metal interstitial and late transition-metal substitu-
tional 3d ions are found to have low spin. This is in conflict with the generally accepted crystal-field
model of Ludwig and Woodbury, but not with available experimental data. For the interstitial 3d
ions, the calculated deep donor and acceptor levels reproduce all experimentally observed transi-
tions. For substitutional 3d ions, a large number of predictions is offered to be tested by future ex-

perimental studies.

I. INTRODUCTION

Investigations of transition-metal (TM) impurities in
semiconductors have received much attention in the last
few years. This interest is due to purely scientific as well
as technological reasons.

It is well known that the various ionized states of free
TM atoms are spread over a range of more than 10 eV.
However, a TM impurity in a covalent crystal can have a
sequence of donor and acceptor levels (corresponding to
different charge states) within the narrow band gap (order
of 1 eV).!”% Thus the Coulomb repulsion energies of the
free ions will have to be reduced in the solid by 1 or 2 or-
ders of magnitude. For this to occur, a significant hy-
bridization between impurity d and host s-p valence states
is necessary, which leads to a delocalization of the impur-
ity d-like orbitals and a screening of the electron-electron
repulsion (due to a microscopic dielectric constant).

The technological relevance is based on the fact that
the electronic properties of semiconductors are profound-
ly modified by the presence of TM impurities. Having
several deep levels in the gap, these impurities mediate
between valence and conduction bands and are thus
efficient centers for recombination of electrons and
holes.”® It is therefore often the TM content which lim-
its the lifetime of excess carriers in semiconductor de-
vices. Very long lifetimes are demanded in electro-
optical devices and contamination with 3d-TM defects
needs often be kept at a minimum; whereas Cu contam-
ination of 10'® cm™3 has almost no effect, merely a con-
centration of 10" cm ™3 Ti or V may halve the efficiency
of silicon solar cells.®° In fast-switching devices short
carrier lifetimes are needed and may be achieved by dop-
ing of silicon with transition- or noble-metal impuri-
ties. *1°

Qualitative understanding of the electronic properties
of single TM point defects in silicon is based on the
pioneering work of Ludwig and Woodbury (LW).! They
developed a very successful model (see Sec. IT A) to inter-
pret and analyze the electron-paramagnetic-resonance
(EPR) spectra at various interstitial and substitutional
3d-TM ions in silicon (see Fig. 1). Up to now, the LW
model has been consistent with all EPR-identified TM
impurities on both T, sites in silicon. Therefore this
model is generally accepted and, as a consequence it has
often been also applied to those 3d-TM ions where no
EPR data exist (e.g., Ti%, V*, Ti~, V% and V7).

The aim of our theoretical study is to give a microscop-
ic justification of the LW model and a discussion of its
validity range. In order to get a fundamental and
comprehensive understanding of the electronic and mag-
netic properties of TM impurities, we performed spin-
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FIG. 1. 3d transition-metal ions which have been observed
by EPR in silicon at the interstitial T, site and the substitution-
al T, site (Refs. 1 and 11). For each EPR-identified 3d ion the
model of Ludwig and Woodbury (Ref. 1) is consistent with the
known experimental data. S represents total electron spin.
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unrestricted ab initio linear muffin-tin-orbital (LMTO)
Green-function calculations (see Sec. III) of the energeti-
cally lowest spin configurations for the tetrahedral inter-
stitial and substitutional site in silicon. The calculated
total-energy differences between high-spin and low-spin
configurations in the ground state were used to decide
whether the basic assumption of a Hund’s-rule occupa-
tion of the defect-induced e and ¢, states (i.e., high-spin
ground state) in the LW model is verified. Our theory
predicts low-spin ground states and thus a breakdown of
Hund’s rule for the early transition-metal interstitials Ti°,
Vv*, Ti™, V° and V7, and the late transition-metal sub-
stitutionals Fe’, Co™*, Ni?*, Co° Ni*, Co~, Ni’, and
Cu™’. This is in conflict with the model of LW, but not
with existing experimental data.

For each element of the 3d-TM series from Sc to Cu all
possible charge states with their spin multiplicities and
magnetization (or spin) densities in the ground-state
configuration as well as the corresponding transition en-
ergies (i.e., donor and acceptor levels) have been calculat-
ed. Our ground-state results are in agreement with all
EPR data of 3d ions in silicon (see Fig. 1), except for in-
terstitial Cr: We attribute the low-spin ground states cal-
culated for Cr° and Cr* to the local-spin-density and
atomic-sphere approximations, to the gap correction, and
particularly to the neglect of a breathing distortion of the
impurity neighbors (magnetic-pressure effect; see Sec.
IVB2).

The calculated deep donor and acceptor levels for
tetrahedral interstitial 3d ions reproduce for the first time
all experimentally observed transitions. Only the
double-donor level (+/2+) for Cr obtained by us is not
found experimentally. This failure is consistent with the
above-mentioned problem. For interstitial Co, Ni, and
Cu, where no unambiguous experimental level positions
are available, our calculation predicts a single-donor and
a single-acceptor level for Co, but no energy level in the
gap and thus no electrical activity for Ni and Cu. For V
and Ti our theory predicts a Jow-spin ground state which
is strongly supported by the good agreement between cal-
culated and experimentally determined level positions:
The experimental finding of a characteristic jump in the
trend of the single-donor level (0/+) between interstitial
V and Cr is reproduced by our calculation and is due to
the switch from low spin to high spin between V and Cr.

II. EXPERIMENTAL AND THEORETICAL
SITUATION

In the following we summarize the existing theoretical
and experimental knowledge about 3d impurities in sil-
icon that is important for the later discussion of our re-
sults. First, we present the model of Ludwig and Wood-
bury. In Sec. II B, a brief summary and discussion of
EPR and deep-level transient-spectroscopy (DLTS) data
will be given, and in Sec. II C we discuss results of previ-
ous theoretical investigations.

A. Model of Ludwig and Woodbury

The 3d-TM group consisting of the elements Sc, Ti, V,
Cr, Mn, Fe, Co, Ni, and Cu has the atomic configuration
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[Ar]3d" ~™4s™, where the number of valence electrons n
goes from 3 to 11 and m equals 2, except for Cr and Cu,
where it is 1.

Concerning the electronic and magnetic properties of
TM atom existing as point defects in silicon, Ludwig and
Woodbury gave a qualitative interpretation more than 20
years ago.! Based on their pioneering EPR studies, they
developed the following model.

The atomic 4s electrons will—after incorporation of a
3d-TM ion into silicon at the tetrahedral (T, point-
group) interstitial or substitutional site—be promoted to
the 3d-like orbitals: a 3d ion with n valence electrons is
in a d" configuration if it is T, interstitial, and in a d” -4
configuration if it is T; substitutional. In the case of sub-
stitutional ions, four of the n valence electrons are sup-
posed to be involved in substituting the four Si electrons
removed from the valence band (together with the re-
moved Si atom) and, therefore, only n —4 electrons are in
localized 3d-like states.

By incorporation of a TM ion at one of the two T},
sites in silicon, the atomic 3d orbital is split into doublet e
and triplet ¢, states by the tetrahedral crystal field. For
T, interstitial ions, the states of 7, symmetry are energet-
ically lower than the states of e symmetry, whereas for
substitutional ions the level ordering is reversed, i.e., the
e states lie below the ¢, states.

A further assumption in the LW model is that for both
the substitutional and interstitial TM ions in the ground-
state configuration the ¢, and e states are populated ac-
cording to Hund’s rule, i.e., the ground states have high
spin as in an atom where no crystal field is present. If N,
is the number of d electrons occupying the ¢, and e states,
the ground state of a TM ion has total electron spin
S=N,/2if N,<5and S =(10—N,)/2 otherwise.

The model of LW is consistent with all existing EPR
data for T, interstitial and substitutional TM ions in sil-
icon up to now (see Fig. 1)."!!

B. Experimental data

Extensive experimental investigations have been per-
formed on 3d-TM impurities in silicon over the last 30
years (e.g., Refs. 1, 4, and 5) using many different tech-
niques, such as, for example, EPR, electron-nuclear dou-
ble resonance (ENDOR), DLTS, and Hall effect. Here
we will give a short summary of those experimental prop-
erties that allow a direct comparison with our calculated
theoretical results (see Sec. III): these are, especially,
EPR and DLTS data.

1. EPR

Most of the established experimental data on 3d-TM
impurities in silicon come from the EPR study of LW
carried out in the early 1960s.}

Figure 1 lists all 3d-TM ions which have been
identified as isolated interstitial or substitutional impuri-
ties in silicon. With the exception of interstitial Ti*,!! all
3d ions indicated in Fig. 1 were already observed by the
EPR investigations of LW. Not all elements of the 3d-
TM series could be identified by EPR, and those which
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have been identified have not been seen in all possible
charge states (ions) (see Fig. 2). For example, the d*
configuration is absent: Interstitial V has so far only been
seen as a double positive charged ion and interstitial Ti as
a single positive charged ion, although DLTS measure-
ments found for both V and Ti a single-donor (0/+) and
-acceptor level (—/0) as well as double-donor level
(+/2+), i.e., four different charge states for V and Ti
(see Fig. 2). Further, no EPR data are available for Sc,
Co, and Cu point defects.

With the exception of interstitial Ni, the defect symme-
try is found to be T, i.e., no static, symmetry-lowering
lattice distortion was found. !>

The simple model of LW, discussed in Sec. IT A, suc-
cessfully explains the observed EPR spectra for all inter-
stitial and substitutional 3d-TM ions in Fig. 1.

As indicated in Fig. 1 for a 3d-TM ion at the intersti-
tial T, site in silicon, the atomic 3d orbital is split into a
doublet, e, and a triplet, ¢,. At the interstitial T site the
crystal field is assumed to arise from the incompletely
screened nuclear positive charges of the four neighboring
silicon nuclei as well as from the six second-nearest-
neighbor silicon nuclei. As a consequence, ¢, is below e.
According to the LW model, the e and ¢, states are occu-
pied by the n valence electrons of a 3d ion to obey Hund’s
rule, i.e., it is assumed that the ground state has the
highest possible spin. For example, n =6 for Cr’ and
Mn™, and, according to the model of LW, interstitial Cr°
and Mn™" ions in silicon are in a d° configuration and the
triplet state ¢, is occupied by four electrons and the dou-
blet state e by two electrons, yielding a high-spin ground
state with total electron spin § =2.

3d-TM ions clearly prefer interstitial sites in silicon,
i.e., substitutional 3d ions could only be produced by an
irradiation process out of interstitials by trapping of va-
cancies. 1"

As shown in Fig. 1, on the substitutional T site in sil-
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FIG. 2. Experimental energy levels of interstitial 3d-
transition-metal impurities in silicon (solid lines) (Refs. 2, 4, 5,
12, and 13) in comparison with the results of Xa cluster calcula-
tions (Ref. 17) (dashed lines).

icon only three 3d-TM ions have been observed by EPR
so far.! According to the LW model, the ¢, states lie
above the e states. Four electrons are required for bond-
ing and the remaining n —4 valence electrons of the 3d
ion populate the e and ¢, states according to Hund’s rule.
As a consequence, for example, Cr’ and Mn™ ions at the
substitutional T, site in silicon are in a d? configuration,
and the doublet state e is doubly occupied, whereas the
triplet state ¢, is empty, yielding total electron spin S =1.

Because the LW model is consistent with all EPR data
available up to now (Fig. 1), it is generally accepted and
has often been applied also to such 3d ions where no EPR
data are available, i.e., the model was assumed to be valid
for all 3d-TM ions in silicon. However, we will show that
several aspects of the crystal-field and Hund’s-rule as-
sumptions need to be modified.

2. DLTS

The measured electrical data for TM impurities in sil-
icon, as reviewed recently,*> have to be treated with
some care because often a reliably established defect
configuration (point defect, pair or complex) is missing.
The energy levels of interstitial 3d-TM defects in sil-
icon>*%1213 which are well established are summarized
in Fig. 2. In the case of interstitial Fe, Mn, and Cr for
each level, the electronic defect configuration of the cor-
responding charge states are given by EPR analysis and
the LW model. For example, for the single-donor level
(0/+) of Fe both the neutral and single positive charge
states are identified by EPR, as can be seen in Fig. 1.
However, for the energy levels of V and Ti, EPR data are
available only in the case of the double positive charge
state of V and the single positive charge state of Ti.

No established experimental energy-level data are
available for 3d-TM ions at the substitutional site in sil-
icon. The single-donor level for Mn is an exception:
DLTS measurements in combination with EPR analysis
by Czaputa et al.'* show for Mn a single-donor level
(0/+) at 0.38 eV above the valence-band edge.

C. Previous theoretical investigations

Most of the existing ab initio electron-structure calcu-
lations for TM impurities in silicon have been based on a
cluster approach in which the host crystal together with
the impurity atom are approximated by a finite clus-
ter."*~!7 The dangling orbitals of the atoms at the clus-
ter surface are often saturated by hydrogen atoms. Un-
fortunately, as demonstrated by DeLeo et al.,!” defect
calculations based on the cluster approach are hampered
by considerable uncertainties due to the size and termina-
tion of the cluster.

In order to overcome these shortcomings of the cluster
approach, theoretical investigations based on a self-
consistent Green-function technique have been per-
formed recently.® 20 This treatment may be viewed as a
cluster calculation where the correct boundary conditions
are taken into account. Thus this method takes advan-
tage of the periodicity of the host crystal as well as the lo-
calization of the defect-induced perturbation of the
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effective potential. It has been demonstrated to be very
efficient and powerful.

In the following a short summary of theoretical results
of both methods—cluster approach and Green-function
technique —will be given.

1. Cluster approach

The first electronic-structure theories for TM impuri-
ties in semiconductors were based on the cluster ap-
proach. Cartling!® and Hemstreet!® performed calcula-
tions of the electronic properties associated with simple
substitutional 3d-TM point defects in silicon by the self-
consistent scattered-wave Xa method.?""?? They used an
XSi H, cluster in which the 3d impurity atom X was sur-
rounded by four silicon atoms and the remaining part of
the silicon crystal was simulated by 12 hydrogen atoms.

Self-consistent scattered-wave Xa calculations of the
electronic structure and energy levels of interstitial 3d-
TM impurities have been carried out by DeLeo, Watkins,
and Fowler using an XSi;gH,¢ cluster with a 3d-TM ele-
ment X centered at the high-symmetry (7T,) interstitial
position.!” In order to investigate the uncertainty due to
the cluster termination, the hydrogen atoms have been
placed at two different positions, i.e., at two different
Si—H bond lengths: Si-H distance equal to the normal
crystalline Si-Si distance (cluster 4) and Si-H distance re-
duced by 25% (cluster B). The resulting spin-restricted
single-particle-state energies in the region of the band gap
are shown in Fig. 3 for clusters 4 and B. The defect-
induced states are labeled ¢, and e. As shown in Fig. 3,
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FIG. 3. Spin-restricted Xa cluster results of the single-
particle e and ¢, states induced by neutral interstitial transition-
metal impurities at the center of two different Si,,H,¢ clusters as
calculated by DeLeo et al. (Ref. 17): (a) The Si-H distances are
equal to the crystalline Si-Si distance (cluster 4), and (b) 75%
of the crystalline Si-Si distance (cluster B). Numbers in
parentheses given the occupancy of the defect-induced states.

F. BEELER, O. K. ANDERSEN, AND M. SCHEFFLER 41

the results depend rather strongly on the cluster termina-
tion, i.e., the Si—H bond length; for cluster B the
crystal-field splitting between e and ¢, is much larger and
the defect states are found!” to be significantly more lo-
calized on the impurity compared with cluster A.
Another interesting point of view is the size of the band
gap: Cluster A4 has a gap of 0.84 eV, which is smaller by
about a factor of 5 than in the case of cluster B. In-
clusion of spin, i.e., a spin-unrestricted calculation for 3d
impurities at the interstitial T; site in silicon, which was
only possible for cluster B, confirmed all assumptions of
the LW model: All valence electrons of the impurity are
in the 3d-derived states, which are split into a doublet e
and a lower-lying triplet ¢,. Hund’s rule is fulfilled be-
cause the spin splitting of the e and ¢, states was calculat-
ed to be larger than the crystal-field splitting between e
and ¢,.

As shown in Fig. 2, the energy levels, calculated for
cluster A4 including many-electron effects approximately
according to the Hemstreet-Dimmock scheme,? repro-
duce the increasing trend of the single-donor level (0/+)
between Fe and Cr, but clearly fail to describe the jump
from Cr to V. Furthermore, the neutral and single nega-
tive charge states of interstitial V are predicted to be un-
stable. For interstitial iron the cluster model predicts an
acceptor level deep in the gap that is not found experi-
mentally. >2*

2. Green-function method

The Green-function method has been successfully ap-
plied to the study of a series of sp-bonded point defects in
silicon.*~?° However, for 3d —transition-metal impuri-
ties in silicon ab initio spin-unrestricted Green-function
calculations have been performed only recently by

ENERGY (eV)

FIG. 4. Single-particle e and ¢, states induced by neutral sub-
stitutional (solid circles) and interstitial (open circles)
transition-metal point defects in silicon as calculated by Lin-
defelt and Zunger using a local pseudopotential Green-function
method (Ref. 18). Numbers in parentheses indicate occupations
of the states. the crystal-field splitting for interstitial impurities
is denoted by the cross-hatched area.
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Katayama-Yoshida and Zunger and by us (see Sec.
V). 19,20,30

This section will briefly discuss spin-restricted Green-
function applications on 3d point defects in silicon by
Zunger and Lindefelt.!®* They used local pseudopoten-
tials and a=1 in the exchange-correlation potential, but
no spherical approximation to the potential. As shown in
Fig. 4, the crystal-field splitting between the doublet e
and triplet ¢, states is much larger compared with cluster
calculations discussed in Sec. IIC 1. It is not clear if this
difference originates from the muffin-tin and cluster ap-
proximations of DeLeo et al.!” or from the =1 approx-
imation in the exchange-correlation potential of Zunger
and Lindefelt.'® For a comparison with experimental
properties such as total electron spin or energy-level posi-
tions in the gap, spin polarization has to be included, i.e.,
a  spin-unrestricted  Green-function treatment of
transition-metal impurities is needed (see below).

III. THEORY

Our calculations of deep-level defect properties report-
ed in this paper (Sec. IV) are performed using the self-
consistent Green-function technique, which is based on
the linear muffin-tin-orbital (LMTO) method in the
atomic-sphere approximation (ASA). The basic concept
of this method for general applications to defects in crys-
tals is given in Ref. 31. In this section we shall comment
on those features of the method which are important for
studies of deep impurities in semiconductor crystals such
as silicons.

Within the Green-function method the impurity
electronic-structure problem separates into two parts:
First, after having solved the band-structure problem for
the infinite crystal self-consistently, the Green function
GO of the perfect crystal is calculated. Secondly, for
reasons of convenience, to solve Dyson’s equation for the
defect problem, G° is transformed to a related Green
function g° and then the Green function g for the crystal
with the impurity is calculated by self-consistently solv-
ing Dyson’s equation g =g®—g®APg with the perturba-
tion AP due to the impurity. Afterwards, g is
transformed back to G.

A. Calculation of the Green function G°
of the perfect crystal

1. Band-structure problem

In the LMTO-ASA method the solid is divided into
spheres in such a way that a close-packed structure is ob-
tained. Recognizing the relatively open diamond struc-
ture of silicon, we divide the Si crystal into space-filling
spheres which are centered at all Si and interstitial sites.
The basis set consists of s, p, and d orbitals in all spheres.
In the ASA the crystal potential is spherically averaged
within each sphere. For perfect crystals this approach
has been shown to yield accurate charge densities, band
structures, and total energies.’> The resulting atomic-
sphere potential for a crystal divided into spheres located
at sites R with radii s; may be written

V(r)=29(rR/sR)vR(rR) N (31)
R

where the local coordinate are rg =r—R and O(rg /sg)

is a step function of unity inside a sphere of radius s; and
zero outside. The potential vy in the sphere at site R is
ng(r')
uR(r)=uxc<nR(r))+zfﬂRd3r'l~rR_—r,|
2Zy 2qg:

r +R§R R—R (3.2)
We use Rydberg atomic units. The first term is the
exchange-correlation potential in the Hohenberg-Kohn-
Sham local-density approximation®* (LDA), and
ngp=n,.p+n.p is the density of the valence and core
electrons. The valence-electron density n,.p is obtained
from self-consistent band-structure calculations, and the
core-electron density n,.p is taken from a free-atom cal-
culation, that is, we use the frozen-core approximation.
The second term is the electrostatic potential from the to-
tal electron density ng, where the integration range Q5 is
the sphere of radius sz at R. The third term in Eq. (3.2)
is the electrostatic potential of the nucleus and the last
term is the electrostatic Madelung potential from the net
charges gy of all other spheres,

qR=—ZR+fQRd3r ng(r),

where Z; is the atomic number. The Schrodinger
differential equation for the spherically symmetric poten-
tial vg(r) and an arbitrary energy E is satisfied by the
partial wave

¢RL(E’rR )=¢R,(E,rR )YL(?R ) )

where Y, is a real spherical harmonic, L is a collection
angular-momentum index (={/,m}), and ¢, is the solu-
tion of the radial Schrodinger equation for rgz <sz. In
the region between the spheres, the atomic-sphere (AS)
potential (3.1) is defined to be equal to the single-particle
energy E; that is, the kinetic energy E — V' (r) vanishes.
Therefore it is convenient to continue the partial wave for
rgr = sg with a tail function of zero kinetic energy outside
its sphere, i.e., it is a solution of the Laplace equation.
The requirement that the partial wave is continuously
differentiable leads to

(3.3)

(3.4)

D E)+1+1 [rg |
Sr(E,rg)=¢r,(E,sg) TS 5
I—Dg/E) [rg 77"
20+1 | sk

(3.5
for rg Zsg. In (3.5), Dg,(E) is the logarithmic derivative
of the radial wave function, i.e.,
dIng(E,rg)

DriE)= dlnr

(3.6)

"R =SR

In order to build a wave function at the energy E for
the entire system, we construct from the partial waves
the so-called muffin-tin orbitals (MTO’s) xg,(E,rg) by
subtracting from ¢ég,(E,rg) the part which diverges at
infinity as r’. Therefore, the radial part of the MTO’s
which are our basis functions is
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dri(E,rg)  Dg(E)+1+1 [rg |’ -
éri(E,sg) 20 +1 sg |7 TRTSR
Xri(E,rg)=d g (E,sg)X I —Dpgy(E) —I-1 N (3.7
20+1 |5z » TR=SR

The MTO is continuous and differentiable in all space
and it is a solution of the Laplace equation outside its
sphere, but it is no solution of the Schrodmger equation
inside its sphere [because of the r/ term in (3.7) for the
case rg <s]. The spheres are located on a lattice, i.e.,

R=T+U, (3.8)

where T are the lattice translations and U the sites in the
primitive cell. For the unperturbed crystal the MTO’s
only depend on U. To construct a wave function for the
entire system, we may now place a linear combination of
MTO’s at each site U in the primitive cell,

IIJ(E k r) 2 XUL E Iy )BUL(k) (3.9)

and ask whether we can determine the coefficients B such
that the wave function ¥(E,r) is a solution of
Schrddinger’s equation at energy E. The condition is
that inside any sphere the sum of the MTO tails coming
from all other sites must cancel the r/ terms from the
MTO’s located at that site [see Eq. (3.7)]. This leads to
the following secular equations,

2 [PulEWyydpr =Sy v (k)]
UL

X[Py(E)]"V?By, (k)=0, (3.10)

for all U’ and L', where P(E) is the potential function,
P(E) is its energy derivative, and S (k) are the structure
constants in the Bloch representation. The structure con-
stant S are independent of the lattice constant, the poten-

Hypy(K)=Vydyyéy

+(Ty)' (1 ‘S(k)]_l}UL,U'L’(FU'I')I/Z .

tial, the sphere radii, and the energy. The potential func-
tion P(E) is related to the logarithmic derivative of the
radial wave function (3.6) through

Dy(E)+1+1

Pu(E)= Dy (E)—1

2(21+1) (3.11)

The wave function (3.9) is normalized to 1 in the primi-
tive cell, i.e., it is

S |By (K)*=1 . (3.12)
UL

The logarithmic derivative function D (E) [see Eq. (3.6)]
for a given partial wave is a cotangentlike function with a
branch for each value of the principal quantum number,
and the potential function P(E) is uniquely related to
D (E). Itis convenient to parametrize the potential func-
tion (3.11) in the form

Ty
—+ , 3.13
Vo —E Qui (3.13)

Py (E)~P(E)=

where ¥V, I', and Q are so-called potential parameters.
The parametrization P(E) is correct to second order in
E —E, where E, is an arbitrary energy at which the po-
tential function P(E) is expanded. Substituting P(E) in
the secular equations (3.10) by P(E), (3.10) is transformed
into an eigenvalue equation,

2 [HUL,U’L'(k)_ESU’USL’L]BUL =0 , (3.14)
UL

where H is the Hamiltonian

(3.15)

The eigenvalues E;(k) of H equal the one-electron energies obtained from the secular equations (3.10) to second order in

E —E,. The projected density of states is

NUL (U+T)L(E)
Z

where Vy; is the Brillouin-zone volume. The spherically
symmetric valence-electron density in the sphere located
at R=U+T is related (3.15) through

nv;U("U)zﬁz de (dui(Esrg) P Nyp g (E) . (3.17)
L

The radial wave function ¢, (E,ry) in (3.17) is approxi-
mated by the first two terms of the Taylor expansion,

$u(E,ry)= ¢y(E,,ry)+(E —E, )¢y (E,,ry)

+o0(E—E,)?. (3.18)

2fd3ke“‘TBU,_ KBy, (K)S(E —E;(k)) ,

(3.16)

The band-structure problem is solved, i.e., the self-
consistent crystal potential vy (ry) for the sites U in the
primitive cell is obtained by the following iterative pro-
cedure: For a given start potential v{!)(r;), the Hamil-
tonian matrices (3.15) are diagonalized, and with the rela-
tions (3.16) and (3.17) the valence-electron density

n{!y(ry) and from that the corresponding potential

(1)( ry) are calculated using relation (3.2). The potential
for thc nth iteration is constructed from a superposmon
of v ry) and 7% " (ry) with a mixing factor f
(f= 0 1),
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v (ry)=1— ol ~Viry)+ 08 Dry) . (3.19)

2. Green-function G of the perfect crystal

The Green function of a perfect crystal with lattice
sites R=T+U, i.e., for a system of eigenvalue equations
(3.14), is defined by

> (Z8xr8p 1 —HRp gL )GRL R =8Rr'r-Bpp» (3.20)
R,L

where Z =FE +iE' (E,E’ real, E'#0) is a point in the
complex energy plane, and H® is the Hamilton matrix
(3.15) of the unperturbed crystal. The imaginary part of
the Green function G%Z) with E’'—0 is proportional to
the projected density of states of the perfect crystal,

EllimoImGglL',RL(Z)=77N§.L:,RL(E) , (3.21)
and the full Green function G%(Z) is given by
E, Np. ri(E)
0 _rk R'L',RL
Grrri(Z)= fEb dE“"“‘“"—Z . (3.22)

where E, is the bottom of the lowest-energy band and E,
the top of the highest-energy band.

In order to calculate defect properties (see Sec. III B),
the Green function G% Z) is calculated for a set of energy
points Z along two contours in the lower half of the com-
plex energy plane as shown in Fig. 5, denoted ¥, and 7,.
The rectangular path y, starts on the real axis below the
lower valence-band edge and ends on the real axis at the
top of the valence band, whereas path y, starts on the
real axis above the upper valence-band edge and ends on
the real axis below the conduction band. Paths ¥, and y,
are needed to calculate the impurity properties associated
with the defect-induced states within the valence-band
and gap regions, respectively.

The valence-electron density (3.17) of the perfect crys-
tal may be calculated by a complex energy integration
along the path y, as follows,

1
myulr) =75 3 [ dZ18u(Zry) P ImGhy u(2)
L

(3.23)

VALENCE CONDUCTION
BAND BAND
: ™ T2 -
A
e o ——— e I
Yy 2

FIG. 5. Charge density of the perturbed crystal calculated
using two integration paths in the complex energy plane: y, for
the defect-induced states in the valence band and y, for the
bound states in the gap. The potential function P(E) is
parametrized for y, around an energy E'" centered in the
valence band and for ¥, around E‘? in the center of the band

&ap-
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where the radial wave function ¢y ;(Z,r;) in (3.23) is
defined by relation (3.18) with the real energy E substitut-
ed by the complex energy Z.

B. Calculation of the Green function G
of the perturbed crystal

In order to solve Dyson’s equation for the defect prob-
lem, we use the Green function g°(Z ), which is defined by

S [PR(Z)8prbrL =Sk RL ]gIgL,R”L”zsR'R”BL’L” .
R.L
(3.24)

The relation between the Green function g%Z) and
G%Z)is

Z-Vy
ggL,R'L'(Z)=_’_ITO“‘—5R'R5L'L
RI
zZ-vy Z—V2,
+.“_~“"— gL,R'L'(Z)-—_ . (325)
(F(I){I )1/2 (F%rlv)l/z

Neglecting lattice distortions, the Green function g(Z)
for the crystal with the impurity is obtained by solving
the Dyson equations

8rr,re(Z)= gg'L‘RL(Z)

= 3 &Rurni(Z2)APgL
R",L"

X(Z)ggrrn ri(Z) (3.26)

where the perturbation AP(Z) due to the defect only
concerns the potential functions and is limited to few di-
agonal elements corresponding to the impurity site and
near-neighbor sites,

AP (Z)=[Pg)(Z)—P % (2)] . (3.27)
The reason we switch from G° to g° is the following:
Solving the Dyson equation for G leads to the perturba-
tion AH =H — H®, which is, in contrast to AP, not diag-
onal in R and L. The size of the matrices in (3.26) is
determined by the range of the perturbation AP. The
major advantage of the Green-function method arises
from the fact that the defect perturbation AP is large
only in a small region of space, i.e., AP is localized. As-
suming that there are N perturbed sites in total with s, p,
and d orbitals on each site (i.e., I ,, =2), the matrices in
Dyson’s equation (3.26) have the dimension
M =N(l,_,, +1)*=9N. In our calculations, the perturba-
tion AP was included inside nine atomic spheres (i.e.,
N =9) centered at the impurity site, the four nearest Si
sites and the four nearest interstitial sites.

It is well known that the density-functional-
theory—local-density-approximation (DFT-LDA) band
gap in Si is about half of the experimental value. In order
to compare the calculated donor and acceptor energies
with experimental data, the LDA band gap of Si was in-
creased to the experimental value. This was done by a
rigid shift of the conduction-band density of states by
A=0.6 eV, i.e., using the scissor operator, S, by Baraff
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and Schliiter,?’ before calculating G%Z) and g%Z).
However, the corresponding potential function P %,(Z) is
not modified. The application of the scissor operator
could lead to a total energy of the perturbed system
which is, compared to the LDA total energy, too high by
roughly AE =NA, where N is the number of occupied
conduction-band—-derived states. This scissor effect is re-
duced within the LMTO Green-function formalism for
transition-metal ions in silicon. In the orthogonal MTO
representation, the scissor operator of the perturbed sys-
tem (xg;|S..[XYR'l') is related to the scissor operator of
the perfect system { x%,|S..|x%) by

<XR1|§SC|XR‘1’> ~ (g /F(I)U)I/Z(X(I)U|§sc|x(l)('1')

X(Cgop /TS )2, (3.28)
where I'%,,x%; and T'g;,xg; are the potential parameters
and MTO’s of the pure host and perturbed system, re-
spectively. For a TM d orbital T is from 3.6 (Ti) to 11
(Cu) times smaller than T'° for the substituted Si, and
from 4.5 (Ti) to 16 (Cu) times smaller than I'° for the
interstitial-sphere d orbital.

For the perturbed crystal the space-group symmetry of
the pure crystal is reduced to a point group of rotations
#. In order to keep the matrices a manageable size, we
transform from the site and real spherical harmonic rep-
resentation (3.4) to the symmetry representation given by
the following functions, >

S re(0)= 3 TL(R)Rbp, (tp)0(rg /55),  (3.29)
R

where 'y (77) are the matrices of the ath irreducible rep-
resentation of the point group. The functions f are
linearly dependent, in general. Thus we have only to
keep a smaller number linearly independent functions
and, from them, an orthonormal basis set is formed.

For reasons of efficiency and accuracy, the Dyson
equations (3.26) are solved for a path in the complex en-
ergy plane because here the structure in the Green func-
tion is smoothed out.** For a start potential V" for the
perturbed crystal, (3.26) is solved for a set of energy
points Z along the contour y; for the defect-induced
states in the valence band and along the contour y, for
the bound states in the gap region (see Fig. 5). The Green
function g%/ for the pure crystal is calculated for an en-
ergy E, in the center of the contour y;. After transform-
ing from the symmetry representation back into the site
and angular-momentum representations, the spherically
symmetrized charge density of the perturbed region is ob-
tained by

2
n,g(N=@mr)"'3T 3 bjfy dZ[$4)(Z,rg )T
J

L j=1

XN r(2), (3.30)

where

NY} g (Z)=—P YN Z)Imgy) z,(Z) (3.31)

3 |=

and
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UNZ,rg):= R (EV,rp)H(Z —EV g (EV ,rg)
1 R RI R RI v

+HZ—EV Vg (EP rg) . (3.32)
The occupation number b;=1 for the defect-induced
states in the valence band (j =1) and depends on the
charge state of the defect for the bound state in the gap
region (0=b, <1). From (3.30) and relation (3.2), ¥'$" is
calculated and, in analogy to (3.19), the start potential for
the second iteration is built from a superposition of Vit
and V™.

The magnetization is, within the local-spin-density-
functional approximation,} described by the difference
between the exchange-correlation potentials for the spin-
up and spin-down electrons,

m(r)
n(r) ’

where p, is the exchange part of the exchange-
correlation potential®® and

vl —vl=23n (1), (n(r))

(3.33)

n(r)=n'(r)+n*(r), (3.34)

m(r)=n'(r)—n'(r) (3.35)

are the total electron density and spin density, respective-
ly. The magnetization is reduced with decreasing elec-
tron density n(r) by the function J(n(r)). The spin
splitting A, of a transition-metal-induced single-particle
state ¢ in the gap region is, in first-order perturbation
theory, given by the Stoner expression

my

AStoner=258 Iy, (3.36)

where I is the Stoner parameter and m =285 the integral
of the spin density in all space, and

a2(¢):fld3r|¢|2,
m0=f1d3rm (r)

(3.37)
(3.38)

are the localization factor of ¢ and the integral of the
spin density in the impurity sphere I, respectively.

Total-energy differences between different possible
charge (ion) states, i.e., donor and acceptor energies, are
calculated by the transition-state concept of Slater.?®
For all charge states considered, the net induced charge
inside the perturbation region (impurity, four nearest Si
sites, and four nearest interstitial sites) was found to differ
by less than 0.05 electron from the asymptotic value g /e,
where g is the charge of the TM ion and € the Si dielec-
tric constant. For charged impurity states the contribu-
tion to the total energy of the long-range Coulomb poten-
tial, —2q (er)”! Ry, which is not included within the per-
turbation region considered in the Green-function treat-
ment, is taken to be —g (0.1 eV).*

IV. RESULTS
A. Spin-restricted calculations

For the discussion to follow it is useful to consider, at
first, spin-restricted electronic-structure calculations of
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3d-TM ions in silicon, i.e., to neglect the effect of spin po-
larization. This allows one to compare our results with
previous spin-restricted theoretical investigations.'!”!® In
Sec. IV B we will show that the effects due to spin polar-
ization can be significant and, for an analysis of experi-
mental data, they have to be included.

1. Substitutional site

Here we take Mn as an example. The changes in the
density of states (DOS) induced by a neutral substitution-
al Mn atom in silicon are shown in Fig. 7. For reasons of
relevance, only states of A4, (s-like at the impurity), E
(d-like at the impurity), and T, (p- and d-like at the im-
purity) symmetries are displayed. In the following—
after having analyzed the different contributions to the
induced DOS of Mn—we will discuss the trend of the
defect-induced states of 4, E, and T, symmetry through
the 3d series from V to Cu. For each symmetry, the re-
sults will be discussed and explained in terms of a simple
physical picture.

(a) induced DOS of A, symmetry. The a,-induced
DOS associated with neutral 3d-TM impurities can be
understood by a comparison with the vacancy-induced a,
states (see Fig. 6). As shown in Fig. 7, for Si:Mn,, the
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FIG. 6. Changes in the DOS of 4, E, and T, symmetries in-
duced by a neutral (unrelaxed) vacancy in silicon. The energy
zero is the top of the valence band.

states of 4, symmetry are very similar to the induced a,
states of the unrelaxed silicon vacancy. Integration of the
induced a, states over the valence band gives zero contri-
bution, i.e., no extra state of 4, symmetry is induced in
the valence band. Qualitative similar results for the A4,
symmetry are obtained for the other 3d impurities, except
for one modification: As one goes through the 3d series
from V to Cu, the 2a, resonance in the valence band
moves to lower energies, hybridizing more strongly with
the valence band and therefore getting broader (see Fig.
8). A further valence-band resonance la, is found at
E,—7.8 eV through the whole 3d series. This sharp reso-
nance, which is pinned at the position of a cusp of the sil-
icon density of states, is a typical result for all substitu-
tional defects in silicon.

The defect-induced states of 4, symmetry can be un-
derstood qualitatively in terms of a simple physical pic-
ture which is illustrated in Fig. 9: First, we remove a Si
atom from the perfect Si crystal, producing an undistort-
ed Si vacancy (where the impurity will be inserted). As
can be seen in Fig. 6 from the calculated induced DOS of
A, symmetry associated with an unrelaxed vacancy in
silicon, there are two dominant a; resonances in the
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FIG. 7. Changes in the DOS of 4,, E, and T, symmetries
induced by a substitutional neutral Mn point defect in silicon
resulting from spin-restricted calculations. The energy zero is
the top of the valence band.
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FIG. 8. Defect-induced states of neutral substitutional 3d-
transition-metal impurities in silicon (see text). The energy zero
is set at the valence-band maximum. Numbers in parentheses
give the occupancy of the bound states in the gap.

valence band. The first resonance just below the top of
the valence band is largely built from the dangling sp> hy-
brids of the four nearest neighbors of the vacancy. The
second a; resonance around E, —8 eV originates from an
A, combination of the twelve sp® backbonds of the four
nearest vacancy neighbors.3%37 At first, both systems in
Fig. 9 (depicted in the left and right parts)—the Si vacan-
cy and the free 3d atom—are assumed to be decoupled.
By switching on the interaction between the two vacancy
a, states and the 4s orbital of the 3d atom, the qualitative
result in Fig. 9 (middle part) occurs. Because the 4s-
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/ // /,r‘_’/
m77777777m/ 4/ TIITITTITITIT, //’,/
Qi ‘/ “w,—/ /
/ yd 2ay /
/ s /
/7 /
/.7 /
¢ /
a Rtk T
1
1a4

FIG. 9. Schematic description of the induced states of A4,
symmetry associated with a substitutional 3d-transition-metal
impurity in silicon (see text).
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orbital energy is in the vicinity of the vacancy a,
dangling-bond-like state, the resulting bonding orbital
goes down in energy and broadens considerably. The
corresponding antibonding orbital is pushed up in energy
into the conduction band. In contrast, the low-lying
second a; vacancy state interacts only weakly with the 4s
atomic orbital. The results of our theory for the induced
states of A, symmetry (Figs. 7 and 8) and the corre-
sponding schematic description in Fig. 9 explain the ori-
gin of the assumption in the LW model that the atomic 4s
electrons will—after incorporation of a 3d ion into sil-
icon at the substitutional T, site—be promoted to the
3d-like orbitals (see Sec. I A): The antibonding 3a, state
in Fig. 9 lies high up in the conduction band and thus
remains empty, and because of the limited energy range
in Fig. 8 it is not shown there.

(b) Induced DOS of E and T, symmetry. As shown in
Fig. 7, a neutral substitutional Mn point defect in silicon
produces a bound state of E symmetry occupied by three
electrons in the gap, a ¢, resonance at E,—1 eV in the
valence band, and a sharp ¢, resonance at the bottom of
the conduction band. We remind the reader that Fig. 7
displays results of spin-restricted calculations. Inclusion
of spin polarization gives rise to drastic changes (see Sec.
IV B).

In Fig. 8 the trend of the defect-induced states of E
(denoted e) and T, symmetry (denoted ¢, ) through the 3d
series from V9, to Cul, is shown.

In the case of E symmetry, Cul,, Ni%,, Col,, and
Fel, induce very sharp valence-band resonance states
which—with decreasing atomic number—increase in en-
ergy from E,—2 eV for Cud, to E,—0.01 eV for Fel,.
For these elements four new extra states are produced in
the valence band. For neutral Mn, Cr, and V, instead of
an e resonance there is a fourfold-degenerate localized
bound state occupied by three, two, and one electron(s),
respectively, increasing in energy from E,+0.23 eV for
Mn®, to E, +0.73 eV for V0.

In the case of T, symmetry, Cul,, Nid,, Col,, and
Fe,, induce bound states (see Fig. 8) in the gap which in-
crease in energy going backwards in the 3d series from
E,+0.30 eV for Cud, to E,+0.93 eV for Fe,. For
Fe,, the bound state ¢, enters the conduction band and is
transformed into an empty sharp resonance state in the
conduction band. Moving from Mn toward V, the reso-
nance state ¢, smoothly increase in energy from E, +1.13
eV for Mn?, to E,+1.35 eV for V2,. Furthermore, as
shown in Fig. 8, a valence-band resonance of T, symme-
try lying systematically below the states of E symmetry is
induced, which is increasing in energy backwards
through the 3d series from E,—2.5 eV for Cul, to
E,—0.9 ¢V for VO,.

Figure 10 gives a schematic summary of the calculated
induced DOS of E and T, symmetries: We begin to con-
sider an undistorted Si vacancy and take into account
only the bound state ¢, in the gap which originates from
the dangling sp* hybrids of the four nearest vacancy
neighbors. As can be seen in Fig. 6 from the calculated
vacancy-induced DOS, the contribution of the states of E
symmetry is small and therefore we neglect the e states in
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FIG. 10. Schematic description of the defect-induced states
of E and T, symmetries associated with a substitutional 3d-
transition-metal point defect in silicon (see text).

our schematic description for the vacancy. Furthermore,
we consider a free 3d-TM ion. At first, both systems in
the left and right parts of Fig. 10—the Si vacancy and
the free 3d-TM atom—are assumed to be decoupled.
The middle part of Fig. 10 shows the qualitative result
from switching on the interaction between the vacancy ¢,
state and the atomic 3d orbital. Whereas the ¢, state of
the vacancy interacts with the dt, part (xy, yz, zx) of the
atomic 3d orbital, the de part (x2—yp2, 3z2—r?) essential-
ly feels no interaction with the crystal states. As a conse-
quence, the e states remain atomiclike and well localized,
whereas the ¢, states become more delocalized (see Sec.
IV B). The qualitative model in Fig. 10 describes the cal-
culated results of neutral substitutional impurities Fe, Co,
Ni, and Cu in silicon (see Fig. 8) because here the defect-
induced e state is indeed a valence-band resonance. For
V, Cr, and Mn the model can easily be modified by shift-
ing the atomic 3d level to higher energies and, in turn,
the resonance e moves up (as a bound state) into the gap
and the bound state ¢, becomes a conduction-band reso-
nance. From the model in Fig. 10, it follows that the ¢,
valence-band resonance has bonding character and the ¢,
bound state in the gap antibonding character, whereas the
defect-induced e resonance in the valence band is essen-
tially nonbonding. Therefore the valence-band resonance
t, lies below the defect state e through the whole 3d
series from Cul,, to VO, (see Figs. 7 and 8). The assump-
tion in the LW model that a 3d ion with n valence
electrons—after incorporation into silicon at the substi-
tutional site—is in a d" ~* configuration is confirmed by
our calculation and can be explained by the schematic
description in Figs. 10 and 9: The result of the interac-
tion between the neutral vacancy (¢, is occupied by two
electrons, see Fig. 6) and the atomic 3d orbital is a bond-
inglike valence-band resonance ¢, filled by six electrons.
Thus, four of the n valence electrons of the 3d ion are
needed to substitute for the four missing Si electrons re-
moved from the valence band and, because the 4s orbital
is pushed up as an empty resonance state into the con-
duction band, n —4 electrons are (except for Ni and Cu)
in rather localized 3d-like states. The further assumption
in the LW model that, for a substitutional 3d ion, the e
state is energetically lower than the ¢, state is also
confirmed by our theory and explained by the simple
model in Fig. 10. The decreasing splitting in energy be-
tween the valence-band resonance ¢, and the e state as
well as the increasing splitting between the defect states e
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and ¢, (antibonding ¢,) going through the 3d series from
V to Cu can also be explained by the model in Fig. 10:
Moving from V towards Cu the energy of the atomic 3d
orbital is decreasing and therefore the interaction be-
tween the vacancy ?, state and the 3d orbital of the
transition-metal atom is weakened. Thus, for Ni and Cu
the ¢, state in the gap is vacancy dangling-bond-like.

2. Interstitial T, site

As for the substitutional site, we take Mn as an exam-
ple in the following discussion of our calculated spin-
restricted results for T, interstitial 3d-TM point defects
in silicon. The total induced DOS associated with a neu-
tral interstitial Mn atom in silicon is shown in Fig. 11.
Only states of A, (s-like at the impurity), E (d-like at the
impurity), and T, (p- and d-like at the impurity) sym-
metries are displayed.

(a) Induced DOS of A; symmetry. As shown in Fig. 11
a neutral interstitial Mn impurity in silicon induces an a,
resonance just above the bottom of the conduction band
as well as three valence-band resonances at £, —4.2 eV,
E,—6.8 eV, and E,—11.8 eV. Integration of the in-
duced states of A, symmetry over the valence-band re-
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FIG. 11. Total changes in the DOS of 4, E, and T, sym-
metries induced by an interstitial neutral Mn point defect in sil-
icon resulting from spin-restricted calculations. The energy zero
is at the top of the valence band.
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gion gives zero contribution, i.e., no extra state of 4,
symmetry in the valence band is induced by the impurity
in total. Qualitatively very similar results for the a; DOS
are obtained for the other interstitial 3d impurities. Mov-
ing through the 3d series from neutral V to Ni, the a,-
resonance state in the conduction band becomes sharper
and—as shown in Fig. 12 —decreases in energy.

The calculated states of 4, symmetry induced by an
interstitial 3d impurity in silicon can understood qualita-
tively by the simple physical model illustrated in Fig. 13.

A free 3d atom is incorporated in a silicon crystal at
the interstitial T, site. From the calculated local density
of states of the perfect Si crystal at the interstitial T, site
(see Fig. 14), we include the three valence-band reso-
nances of A, symmetry as representative states in our
simple model (Fig. 14, left part). By switching on the in-
teraction between the 4s orbital of the 3d atom and the
crystal states originating from the interstitial T} site, the
atomic 4s orbital is pushed up as a resonance state into
the conduction band and the a,-resonance states of the
crystal are lowered in energy, giving rise to three
valence-band resonances. As illustrated in Fig. 13, no ex-
tra state of 4, symmetry is produced by the atomic 4s
orbital in the valence band or the gap region. This is in
agreement with the assumption in the LW model that the
4s electrons are promoted to 3d-like orbitals after intersti-
tial incorporation of a 3d-TM ion in silicon (see Sec.
I1A).

(b) Induced DOS of E and T, symmetry. A neutral in-
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FIG. 12. Defect-induced states of neutral T, interstitial 3d-
transition-metal impurities in silicon resulting from spin-
restricted calculations. The energy zero is at the valence-band
maximum. Numbers in parentheses give the occupancy of the
bound states in the gap. Resonances inside the valence and con-
duction bands are assumed to be completely filled or empty, re-
spectively.
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FIG. 13. Schematic description of the induced states of A4,
symmetry associated with an interstitial 3d-transition-metal im-
purity in silicon.

terstitial Mn impurity in silicon induces bound states of E
and T, symmetries in the gap occupied by one and six
electron(s), respectively (see Fig. 11). Figure 12 displays
the trend for the neutral interstitial 3d series from V) to
Ni, in the vicinity of the gap. Interstitial Cu is not in-
cluded in this figure because it only exists in the single
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FIG. 14. Density of states of 4,, E, and T, symmetries of
the T, interstitial site in crystalline silicon.
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positive charge state.

In the case of T, symmetry, NiJ, and Co), induce
sharp valence-band resonances. Between Col,, and Fe,
the ¢, resonance crosses the valence-band edge.

In the case of E symmetry, Mn? , Fe, Co?,, and Ni),
cause bound gap states with decreasing energy from
E,+1.03 eV for Mn® to E,+0.12 eV for Ni’. Between
Mn® and Cr° the bound state e crosses the conduction-
band edge and, thus, for neutral interstitial Cr and V a
conduction-band resonance e is induced.

As illustrated in Fig. 15, the results of Fig. 13 can be
understood as follows: From the calculated DOS of the
perfect Si crystal at the interstitial T, site (see Fig. 11),
we consider the valence-band resonance of E symmetry
centered at £, —1.4 eV and the two t,-resonance states in
the valence band centered at £, —2.4 eV and in the con-
duction band at E,+3.2 eV as representative states (Fig.
15, left part). The qualitative result obtained after
switching on the interaction between the 3d orbital of the
3d-TM atom and the crystal states of E and T, sym-
metries originating from the interstitial T, site is given in
the middle part of this figure. Because of the interaction
between the dt, part (xy, yz, and zx) of the atomic 3d or-
bital and two ¢, crystal states, and between the de part
(x2—yp?, 322—r?) of the 3d orbital and the crystal
valence-band state e, the defect-induced state ¢, in the
gap lies below e (Fig. 15, middle part). Therefore the lev-
el ordering t, below e for interstitial 3d ions in silicon
comes from the fact that the Si crystal conduction band
has t,, but essentially no e, character at the T, interstitial
site. Thus the assumption in the LW model that the de-
fect states e lie above ¢, for interstitial 3d impurities (Sec.
IIA) is confirmed by our calculations, as well as ex-
plained by the schematic description in Fig. 15. Further-
more, the decreasing crystal-field splitting between e and
t, going through the 3d series from V to Ni—as shown
in Fig. 12—can be understood by the model in Fig. 15:
Moving from V towards Ni, the energy of the atomic 3d
orbital decreases and, therefore, the interaction between
the crystal conduction-band state ¢, and the dt, part of
the atomic 3d orbitals is reduced.
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FIG. 15. Schematic description of the defect-induced states
of E and T, symmetries associated with an interstitial 3d-
transition-metal point defect in silicon.
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3. Comparison of spin-restricted results
with previous calculations

Figure 16 displays the calculated single-particle
defect-induced states e and ¢, of substitutional and T, in-
terstitial neutral 3d-TM point defects in silicon. In com-
parison with the results of previous spin-restricted
theoretical investigations'”!® (see Sec. IIC), we find the
following notable features.

(i) Our calculated e-t, splitting for interstitial 3d im-
purities is essentially larger than that calculated in the
cluster approximation by DeLeo et al.'” [compare Fig.
3(a) with Fig. 16]. In qualitative agreement with other
authors,!”!® we find that the e-t, splitting increases for
substitutional TM ions with increasing atomic number
(i.e., from Ti to Cu). On the other hand, for interstitial
TM ions the e-t, splitting is found to decrease with in-
creasing atomic number.

(ii) In the calculation of Zunger and Lindefelt, the oc-
cupation numbers of the defect states e and ¢, induced by
neutral interstitial 3d impurities are chosen (not calculat-
ed) to obey Hund’s rule (see Fig. 4). Our calculated
defect-induced states e and 7, of neutron interstitial im-
purities lie about 0.2 eV higher in energy than those of
Zunger and Lindefelt, and, as a consequence, in our
theory Hund’s-rule occupation (by neglect of spin polar-
ization) is not possible for interstitial V and Cr. In the
case of neutral interstitial Cr and V, spin-restricted calcu-
lations allow only a ground-state configuration with low
spin because the induced single-particle state e appears as
a conduction-band resonance and therefore cannot be oc-
cupied. For neutral substitutional 3d impurities,

ENERGY (eV)

(4)
Z=5 6 7 8 9 10 N

FIG. 16. Single-particle states e and ¢, induced by neutral
substitutional (solid circles) and interstitial (open circles)
transition-metal point defects in silicon resulting from spin-
restricted calculations. Numbers in parentheses indicate occu-
pations of the states. The e-¢, splitting for interstitial impurities
is denoted by the shaded area.
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Hund’s-rule occupation of the induced states 7, and e
could only be achieved in the case of VO, Cr% and Cu’ in
agreement with the spin-restricted results of Zunger and
Lindefelt (see Fig. 4).

B. Spin-unrestricted calculations

1. Substitutional site

The spin-unrestricted results obtained by our theory for
the ground-state configuration of neutral substitutional
3d-TM impurities in silicon are shown in Fig. 17. Table I
gives the calculated localization a? (see Sec. III) of the
defect-induced states ¢], t, e!, and e' in the band gap,
the spin splitting A, of the doublet state e and triplet
state ¢,, and the total electron spin S of the neutral substi-
tutional 3d series Ti, V, Cr, Mn, Fe, Co, Ni, and Cu in sil-
icon in the ground state. In Table II all calculated possi-
ble impurity charge states with the corresponding
ground-state symmetries, spin multiplicities, and magne-
tization densities are listed. In the following we will
focus on the trend of the electronic and magnetic impuri-
ty properties going through the 3d series.

(a) Wave-function localization, spin splitting, and spin
densities. From the simple picture in Fig. 10, it follows
that the impurity triple state ¢, in the gap has antibond-
ing character, whereas the doublet state e is essentially
nonbonding. Consistently, the defect-induced e states are
well localized and the antibonding ¢, states are more ex-
tended (see Table I). The trend that the delocalization of
the triplet state ¢, increases from Fe’ to Cu® can also be
explained by the schematic model in Fig. 10: With in-
creasing atomic number the energy of the atomic 3d or-
bital is lowered and, therefore, the interaction between
the dt, part of the atomic 3d orbital and the dangling-
bond vacancy ¢, state is reduced. As a consequence, the
antibonding ¢, impurity state gets more dangling-bond-
like from Fe® towards Cu®.

The trend of the calculated spin splitting A,(¢,) and
A, (e) of the defect-induced ¢, and e states can be under-
stood by the Stoner expression (3.36).

Going backwards through the 3d series from Cu® to-
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FIG. 17. Single-particle energies of the defect-induced states
t, and e for the ground state of the neutral substitutional 3d im-
purities in silicon obtained from spin-unrestricted theory. A
number in parentheses gives the occupancy of a localized gap
state, or of a resonance in the valence or conduction band from
which the total electron spin S results. Substitutional Sc only
exists in the single negative charge state and is therefore not
shown here.

wards Co°, the splitting A, (t,) between ] and ¢} remains
of the same order of magnitude, although the total elec-
tron spin S decreases from S =3 for Cu’to S =1 for Co°.
This is a consequence of the localization a? of the ¢} and
t} states which increases along the 3d series from Cu® to
Co° (see Table I) and nearly compensates for the effect of
the decreasing total electron spin. For Co° the S =3
configuration e '(2)e '(0)t](3)t3(0) is an excited state ly-
ing roughly 0.4 eV above the ground state.

Neglecting lattice relaxation, substitutional Fe® is
found to be nonmagnetic: The single-particle state e

TABLE I. Calculated localization a? of the defect-induced states ], ¢4, e', and e in the band gap,
spin splitting A, of the doublet state e and triplet state ¢,, and total electron spin S of the neutral substi-
tutional 3d-transition-metal point defects Ti, V, Cr, Mn, Fe, Co, Ni, and Cu in silicon in the ground

state.
A, (e) A, (2,)

ak(t}) a(t}) ale!) alet) (eV) (eV) S
Ti%, 0.00 0.00 0
A% 0.66 0.57 0.50 0.25 1
crly 0.30 1.40 0.74 1
Mn2,, 0.23 0.66 1.78 0.73 3
Fel,, 0.35 0.35 0.00 0.00 0
Colyp 0.31 0.34 0.20 0.16 1
Nif,, 0.24 0.28 0.37 0.19 1
Culy, 0.14 0.17 0.45 0.12 3
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TABLE II. Calculated possible charge (ion) states of substitutional 3d-transition-metal impurities in
silicon in the ground-state configuration d"~* for n=4,5,...,11. The different rows denote the
impurity-type TM and its charge state g, the occupations of the ¢, and e states, the symmetry I' and the
spin multiplicity 2S + 1 of the many-electron ground state, the ratio m,/m of the local magnetic mo-
ment m, in the impurity atomic sphere to the total magnetic moment m (m =28, where S is the total
electron spin), and the ratio n,/Z between the electronic charge n, and the core charge Z in the impur-

ity sphere. EPR-identified states are underlined.
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is completely filled with four electrons and the ¢,
state is empty. Nevertheless, the configuration
e'(2)e*(0)t](2)t}(0) with total electron spin S=2 is
higher in energy by about 0.2 eV.

Going from Fe® to Mn’ the total electron spin S
changes from $=0 to S=%, for the following reason:
Whereas for Cu’, Ni°, and Co° the doublet states e and
e’ give no direct contribution to the magnetization and
spin-density, respectively, because e' as well as e' are
valence-band resonances and are thus completely filled, in
the case of substitutional Mn® only e ' appears as a reso-
nance (filled by two electrons) in the valence band and e
is an empty bound state in the gap. As will be discussed
later [subsection (c)], the change in spin from S=0 for
Fe® to S =3 for Mn® is caused by the change from a low-
spin to a high-spin ground-state configuration. The large
spin splitting A, (e)=1.78 eV for Mn®,, reflects the rath-
er strong localization of e states (see Table I). As a conse-
quence, the t] and e states cross, i.e., the triplet state t]
lies energetically below the doublet state e*. Therefore in
the ground-state configuration of Mnd,, the triplet ¢] is
occupied by one electron and the doublet e! remains
empty. In general, such a level crossing arises if the aver-
aged spin splitting A (e,1,)=[A,(e)+A,(¢,)]/2 over-
comes the crystal-field splitting between ¢, and e. As can
be seen by comparing the results for substitutional Mn°
obtained by our spin-restricted theory (see Figs. 7 and 16)
and spin-unrestricted theory (see Fig. 17), the inclusion of
spin polarization is particularly important here. The
effect of spin polarization is not only the transformation
from the configuration e(3)t,(0) to e '(2)e(1)¢](0)¢(0)
with total electron spin §=1. As illustrated in Fig. 17,
the S=1 configuration is not found to be the ground-
state configuration of substitutional Mn% The internal
electron transition process in which the electron in the
doublet state e is promoted to the triplet state t] is ex-
othermic by 0.25 eV, and, therefore, Mn®, has the
ground-state configuration e '(2)e *(0)z] (1)t} (0) with to-
tal electron spin § = 3.

For substitutional Cr° the triplet state ¢} in the gap is
empty, the doublet state e lies, as in the case of Mn?,, as
a resonance in the valence band, and e is an empty reso-

nance in the conduction band. Therefore the ground
state of Cr2,, has total electron spin S =1.

Moving from Cr, towards V2, the valence-band res-
onance e' crosses the valence-band edge and becomes a
bound state in the gap that is occupied by one electron.
Therefore, as follows from the Stoner expression (3.36),
the spin splitting A, (e) is drastically reduced for V%, and
no e'-t} level crossing occurs as in the case of substitu-
tional Cr° and Mn°.

For neutral substitutional Ti, both defect-induced
states ¢, and e are empty, and thus Ti%,, is nonmagnetic.

By fitting the Stoner expression (3.36) to our calculated
spin splitting A,, we obtain I;,=0.910.1 eV for all sub-
stitutional 3d ions in silicon. In Table II the ratio my/m
between the local magnetic moment m, in the impurity
atomic sphere and the total magnetic moment m =28
(see Sec. III) is summarized for all calculated possible
charge states of 3d-TM point defects in silicon in the
ground-state configuration. For a discussion of the calcu-
lated magnetization-density results, it is meaningful to
divide m,/m into two parts: one part, (m,/m )g, which
originates from defect-induced states with unpaired spins
only, and another part, (m,/m )yg, which arises from the
spin polarization of completely filled states, mostly lying
in the valence band. The ratio (my/m)g, which, in the
case of 3d ions, is produced by the defect states e and/or
t, with unpaired spins (not completely filled states), is
mg
— sign(i)a*(i)n(i) , @.1)
ier

-1
m B 28

where n(i) is the occupation number of the defect state i
and the summation range [ is defined as

ele! if n(e")#n(e') and n(t))=n(t}),

I= 111,13 if n(t])#n(t}) and n(e")=n(e'), (4.2)
el,el,e] 1} if n(e)#n(e') and n(t])#n(td) .

sign(i ) depends only on the spin of the defect state i: It is
sign(i/)=+1 for single-particle states with spin up (1)
and sign(i)=—1 with spin down (l). The magnetic-
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moment ratio (mg,/m )yg originating from spin polariza-
tion of completely filled states is

. 4.3)
v m B
For both substitutional and interstitial (see Sec. IV B 2)
3d-TM impurities in silicon, the magnetic-moment part,
(my/m)yp, is, in general, very important: Whereas for
substitutional Co® the t,-induced magnetic-moment ratio
(my/m)p=aX(t])=0.31 [see relation (4.1)], and thus the
valence-band contribution is only (my/m)yg=0.17, in
the case of Mn?,, the magnetic-moment part produced by
the spin splitting of the valence-band states is, according
to relations (4.1) and (4.3), (my/m)yg=my/m
—1[2a%(e")+a*(t])]=0.48, which is nearly as large as
(my/m)g=0.52 (see Tables I and II). In the case of sub-
stitutional Cr° and Mn ™, the local magnetic moment m,
in the impurity atomic sphere is even exceeding the total
magnetic moment m =2S (my>m in Table II) and
therefore the integration of the magnetization density
m(r) over the region outside the impurity sphere gives a
negative contribution.

(b) Charge states ground-state symmetries, and spin
multiplicities. All calculated charge (ion) states of substi-
tutional 3d impurities in silicon in the ground-state
configuration d” ~* for n =4,5, ..., 11 are listed in Table
II. For each charge state the electronic configuration,
i.e., the occupations of the defect-induced states ¢, and e,
are denoted, and the corresponding many-electron
ground state is characterized by its spin multiplicity
(25 +1) and the representation I' of the tetrahedral point
group. Neglecting lattice relaxations, we find low-spin
ground states for the substitutional 3d ions Fe®, Co™,
Ni?*, Co% Nit, Co~, Ni®, and Cu™, which is in conflict
with the generally accepted model of Ludwig and Wood-
bury. Unfortunately, these ions have not been identified
by EPR until now. Those substitutional 3d ions for
which EPR data exist are underlined in Table II and they
have all high-spin (i.e., Hund’s rule) ground states, in
agreement with the LW model and with our calculated
results. As listed in the last row of Table II, the ratio
ny/Z between the electronic charge n, and the core
charge Z in the impurity sphere increases from 0.75 to
0.95 through the 3d series of the neutral substitutional
ions and, thus, the total charge of the impurity sphere de-
creases from Q=1.0 for Ti’ to 9 =0.5 for Cu’. An in-
teresting result is that the charge in the ratio ny/Z by
changing the charge state is only 1% or less. The reason
is that the charge density of an electron added or sub-
tracted in a localized state in the gap is mainly canceled
by charge rearrangements in the valence band so that lo-
cal charge neutrality (within the impurity sphere) is near-
ly maintained.

(c) Single-particle energies and donor and acceptor lev-
els. The calculated single-particle energies associated
with neutral substitutional 3d-TM point defects in the
ground state are shown in Fig. 17. The atomic 3d orbital
is split into a triplet ¢, branch (solid curve in Fig. 17) and
a doublet e branch (dashed curve in Fig. 17), both consist-
ing of spin-up (1) and spin-down () states. As illustrat-

ed in the simple physical picture in Fig. 9, the atomic 4s
orbital is interacting with the vacancy dangling-bond a,-
resonance state just below the upper valence-band edge
and is pushed up as an empty resonance state into the
conduction band and therefore not shown in Fig. 17. The
spin-unrestricted results in Fig. 17 can be understood by
the schematic description in Fig. 10 applied to spin-up
and spin-down states. As assumed by LW, the e branch
is energetically lower than the ¢, branch (see Fig. 17),
which can be explained by the simple model in Fig. 10 in
analogy to the spin-restricted results (Sec. IVA 1). Fur-
ther, the model in Fig. 10 explains the increasing crystal-
field splitting A(e,t,) between the ¢, and e branches with
increasing atomic number from A(e,?,)=0.5 eV for Ti®
to Ale,t,)=1.2 eV for Ni°. However, considering the
occupation numbers of the defect states ¢, and e, respec-
tively, the total electron spin S, the following is found:
Going through the 3d series from substitutional Ti® to
Cu’, there is a characteristic jump between Mn° and Fe°
interrupting the otherwise monotonous decrease of the
triplet ] and doublet e' energy which is caused by a
change from high-spin to low-spin ground states. This
change from high spin to low spin between Mnd, and
Fel, originates from the fact that the splitting between
the ¢, and e branches increases with increasing atomic
number and dominates over the spin splitting in the cases
of Fe, Co, Ni, and Cu. Thus for the substitutional 3d ele-
ments to the right of Mn, our theory indicates a break-
down of the LW model. Nevertheless, in the case of Fe
and possibly Co the high-spin configurations are higher
in energy by only few 0.1 eV and thus the neglect of lat-
tice relaxations may be crucial.

The calculated donor and acceptor levels of substitu-
tional 3d impurities in silicon that correspond to electron
transitions between different possible charge states are
shown in Fig. 18. For each level the related single-
particle state and its occupation number before and after
the ionization is indicated. For example, the single-donor
level (0/+) of Mn (denoted ¢]1/0) is related to the
single-particle state t{ in Fig. 17 with the change in the
occupation number 1/0 because it is originating from an
electron transition process between Mn° and Mn* in
which the electron in the triplet state ¢] is promoted to
the conduction band. The relation between the single-
donor level (0/+) and the single-particle state t} is given
by self-consistent transition-state calculation in which the
single-particle state ¢ is occupied by half an electron (see
Sec. III). Therefore, as a consequence of the electronic
relaxation, the single-donor energy E(0/+)=E,+0.49
eV of substitutional Mn is lying 0.10 eV below the single-
particle energy of the tZT triplet state associated with neu-
tral substitutional Mn in Fig. 17. Consequently, the
single-acceptor level E(—/0)=E,+0.69 eV associated
with substitutional Mn (denoted z}2/1 in Fig. 18) is
equal to the self-consistently calculated single-particle en-
ergy of the ¢] state occupied by 3/2 electrons. Thus the
effective electron-electron interaction energy U, defined
as the energy difference between the single-acceptor and
-donor levels related to the same single-particle state, is
found to be U(t})=0.20 eV for substitutional Mn. The



41 ELECTRONIC AND MAGNETIC STRUCTURE OF . ..

CONDUCTION BAND

10
_ o8-
E L
06}
G
2
Z 041
11/0
“oot TorT
0.2+
ool Sesub_Tisw Vsup

Crsub Mngyp Fesub Cosub Nisub

A\NNNNNNateree aao NN -

1619

t243/2
s -

(0/+

t>4 1/0
(+ ro-a-i

FIG. 18. Donor and acceptor levels for substitutional 3d impurities in silicon resulting from spin-unrestricted calculations. For
each level the related single-particle state (see Fig. 17) and its occupation before and after the ionization is indicated.

energy levels found for substitutional Cr, Mn, Co, Ni,
and Cu are all related to the triplet state tzT, except for
the double-acceptor level (2— /—) of Ni and the three
acceptor levels of Cu, which are derived from ;. The
single-donor and -acceptor level of substitutional V are
both assigned to the doublet state e'!, and, because for
substitutional 3d ions in silicon e is more localized than ¢,
(Table I), the corresponding effective Coulomb repulsion
energy U(e')=0.42 eV is much larger than U(t]) found
for Mn, Co, and Ni. However, the Coulomb repulsion
energy U found for substitutional 3d impurities in silicon
is 1-2 orders of magnitude smaller than the Coulomb
repulsion energy of free 3d ions. The reason for this is
the fact that the charge density of an electron added or
subtracted in a bound state in the gap (which can be rath-
er localized; see Table I) is nearly cancelled by charge
rearrangements in the valence band such that the charge
in the impurity sphere almost remains unchanged (see ra-
tio ny/Z for different charge states in Table II). This
nonlinear compensation effect is the reason a substitu-
tional 3d-TM impurity can have a sequence of donor and
acceptor levels within the narrow band gap of silicon.

Substitutional Sc, Ti, and Fe are predicted to be electri-
cally inactive, i.e., to have no energy level in the gap. In
the case of Fe, this is a consequence of its low-spin
ground-state configuration. The high-spin configuration
of substitutional Fe is found to be only 0.2 eV higher in
energy than the calculated low-spin ground state, and
high-spin Fe is predicted to act as a single donor and a
double acceptor. Thus, including lattice relaxations, the
high-spin configuration may be energetically favored
(magnetic pressure effect®?).

For 3d-TM impurities at the substitutional site in sil-
icon, there are no established experimental level positions
because in most cases the defect geometry is not realiably
established. The recent DLTS measurements on substitu-

tional Mn, combined with EPR investigations by Czapu-
ta et al.,'* are an exception: They found that Mn has a
single-donor level 0.39 eV above the valence-band edge
and no further level below. This is in good agreement
with our calculated single-donor energy of substitutional
Mn (see Fig. 18).

2. Interstitial T; site

The spin-unrestricted, defect-induced, single-particle
spectrum calculated for the ground states of neutral inter-
stitial 3d-TM impurities in silicon is shown in Fig. 19. As
will be explained later, for interstitial Cr° the high-spin
state was used. Interstitial Cu is found to exist only in
the single positive charge state, and thus no results are
shown in Fig. 19 for Cu. In Table III we summarize our
results for the localization a? (see Sec. III) of the defect
states tzf, t%, e', and e! in the band gap, the spin split-
ting A, of the doublet state e and triplet state ¢,, and the
total electron spin S through the neutral interstitial 3d
series Ti, V, Cr, Mn, Fe, Co, Ni, and Cu in silicon in the
ground-state configuration. All calculated impurity
charge states found to exist with their corresponding
ground-state symmetries, spin multiplicities, and magne-
tization densities are listed in Table IV. In the following
we will focus on the trend of the electronic and magnetic
impurity properties going through the 3d series.

(a) Wave-function localization, spin splitting, and spin
densities. As illustrated in Fig. 15, the doublet state e
and triplet state ¢, induced by interstitial 3d ions in sil-
icon are, to a first approximation, nonbonding, and the
level order ¢, below e originates from the fact that at the
interstitial T, site the upper part of the Si valence band
has strong ¢,, and some e, character, whereas the lower
part of the conduction band has strong ¢,, but essentially
no e, character. The result obtained by our theory that
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FIG. 19. Single-particle energies of the defect-induced states
e and t, for the ground state of the neutral interstitial 3d impur-
ities in silicon obtained from spin-unrestricted theory. A num-
ber in parentheses gives the occupancy of a localized gap state,
or of a resonance in the valence or conduction band from which
the total electron spin S results. For interstitial Cr® the high-
spin state was used. Interstitial Cu only exists in the single posi-
tive charge state.

the localization a’(t,) for both spin-up and spin-down
components of the triplet state ¢, is increasing going
through the 3d series can be explained by the model in
Fig. 15: With increasing atomic number, the atomic 3d
orbital energy is decreasing and therefore the interaction
between the dt, part of the atomic 3d orbital (Fig. 15,
right part) and the ¢, states of the lower conduction band
(Fig. 15, left part) is reduced.

Considering the results shown in Fig. 19, we first dis-
cuss the trend of the calculated spin splitting A, of the
defect-induced states e and ¢, going from interstitial Ni°
to Sc°.

For interstitial Ni° the bound doublet state e as well as
the valence-band resonance triplet state ¢, are completely
filled, resulting in S =0 for the total electron spin. Thus,
Ni{, is nonmagnetic.
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The spin polarization of interstitial Co® is induced by
the partially filled bound state e in the gap: e is com-
pletely filled, whereas e' is occupied by one electron.
The resulting spin is S=1. As a consequence of the e-
induced spin splitting for Col,,, the triplet state ¢, is split
into a resonance ¢] in the valence band and a bound state
t in the gap occupied by three electrons.

The magnetization for interstitial neutral Fe originates
from the doublet state e as in the case of Col,, but the
spin splitting A, for Fel, is about twice as large (see
Table III). The reason is, because e'is an empty reso-
nance in the conduction band, both electrons in the e
state contribute to the spin polarization, resulting in a to-
tal electron spin S=1 for interstitial Fe’. The average
spin splitting A, (e,t,)=[A,(t;)+ A, (e)]/2=0.75 eV is
larger than the crystal-field splitting A(e,?,)=0.68 eV,
which results in a crossing of the e' and 74 states (see
Fig. 19), i.e., the doublet state e ' lies energetically below
the triplet state 74.

In the case of interstitial Mn® and Cr°, additionally to
the doublet state e, the triplet state z, contributes to the
magnetization: Whereas the tg state remains completely
filled as in the case of Fe),, the ¢} state is occupied by
two electrons for Mn® and one electron for Cr’. Going
from Mn° to Cr° the crossing of the e and ¢4 states is
nearly constant because the increasing spin splitting A,
for e and ¢, (see Table III) is almost compensated for by
the increasing splitting between e and ¢, [see subsection
(c)].

Moving backwards through the 3d series from Ni° to
CrY the total electron spin S is increasing in steps of I
However, going from Cr° to V° there is a jump in the spin
from S=2 to S=1. The reason is that between Cr° and
VO the bound doublet state e (occupied by two electrons
for Cr°) is crossing the conduction-band edge (see Fig.
19), thus inducing an internal electron transition process
in which the two e electrons are transferred to the trip-
let state 121. Therefore, in the case of VO the doublet state
e' appears as an empty resonance in the conduction
band, and thus the magnetization originates solely from
the rather delocalized triplet state ¢, (see Table III). This
has the consequence that, going from Cr° to V°, the spin

TABLE III. Calculated localization a? of the defect-induced states 7], 74, e', and e' in the band
gap, spin splitting A, of the doublet state e and triplet state ,, and total electron spin S of the neutral
T, interstitial 3d-transition-metal point defects Ti, V, Cr, Mn, Fe, Co, and Ni in silicon in the ground
state. Interstitial Cu only exists in the single positive charge state.

A,le) A, (t;)

aX(t]) a¥(t}) a*eh) a’let) (eV) (eV) S
Tid, 0.33 0.26 0.36 0.22 1
Vo, 0.40 0.37 0.54 0.27 1
crd, 0.33 0.54 1.39 0.93 2
Mnj, 0.44 0.55 1.23 0.82 3
Fe?, 0.48 0.51 0.94 0.56 1
Co?, 0.54 0.62 0.44 0.29 1
Ni?, 0.52 0.52 0.00 0.00 0
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TABLE 1V. Calculated possible charge (ion) states of T, interstitial 3d-transition-metal impurities in
silicon in the ground-state configuration d" for n=2,3,...,10. The different rows denote the
impurity-type TM and its charge state g, the occupations of the ¢, and e states, the symmetry I" and the
spin multiplicity 2S + 1 of the many-electron ground state, the ratio m,/m of the local magnetic mo-
ment m, in the impurity atomic sphere to the total magnetic moment m (m =28, where S is the total
electron spin), and the ratio n,/Z between the electronic charge n, and the core charge Z in the impur-

ity sphere. EPR-identified states are underlined.
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splitting A, of both the e and ¢, states is drastically re-
duced, and thus the e '-¢} crossing which occurs for Fe®,
Mn®, and Cr° is removed.

Going from V° to Ti’ the spin splitting A, (z,) is re-
duced because of the decreasing localization a® of the
triplet state 3 from a*(¢])=0.37 for V° to a*(¢})=0.26
for Ti’, which cannot be compensated for by the fact that
in the case of Ti° one electron more is contributing to the
magnetization (S =1 for V), but S=1 for TiJ,,).

The calculated spin splitting A, of the defect states e
and ¢, can, in first-order perturbation theory, be approxi-
mated by the Stoner expression (3.36) (see Sec. III), where
m, and m are the integrals of the magnetization density
m(r) in the impurity sphere and in all space, respectively.
For all T, interstitial 3d ions in silicon, it is found that
I,=0.9 eV for the TM Stoner parameter. In Table IV
the calculated magnetic-moment ratios m,/m for all
charge states found to exist for interstitial 3d-TM point
defects in silicon are summarized. In analogy to the sub-
stitutional ions, it is meaningful to divide the magnetic-
moment ratio my/m into a part, (my/m)g, which origi-
nates from defect-induced states with unpaired spins [see
relation (4.1)], and a part, (my/m )y, arising from the
spin polarization of completely filled states [see relation
(4.3)]. For interstitial 3d-TM impurities in silicon it is
found—similarly to substitutional ions—that the
magnetic-moment part (mg/m)yp associated with the
spin splitting of completely filled states mainly lying in
the valence band is very important. For example, in the
case of neutral interstitial Fe it is m,/m =0.88,
n(e')=2, n(e*)=0, S=1, and a%(e')=0.51 (see Fig. 19
and Table III), and according to relations (4.1)—(4.3), it
follows that (my/m)g=0.51 and (my/m)yg=0.37.
Therefore only 58% of the local magnetization of Fel,
originates from the partially filled doublet state e.
Analysis of ENDOR investigations of interstitial Fe°
(Refs. 38 and 39), Ti*, and Crt (Ref. 40) are in good
agreement with our calculated values of m,/m in Table
Iv.

(b) Charge states, ground-state symmetries, and spin
multiplicities. All calculated possible charge (ion) states
of interstitial 3d impurities in silicon in the ground state
are summarized in Table IV. For each charge state the
electronic configuration and occupations of the defect-

induced states ¢, and e yielding the lowest total energy is
given, and the corresponding many-electron ground state
is characterized by its spin multiplicity (25 +1) and the
orbital symmetry I' in the tetrahedral point group. Con-
trary to the generally accepted model of Ludwig and
Woodbury, we predict low-spin ground states for the in-
terstitial 3d ions Ti®, V', Ti™, V% and V™. Available
EPR data of interstitial 3d ions in silicon (underlined in
Table 1IV) are in agreement with our calculated ground-
state configurations, with the following exception: Not
including lattice distortions, Cr° and Cr™ are found to
have low-spin ground states. For these ions the magneti-
zation of low- and high-spin ground states is significantly
different—the total electron spin S differs by AS=2—
and, therefore, we believe that for the high-spin ground
state a spin-induced geometric relaxation might be im-
portant (magnetic pressure effect®?).

In comparison to the substitutional site, the charge ra-
tio ny/Z between the electronic charge n, and the nu-
clear charge Z in the impurity sphere is found to be
larger. Moving through the series of neutral interstitials,
the ratio n,/Z is increasing from 0.86 for Ti° to 0.99 for
Cu? (see Table IV). Thus, for Cu’, local charge neutrality
is nearly perfect. Considering different charge states of
an interstitial 3d impurity, the change in the ratio ny,/Z
is only 1% or less and, therefore, the local charge
Q =Z —n, is nearly independent of the charge state. The
reason is that the effect of adding or subtracting an elec-
tron to or from an interstitial 3d point defect is nearly
compensated for by charge rearrangements in the valence
band.

(c) Single-particle energies and donor and acceptor lev-
els. The calculated energies of the single-particle states
associated with neutral interstitial 3d-TM impurities in
the ground state are shown in Fig. 19. The atomic 3d or-
bital is split into a doublet e branch (dashed curve in Fig.
19) and a triplet ¢, branch (solid curve in Fig. 19) both
consisting of spin-up (1) and spin-down () states. As
demonstrated in Fig. 13, the atomic 4s orbital is pushed
up as an empty resonance state into the conduction band
and therefore not shown in Fig. 19. The assumptions in
the LW model (see Sec. Il A) that an interstitial 3d im-
purity with n valence electrons in silicon exists in a d”
configuration, i.e., the electrons in the atomic 4s orbital
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FIG. 20. Calculated (solid lines) and experimental (dashed lines) acceptor and donor levels for interstitial 3d impurities in silicon.
For each level the related single-particle state (see Fig. 19) and its occupation before and after the ionization is indicated. In the cases

of Cr° and Cr™, high-spin states were used.

being promoted to the 3d shell, and that the triplet ¢, is
energetically below the doublet e, are confirmed by our
spin-unrestricted results (Fig. 19), which can be under-
stood qualitatively by the schematic description in Figs.
13 and 15 applied to spin-up and spin-down states.
Furthermore, the decreasing crystal-field splitting
A(t,,e) between the e and ¢, branches with increasing
atomic number from A(ty,e)=1.5 eV for Ti’ to
A(t,,e)=0.4 eV for Ni° can be explained qualitatively by
the simple physical picture in Fig. 15: Moving from Ti°
towards Ni’ the atomic 3d energy decreases and, as a
consequence, the interaction between the atomic 3d orbit-
al and the ¢, crystal states in the lower conduction-band
region (which are mainly responsible for the interstitial
impurity level order ¢, below e) is being reduced. Howev-
er, if we consider the occupation numbers of the defect-
induced states ¢, and e or the total electron spin S, we
find the following: Moving backwards through the inter-
stitial 3d series from Ni° to Ti’ the increase in the total
electron spin § in steps of J between Ni® and Cr° is inter-
rupted by a jump from S =2 for Cr to S =1 for V0. This
characteristic jump in the total-electron-spin trend,
which is reflected by the jump in the otherwise monoto-
nous increase of the single-particle t% energy, is caused by
a switch from high-spin to low-spin ground states between
Cr and V. The reason is that, going backwards through
the 3d series, the splitting between the e and ¢, branches
is increasing, and in the case of V and Ti it dominates
over the spin spliting. Thus, for interstitial 3d impurities
to the left of Cr, our theory predicts a breakdown of the
LW model.

The transition energies between different charge states
(Table IV), i.e., the donor and acceptor levels of intersti-
tial 3d impurities in silicon obtained by our theory, are
shown in Fig. 20 (solid lines) in comparison with estab-

lished experimental data (dashed lines). For each calcu-
lated level position, the related single-particle state and
its occupation number before and after the impurity ion-
ization is noted. For example, in the case of interstitial
Fe the single-donor energy (0/+) originates from a tran-
sition process in which one electron of the ¢ state is pro-
moted to the conduction band. Therefore, the single-
donor level (0/+) of interstitial Fe is related to the
single-particle state t21 with the occupation-number
change 3/2 (denoted as tzl 3/2 in Fig. 20). According to
relation (3.9), the single-donor energy (0/+) of Fe,, is
given by the energy of the single-particle state t§ ob-
tained from a self-consistent “transition-state” calcula-
tion for Fe; > in which half an electron was removed
from threefold occupied triplet state tzl. As a conse-
quence of electronic relaxation, the single-donor energy
E(0/+)=E,+0.25 eV is found to lie below the single-
particle energy of the ¢ state induced by Fe?, (see Fig.
19). Similarly, the (0/+) and (— /0) levels of Ti, the
three V levels, the (0/+) level of Cr, and the three Mn
levels are all related to the triplet state t%, whereas the
(0/+) and (+ /2+) levels of Sc and the (+/2+) level of
Ti are derived from t{ , and the (+ /2+) level of Cr and
the two Co levels are assigned to e ' and e, respectively.
Interstitial Ni and Cu are predicted to be electrically
inactive, i.e., no levels are found to exist within the gap
region.

V. SUMMARY

Spin-unrestricted self-consistent electronic and mag-
netic Green-function calculations for the whole 3d
transition-metal series in silicon have been performed.
Both defect sites of tetrahedral symmetry were con-
sidered. Relaxations of the atomic positions were not in-
cluded.
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Our theory predicts low-spin ground states for the early
interstitial ions Ti®, V*, Ti~, V°, and for the late substi-
tutional ions Fe®, Co™*, Ni?*, Co° Ni*, Co~, Ni’, and
Cu'. This is in conflict with the model of Ludwig and
Woodbury, but not with available experimental data.
Nevertheless, in the case of substitutional Fe and Co the
high-spin configurations are higher in energy by only few
0.1 eV, and thus the neglect of lattice relaxations may be
crucial. From Sc to Cu all possible charge states with
their spin multiplicities and magnetization densities in
the ground-state configuration as well as their donor and
acceptor levels have been calculated. The ground-state
results agree with all EPR data of 3d ions in silicon, ex-
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cept for interstitial Cr. We attribute the lack of agree-
ment for Cr° and Cr" to the local spin density and the
atomic-sphere approximation, to the band-gap correc-
tion, and to the neglect of a breathing distortion of the
impurity neighbors. The calculated deep donor and ac-
ceptor energies for the interstitial 3d ions reproduce all
experimentally observed transitions. Only the double-
donor level for Cr obtained by our theory is not found ex-
perimentally, which is consistent with the above-
mentioned problem for Cr. The prediction of low-spin
ground states for interstitial V and Ti is strongly support-
ed by the good agreement between calculated and experi-
mentally observed level positions.

*Present addess: Alcatel STR, Friesenbergstrasse 75, CH-8055
Ziirich, Switzerland.

Present address: Fritz-Haber-Institut der Max-Planck-
Gesellschaft, Faradayweg 4-6, D-1000 Berlin 33, Federal
Republic of Germany.
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